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The group of self-homotopy equivalences
of A2

n-polyhedra
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Communicated by Radha Kessar

Abstract. LetX be a finite typeA2n-polyhedron, n � 2. In this paper, we study the quotient
group E.X/=E�.X/, where E.X/ is the group of self-homotopy equivalences of X and
E�.X/ the subgroup of self-homotopy equivalences inducing the identity on the homology
groups of X . We show that not every group can be realised as E.X/ or E.X/=E�.X/ for
X an A2n-polyhedron, n � 3, and specific results are obtained for n D 2.

1 Introduction

Let E.X/ denote the group of homotopy classes of self-homotopy equivalences
of a space X , and let E�.X/ denote the normal subgroup of self-homotopy equiv-
alences inducing the identity on the homology groups of X . Problems related to
E.X/ have been extensively studied, with Kahn’s realisability problem deserving
a special mention, having been placed first to solve in [2] (see also [1, 11, 12, 14]).
It asks whether an arbitrary group can be realised as E.X/ for some simply con-
nected X , and though the general case remains an open question, it has recently
been solved for finite groups [7]. As a way to approach Kahn’s problem, in [9,
Problem 19], the question of whether an arbitrary group can appear as the distin-
guished quotient E.X/=E�.X/ is raised.

In this paper, we work with .n � 1/-connected .nC 2/-dimensional CW -com-
plexes for n � 2, the so-called A2n-polyhedra. Homotopy types of these spaces
have been classified by Baues in [4, Ch. I, § 8] using the long exact sequence of
groups associated to simply connected spaces introduced by J. H. C. Whitehead
in [15]. The author of [6] uses that classification to study the group of self-homo-
topy equivalences of an A22-polyhedron X . He associates to X a group B4.X/

that is isomorphic to E.X/=E�.X/ and asks if any group can be realised as such
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a quotient in this context, that is, if A22-polyhedra provide an adequate framework
to solve the realisability problem.

Here, in the general setting of an A2n-polyhedra X , n � 2, we also construct
a group BnC2.X/ (see Definition 2.4) that is isomorphic to E.X/=E�.X/ (see
Proposition 2.5). We show that there exist many groups (for example Z=p, p odd,
Corollary 1.2) for which the question above does not admit a positive answer. This
fact should illustrate that A2n-polyhedra might not be the right setting to answer
[9, Problem 19].

We show, for instance, that under some restrictions on the homology groups
of X , BnC2.X/ is infinite, which in particular implies that E.X/ is infinite (see
Proposition 3.6 and Proposition 3.9). Or for example, in many situations the exis-
tence of odd order elements in the homology groups of X implies the existence of
involutions in BnC2.X/ (see Lemma 3.4 and Lemma 3.5).

In this paper, we prove the following result.

Theorem 1.1. Let X be a finite type A2n-polyhedron, n � 3. Then BnC2.X/ is
either the trivial group or it has elements of even order.

As an immediate corollary, we obtain the following.

Corollary 1.2. Let G be a non-trivial group with no elements of even order. Then
G is not realisable as BnC2.X/ for X a finite type A2n-polyhedron, n � 3.

The case n D 2 is more complicated. Detailed group-theoretical analysis shows
that a finite type A22-polyhedra might realise finite groups of odd order only under
very restrictive conditions. Recall that, for a group G, rankG is the smallest car-
dinal of a set of generators for G [13, p. 91]. We have the following result.

Theorem 1.3. Suppose that X is a finite type A22-polyhedron with a non-trivial
finite B4.X/ of odd order. Then the following holds:

(1) rankH4.X/ � 1,

(2) �3.X/ and H3.X/ are 2-groups, H2.X/ is an elementary abelian 2-group,

(3) rankH3.X/ � 1
2

rankH2.X/.rankH2.X/C 1/� rankH4.X/ � rank�3.X/,

(4) the natural action of B4.X/ on H2.X/ induces a faithful representation

B4.X/ � Aut.H2.X//:

All our attempts to find a space satisfying the hypothesis of Theorem 1.3 were
unsuccessful. We therefore make the following conjecture.

Conjecture 1.4. Let X be an A22-polyhedron. If B4.X/ is a non-trivial finite
group, then it necessarily has an element of even order.
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This paper is organised as follows. In Section 2, we give a brief introduction to
Whitehead’s and Baues’s results for the classification of homotopy types of A2n-
polyhedra, or equivalently, isomorphism classes of certain long exact sequences of
abelian groups (see Theorem 2.3). In Section 3, we study how restrictions on X
affect the group BnC2.X/. Finally, Section 4 is devoted to the proof of our main
results, Theorem 1.1 and Theorem 1.3.

