Some generalized characters associated to a transitive permutation group

Wolfgang Knapp and Peter Schmid

Communicated by Christopher W. Parker

Abstract. Let G be a finite transitive permutation group of degree n, with point stabilizer $H \neq 1$ and permutation character π . For every positive integer t, we consider the *generalized* character $\psi_t = \rho_G - t(\pi - 1_G)$, where ρ_G is the regular character of G and G the 1-character. We give necessary and sufficient conditions on G (and G) which guarantee that G is a character of G. A necessary condition is that G is G and it turns out that G is a character of G for G

Suppose G is a transitive permutation group of finite degree $n \geq 2$, with associated permutation character $\pi = \pi(G)$ (which counts fixed points). Let H be a point stabilizer (so that $|G:H| = \pi(1) = n$), and let $\rho = \rho_G$ and 1_G denote the regular and 1-character of G, respectively. For every positive integer t, we consider the generalized character

$$\psi_t = \rho - t(\pi - 1_G)$$

of G. Since $\pi = \operatorname{Ind}_H^G(1_H)$ is part of $\rho = \operatorname{Ind}_1^G(1)$ by transitivity of character induction, for t = 1, this $\psi_t = \rho - \pi + 1_G$ is an (ordinary) character of G. We are going to examine when this happens in general.

This work is motivated by the note [6] of the authors on Frobenius groups (where t = |H|). Unfortunately, there is a misprint in that note (due to type-setting). One of the objectives of the present article is to correct this and to make the corresponding result somewhat more precise. One may ask whether G can be found such that ψ_t is a character of G for some t > |H|, or when t = n. Both questions will be answered in the negative.

If G is regular (H=1), then $\rho=\pi$ and $\psi_t=t1_G-(t-1)\rho$ is a character only when t=1 (as $n\geq 2$ and so $\pi\neq 1_G$). Excluding this trivial case, we assume throughout that |H|>1. We let ${\rm Irr}(G)$ denote the set of (complex) irreducible characters of G. Recall that the cardinality $|{\rm Irr}(G)|=k(G)$ is the class number of G.

Since G is transitive, the multiplicity (scalar product) $\langle 1_G, \pi \rangle = 1$ (Huppert [3, Satz V.20.2]). There is an irreducible character $\xi \neq 1_G$ of G which occurs in π , and we let Ξ be the (non-empty) set of these irreducible characters of G. Of

course, $\Xi = \Xi(G)$ is determined by the permutation group G, as is

$$t^* = t^*(G) = \min_{\xi \in \Xi} \left\lfloor \frac{\xi(1)}{\langle \xi, \pi \rangle} \right\rfloor.$$

We have $\langle \xi, \pi \rangle \leq \langle \xi, \rho \rangle = \xi(1)$ for all $\xi \in \Xi$. Hence t^* is a positive integer.

Note. By definition, $\Xi = \Xi(G)$ and $t^* = t^*(G)$ actually depend only on the permutation character $\pi = \pi(G)$. Observe that G is determined by π as a linear group but in general not as a permutation group. Indeed, Wielandt's example in [3, V.20.10] shows that it can happen that $\pi = \operatorname{Ind}_K^G(1_K)$ for some subgroup K of G which is not G-conjugate to H. When n = p is a prime, all such possibilities are listed by Feit [1] (in view of the classification theorem; see also [4, XII.10.10] and [4, XII.10.11]). The case $n = p^2$ has been treated by Guralnick [2]. When G is a Frobenius group to H, π determines G as a permutation group since any complement in G to the Frobenius kernel is G-conjugate to H by the Schur–Zassenhaus theorem (see below).

Lemma. For $\xi \in \Xi$, we have $\langle \xi, \psi_t \rangle = \xi(1) - t \langle \xi, \pi \rangle$, whereas $\langle \chi, \psi_t \rangle = \chi(1)$ whenever $\chi \in Irr(G) \setminus \Xi$. Hence ψ_t is a character of G if and only if $t \leq t^*$.

