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Abstract. Let G be a finite transitive permutation group of degree n, with point stabilizer
H # 1 and permutation character . For every positive integer ¢, we consider the gener-
alized character Y, = pg — t(w — 1), where pg is the regular character of G and 1¢ the
1-character. We give necessary and sufficient conditions on ¢ (and G) which guarantee that
Y, is a character of G. A necessary condition is that # < min{n — 1, | H|}, and it turns out
that v, is a character of G fort = n — 1 resp. t = |H| precisely when G is 2-transitive
resp. a Frobenius group.

Suppose G is a transitive permutation group of finite degree n > 2, with associated
permutation character 7 = 7 (G) (which counts fixed points). Let H be a point
stabilizer (so that |G : H| = (1) = n),and let p = pg and 1 denote the regular
and 1-character of G, respectively. For every positive integer ¢, we consider the
generalized character

Vi =p—t(m—1g)
of G. Since 7w = Indg(l H) is part of p = Ind?(l) by transitivity of character
induction, for t = 1, this ¥; = p — m + 1 is an (ordinary) character of G. We
are going to examine when this happens in general.

This work is motivated by the note [6] of the authors on Frobenius groups
(where t = |H|). Unfortunately, there is a misprint in that note (due to type-
setting). One of the objectives of the present article is to correct this and to make
the corresponding result somewhat more precise. One may ask whether G can be
found such that v, is a character of G for some ¢t > |H|, or when t = n. Both
questions will be answered in the negative.

If G is regular (H = 1), then p = 7 and Yy = t1g — (¢t — 1)p is a character
only whent = 1 (asn > 2 and so & # 1g). Excluding this trivial case, we assume
throughout that |H| > 1 . We let Irr(G) denote the set of (complex) irreducible
characters of G. Recall that the cardinality |Irr(G)| = k(G) is the class number
of G.

Since G is transitive, the multiplicity (scalar product) (1g,7) = 1 (Huppert
[3, Satz V.20.2]). There is an irreducible character § # 1g of G which occurs
in r, and we let & be the (non-empty) set of these irreducible characters of G. Of
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course, & = E(G) is determined by the permutation group G, as is

1 &)
t* =1*(G) = )
(6) = min|
We have (£, ) < (€,p) = £(1) for all § € E. Hence t* is a positive integer.

Note. By definition, 2 = E(G) and t* = t*(G) actually depend only on the per-
mutation character 7 = 7(G). Observe that G is determined by 7 as a linear
group but in general not as a permutation group. Indeed, Wielandt’s example in
[3, V.20.10] shows that it can happen that & = IndIG{(l k) for some subgroup K
of G which is not G-conjugate to H. When n = p is a prime, all such possibilities
are listed by Feit [1] (in view of the classification theorem; see also [4, XI1.10.10]
and [4, XI1.10.11]). The case n = p2 has been treated by Guralnick [2]. When G is
a Frobenius group to H,  determines G as a permutation group since any comple-
ment in G to the Frobenius kernel is G-conjugate to H by the Schur—Zassenhaus
theorem (see below).

Lemma. For § € B, we have (&, V) = E(1) — t (&, ), whereas {y, V) = x(1)
whenever y € Irr(G) \ E. Hence Yy is a character of G if and only if t < t*.

Proof. Let y € Irr(G) be an irreducible character of G. Since the scalar product is
hermitian, and since (x, p) = y(1) and (1g,7) = 1, we have (1g,¥;) = 1 and

(0 Ye) = (1) —t{x, )
when y # 1g. By definition, (y,7) = 0 if and only if y ¢ E and y # lg, in
which case (y, ¥y} = y(1). It follows that v, is a character of G precisely when
t{&, ) < E(1) forall £ € B, that is, when the positive integer t < t*. o

Let us write ¥* = v, for t = ¢*. By the lemma, this ¥* = ¥ *(G) is a char-
acter of G; we shall describe that explicitly in two extremal cases.

Theorem 1. We have t* <n — 1, and t* = n — 1 if and only if G is 2-transitive.
In this extremal case (t* = n — 1), the following hold:

(1) We have & = {&} for some unique irreducible character & # 1g of G, with
£(1) = n — 1 dividing |H|.

(i) y* = erlrr(G)\E x(D)x.

Proof. The integer t* = t*(G) is as large as possible just when 7 = 1g + £ for
some irreducible character § # 1g of G. Thent* = £(1) = n — 1 and G is 2-tran-
sitive [3, Satz V.20.2]) so that t* is a divisor of |H|[. In general, t* < n — 1, and
ift=n—1,theny; =p—(n—1E= ZX#E (1) is a character of G. Hence,
thent = t* and ¥* = ¥, is as claimed. o
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One can have t* = L%J when G is a suitable rank 3 permutation group, but it
cannot happen that L%J <t* <n—1.Ifn = pisaprime, by a celebrated theo-
rem of Burnside, G is 2-transitive or a (solvable) Frobenius group (for proofs, see
[3, Satz V.21.3] and [4, Theorem XII.10.8]). In this case, t* = p — lort* = |H|,
with | H | dividing p — 1 (see below).

Let D = Der(G) = G\ UgeG H& denote the (normal) subset of derange-
ments in G, the elements acting fixed-point-freely (H€ = g~! Hg). Thus

D ={xeG|n(x) =0},

and if 7 = Ind$ (1g) for some subgroup K of G, then Ugec K& = Ugeg H®
by definition of induced characters. It is known and easy to see that |D| > n — 1
(Jordan) and that |D| > | H| (Cameron—Cohen); see for instance [6, Theorems 1
and 2].