2 The � -sequence of an A2
n-polyhedron

Let Ab denote the category of abelian groups. In [15], J. H. C. Whitehead con-
structed a functor �WAb! Ab, known as Whitehead’s universal quadratic func-
tor, and an exact sequence, which are useful to our purposes and introduced in this
section. The �-functor is defined as follows. Let A and B be abelian groups and
�WA! B a map (of sets) between them. The map � is said to be quadratic if

(1) �.a/ D �.�a/ for all a 2 A,

(2) the map A � A! B taking .a; a0/ to �.aC a0/ � �.a/ � �.a0/ is bilinear.

For an abelian group A, �.A/ is the only abelian group for which there exists
a quadratic map 
 WA! �.A/ such that every other quadratic map �WA! B fac-
tors uniquely through 
 . This means that there is a unique group homomorphism
��W�.A/! B such that � D ��
 . The quadratic map 
 WA! �.A/ is called the
universal quadratic map of A.

The �-functor acts on morphisms as follows. Let f WA! B be a group ho-
momorphism, and 
 WA! �.A/ and 
 WB ! �.B/ the universal quadratic maps.
Then 
f WA! �.B/ is a quadratic map, so there exists a unique group homomor-
phism .
f /�W�.A/! �.B/ such that .
f /�
 D 
f . Define �.f / D .
f /�.

We now list some of its properties that will be used later in this paper.

Proposition 2.1 ([5, pp. 16–17]). The � functor has the following properties:

(1) �.Z/ D Z.

(2) �.Zn/ is Z2n if n is even, or Zn if n is odd.

(3) Let I be an ordered set and Ai an abelian group for each i 2 I . Then

�
�M
I

Ai

�
D

�M
I

�.Ai /
�
˚

�M
i<j

Ai ˝ Aj

�
:

Moreover, the groups �.Ai / and Ai ˝ Aj are respectively generated by ele-
ments 
.ai / and ai ˝ aj , with ai 2 Ai , aj 2 Aj , i < j , and


.ai C aj / D 
.ai /C 
.aj /C ai ˝ aj for ai 2 Ai ; aj 2 Aj ; i < j

(see [15, § 5, § 7]).
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We now introduce Whitehead’s exact sequence. Let X be a simply connected
CW -complex. For n � 1, the n-th Whitehead �-group of X is defined as

�n.X/ D Im.i�W�n.Xn�1/! �n.X
n//:

Here, i WXn�1 ! Xn is the inclusion of the .n � 1/-skeleton of X into its n-skel-
eton. Then �n.X/ is an abelian group for n � 1. This group can be embedded into
a long exact sequence of abelian groups

� � � ���! HnC1.X/
bnC1

���! �n.X/
in�1
���! �n.X/

hn
���! Hn.X/ ���! � � � ; (2.1)

where hn is the Hurewicz homomorphism and bnC1 is a boundary representing
the attaching maps.

For each n � 2, a functor �1n WAb! Ab is defined as follows. Let �12 D � be
the universal quadratic functor, and for n � 3, �1n D �˝ Z2. It turns out that if
X is .n � 1/-connected, then �1n.Hn.X// Š �nC1.X/ (see [5, Theorem 2.1.22]).
Thus the final part of the long exact sequence (2.1) can be written as

HnC2.X/
bnC2

���! �1n.Hn.X//
in
���! �nC1.X/

hnC1

���! HnC1.X/ ���! 0: (2.2)

Now, for each n � 2, we define the category of A2n-polyhedra as the category
whose objects are .nC 2/-dimensional .n � 1/-connected CW -complexes and
whose morphisms are continuous maps between objects. Homotopy types of these
spaces are classified through isomorphism classes in a category whose objects are
sequences like (2.2) [4, Ch. I, § 8].

Definition 2.2 ([3, Ch. IX, § 4]). Let n � 2 be an integer. We define the category
�-sequencesnC2 as follows. Objects are exact sequences of abelian groups

HnC2 ! �1n.Hn/! �nC1 ! HnC1 ! 0;

where HnC2 is free abelian. Morphisms are triples of group homomorphisms
f D .fnC2; fnC1; fn/, fi WHi ! H 0i , such that there exists a group homomor-
phism �W�nC1 ! � 0nC1 making the diagram

HnC2 �1n.Hn/ �nC1 HnC1 0

H 0nC2 �1n.H
0
n/ � 0nC1 H 0nC1 0

fnC2 �1
n.fn/ � fnC1

commutative. Objects in �-sequencesnC2 are called �-sequences, and morphisms
in the category are called �-morphisms.
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On the one hand, we can assign to an A2n-polyhedron X an object in �-se-
quencesnC2 by considering the associated exact sequence (2.2). We call such an
object the �-sequence ofX . On the other hand, to a continuous map ˛WX ! X 0 of
A2n-polyhedra, we can assign a morphism between the corresponding �-sequences
by considering the induced homomorphisms

HnC2.X/ �1n.Hn.X// �nC1.X/ HnC1.X/ 0

HnC2.X
0/ �1n.Hn.X

0// �nC1.X
0/ HnC1.X

0/ 0:

HnC2.˛/ �1
n.Hn.˛// �nC1.˛/ HnC1.˛/

Therefore, we have a functor A2n-polyhedra! �-sequencesnC2 which clearly re-
stricts to the homotopy category of A2n-polyhedra, HoA2n-polyhedra. It is obvious
that this functor sends homotopy equivalences to isomorphisms between the cor-
responding �-sequences. Thus we can classify homotopy types of A2n-polyhedra
through isomorphism classes of �-sequences.

