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Abstract. A coarse group is a group endowed with a coarse structure so that the group
multiplication and inversion are coarse mappings. Let .X;E/ be a coarse space, and let
M be a variety of groups different from the variety of singletons. We prove that there is
a coarse group FM.X;E/ 2M such that .X;E/ is a subspace of FM.X;E/, X gener-
ates FM.X;E/ and every coarse mapping .X;E/! .G;E 0/, where G 2M, .G;E 0/ is
a coarse group, can be extended to coarse homomorphism FM.X;E/! .G;E 0/. If M is
the variety of all groups, the groups FM.X;E/ are asymptotic counterparts of Markov free
topological groups over Tikhonov spaces.

In [4], A. A. Markov proved that, for every Tikhonov space .X; T /, there ex-
ists a group topology T 0 on the free group F.X/ in the alphabet X such that
.X; T / is a closed subset of .F.X/; T 0/ and every continuous mapping from
.X; T / to a topological group G can be extended to continuous homomorphism
.F.X/; T 0/!G. In particular, every Tikhonov space can be embedded as a closed
subset into some topological group.

Our purpose is to construct the natural counterparts of Markov free topological
groups in the category of coarse groups and coarse homomorphisms. A coarse
group is a group endowed with a coarse structure in such a way that the group
multiplication and inversion are coarse mappings. All necessary facts about coarse
spaces and coarse groups are in Sections 1 and 2, and the construction of free
coarse groups is in Section 3.

1 Coarse structures

Following [10], we say that a family E of subsets of X �X is a coarse structure
on a set X if
� each " 2 E contains the diagonal MX , MXD ¹.x; x/ W x 2 Xº,
� if "; ı 2 E , then " ı ı 2 E and "�1 2 E , where

" ı ı D ¹.x; y/ W there exists z..x; z/ 2 "; .z; y/ 2 ı/º;

"�1 D ¹.y; x/ W .x; y/ 2 "º;

� if " 2 E and4X � "0 � ", then "0 2 E .
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Each " 2 E is called an entourage of the diagonal. A subset E 0 � E is called
a base for E if, for every " 2 E , there exists "0 2 E 0 such that " � "0.

The pair .X;E/ is called a coarse space. For x 2 X and " 2 E , we denote
B.x; "/ D ¹y 2 X W .x; y/ 2 "º and say that B.x; "/ is a ball of radius " around x.
We note that a coarse space can be considered an asymptotic counterpart of a uni-
form topological space and could be defined in terms of balls; see [7, 9]. In this
case, a coarse space is called a ballean.

A coarse space .X;E/ is called connected if, for any x; y 2 X , there exists
" 2 E such that y 2 B.x; "/. A subset Y of X is called bounded if there exist
x 2 X and " 2 E such that Y � B.x; "/. The coarse structure

E D ¹" 2 X �X W 4X � "º

is the unique coarse structure such that .X;E/ is connected and bounded.
In what follows, all coarse spaces under consideration are supposed to be con-

nected.
Given a coarse space .X;E/, each subset Y � X has the natural coarse struc-

ture EjY D ¹" \ .Y � Y / W " 2 Eº, and .Y;EjY / is called a subspace of .X;E/.
A subset Y of X is called large (or coarsely dense) if there exists " 2 E such that
X D B.Y; "/, where B.Y; "/ D

S
y2Y B.y; "/.

Let .X;E/, .X 0;E 0/ be coarse spaces. A mapping f WX ! X 0 is called coarse
(or bornologous in the terminology of [10]) if, for every " 2 E , there exists "0 2 E 0

such that, for every x 2 X , we have f .B.x; "// � B.f .x/; "0/. If f is surjective
and coarse, then .X 0;E 0/ is called a coarse image of .X;E/. If f is a bijection
such that f and f �1 are coarse mappings, then f is called an asymorphism. The
coarse spaces .X;E/, .X 0;E 0/ are called coarsely equivalent if there exist large
subsets Y � X , Y 0 � X 0 such that .Y;EjY / and .Y 0;E 0jY 0/ are asymorphic.

