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Abstract. A coarse group is a group endowed with a coarse structure so that the group
multiplication and inversion are coarse mappings. Let (X, &) be a coarse space, and let
M be a variety of groups different from the variety of singletons. We prove that there is
a coarse group Fyp(X, &) € M such that (X, &) is a subspace of Fyn(X, &), X gener-
ates Fyp(X, €) and every coarse mapping (X, &) — (G, &’), where G € M, (G, &) is
a coarse group, can be extended to coarse homomorphism Fyp (X, ) — (G, &’). If M is
the variety of all groups, the groups Fyn (X, &) are asymptotic counterparts of Markov free
topological groups over Tikhonov spaces.

In [4], A. A. Markov proved that, for every Tikhonov space (X,7), there ex-
ists a group topology 7’ on the free group F(X) in the alphabet X such that
(X,T) is a closed subset of (F(X),T’) and every continuous mapping from
(X, T) to a topological group G can be extended to continuous homomorphism
(F(X),7’) — G.1Inparticular, every Tikhonov space can be embedded as a closed
subset into some topological group.

Our purpose is to construct the natural counterparts of Markov free topological
groups in the category of coarse groups and coarse homomorphisms. A coarse
group is a group endowed with a coarse structure in such a way that the group
multiplication and inversion are coarse mappings. All necessary facts about coarse
spaces and coarse groups are in Sections 1 and 2, and the construction of free
coarse groups is in Section 3.

1 Coarse structures
Following [10], we say that a family & of subsets of X x X is a coarse structure
onaset X if
e each ¢ € & contains the diagonal Ay, Axy= {(x,x) : x € X},
o ife,§ €&, thencod e &ande~! € &, where
e08 ={(x,y) : there exists z((x,z) € ¢, (z,y) € §)},
e ={(,x): (x,y) € e,

eifec&and Ay C & Ce thene € 8.
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Each ¢ € & is called an entourage of the diagonal. A subset &’ C & is called
a base for & if, for every ¢ € &, there exists ¢ € &’ such thate C ¢’

The pair (X, &) is called a coarse space. For x € X and ¢ € &, we denote
B(x,e) ={y € X : (x,y) € ¢} and say that B(x, ¢) is a ball of radius € around x.
We note that a coarse space can be considered an asymptotic counterpart of a uni-
form topological space and could be defined in terms of balls; see [7,9]. In this
case, a coarse space is called a ballean.

A coarse space (X, &) is called connected if, for any x,y € X, there exists
e € & such that y € B(x,¢). A subset Y of X is called bounded if there exist
x € X and ¢ € & such that Y C B(x, ¢). The coarse structure

&§={eeXxX:Ax C¢g}

is the unique coarse structure such that (X, &) is connected and bounded.

In what follows, all coarse spaces under consideration are supposed to be con-
nected.

Given a coarse space (X, &), each subset ¥ C X has the natural coarse struc-
ture Ely ={eN (Y xY):¢ee &}, and (¥, E|y) is called a subspace of (X, &).
A subset Y of X is called large (or coarsely dense) if there exists ¢ € & such that
X = B(Y,¢), where B(Y,¢) = U, ey B(y,8).

Let (X, &), (X', &) be coarse spaces. A mapping f: X — X' is called coarse
(or bornologous in the terminology of [10]) if, for every € € &, there exists &' € &’
such that, for every x € X, we have f(B(x,¢)) € B(f(x),&'). If f is surjective
and coarse, then (X', &') is called a coarse image of (X, &). If f is a bijection
such that f and f~! are coarse mappings, then f is called an asymorphism. The
coarse spaces (X, &), (X', &’) are called coarsely equivalent if there exist large
subsets Y € X, Y’ C X' such that (¥, E|y) and (Y, &’|y/) are asymorphic.