Proof. Let $\chi \in Irr(G)$ be an irreducible character of G. Since the scalar product is hermitian, and since $\langle \chi, \rho \rangle = \chi(1)$ and $\langle 1_G, \pi \rangle = 1$, we have $\langle 1_G, \psi_t \rangle = 1$ and

$$\langle \chi, \psi_t \rangle = \chi(1) - t \langle \chi, \pi \rangle$$

when $\chi \neq 1_G$. By definition, $\langle \chi, \pi \rangle = 0$ if and only if $\chi \notin \Xi$ and $\chi \neq 1_G$, in which case $\langle \chi, \psi_t \rangle = \chi(1)$. It follows that ψ_t is a character of G precisely when $t \langle \xi, \pi \rangle \leq \xi(1)$ for all $\xi \in \Xi$, that is, when the positive integer $t \leq t^*$.

Let us write $\psi^* = \psi_t$ for $t = t^*$. By the lemma, this $\psi^* = \psi^*(G)$ is a character of G; we shall describe that explicitly in two extremal cases.

Theorem 1. We have $t^* \le n - 1$, and $t^* = n - 1$ if and only if G is 2-transitive. In this extremal case $(t^* = n - 1)$, the following hold:

- (i) We have $\Xi = \{\xi\}$ for some unique irreducible character $\xi \neq 1_G$ of G, with $\xi(1) = n 1$ dividing |H|.
- (ii) $\psi^* = \sum_{\chi \in Irr(G) \setminus \Xi} \chi(1) \chi$.

Proof. The integer $t^*=t^*(G)$ is as large as possible just when $\pi=1_G+\xi$ for some irreducible character $\xi\neq 1_G$ of G. Then $t^*=\xi(1)=n-1$ and G is 2-transitive [3, Satz V.20.2]) so that t^* is a divisor of |H|. In general, $t^*\leq n-1$, and if t=n-1, then $\psi_t=\rho-(n-1)\xi=\sum_{\chi\neq\xi}\chi(1)\chi$ is a character of G. Hence, then $t=t^*$ and $\psi^*=\psi_t$ is as claimed.

One can have $t^* = \lfloor \frac{n-1}{2} \rfloor$ when G is a suitable rank 3 permutation group, but it cannot happen that $\lfloor \frac{n-1}{2} \rfloor < t^* < n-1$. If n=p is a prime, by a celebrated theorem of Burnside, G is 2-transitive or a (solvable) Frobenius group (for proofs, see [3, Satz V.21.3] and [4, Theorem XII.10.8]). In this case, $t^* = p-1$ or $t^* = |H|$, with |H| dividing p-1 (see below).

Let $D = \text{Der}(G) = G \setminus \bigcup_{g \in G} H^g$ denote the (normal) subset of *derangements* in G, the elements acting fixed-point-freely $(H^g = g^{-1}Hg)$. Thus

$$D = \{ x \in G \mid \pi(x) = 0 \},\$$

and if $\pi = \operatorname{Ind}_K^G(1_K)$ for some subgroup K of G, then $\bigcup_{g \in G} K^g = \bigcup_{g \in G} H^g$ by definition of induced characters. It is known and easy to see that $|D| \ge n - 1$ (Jordan) and that $|D| \ge |H|$ (Cameron–Cohen); see for instance [6, Theorems 1 and 2].

The transitive permutation group G is a Frobenius group (to $H \neq 1$) provided |D| = n - 1, i.e. if $H \cap H^g = 1$ for each $g \in G \setminus H$. The famous theorem of Frobenius [3, Hauptsatz V.7.6] tells us that then $D \cup \{1\}$ is a (normal) subgroup of G (Frobenius kernel). The Frobenius kernel has order n, whereas the complement H has order dividing n - 1 since all nontrivial H-orbits have size |H|.