To conclude the coarse vocabulary, we take a family ¹.X˛;E˛/ W ˛ < �º of
coarse spaces, and we define the product P˛<�.X˛;E˛/ as the Cartesian product
P˛<�X˛ endowed with the coarse structure with the base P˛<�E˛. If "˛ 2 E˛,
˛ < � and x; y 2 P˛<�X˛, x D .x˛/˛<� , y D .y˛/˛<� , then .x; y/ 2 ."˛/˛<�
if and only if .x˛; y˛/ 2 "˛ for every ˛ < �.

2 Coarse groups

Let G be a group with the identity e. For a cardinal �, ŒG�<� denotes the set
¹Y � G W jY j < �º.

A family I of subsets ofG is called a group ideal if I is closed under formation
of subsets and finite unions, ŒG�<! � I and AB�1 2 I for all A;B 2 I.

A group ideal I is called invariant if
S
g2G g

�1Ag 2 I for each A 2 I. For
example, ŒG�<� is a group ideal for any infinite cardinal �. If � > jGj, we get the
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ideal PG of all subsets ofG. We note also that ŒG�<! is invariant if and only if the
set ¹x�1gx W x 2 Gº is finite for each g 2 G. By [6], for every countable groupG,
there are 22

!

distinct group ideals on G.
Let X be a G-space with the action G �X ! X , .g; x/ 7! gx. We assume

that G acts on X transitively, take a group ideal I on G and consider the coarse
structure E.G; I; X/ on X with the base

¹"A W A 2 I; e 2 Aº; "A D ¹.x; gx/ W x 2 X; g 2 Aº:

Then .x; y/ 2 "A if and only if y 2 Ax, so B.x; "/ D Ax, Ax D ¹gx W g 2 Aº.
By [5, Theorem 1], for every coarse structure E on X , there exist a group G of

permutations of X and a group ideal I on G such that E D E.G; I; X/.
Now letX D G, whereG acts onX by left shifts. We denote EI D E.G; I; G/.

Thus every group ideal I onG turnsG into the coarse space .G;EI/. We note that
a subset A of G is bounded in .G;EI/ if and only if A 2 I.

For finitely generated groups, the right coarse groups .G;EŒG�<!/ in metric
form play a significant role in Geometrical Group Theory; see [1, Chapter 4].

A group G endowed with a coarse structure E is called a left (right) coarse
group if, for every " 2 E , there exists "0 2 E such that

gB.x; "/ � B.gx; "0/ .B.x; "/g � B.xg; "0// for all x; g 2 G:

A group G endowed with a coarse structure E is called a coarse group if the
group multiplication .G;E/ � .G;E/! .G;E/, .x; y/ 7! xy and the inversion
.G;E/! .G;E/, x 7! x�1 are coarse mappings. In this case, E is called a group
coarse structure.

For proofs of the following two statements, see [8] or [9, Section 6].

Proposition 1. A group G endowed with a coarse structure E is a right coarse
group if and only if there exists a group ideal I on G such that E D EI.

Proposition 2. For a group G endowed with a coarse structure E , the following
conditions are equivalent:

(i) .G;E/ is a coarse group.

(ii) .G;E/ is left and right coarse group.

(iii) There exists an invariant group ideal I on G such that E D EI.

Proposition 3. Every group coarse structure E on a subgroup H of an Abelian
group G can be extended to a group coarse structure E 0 on G.

Proof. We take a group ideal I on G such that E D EI, denote by I0 the group
ideal on G with the base AC B , A 2 ŒG�<! , B 2 I, and put E 0 D EI0 .
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Example 1. We construct a group G with a normal Abelian subgroup H of index
jG W H j D 2 such that some group coarse structure E on H cannot be extended to
a right group coarse structure onG. LetH D

L
n2Z Cn, Cn ' Z2. Every element

a 2 H can be written as a D .an/n2Z with an 2 Cn and an D 0 for all but finitely
many n. We define an automorphism ' of order 2 of H by '.an/n2Z D .cn/n2Z,
cn D a�n for each n 2 Z. We put h'i D ¹'; idº and consider the semidirect prod-
uct G D H h h'i. If .h1; '1/; .h2; '2/ 2 G, then

.h1; '1/.h2; '2/ D .h1'1.h2/; '1'2/:

For eachm2Z, we setHmD
L
n�mHn. Then the family ¹Hm W m 2 Zº is a base

for some group ideal I onH . We put E D EI and take an arbitrary invariant group
ideal J on G such that I � J. Since 'H0' [H0 D H , we see that H 2 J. It
follows that the coarse structure EJ jH is bounded, so EJ jH ¤ E .