To conclude the coarse vocabulary, we take a family {(Xq, Ey) : @ < k} of
coarse spaces, and we define the product Py<,(Xy, E«) as the Cartesian product
Py~ X, endowed with the coarse structure with the base Py, &y. If g4 € &4,
a <k and x,y € Py<x Xo» X = (Xa)a<ws ¥ = (Va)a<x, then (x,y) € (¢a)a<k
if and only if (xo, yo) € &4 for every o < k.

2 Coarse groups

Let G be a group with the identity e. For a cardinal x, [G]™* denotes the set
{Y CG:|Y]| <k}

A family d of subsets of G is called a group ideal if d is closed under formation
of subsets and finite unions, [G]=® C J and AB~! € J forall 4, B € J.

A group ideal J is called invariant if UgeG g 'Ag € J for each A € J. For
example, [G]=¥ is a group ideal for any infinite cardinal k. If k > |G|, we get the
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ideal Pg of all subsets of G. We note also that [G]=% is invariant if and only if the
set {x~"!gx : x € G} is finite for each g € G. By [6], for every countable group G,
there are 22° distinct group ideals on G.

Let X be a G-space with the action G X X — X, (g, x) — gx. We assume
that G acts on X transitively, take a group ideal 4 on G and consider the coarse
structure &(G, 4, X) on X with the base

{e4:Aed,ec A}, e4={(x,gx):xe X, ge A}

Then (x,y) € ¢qgifandonly if y € Ax, so B(x,e) = Ax, Ax = {gx : g € A}.

By [5, Theorem 1], for every coarse structure & on X, there exist a group G of
permutations of X and a group ideal 4 on G such that & = &(G, d, X).

Now let X = G, where G acts on X by left shifts. We denote &4 = §(G, d, G).
Thus every group ideal J on G turns G into the coarse space (G, &y). We note that
a subset A of G is bounded in (G, &y) if and only if A € J.

For finitely generated groups, the right coarse groups (G, &[G]<,) in metric
form play a significant role in Geometrical Group Theory; see [1, Chapter 4].

A group G endowed with a coarse structure & is called a left (right) coarse
group if, for every ¢ € &, there exists ¢ € &€ such that

gB(x,e) C B(gx,e') (B(x,e)g C B(xg,&')) forallx, g eG.

A group G endowed with a coarse structure & is called a coarse group if the
group multiplication (G, €) x (G, &) — (G, &), (x,y) — xy and the inversion
(G, &) = (G, &), x — x~! are coarse mappings. In this case, & is called a group
coarse structure.

For proofs of the following two statements, see [8] or [9, Section 6].

Proposition 1. A group G endowed with a coarse structure & is a right coarse
group if and only if there exists a group ideal d on G such that & = &y.

Proposition 2. For a group G endowed with a coarse structure &, the following
conditions are equivalent:
(1) (G, &) is a coarse group.
(ii) (G, &) is left and right coarse group.
(iii) There exists an invariant group ideal d on G such that & = &y4.

Proposition 3. Every group coarse structure & on a subgroup H of an Abelian
group G can be extended to a group coarse structure &' on G.

Proof. We take a group ideal 4 on G such that & = &, denote by 4’ the group
ideal on G with the base A + B, A € [G]=®, B € 4, and put &' = &/. |
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Example 1. We construct a group G with a normal Abelian subgroup H of index
|G : H| = 2 such that some group coarse structure & on H cannot be extended to
aright group coarse structure on G. Let H = @),z Cn, Cn >~ Z». Every element
a € H canbe written as a = (ap),ez Witha, € C, and a, = 0 for all but finitely
many n. We define an automorphism ¢ of order 2 of H by ¢(an)nez = (¢n)nez,
¢y = a—p foreachn € Z. We put (¢) = {¢,id} and consider the semidirect prod-
uct G = H X (). If (h1, ¢1), (ha,¢2) € G, then

(1, 91)(h2, @2) = (h1g1(h2), 9192).

