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The group of self-homotopy equivalences
of A2-polyhedra

Cristina Costoya, David Méndez and Antonio Viruel

Communicated by Radha Kessar

Abstract. Let X be a finite type A,zl—polyhedron, n > 2. In this paper, we study the quotient
group &(X)/E«(X), where £(X) is the group of self-homotopy equivalences of X and
& (X) the subgroup of self-homotopy equivalences inducing the identity on the homology
groups of X. We show that not every group can be realised as &(X) or &(X)/&E«(X) for
X an A,zl—polyhedron, n > 3, and specific results are obtained for n = 2.

1 Introduction

Let &(X) denote the group of homotopy classes of self-homotopy equivalences
of a space X, and let &, (X) denote the normal subgroup of self-homotopy equiv-
alences inducing the identity on the homology groups of X. Problems related to
&(X) have been extensively studied, with Kahn’s realisability problem deserving
a special mention, having been placed first to solve in [2] (see also [1, 11,12, 14]).
It asks whether an arbitrary group can be realised as &(X) for some simply con-
nected X, and though the general case remains an open question, it has recently
been solved for finite groups [7]. As a way to approach Kahn’s problem, in [9,
Problem 19], the question of whether an arbitrary group can appear as the distin-
guished quotient & (X)/&«(X) is raised.

In this paper, we work with (n — 1)-connected (n + 2)-dimensional C W -com-
plexes for n > 2, the so-called A2-polyhedra. Homotopy types of these spaces
have been classified by Baues in [4, Ch. I, § 8] using the long exact sequence of
groups associated to simply connected spaces introduced by J. H. C. Whitehead
in [15]. The author of [6] uses that classification to study the group of self-homo-
topy equivalences of an A%-polyhedron X. He associates to X a group B*(X)
that is isomorphic to &(X)/&«(X) and asks if any group can be realised as such
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a quotient in this context, that is, if A%—polyhedra provide an adequate framework
to solve the realisability problem.

Here, in the general setting of an A%-polyhedra X, n > 2, we also construct
a group B"T2(X) (see Definition 2.4) that is isomorphic to &(X)/E«(X) (see
Proposition 2.5). We show that there exist many groups (for example Z/ p, p odd,
Corollary 1.2) for which the question above does not admit a positive answer. This
fact should illustrate that A%-polyhedra might not be the right setting to answer
[9, Problem 19].

We show, for instance, that under some restrictions on the homology groups
of X, B""2(X) is infinite, which in particular implies that &(X) is infinite (see
Proposition 3.6 and Proposition 3.9). Or for example, in many situations the exis-
tence of odd order elements in the homology groups of X implies the existence of
involutions in 8" %2(X) (see Lemma 3.4 and Lemma 3.5).

In this paper, we prove the following result.

Theorem 1.1. Let X be a finite type A2-polyhedron, n > 3. Then B"2(X) is
either the trivial group or it has elements of even order.

As an immediate corollary, we obtain the following.

Corollary 1.2. Let G be a non-trivial group with no elements of even order. Then
G is not realisable as B"T2(X) for X a finite type A%—polyhedron, n>3.

The case n = 2 is more complicated. Detailed group-theoretical analysis shows
that a finite type A%—polyhedra might realise finite groups of odd order only under
very restrictive conditions. Recall that, for a group G, rank G is the smallest car-
dinal of a set of generators for G [13, p. 91]. We have the following result.

Theorem 1.3. Suppose that X is a finite type A%-polyhedron with a non-trivial

finite B*(X) of odd order. Then the following holds:

(1) rank H4(X) < 1,

(2) 73(X) and H3(X) are 2-groups, Hy(X) is an elementary abelian 2-group,

(3) rank H3(X) < % rank H,(X)(rank H>(X) + 1) —rank H4(X) < rank 773(X),

(4) the natural action of B*(X) on Ha(X) induces a faithful representation
B*(X) < Aut(Hz(X)).

All our attempts to find a space satisfying the hypothesis of Theorem 1.3 were
unsuccessful. We therefore make the following conjecture.

Conjecture 1.4.Let X be an A%—polyhedron. If B4(X) is a non-trivial finite
group, then it necessarily has an element of even order.
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This paper is organised as follows. In Section 2, we give a brief introduction to
Whitehead’s and Baues’s results for the classification of homotopy types of A2-
polyhedra, or equivalently, isomorphism classes of certain long exact sequences of
abelian groups (see Theorem 2.3). In Section 3, we study how restrictions on X
affect the group 8" 2(X). Finally, Section 4 is devoted to the proof of our main
results, Theorem 1.1 and Theorem 1.3.

2 The I'-sequence of an A,f-polyhedron

Let Ab denote the category of abelian groups. In [15], J. H. C. Whitehead con-
structed a functor I': Ab — Ab, known as Whitehead’s universal quadratic func-
tor, and an exact sequence, which are useful to our purposes and introduced in this
section. The I'-functor is defined as follows. Let 4 and B be abelian groups and
n: A — B amap (of sets) between them. The map 7 is said to be quadratic if