Example 2. Let G be an infinite group with only two classes of conjugated el-
ements; see [3]. Then there is only one group coarse structure E on G, namely,
E D EP .G/.

3 Free coarse groups

A class M of groups is called a variety if M is closed under formation of sub-
groups, homomorphic images and products. We assume that M is non-trivial (i.e.,
there exists G 2M such that jGj > 1) and recall that the free group FM.X/ is
defined by the following conditions: FM.X/ 2M, X � FM.X/, X generates
FM.X/ and every mapping X ! G, G 2M, can be extended to homomorphism
FM.X/! G.

Let .X;E/ be a coarse space. We assume that .FM.X/;E
0/ is a coarse group

such that .X;E/ is a subspace of .FM.X/;E
0/ and every coarse mapping

.X;E/! .G;E 00/; G 2M; .G;E 00/ is a coarse group;

can be extended to coarse homomorphism .FM.X/;E
0/! .G;E 00/. We observe

that this E 0 is unique, denote FM.X;E/ D .FM.X/;E
0/ and say that FM.X;E/

is a free coarse group over .X;E/ in the variety M.
Our goal is to prove the existence of FM.X;E/ for every coarse space .X;E/

and every non-trivial variety M.

Lemma 1. Let .X;E/ be a coarse space. If there is a group coarse structure E 0 on
FM.X/ such that E 0jX D E , then there exists FM.X;E/.

Proof. We denote

F D ¹T W T is a group coarse structure on FM.X/ such that T jX D Eº:
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By the assumption, E 0 2 F. We take the minimal by inclusion group coarse struc-
ture T 0 on FM.X/ containing all coarse structures from F. Let G 2M, .G;E 00/
be a coarse group, f W .X;E/! .G;E 00/ be a coarse mapping. We extend f to
homomorphism f WFM.X/! G. Then the coarse structure on FM.X/ with the
base ¹f �1 � f �1."00/ W "00 2 E 00º is in F. It follows that the homomorphism

f W .FM.X/; T
0/! .G;E 00/

is coarse. Hence .FM.X/; T
0/ D FM.X;E/.

Lemma 2. For every coarse space .X;E/ and every non-trivial variety M of
groups, there exists a group coarse structure E 0 on FM.X/ such that E 0jX D E .

Proof. For some prime number p, M contains the variety Ap of all Abelian
groups of exponent p. We prove the theorem for Ap and then for M.

We take the free group A.X/ over X in Ap. Every non-zero element a 2 A.X/
has the unique (up to permutation of items) representation

m1x1 Cm2x2 C � � � Cmkxk; xi 2 X; mi 2 Zp n ¹0º; i 2 ¹1; : : : ; kº: (3.1)

For every " 2 E , " D "�1, we denote Y" D ¹x � y W x; y 2 X; .x; y/ 2 "º and
by Yn;" the sum on n copies of Y". We take z 2 X and consider the ideal I on
A.X/ with the base

Yn;" C ¹0; z; 2z; : : : ; .p � 1/zº; n < !:

Note that Yn;" � Yn0;"0 � YnCn0;"ı"0 . It follows that B � C 2 I for all B;C 2 I.
To show that ŒFM.X/�

<! � I, we take x 2 X and find " 2 E such that .x; z/ 2 ".
Then x � z 2 Y" and x 2 Y" C z. Hence I is a group ideal. We put E 0 D EI and
show that E 0jX D E .

If " 2 E , " D "�1 and .x; y/ 2 ", then x � y 2 Y", so E � E 0. To prove the
inverse inclusion, we take Yn;" C ¹0; z; : : : ; .p � 1/zº, assume that

x � y 2 Yn;" C ¹0; z; : : : ; .p � 1/zº

and consider two cases.
Case: x�y 2 Yn;"C iz, i ¤ 0. We denote byH the subgroup of all a 2A.X/

such thatm1 C � � � Cmk D 0 .mod p/ in the canonical representation (3.1). Then
x � y 2 H , Yn;" � H , but iz … H , so this case is impossible.