Theorem 2. We have $t^* \leq |H|$, and $t^* = |H|$ if and only if G is a Frobenius group. In this extremal case $(t^* = |H|)$, one has $k(G) = k(H) + k_G(D)$, where $k_G(D)$ is the number of G-conjugacy classes in D, and the following hold:

- (i) $|\Xi| = k_G(D)$ and $\frac{\xi(1)}{\langle \xi, \pi \rangle} = |H|$ for each $\xi \in \Xi$.
- (ii) $\psi^* = \sum_{\chi \in Irr(G) \setminus \Xi} \chi(1) \chi$ and $Ker(\psi^*) = D \cup \{1\}$ is the Frobenius kernel of G. Moreover, $Res_H^G(\psi^*) = \rho_H$ is the regular character of H, and $|Irr(G) \setminus \Xi| = k(H)$ is equal to the class number of H.

Proof. Assume that $t^* > |H|$. Then, by the lemma, there is an integer $r \ge 1$ such that ψ_t is a character of G for t = |H| + r. Using that |G| = |H|n, we then have

$$\psi_t(1) = |H|n - (|H| + r)(n - 1) > 0.$$

It follows that $|H| + r < |H| \cdot \frac{n}{n-1}$, and this yields the estimate r(n-1) < |H|. On the other hand, we know from Theorem 1 that $|H| + r = t \le n-1$. We obtain that $rn = r(n-1) + r < |H| + r \le n-1$, which is impossible.

Suppose that $t^* = |H|$. Recall that $H \neq 1$ by assumption. We know from the lemma that $\psi^* = \psi^*(G)$ is a character of G ($\psi^* = \psi_t$ for $t = t^*$). Hence the kernel

$$F = \text{Ker}(\psi^*) = \{ x \in G \mid \psi^*(x) = \psi^*(1) \}$$

is a normal subgroup of G. We have

$$\psi^*(1) = |G| - |H|(n-1) = |H|$$

(as |G| = |H|n), and $\psi^*(x) = |H|$ if and only if x = 1 or $\pi(x) = 0$ (as $\rho(x) = 0$ for $x \neq 1$). Hence $F = D \cup \{1\}$. It follows that $F \cap H = 1$. Since

$$|D| \ge n - 1 = |G:H| - 1,$$

we get G = FH and |D| = n - 1. Thus G is a Frobenius group, with Frobenius kernel F.

From now on, we suppose that G is a Frobenius group to H, and we write $F = D \cup \{1\}$ (an n-set) and $\psi = \psi_t$ for t = |H|. In order to show that $t^* = |H|$ and $\psi = \psi^*$, we have to verify that ψ is a character of G. As before, $\psi(1) = |H|$ and $\psi(x) = |H|$ if and only if $x \in F$. Since by hypothesis no element $\neq 1$ of G has more than one fixed point, by definition,

$$\psi(x) = \begin{cases} |H| & \text{if } x \in F, \\ 0 & \text{otherwise.} \end{cases}$$

In particular, the restriction $\operatorname{Res}_H^G(\psi) = \rho_H$ is the regular character of H. We claim that the assignments $h^H \mapsto h^G$ for $h \in H$ give rise to a bijection from the conjugacy classes of H to those of G which do not meet D. Indeed, if $h^G = h_0^G$ for nontrivial elements h, h_0 in H, then $h = h_0^g$ for some $g \in G$, and this forces that $g \in H$ and $h^H = h_0^H$. This shows that $k(G) = k(H) + k_G(D)$. For any irreducible character χ of G, by the above,

$$s_{\chi} := \langle \chi, \psi \rangle = \frac{1}{|G|} \sum_{x \in F} \chi(x) |H| = \frac{1}{n} \sum_{x \in F} \chi(x).$$

By the lemma, $\langle 1_G, \psi \rangle = 1$. So let $\chi \neq 1_G$. It has been shown in the course of the proof for [6, Theorem 3], by elementary means based on the Cauchy–Schwarz inequality, that $s_\chi \neq 0$ implies that $\chi(x) = \chi(1)$ for all $x \in F$. (The misprint mentioned above appears on page 397, line 5, where parentheses are not put correctly.) Thus $s_\chi \neq 0$ implies that $\operatorname{Ker}(\chi) \supseteq F$ and that $s_\chi = \chi(1)$. Consequently, ψ is a character of G, and $F = \operatorname{Ker}(\psi)$ is a normal subgroup of G (Frobenius kernel).