Theorem 2.3 ([4, Ch. I, § 8]). The functor HoA2n-polyhedra! �-sequencesnC2

previously defined is full. Moreover, for any object in �-sequencesnC2, there exists
an A2n-polyhedron whose �-sequence is the given object in �-sequencesnC2. In
fact, there exists a 1–1 correspondence between homotopy types of A2n-polyhedra
and isomorphism classes of �-sequences.

Following the ideas of [6], we introduce the following.

Definition 2.4. Let X be an A2n-polyhedron. We denote by BnC2.X/ the group of
�-isomorphisms of the �-sequence of X .

Let ‰WE.X/! BnC2.X/ be the map that associates to ˛ 2 E.X/ the �-iso-
morphism ‰.˛/ D .HnC2.˛/;HnC1.˛/;Hn.˛//. Then ‰ is a group homomor-
phism: its kernel is the subgroup of self-homotopy equivalences inducing the iden-
tity map on the homology groups of X , that is, E�.X/. Also, ‰ is onto as a conse-
quence of Theorem 2.3. Hence, we immediately obtain the following result.

Proposition 2.5. Let X be an A2n-polyhedron, n � 2. Then

BnC2.X/ Š E.X/=E�.X/:

3 Self-homotopy equivalences of finite type A2
n-polyhedra

Henceforth, an A2n-polyhedron will mean an .n � 1/-connected, .nC 2/-dimen-
sional CW -complex of finite type. Recall that, for simply connected and finite
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type spaces, the homology and homotopy groups Hn.X/ and �n.X/ are finitely
generated and abelian for n � 1.

The �-sequence tool introduced in Section 2 will help us to illustrate, from an
algebraic point of view, how different restrictions on an A2n-polyhedron X affect
the quotient group E.X/=E�.X/. We devote this section to that matter. We also
obtain several results that are needed in the proof of Theorem 1.1 and Theorem 1.3.
The following result is a generalisation of [6, Theorem 4.5].

Proposition 3.1. Let X be an A2n-polyhedron and suppose that the Hurewicz ho-
momorphism hnC2W�nC2.X/! HnC2.X/ is onto. Then every automorphism of
HnC2.X/ is realised by a self-homotopy equivalence of X .

Proof. As part of the exact sequence (2.1) for X , we have

� � � ���! �nC2.X/
hnC2

���!HnC2.X/
bnC2

���! �1n.Hn.X// ���! �nC1.X/ ���! � � � :

Then, since hnC2 is onto by hypothesis, bnC2 is the trivial homomorphism. Thus,
for every fnC2 2 Aut.HnC2.X//, we have bnC2fnC2 D bnC2 D 0, so if� D id,
.fnC2; id; id/ 2 BnC2.X/. Then there exists f 2 E.X/ with HnC2.f / D fnC2,
HnC1.f / D id, Hn.f / D id.

We can easily prove that automorphism groups can be realised; a result that can
also be obtained as a consequence of [14, Theorem 2.1].

Example 3.2. Let G be a group isomorphic to Aut.H/ for some finitely generated
abelian group H . Then, for any integer n � 2, there exists an A2n-polyhedron X
such that G Š BnC2.X/: take the Moore space X DM.H; nC 1/, which in par-
ticular is an A2n-polyhedron. The �-sequence of X is

HnC2.X/ D 0! �1n.Hn.X// D 0! H
D
! H ! 0:

Then, for every f 2 Aut.H/, taking � D f , we see that .id; f; id/ 2 BnC2.X/,
and those are the only possible �-isomorphisms. Thus BnC2.X/ Š Aut.H/ Š G.

The use of Moore spaces is not required in the n D 2 case.

Example 3.3. Let G be a group isomorphic to Aut.H/ for some finitely generated
abelian group H . Consider the following object in �-sequences4:

Z
b4
�!! �.Z2/ D Z4 �! H

D
�! H �! 0: (3.1)
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By Theorem 2.3, there exists an A22-polyhedron X realising this object. In particu-
lar, H4.X/ D Z, H3.X/ D �3.X/ D H and H2.X/ D Z2. It is clear from (3.1)
that .id; f; id/ is a �-isomorphism for every f 2 Aut.H/. Now, Aut.Z2/ is the
trivial group while Aut.Z/ D ¹�id; idº. It is immediate to check that .�id; f; id/ is
not a �-isomorphism since id b4 ¤ b4.�id/. Then we obtain B4.X/ Š Aut.H/.