Foreachm € Z, we set H,, = @,,~,,, Hn. Then the family {H,, : m € Z} is abase
for some group ideal 4 on H. We put & = & and take an arbitrary invariant group
ideal ¢ on G such that 4 C ¢. Since pHop U Hy = H, we see that H € . It
follows that the coarse structure €4 |g is bounded, so E4|g # &.

Example 2. Let G be an infinite group with only two classes of conjugated el-
ements; see [3]. Then there is only one group coarse structure & on G, namely,
E§=6 P(G)-

3 Free coarse groups

A class M of groups is called a variety if 9N is closed under formation of sub-
groups, homomorphic images and products. We assume that I is non-trivial (i.e.,
there exists G € 9N such that |G| > 1) and recall that the free group Foyp(X) is
defined by the following conditions: Fyp(X) € M, X C Fyp(X), X generates
Fyp(X) and every mapping X — G, G € N, can be extended to homomorphism
Fp(X) > G.

Let (X, &) be a coarse space. We assume that (Fyp(X), &) is a coarse group
such that (X, &) is a subspace of (Fgy(X), €’) and every coarse mapping

(X,8) = (G, &"), G eM, (G,8&")is a coarse group,

can be extended to coarse homomorphism (Fyp(X), &) — (G, &”). We observe
that this &’ is unique, denote Fyy (X, &) = (Fyp(X), &) and say that Fop (X, €)
is a free coarse group over (X, €) in the variety .

Our goal is to prove the existence of Fyp(X, &) for every coarse space (X, &)
and every non-trivial variety 1.

Lemma 1. Let (X, &) be a coarse space. If there is a group coarse structure &' on
Fan(X) such that 8'|x = &, then there exists Fap(X, €).

Proof. We denote

& ={T : T is a group coarse structure on Fyyp(X) such that 7|y = &}.
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By the assumption, &" € &. We take the minimal by inclusion group coarse struc-
ture 7’ on Fyp(X) containing all coarse structures from &. Let G € M, (G, &)
be a coarse group, f:(X, &) — (G, &"”) be a coarse mapping. We extend f to
homomorphism f: Fgp(X) — G. Then the coarse structure on Fyp(X) with the
base {f ! x f1(e") : & € &"} is in F. It follows that the homomorphism

[ (Fp(X).T') — (G.&")
is coarse. Hence (Fyp(X), T7') = F(X, €). |

Lemma 2. For every coarse space (X, &) and every non-trivial variety Nt of
groups, there exists a group coarse structure &' on Fyp(X) such that &'|x = &.

Proof. For some prime number p, M contains the variety 4, of all Abelian
groups of exponent p. We prove the theorem for 4, and then for 1.

We take the free group A(X) over X in A,. Every non-zero element a € A(X)
has the unique (up to permutation of items) representation

mixy +maxy + - +mpxg, x;i € X,m; €Zp\{0},i €{l,....k}. (3.1)

Foreverye € §,e =¢ !, wedenote Yo = {x —y : x,y € X, (x,y) € ¢} and
by Y, ¢ the sum on n copies of Y,. We take z € X and consider the ideal J on
A(X) with the base

Yn,é‘+{09Z’2Z5"'7(p_1)z}’ n<aw.

Note that Y, ¢ — Y2 € Yp4n/ coer. It follows that B — C € d forall B, C € 4.
To show that [ Fay (X)]~% C J, we take x € X and find ¢ € & such that (x, z) € «.
Then x —z € Yy and x € Y, + z. Hence J is a group ideal. We put &’ = &y and
show that &’y = &.

Ifeec& e=¢'and (x,y)ce thenx —y € Y, s0 & C & To prove the
inverse inclusion, we take Y, . + {0,z,..., (p — 1)z}, assume that

X—yeYne+1{0,z,....(p— 1)z}

and consider two cases.

Case:x—y €Yy, ¢+iz, i # 0. Wedenote by H the subgroup of alla € A(X)
suchthatmy + --- + my = 0 (mod p) in the canonical representation (3.1). Then
x—yeH, Y, C H,butiz ¢ H, so this case is impossible.