Case: x � y 2 Yn;". We show that .x; y/ 2 "n. We write x � y as

.x1 � y1/C � � � C .xn � yn/; xi ; yi 2 Y";
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so .xi ; yi / 2 ". Assume that there exists k 2 ¹1; : : : ; n � 1º such that

¹x1; y1; : : : ; xk; ykº \ ¹xkC1; ykC1; : : : ; xn; ynº D ;:

Then
either .x1 � y1/C � � � C .xk � yk/ D 0;

or .xkC1 � ykC1/C � � � C .xn � yn/ D 0:

Otherwise, x � y in representation (3.1) has more than two items. It follows that
there is a representation

x � y D .x01 � y
0
1/C � � � C .x

0
k � y

0
k/; x0i ; y

0
i 2 Y"; i 2 ¹1; : : : ; kº; k � n;

such that ¹x0iC1; y
0
iC1º \ ¹x

0
1; y
0
1; : : : ; x

0
i ; y
0
iº ¤ ; for each i 2 ¹1; : : : ; k � 1º. If

.x0; y0/ 2 "i for all x0; y0 2 ¹x01; y
0
1; : : : ; x

0
i ; y
0
iº then

.x0; y0/ 2 "iC1 for all x0; y0 2 ¹x01; y
0
1; : : : ; x

0
iC1; y

0
iC1º:

After n steps, we get x � y 2 "n.
To conclude the proof, we extend the mapping idWX ! X to a homomorphism

f WFM.X/! A.X/. Then ¹f �1.Y / W Y 2 Iº is a base for some invariant group
ideal J on FM.X/. Then .FM.X/;EJ/ is a coarse group. Since f jX D id, we
have EJ jX D E .

Theorem. For every coarse space .X;E/ and non-trivial variety M of groups,
there exists the free coarse group FM.X;E/.

Proof. Apply Lemma 2 and Lemma 1.

Remark 1. To describe the coarse structure E� of FM.X;E/ explicitly, for ev-
ery " 2 E , we put D" D ¹xy

�1 W x; y 2 X; .x; y/ 2 "º, take z 2 X and denote by
Pn;" the product on n copies of the set[

g2FM.X/

g�1.D"

[
D"z/g:

Then ¹Pn;" W " 2 E; n < !º is a base for some invariant group ideal I� on FM.X/.
Each subset A 2 I� is bounded in F.X;E/, so EI� � E�. To see that E� � EI� ,
the reader can repeat the arguments concluding the proof of Lemma 2. Hence
E� D EI� .

Remark 2. Each metric space .X; d/ defines the coarse structure Ed onX with the
base ¹.x; y/ W d.x; y/ < nº, n < !. By [9, Theorem 2.1.1], a coarse structure E is
metrizable if and only if E has a countable base. If E is metrizable then, in view
of Remark 1, the coarse structure of FM.X;E/ is metrizable.
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Remark 3. If the coarse spaces .X;E/, .X;E 0/ are asymorphic, then evidently
FM.X;E/, FM.X

0;E 0/ are asymorphic, but this is not true with coarse equiva-
lences in place of asymorphisms.

Let M D Ap, and let X be an infinite set endowed with the bounded coarse
structure E . We take X 0; jX 0j D 1 and denote by E 0 the unique coarse structure
on X 0. Clearly, .X;E/ and .X 0;E 0/ are coarsely equivalent, and FM.X

0;E 0/ is
a cyclic group of order p with bounded coarse structure. To see that FM.X/ is
unbounded, we take the subset Yn;" (see the proof of Lemma 2) and note that the
length of any element from Yn;" in representation (3.1) does not exceed 2n, but
FM.X/ has elements of any length.

Remark 4. LetX be a Tikhonov space with distinguished point x0. M. I. Graev [2]
defined a group topology on F.X n ¹x0º/ in such a way that X is a closed subset
of F.X n ¹x0º/, x0 D e, and every continuous mapping f W .X/! G, f .x0/ D e,
G is a topological group, can be extended to continuous homomorphism

F.X n ¹x0º/! G:

Let .X;E/ be a coarse space with distinguished point x0, Y D X n ¹x0º and
E 0 D EjY . We take the free coarse group F.Y;E 0/ and note that ¹eº [ Y is asy-
morphic to .X;E/ via the mapping h.y/ D y, y 2 Y and h.e/ D x0. Hence it
does not make sense to define the coarse counterparts of the Graev free topologi-
cal groups.
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