Observe that not every group G is isomorphic to the automorphism group of
an abelian group (for example Zp if p is odd). Hence, examples from above only
provide a partial positive answer to the realisability problem for BnC2.X/. Indeed,
the automorphism group of an abelian group (other than Z2) has elements of even
order. The following results go in that direction.

Lemma 3.4. Let X be an A2n-polyhedron, n � 2. If Hn.X/ is not an elementary
abelian 2-group, then BnC2.X/ has an element of order 2.

Proof. Since Hn.X/ is not an elementary abelian 2-group, it admits a non-trivial
involution �idWHn.X/! Hn.X/. But �1n.�id/ D id for every n � 2, so we have
.id; id;�id/ 2 BnC2.X/, and the result follows.

Notice a key difference between the n D 2 and the n � 3 cases: �12 .A/ D �.A/
is never an elementary abelian 2-group when A is finitely generated and abelian,
as can be deduced from Proposition 2.1. However, for n � 3, �1n.A/ D A˝ Z2 is
always an elementary abelian 2-group. Taking advantage of this fact we can prove
the following result.

Lemma 3.5. Let X be an A2n-polyhedron, n � 3. If any of the homology groups
of X is not an elementary abelian 2-group (in particular, if HnC2.X/ ¤ 0), then
BnC2.X/ contains a non-trivial element of order 2.

Proof. Under our assumptions, �1n.Hn.X// is an elementary abelian 2-group.
For � D �id, the triple .�id;�id;�id/ is a �-isomorphism of order 2 unless
HnC2.X/, HnC1.X/ and Hn.X/ are all elementary abelian 2-groups.

We remark that this result does not hold for A22-polyhedra. Indeed, if we con-
sider the construction in Example 3.3 forH D Z2, then B4.X/ Š Aut.Z2/ D ¹�º
does not contain a non-trivial element of order 2 although H4.X/ D Z is not an
elementary abelian 2-group.

We now prove some results regarding the finiteness of BnC2.X/.

Proposition 3.6. LetX be an A2n-polyhedron, n � 2, with rankHnC2.X/ � 2 and
every element of �1n.Hn.X// of finite order. Then BnC2.X/ is an infinite group.



582 C. Costoya, D. Méndez and A. Viruel

Proof. Since rankHnC2.X/ � 2, we may write HnC2.X/ D Z2 ˚G, G a (pos-
sibly trivial) free abelian group. Consider the �-sequence of X ,

Z2 ˚G
bnC2

���! �1n.Hn.X//
in
���! �nC1.X/

hnC1

���! HnC1.X/ ���! 0:

Since bnC2.Z2/ � �1n.Hn.X// is a finitely generated Z-module with finite or-
der generators, it is a finite group. Define k D exp.bnC2.Z2//, and consider the
automorphism of Z2 given by the matrix�

1 k

0 1

�
2 GL2.Z/;

which is of infinite order. If we take f ˚ idG 2 Aut.Z2 ˚G/, then we have
bnC2.f ˚ id/ D bnC2, thus .f ˚ idG ; id; id/ 2 BnC2.X/, which is an element
of infinite order.

As previously mentioned, �1n.Hn.X// is an elementary abelian 2-group for
n � 3. Hence, from Proposition 3.6 we get:

Corollary 3.7. LetX be an A2n-polyhedron, n � 3, with rankHnC2.X/ � 2. Then
BnC2.X/ is an infinite group.

This result does not hold, in general, for n D 2. However, if A is a finite group,
Proposition 2.1 implies that �.A/ is finite as well, so from Proposition 3.6, we get
the following.

Corollary 3.8. Let X be an A22-polyhedron with rankH4.X/ � 2 and H2.X/ fi-
nite. Then B4.X/ is an infinite group.

We end this section with one more result on the infiniteness of BnC2.X/.

Proposition 3.9. Let X be an A2n-polyhedron, n � 3. If Hn.X/ D Z2 ˚G for
a certain abelian group G, then BnC2.X/ is an infinite group.

Proof. If Hn.X/ D Z2 ˚G, then

�1n.Hn.X// D Hn.X/˝ Z2 D Z22 ˚ .G ˝ Z2/:

Hence GL2.Z/�Aut.Hn.X// and GL2.Z2/�Aut.Hn.X/˝Z2/. Moreover, for
every f 2 GL2.Z/, we have f ˚ idG 2 Aut.Hn.X//, which yields, through �1n ,
an automorphism .f ˚ idG/˝Z2 D .f ˝Z2/˚ idG˝Z2

2 Aut.Hn.X/˝Z2/.
This means that the functor �1n restricts to GL2.Z/! GL2.Z2/. Moreover, we
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have that�˝ Z2WGL2.Z/! GL2.Z2/ has an infinite kernel. Hence, there are in-
finitely many morphisms f 2 Aut.Hn.X// such that f ˝ Z2 D id. For any such
a morphism f , .id; id; f / is an element of BnC2.X/. Therefore, BnC2.X/ is
infinite.