Let again $\chi \neq 1_G$ be an irreducible character of G. We know that from $s_{\chi} \neq 0$ it follows that $s_{\chi} = \chi(1)$, and

$$\chi(1) = s_{\chi} = \langle \chi, \rho \rangle - |H| \langle \chi, \pi \rangle = \chi(1) - |H| \langle \chi, \pi \rangle$$

implies that $\langle \chi, \pi \rangle = 0$ and so $\chi \notin \Xi$. Conversely, if $\langle \chi, \pi \rangle = 0$, then $s_{\chi} = \chi(1)$. So Ξ consists precisely of the irreducible characters ξ of G satisfying $\langle \xi, \psi \rangle = 0$, which implies that $\xi(1) = |H| \langle \xi, \pi \rangle$ for all $\xi \in \Xi$.

The number $|\operatorname{Irr}(G) \setminus \Xi| = k(G) - |\Xi|$ of irreducible characters of G occurring in ψ is just the number of irreducible characters having F in its kernel. Using that $G/F \cong H$, we obtain that $k(G) - |\Xi| = |\operatorname{Irr}(H)| = k(H)$, which in turn

yields that $|\Xi| = k_G(D)$ (see [3, Satz 16.13] for a corresponding result). The proof is complete.

Remark. Let G be a Frobenius group (to H), and let $F = \text{Der}(G) \cup \{1\}$ (an n-set). We know that $\psi = \rho - |H|(\pi - 1_G)$ is a character of G with $\text{Ker}(\psi) = F$ and $\text{Res}_H^G(\psi) = \rho_H$. Note that $\text{Ind}_H^G(\rho_H) = \rho = \rho_G$. Associate to every character θ of H the generalized character

$$\widehat{\theta} = \operatorname{Ind}_{H}^{G}(\theta) - \theta(1)(\pi - 1_{G})$$

of G. This the unique class function of G extending θ and satisfying $\widehat{\theta}(x) = \theta(1)$ for all $x \in F$. Using that $G/F \cong H$, we see that $\widehat{\theta}$ is a character of G. In particular, $\widehat{\theta} = \psi$ for $\theta = \rho_H$, and if χ is an irreducible character of G occurring in ψ , then $\operatorname{Ker}(\chi) \supseteq F$ and $\operatorname{Res}_H^G(\chi) = \theta$ is irreducible, and we have $\chi = \widehat{\theta}$ and $\langle \chi, \psi \rangle = \chi(1) = \theta(1) = \langle \theta, \rho_H \rangle$.

Of course, one can establish the theorem of Frobenius by showing directly that, for any $\theta \in Irr(H)$, the class function $\widehat{\theta}$ is an irreducible character of G, and this is the approach given in the proof for [5, Theorem 7.2].

Bibliography

- [1] W. Feit, Some consequences of the classification of finite simple groups, in: *Finite Groups* (Santa Cruz 1979), Proc. Symp. Pure. Math. 37, American Mathematical Society, Providence 1980, 175–181.
- [2] R. M. Guralnick, Subgroups inducing the same permutation representation, *J. Algebra* **81** (1983), 312–319.
- [3] B. Huppert, Endliche Gruppen. I, Springe, Berlin, 1967.
- [4] B. Huppert and N. Blackburn, Finite Groups. III, Springer, Berlin, 1982.
- [5] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
- [6] W. Knapp and P. Schmid, A note on Frobenius groups, *J. Group Theory* **12** (2009), 393–400.

Received October 29, 2019; revised November 12, 2019.

Author information

Wolfgang Knapp, Mathematisches Institut der Universität Tübingen,

Auf der Morgenstelle 10, 72076 Tübingen, Germany.

E-mail: wolfgang.knapp@uni-tuebingen.de

Peter Schmid, Mathematisches Institut der Universität Tübingen,

Auf der Morgenstelle 10, 72076 Tübingen, Germany.

E-mail: peter.schmid@uni-tuebingen.de