Home Groups that have a partition by commuting subsets
Article
Licensed
Unlicensed Requires Authentication

Groups that have a partition by commuting subsets

  • Tuval Foguel , Josh Hiller , Mark L. Lewis EMAIL logo and Alireza Moghaddamfar
Published/Copyright: November 4, 2020

Abstract

Let ๐บ be a nonabelian group. We say that ๐บ has an abelian partition if there exists a partition of ๐บ into commuting subsets A1,A2,โ€ฆ,An of ๐บ such that |Ai|โฉพ2 for each i=1,2,โ€ฆ,n. This paper investigates problems relating to groups with abelian partitions. Among other results, we show that every finite group is isomorphic to a subgroup of a group with an abelian partition and also isomorphic to a subgroup of a group with no abelian partition. We also find bounds for the minimum number of partitions for several families of groups which admit abelian partitions โ€“ with exact calculations in some cases. Finally, we examine how the size of a partition with the minimum number of parts behaves with respect to the direct product.


In memory of Professor Carlo Casolo


  1. Communicated by: Andrea Lucchini

References

[1] M. Akbari and A.โ€‰R. Moghaddamfar, Groups for which the noncommuting graph is a split graph, Int. J. Group Theory 6 (2017), no. 1, 29โ€“35. Search in Google Scholar

[2] R. Baer, Partitionen endlicher Gruppen, Math. Z. 75 (1960/61), 333โ€“372. 10.1007/BF01211032Search in Google Scholar

[3] R. Baer, Einfache Partitionen endlicher Gruppen mit nicht-trivialer Fittingscher Untergruppe, Arch. Math. (Basel) 12 (1961), 81โ€“89. 10.1007/BF01650528Search in Google Scholar

[4] R. Baer, Einfache Partitionen nichteinfacher Gruppen, Math. Z. 77 (1961), 1โ€“37. 10.1007/BF01180159Search in Google Scholar

[5] S.โ€‰R. Blackburn, J.โ€‰R. Britnell and M. Wildon, The probability that a pair of elements of a finite group are conjugate, J. Lond. Math. Soc. (2) 86 (2012), no. 3, 755โ€“778. 10.1112/jlms/jds022Search in Google Scholar

[6] A. Brandstรคdt, Partitions of graphs into one or two independent sets and cliques, Discrete Math. 152 (1996), no. 1โ€“3, 47โ€“54. 10.1016/0012-365X(94)00296-USearch in Google Scholar

[7] L.โ€‰E. Dickson, Linear Groups: With an Exposition of the Galois Field Theory, Dover, New York, 1958. Search in Google Scholar

[8] S. Dolfi, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math. Soc. 82 (2010), no. 2, 293โ€“304. 10.1017/S0004972710000298Search in Google Scholar

[9] P. Erdล‘s and P. Turรกn, On some problems of a statistical group-theory. IV, Acta Math. Acad. Sci. Hungar. 19 (1968), 413โ€“435. 10.1007/BF01894517Search in Google Scholar

[10] T. Foguel and J. Hiller, A note on abelian partitionable groups, Comm. Algebra 48 (2020), no. 8, 3268โ€“3274. 10.1080/00927872.2020.1732997Search in Google Scholar

[11] S. Foldes and P.โ€‰L. Hammer, Split graphs, Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Mathematica, Winnipeg (1977), 311โ€“315. Search in Google Scholar

[12] D. Gorenstein, Finite Groups, 2nd ed., Chelsea, New York, 1980. Search in Google Scholar

[13] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss. 134, Springer, Berlin, 1967. 10.1007/978-3-642-64981-3Search in Google Scholar

[14] B. Huppert and N. Blackburn, Finite Groups. II, Grundlehren Math. Wiss. 242, Springer, Berlin, 1982. 10.1007/978-3-642-67994-0Search in Google Scholar

[15] B. Huppert and N. Blackburn, Finite Groups. III, Grundlehren Math. Wiss. 243, Springer, Berlin, 1982. 10.1007/978-3-642-67997-1Search in Google Scholar

[16] I.โ€‰M. Isaacs, Finite Group Theory, Grad. Stud. Math. 92, American Mathematical Society, Providence, 2008. Search in Google Scholar

[17] O.โ€‰H. Kegel, Nicht-einfache Partitionen endlicher Gruppen, Arch. Math. 12 (1961), 170โ€“175. 10.1007/BF01650543Search in Google Scholar

[18] M.โ€‰L. Lewis, D.โ€‰V. Lytkina, V.โ€‰D. Mazurov and A.โ€‰R. Moghaddamfar, Splitting via noncommutativity, Taiwanese J. Math. 22 (2018), no. 5, 1051โ€“1082. 10.11650/tjm/180202Search in Google Scholar

[19] A. Mahmoudifar and A.โ€‰R. Moghaddamfar, Commuting graphs of groups and related numerical parameters, Comm. Algebra 45 (2017), no. 7, 3159โ€“3165. 10.1080/00927872.2016.1236117Search in Google Scholar

[20] A. Mahmoudifar, A.โ€‰R. Moghaddamfar and F. Salehzadeh, Group partitions via commutativity, Int. Electron. J. Algebra 25 (2019), 224โ€“231. 10.24330/ieja.504159Search in Google Scholar

[21] D.โ€‰M. Rocke, ๐‘-groups with abelian centralizers, Proc. Lond. Math. Soc. (3) 30 (1975), 55โ€“75. 10.1112/plms/s3-30.1.55Search in Google Scholar

[22] R. Schmidt, Zentralisatorverbรคnde endlicher Gruppen, Rend. Semin. Mat. Univ. Padova 44 (1970), 97โ€“131. Search in Google Scholar

[23] M. Suzuki, A new type of simple groups of finite order, Proc. Natl. Acad. Sci. USA 46 (1960), 868โ€“870. 10.1073/pnas.46.6.868Search in Google Scholar PubMed PubMed Central

[24] M. Suzuki, On a finite group with a partition, Arch. Math. (Basel) 12 (1961), 241โ€“254. 10.1007/BF01650557Search in Google Scholar

[25] M. Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105โ€“145. 10.2307/1970423Search in Google Scholar

[26] G. Zappa, Partitions and other coverings of finite groups, Illinois J. Math. 47 (2003), 571โ€“580. 10.1215/ijm/1258488174Search in Google Scholar

Received: 2020-05-01
Revised: 2020-10-06
Published Online: 2020-11-04
Published in Print: 2021-05-01

ยฉ 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jgth-2020-0065/html
Scroll to top button