4 Obstructions to the realisability of groups

We have seen in Section 3 that the group BnC2.X/ contains elements of even or-
der unless strong restrictions are imposed on the homology groups of the A2n-poly-
hedron X . Since we are interested in realising an arbitrary group G as BnC2.X/

for X a finite type A2n-polyhedron, in this section, we focus our attention on the
remaining situations and prove Theorems 1.1 and 1.3. We first give some previous
results.

Lemma 4.1. For G an elementary abelian 2-group, �.�/WAut.G/! Aut.�.G//
is injective.

Proof. Let us show that the kernel of �.�/ is trivial. Assume that G is generated
by ¹ej j j 2 J º, J an ordered set. If f 2 Aut.G/ is in the kernel of �.�/, then,
for each j 2 J , there exists a finite subset Ij � J such that f .ej / D

P
i2Ij

ei ,
and


.ej / D �.f /
.ej / D 
f .ej / D 

�X
i2Ij

ei

�
D

X
i2Ij


.ei /C
X
i<k

ei ˝ ek;

as a consequence of Proposition 2.1 (3), so Ij D ¹j º and f .ej / D ej for every
j 2 J .

Lemma 4.2. Let H2 D
Ln
iD1Z2, and let � 2 �.H2/ be an element of order 4.

If there exists a non-trivial automorphism of odd order f 2 Aut.H2/ such that
�.f /.�/ D �, then there exists g 2 Aut.H2/ of order 2 such that �.g/.�/ D �.

Proof. Notice that according to [15, p. 66], we can write h˝ h D 2
.h/ for any
element h 2 H2. Therefore, given a basis ¹h1; h2; : : : ; hnº of H2, and replacing
3
.hi / by 
.hi /C hi ˝ hi if needed, we can write

� D

nX
iD1

a.i/
.hi /C

nX
i;jD1

a.i; j /hi ˝ hj ;

where every coefficient a.i/, a.i; j / is either 0 or 1. We now inductively con-
struct a basis ¹e1; e2; : : : ; enº ofH2 as follows. Without loss of generality, assume
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a.1/ D 1, and define e1 D
Pn
iD1 a.i/hi . Then ¹e1; h2; : : : ; hnº is again a basis

of H2 and

� D 
.e1/C ˛1e1 ˝ e1 C ˇ1e1 ˝

� nX
sD2

b.1; s/hs

�
C

nX
i;j>1

a1.i; j /hi ˝ hj ;

where every coefficient in the equation is either 0 or 1. Assume a basis

¹e1; : : : ; er ; hrC1; : : : ; hnº

has been constructed such that

� D 
.e1/C

rX
jD1

j̨ ej ˝ ej C

r�1X
jD1

ǰ ej ˝ ejC1

C ˇrer ˝

� nX
sDrC1

b.r; s/hs

�
C

nX
i;j>r

ar.i; j /hi ˝ hj ;

where every coefficient is either 0 or 1. We may assume b.r; r C 1/ D 1 and define
erC1 D

Pn
sDrC1 b.r; s/hs . Thus ¹e1; : : : ; erC1; hrC2; : : : ; hnº is again a basis of

H2 and

� D 
.e1/C

rC1X
jD1

j̨ ej ˝ ej C

rX
jD1

ǰ ej ˝ ejC1

C ˇrC1erC1 ˝

� nX
sDrC2

b.r C 1; s/hs

�
C

nX
i;j>rC1

arC1.i; j /hi ˝ hj :

Finally, we obtain a basis ¹e1; e2; : : : ; enº of H2 such that

� D 
.e1/C

nX
jD1

j̨ ej ˝ ej C

n�1X
jD1

ǰ ej ˝ ejC1 (4.1)

for some coefficients

j̨ 2 ¹0; 1º; j D 1; 2; : : : ; n; and ǰ 2 ¹0; 1º; j D 1; 2; : : : ; n � 1:

Now, for n D 1, H2 D Z2 has a trivial group of automorphisms, so the result
holds. For n D 2, assume that there exists f 2 Aut.H2/ such that �.f /.�/ D �.
From equation (4.1), � D �.f /.
.e1//C �.f /.P /, where

P 2 �1.�.H2// D ¹h 2 �.H2/ W ord.h/ j 2º:
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Then �.f /.
.e1// has a multiple of 
.e1/ as its only summand of order 4, which
implies f .e1/ D e1. Then either f .e2/ D e2, so f is trivial, or f .e2/ D e1 C e2,
so f has order 2.