Case: x —y € Y, .. We show that (x, y) € &”. We write x — y as

(x1=y1) +-+ &n—yn), Xi,yi €Y,
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s0 (xi, yi) € e. Assume that there exists k € {l,...,n — 1} such that

{xlvyl""7xk7yk} N {xk—f—l’yk—i—l,--wxn’yn} = 0.

Then
either (x1 —y1) + -+ (xx —yx) =0,

or (Xk+1— Vk+1) + -+ (Xn —yn) = 0.
Otherwise, x — y in representation (3.1) has more than two items. It follows that
there is a representation

x—y ==y A+ =) xLyi€Yeie{l,... k), k<n,
such that {x v/} N{x], y1, ..., x[, yj} # @ foreach i € {1,... .k —1}. If
(x",y") e & forall x’, y" € {x],y]....,x],y!} then

+1

(x',y) eé forall X', y" € {x]. y]..... X[ 1. Viy1)-

After n steps, we get x — y € &".

To conclude the proof, we extend the mapping id: X — X to a homomorphism
f:Fp(X) — A(X). Then { f~1(Y) : Y € J} is a base for some invariant group
ideal ¢ on Fyyp(X). Then (Fyn(X),Ey) is a coarse group. Since f|x = id, we
have E4|x = €. |

Theorem. For every coarse space (X, &) and non-trivial variety Nt of groups,
there exists the free coarse group Fap(X, &).

Proof. Apply Lemma 2 and Lemma 1. O

Remark 1. To describe the coarse structure €* of Fyp (X, &) explicitly, for ev-
erye € &, weput D, = {xy~!:x,y € X,(x,y) € ¢}, take z € X and denote by
Py, ¢ the product on n copies of the set

U g_l(fstUtﬂaZ)g-

geFm(X)

Then{Pp . : € € &,n < w}is abase for some invariant group ideal 4 * on Fyp (X).
Each subset A4 € 4* is bounded in F(X, &), so Eg+« C &*. To see that §* C E g+,
the reader can repeat the arguments concluding the proof of Lemma 2. Hence
8* = 8J* .

Remark 2. Each metric space (X, d) defines the coarse structure §; on X with the
base {(x,y) :d(x,y) <n},n < w.By[9, Theorem 2.1.1], a coarse structure & is
metrizable if and only if & has a countable base. If & is metrizable then, in view
of Remark 1, the coarse structure of Fyy (X, &) is metrizable.
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Remark 3. If the coarse spaces (X, &), (X, &) are asymorphic, then evidently
Fop(X, &), Fap(X', ') are asymorphic, but this is not true with coarse equiva-
lences in place of asymorphisms.

Let M = #p, and let X be an infinite set endowed with the bounded coarse
structure &. We take X', |X’| = 1 and denote by &’ the unique coarse structure
on X'. Clearly, (X, &) and (X', &’) are coarsely equivalent, and Fyyp (X', &’) is
a cyclic group of order p with bounded coarse structure. To see that Fgp(X) is
unbounded, we take the subset Yy, ¢ (see the proof of Lemma 2) and note that the
length of any element from Y}, . in representation (3.1) does not exceed 2n, but
Fyp (X) has elements of any length.

Remark 4. Let X be a Tikhonov space with distinguished point xo. M. I. Graev [2]
defined a group topology on F(X \ {xo}) in such a way that X is a closed subset
of F(X \ {x0}), xo = e, and every continuous mapping f:(X) — G, f(xo) = e,
G is a topological group, can be extended to continuous homomorphism

F(X \ {x0}) = G.

Let (X, &) be a coarse space with distinguished point xg, ¥ = X \ {x¢} and
&' = &|y. We take the free coarse group F(Y, &’) and note that {e} U Y is asy-
morphic to (X, &) via the mapping h(y) = y, y € Y and h(e) = xo. Hence it
does not make sense to define the coarse counterparts of the Graev free topologi-
cal groups.
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