The transitive permutation group G is a Frobenius group (to H # 1) provided
|[D| =n—1,1ie. if HN H8 =1 for each g € G\ H. The famous theorem of
Frobenius [3, Hauptsatz V.7.6] tells us that then D U {1} is a (normal) subgroup
of G (Frobenius kernel). The Frobenius kernel has order n, whereas the comple-
ment H has order dividing n — 1 since all nontrivial H -orbits have size | H |.

Theorem 2. We have t* < |H|, and t* = |H| if and only if G is a Frobenius
group. In this extremal case (t* = |H|), one has k(G) = k(H) + kg (D), where
kg (D) is the number of G-conjugacy classes in D, and the following hold:

() |8] = kg (D) and £2; = |H| for each £ € E.

() ¥* =3 em@ng X(Dy and Ker(y*) = D U{1} is the Frobenius ker-
nel of G. Moreover, Resg (Y™) = pg is the regular character of H, and
[Irr(G) \ E| = k(H) is equal to the class number of H.

Proof. Assume that t* > | H|. Then, by the lemma, there is an integer r > 1 such
that ¥, is a character of G for ¢t = |H| 4 r. Using that |G| = | H |n, we then have

vi() = Hln—(H|+7r)(n—1)>0.
It follows that |H | + r < |H| - -, and this yields the estimate r(n — 1) < |H]|.

On the other hand, we know fronrll Tileorem 1that|H| 4+ r =t <n — 1. We obtain
thatrn =r(n—1) +r < |H|+r <n — 1, which is impossible.

Suppose that t* = | H|. Recall that H # 1 by assumption. We know from the
lemma that ¥* = ¢*(G) is a character of G (y* = y; for t = t*). Hence the
kernel

F=Ker(y") ={xeG|y*(x) =y"(1)}

is a normal subgroup of G. We have

Y1) =[G —[H|(n—1) = |H|
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(as |G| = |H|n),and y*(x) = |H|ifand only if x = 1 or 7(x) = 0 (as p(x) =0
for x # 1). Hence F = D U {1}. It follows that ¥ N H = 1. Since

ID|>n—1=|G: H| -1,

we get G = FH and |D| = n — 1. Thus G is a Frobenius group, with Frobenius
kernel F.

From now on, we suppose that G is a Frobenius group to H, and we write
F = D U{1} (an n-set) and ¥ = ; fort = |H|. In order to show that t* = |H |
and ¢ = ™, we have to verify that { is a character of G. As before, (1) = |H |
and ¥ (x) = |H| if and only if x € F. Since by hypothesis no element # 1 of G
has more than one fixed point, by definition,

Yo — {|H| if x e F

0 otherwise.

In particular, the restriction Resg (¥) = pg is the regular character of H. We
claim that the assignments 1 +— ¥ for h € H give rise to a bijection from the
conjugacy classes of H to those of G which do not meet D. Indeed, if /¢ = hg
for nontrivial elements /4, hg in H, then h = hg for some g € G, and this forces
that g € H and hf = hgl. This shows that k(G) = k(H) + kg (D). For any ir-
reducible character y of G, by the above,

= (x.v) = |G|Z x| H Z x(x).

xeF xeF

By the lemma, (1, 1) = 1. So let y # lg. It has been shown in the course of
the proof for [6, Theorem 3], by elementary means based on the Cauchy—Schwarz
inequality, that 5, # O implies that y(x) = x(1) forall x € F.(The misprint men-
tioned above appears on page 397, line 5, where parentheses are not put correctly.)
Thus s, # 0 implies that Ker(y) 2 F and that s, = x(1). Consequently, ¥ is
a character of G, and F = Ker(¥) is a normal subgroup of G (Frobenius kernel).

Let again y # 1 be an irreducible character of G. We know that from s, # 0
it follows that s, = x(1), and

1) =sy = (. 0) = |H|{x,7) = x(1) = [H|(x, )

implies that (y, 7) = 0 and so y ¢ E. Conversely, if (y, ) = 0, then s, = x(1).
So E consists precisely of the irreducible characters & of G satisfying (¢, ¥) = 0,
which implies that £(1) = |H|(&, ) forall £ € E

The number |Irr(G) \ E| = k(G) — |E] of irreducible characters of G occur-
ring in v is just the number of irreducible characters having F in its kernel. Using
that G/F = H, we obtain that k(G) — |E| = |lrr(H )| = k(H ), which in turn
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yields that |E| = kg (D) (see [3, Satz 16.13] for a corresponding result). The
proof is complete. o

Remark. Let G be a Frobenius group (to H), and let F = Der(G) U {1} (an
n-set). We know that v = p — |H|(m — 1) is a character of G with Ker(y) = F
and Resg (1) = pg . Note that Indg (pH) = p = pg. Associate to every charac-
ter 0 of H the generalized character

0 = nd%(6) — (1) (r — 1)
of G. This the unique class function of G extending ¢ and satisfying /9\(x) =0(1)
for all x € F. Using that G/ F =~ H, we see that 0 is a character of G. In par-

ticular, 0= Y for 6 = py, and if y is an irreducible character of G occurring
in v, then Ker(y) 2 F and Resg (x) = 0 is irreducible, and we have y = 6 and

(. ¥) = x(1) = 6(1) = (6. pr).

Of course, one can establish the theorem of Frobenius by showing directly that,
for any 6 € Irr(H), the class function 6 is an irreducible character of G, and this
is the approach given in the proof for [5, Theorem 7.2].
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