For n � 3, we define g 2 Aut.H2/ by g.ej / D ej for j D 1; 2; : : : ; n � 2, and
g.en�1/ and g.en/, depending on ˛n�j and ˇn�1�j , for j D 0; 1, in equation
(4.1), according to the following table.

˛n ˇn�1 ˛n�1 ˇn�2 g.en�1/ g.en/

0 0 0 or 1 0 or 1 en�1 en�1 C en

0 1 0 0 en en�1

0 1 0 1 en�2 C en en�2 C en�1

0 1 1 0 en�1 C en en

0 1 1 1 en�2 C en�1 C en en

1 0 0 0 en�2 C en�1 en

1 0 0 1 en�2 C en�1 en�2 C en

1 0 1 0 en en�1

1 0 1 1 en�2 C en�1 en

1 1 0 or 1 0 or 1 en�1 en�1 C en

A simple computation shows that, in all cases, g has order 2 and �.g/.�/ D �,
so the result follows.

Definition 4.3. Let f WH ! K be a morphism of abelian groups. We say that
a non-trivial subgroup A � K is f -split if there exist groups B � H and C � K
such that H Š A˚ B , K D A˚ C and f can be written as

idA ˚ gWA˚ B ! A˚ C for some gWB ! C:

Henceforward, we will make extensive use of this notation applied to

hnC1W�nC1.X/! HnC1.X/;

the Hurewicz morphism. We prove the following.

Lemma 4.4. Let X be an A2n-polyhedron, n � 2. Let A � HnC1.X/ be an hnC1-
split subgroup; thus HnC1.X/ D A˚ C for some abelian group C . Then, for ev-
ery fA 2 Aut.A/, there exists f 2 E.X/ inducing .id; fA ˚ idC ; id/ 2 BnC2.X/.
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Proof. By hypothesis,HnC1.X/ D A˚ C , �nC1.X/ Š A˚ B for some abelian
group B , and hnC1 can be written as idA ˚ g for some morphism gWB ! C .
Thus, for every fA 2 Aut.A/, we have a commutative diagram

HnC2.X/ �1n.Hn.X// A˚ B A˚ C 0

HnC2.X/ �1n.Hn.X// A˚ B A˚ C 0:

bnC2 hnC1

bnC2 hnC1

id id fA˚idB fA˚idC

Hence .id; fA˚ idC ; id/ 2BnC2.X/, and by Theorem 2.3, there exists f 2 E.X/

such that HnC1.f / D fA ˚ idC , HnC2.f / D id and Hn.f / D id.

The following lemma is crucial in the proof of Theorems 1.1 and 1.3.

Lemma 4.5. Let X be an A2n-polyhedron, n � 2. Suppose that there exist hnC1-
split subgroups of HnC1.X/.

(1) If n � 3, then BnC2.X/ is either trivial or it has elements of even order.

(2) If B4.X/ is finite and non-trivial, then it has elements of even order.

Proof. First of all, observe that we just need to consider when Hn.X/ is an ele-
mentary abelian 2-group. Otherwise, the result is a consequence of Lemma 3.4.

Let A be an arbitrary hnC1-split subgroup of HnC1.X/. If A ¤ Z2, there is
an involution � 2 Aut.A/ that induces an element .id; �˚ id; id/ 2 BnC2.X/ of
order 2 by Lemma 4.4, and the result follows. Hence we can assume that every
hnC1-split subgroup of HnC1.X/ is Z2.

Both assumptions, namely Hn.X/ being an elementary abelian 2-group and
every hnC1-split subgroup of HnC1.X/ being Z2, imply that HnC1.X/ is a finite
2-group. Indeed, sinceHn.X/ is finitely generated, �1n.Hn.X// is a finite 2-group
and so is coker bnC2. Then, since HnC1.X/ is also finitely generated, any direct
summand of HnC1.X/ which is not a 2-group would be hnC1-split, contradicting
our assumption that every hnC1-split subgroup of HnC1.X/ is Z2.

To prove our lemma, we start with the case A D HnC1.X/ is hnC1-split. When
HnC2.X/ D 0, the �-sequence of X becomes then the short exact sequence

0! �1n.Hn.X//! �1n.Hn.X//˚ Z2 ! Z2 ! 0:

Notice that any automorphism of order 2 inHn.X/ yields an automorphism of or-
der 2 in �1n.Hn.X// since �1n is injective on morphisms: it is immediate for n � 3,
and for n D 2, apply Lemma 4.1. As our sequence is split, any f 2 Aut.Hn.X//
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induces the �-isomorphism .id; id; f / of the same order. Hence, forHn.X/ ¤ Z2,
it suffices to consider an involution. For Hn.X/ D Z2, since by hypothesis

HnC1.X/ D Z2 and HnC2.X/ D 0;

the only �-isomorphism is .id; id; id/, and therefore BnC2.X/ is trivial as claimed.
When HnC2.X/ ¤ 0, for n � 3, the result follows directly from Lemma 3.5.

For n D 2, we also assume that B4.X/ is finite and non-trivial. Hence, since
H2.X/ is an elementary abelian 2-group, Proposition 3.6 implies thatH4.X/DZ.
Then, if a �-isomorphism of the form .�id; f; id/ exists, it is of even order. In
particular, if Im b4 is a subgroup of �.H2.X// of order 2, .�id; id; id/ is a �-iso-
morphism of even order.

Assume otherwise that Im b4 is a group of order 4. If a �-isomorphism .id; f; id/
of odd order exists, then �.f / ı b4 D b4. In this situation, by Lemma 4.2 for
� D b4.1/, there exists g 2 Aut.H2.X//, an automorphism of order 2 such that
�.g/b4.1/ D b4.1/. Moreover, as we are in the case A D H3.X/ being h3-split,
.id; g; id/ 2 B4.X/ is a �-isomorphism of order 2.

We deal now with the caseA � HnC1.X/. SinceA D Z2 is a proper hnC1-split
subgroup of HnC1.X/, there exist non-trivial groups B and C such that

�nC1.X/ D Z2 ˚ B
hnC1

���! Z2 ˚ C D HnC1.X/;

.t; b/ 7���! .t; g.b//

for some group morphism B
g
�! C . Moreover, HnC1.X/ is a finite 2-group; thus

C is a (non-trivial) finite 2-group, and there exists an epimorphism C
�
�! Z2.

Define
f 2 Aut.Z2 ˚ C/ D Aut.HnC1.X//;

� 2 Aut.Z2 ˚ B/ D Aut.�nC1.X//
to be the non-trivial involutions given by

f .t; c/ D .t C �.c/; c/ and �.t; b/ D .t C �.g.b//; b/:

By construction, hnC1� D f hnC1, and if .t; b/ 2 coker bnC2 D ker hnC1 (thus
g.b/ D 0), then �.t; b/ D .t; b/. In other words, .id; f; id/ 2 BnC2.X/, and it
has order 2.

We now prove our main results.

Proof of Theorem 1.1. Assume that Hn.X/ and HnC1.X/ are elementary abel-
ian 2-groups, and HnC2.X/ D 0. Otherwise, there would already be elements of
order 2 in BnC2.X/ as a consequence of Lemma 3.5.

WriteHn.X/ D ˚IZ2, I an ordered set. Since n � 3, we have �1n D �˝ Z2,
so �1n.Hn.X// D Hn.X/. We can also assume that there are no subgroups in
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HnC1.X/ that are hnC1-split. Otherwise, we would deduce from Lemma 4.5 that
there are elements of order 2 in BnC2.X/. ThusHnC1.X/ D ˚JZ2 with J � I ,
and the �-sequence corresponding to X is

0!
M
I

Z2
b
�!

�M
I�J

Z2
�
˚

�M
J

Z4
�
h
�!

M
J

Z2 ! 0:

We may rewrite the sequence as

0!
�M
I�J

Z2
�
˚

�M
J

Z2
�
b
�!

�M
I�J

Z2
�
˚

�M
J

Z4
�
h
�!

M
J

Z2 ! 0

and assume that b.x; y/ D .x; 2y/ and h.x; y/ D y mod 2. It is clear that any
f 2 Aut.

L
I�J Z2/ induces a �-isomorphism .0; id; f ˚ id/ of the same order.

On the one hand, for jI � J j � 2,
L
I�J Z2 has an involution, and therefore

BnC2.X/ has elements of even order. On the other hand, for jI � J j < 2, we
consider the remaining possibilities.

Suppose that jI � J j D 1. Then �nC1.X/ D Z2 ˚ .
L
J Z4/. If J is trivial,

then BnC2.X/ is clearly trivial as well. Otherwise, suppose that I � J D ¹iº and
choose j 2 J . Define

f 2 Aut
�
Z2 ˚ Z2 ˚

� M
I�¹i;j º

Z2
��

by f .x; y; z/ D .x; x C y; z/;

g 2 Aut
�
Z2 ˚ Z4 ˚

� M
I�¹i;j º

Z4
��

by g.x; y; z/ D .x; 2x C y; z/:

Then .id; id; f / is a �-isomorphism of order 2 since we have a commutative dia-
gram

0
Z2 ˚ Z2
˚ .
L
I�¹i;j ºZ2/

Z2 ˚ Z4
˚ .
L
I�¹i;j ºZ4/

Z2
˚ .
L
J�¹j ºZ2/

0

0
Z2 ˚ Z2
˚ .
L
I�¹i;j ºZ2/

Z2 ˚ Z4
˚ .
L
I�¹i;j ºZ4/

Z2
˚ .
L
J�¹j ºZ2/

0:

f g id

Suppose that I D J . If Hn.X/ D HnC1.X/ D Z2, BnC2.X/ is trivial. If not,
choose i; j 2 I , and define maps

f 2 Aut
�
Z2 ˚ Z2 ˚

� M
I�¹i;j º

Z2
��

by f .x; y; z/ D .y; x; z/;

g 2 Aut
�
Z4 ˚ Z4 ˚

� M
I�¹i;j º

Z4
��

by g.x; y; z/ D .y; x; z/:
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We have the following commutative diagram:

0
Z2 ˚ Z2
˚ .
L
I�¹i;j ºZ2/

Z4 ˚ Z4
˚ .
L
I�¹i;j ºZ4/

Z2 ˚ Z2
˚ .
L
I�¹i;j ºZ2/

0

0
Z2 ˚ Z2
˚ .
L
I�¹i;j ºZ2/

Z4 ˚ Z4
˚ .
L
I�¹i;j ºZ4/

Z2 ˚ Z2
˚ .
L
I�¹i;j ºZ2/

0:

f g f

Then .0; f; f / is a �-isomorphism of order 2.

As a consequence, we obtain a negative answer to the problem of realising
groups as self-homotopy equivalences of A2n-polyhedra.

Corollary 4.6. Let G be a non-nilpotent finite group of odd order. Then, for any
n � 3 and for any A2n-polyhedron X , we have G © E.X/.

Proof. Assume that there exists an A2n-polyhedron X such that E.X/ Š G. Then,
if E.X/ ¤ E�.X/, the quotient E.X/=E�.X/ is a finite group of odd order, which
contradicts Theorem 1.1. ThusGŠ E.X/D E�.X/. However, sinceX is a 1-con-
nected and finite-dimensional CW -complex, E�.X/ is a nilpotent group, [8, The-
orem D], which contradicts the fact that G is non-nilpotent.

We end this paper by proving our second main result.

Proof of Theorem 1.3. By hypothesis, B4.X/ is a finite group of odd order. From
Lemma 3.4, we deduce that H2.X/ is an elementary abelian 2-group, and from
Proposition 2.1, we deduce that �.H2.X// is a 2-group. In particular, every ele-
ment of �.H2.X// is of finite order, and therefore rankH4.X/ � 1 by Proposi-
tion 3.6, so we have Theorem 1.3 (1). Now, any element in B4.X/ is of the form
.0; f2; f3/ if H4.X/ D 0, or .id; f2; f3/ if H4.X/ D Z. Notice that a �-mor-
phism of the form .�id; f2; f3/ has even order thus it cannot be a �-isomorphism
under our hypothesis. Therefore, if H4.X/ D Z, then b4.1/ generates a Z4 factor
in �.H2.X//, and under our hypothesis, the equation

rank�.H2.X// D rankH4.X/C rank.coker b4/

holds for rankH4.X/ � 1.
Observe that any �-isomorphism of X induces a chain morphism of the short

exact sequence

0 �! coker b4 �! �3.X/
h3
�! H3.X/ �! 0:
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We will draw our conclusions from this induced morphism, which can be seen
as an automorphism of �3.X/ that maps the subgroup i2.coker b4/ to itself, thus
inducing an isomorphism on the quotient, H3.X/.

As we mentioned above, �.H2.X// is a 2-group. Then coker b4 is a quotient
of a 2-group so a 2-group itself. We claim that H3.X/ is also a 2-group; other-
wise, H3.X/ has a summand whose order is either infinite or odd, and therefore
this summand would be h3-split, which from Lemma 4.5 implies that B4.X/ has
elements of even order, leading to a contradiction. Since coker b4 and H3.X/ are
2-groups, so is �3.X/, proving thus Theorem 1.3 (2).

Moreover, as a consequence of Lemma 4.5, no subgroup of H3.X/ can be h3-
split, and thus rankH3.X/ � rank.coker b4/ D rank �.H2.X// � rankH4.X/.
We can compute rank�.H2.X// using Proposition 2.1 and immediately obtain
Theorem 1.3 (3).

Now, for a 2-group G, define the subgroup �1.G/ D ¹g 2 G W ord.g/ j 2º.
One can easily check that �1.�3.X// � i2.coker b4/, and from [10, Ch. 5, The-
orem 2.4], we obtain that any automorphism of odd order of �3.X/ acting as the
identity on i2.coker b4/ must be the identity.

Then, if .id; f3; f2/ 2 B4.X/ is a �-morphism with f3 non-trivial, f3 has odd
order, so we may assume that �W�3.X/! �3.X/ (see Definition 2.2) has odd
order too. By the argument above, it must induce a non-trivial homomorphism on
i2.coker b4/, and therefore f2 is non-trivial as well. So the natural action of B4.X/

on H2.X/ must be faithful since any �-automorphism .id; f3; f2/ 2 B4.X/ in-
duces a non-trivial f2 2 Aut.H2.X//. Then Theorem 1.3 (4) follows.
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