(1) n(a) = n(—a) foralla € A,
(2) the map A x A — B taking (a,a’) to n(a + a’) — n(a) — n(a’) is bilinear.
For an abelian group A4, I'(A) is the only abelian group for which there exists
a quadratic map y: A — I'(A) such that every other quadratic map n: A — B fac-
tors uniquely through y. This means that there is a unique group homomorphism
nD: I'(A) — B suchthatn = nDy. The quadratic map y: A — I'(A) is called the
universal quadratic map of A.
The I'-functor acts on morphisms as follows. Let f: A — B be a group ho-
momorphism, and y: A — I'(4) and y: B — I'(B) the universal quadratic maps.
Then yf: A — I'(B) is a quadratic map, so there exists a unique group homomor-

phism (yf)5:T'(4) — I'(B) such that (yf)Py = yf. Define T'(f) = (yf)".
We now list some of its properties that will be used later in this paper.
Proposition 2.1 ([5, pp. 16-17]). The T" functor has the following properties:
() I'(Z) = 2.
) T'(Zyp) is Zipy if n is even, or Zy, if n is odd.
(3) Let I be an ordered set and A; an abelian group for each i € I. Then
r(@a)=(@run)e (Paea).
1 I i<j
Moreover, the groups I'(A;) and A; ® A; are respectively generated by ele-
ments y(a;) and a; ® aj, witha; € A;, aj € Aj, i < j, and
v(ai +aj) =vy(a;) +vy(aj)+a ®a; fora; € Aj,a; € Aj, i <J
(see [15,8§5,87]).
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We now introduce Whitehead’s exact sequence. Let X be a simply connected
C W -complex. For n > 1, the n-th Whitehead I"-group of X is defined as

Tp(X) = Im(is: 70 (X"7) = 7,(X™)).

Here, i: X"~! — X" is the inclusion of the (n — 1)-skeleton of X into its n-skel-
eton. Then I';,(X) is an abelian group for n > 1. This group can be embedded into
a long exact sequence of abelian groups

bﬂ An— hn
s Hpp 1 (X) 225 T (X) 275 1, (X) =2 Hy(X) — -, (2.1)

where h, is the Hurewicz homomorphism and b, 41 is a boundary representing
the attaching maps.

For each n > 2, a functor F,% :Ab — AD is defined as follows. Let 1"21 =TI be
the universal quadratic functor, and for n > 3, I‘,% = — ® Z5. It turns out that if
X is (n — 1)-connected, then T’} (Hy, (X)) 2 Ty+1(X) (see [5, Theorem 2.1.22]).
Thus the final part of the long exact sequence (2.1) can be written as

b2 1 in hpt1

Hyp12(X) —— [, (Hp (X)) — mp41(X) —— Hp41(X) —> 0. (2.2)

Now, for each n > 2, we define the category of A%-polyhedra as the category
whose objects are (n + 2)-dimensional (n — 1)-connected C W -complexes and
whose morphisms are continuous maps between objects. Homotopy types of these

spaces are classified through isomorphism classes in a category whose objects are
sequences like (2.2) [4, Ch. I, § 8].

Definition 2.2 ([3, Ch. IX, §4]). Let n > 2 be an integer. We define the category
I"-sequences” T2 as follows. Objects are exact sequences of abelian groups

Hypyo — Th(Hy) = g1 — Hyg1 — 0,

where Hj,4; is free abelian. Morphisms are triples of group homomorphisms
f = (fu+2. fa+1. fu). fi: Hi — H/, such that there exists a group homomor-
phism Q: 7,11 — 7}, 11 making the diagram

Hpy2 — TN (Hp) — 7tpp1 — Hpp1 — 0
an+2 JF,l(fn) JQ an+1
Hyp— T, (H,) — Ty — Hyy —0

commutative. Objects in I'-sequences” ™2

in the category are called I"-morphisms.

are called I'-sequences, and morphisms
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On the one hand, we can assign to an A%-polyhedron X an object in I'-se-
quences” T2 by considering the associated exact sequence (2.2). We call such an
object the I'-sequence of X . On the other hand, to a continuous map «: X — X' of
A%-polyhedra, we can assign a morphism between the corresponding I"-sequences
by considering the induced homomorphisms

Hpi2(X) — Th(Hn(X)) — Tpg1(X) — Hpp1(X) — 0
JHn+2(a) JF},(Hn(ot)) Jnnw(d) JHn+1(t¥)
Hypi2(X') — Fr} (Hp(X") — mp+1(X') — Hy1(X') — 0.

Therefore, we have a functor A% -polyhedra — T'-sequences” "2 which clearly re-
stricts to the homotopy category of Aﬁ—polyhedra, H oA,%—polyhedra. It is obvious
that this functor sends homotopy equivalences to isomorphisms between the cor-
responding I'-sequences. Thus we can classify homotopy types of A%-polyhedra

through isomorphism classes of I'-sequences.

Theorem 2.3 ([4, Ch. I, § 8]). The functor H OA%—polyhedra — I‘—sequences’“r2
previously defined is full. Moreover, for any object in T'-sequences” "2, there exists
an A% -polyhedron whose T'-sequence is the given object in T'-sequences” 2. In
fact, there exists a 1-1 correspondence between homotopy types of Aﬁ—polyhedra
and isomorphism classes of T'-sequences.

Following the ideas of [6], we introduce the following.

Definition 2.4. Let X be an A2-polyhedron. We denote by 8" 2(X) the group of
I'-isomorphisms of the I'-sequence of X.

Let W: &(X) — B"12(X) be the map that associates to & € &(X) the I'-iso-
morphism V(o) = (Hp42(®), Hp+1(a), Hy(e)). Then W is a group homomor-
phism: its kernel is the subgroup of self-homotopy equivalences inducing the iden-
tity map on the homology groups of X, that is, &«(X). Also, W is onto as a conse-
quence of Theorem 2.3. Hence, we immediately obtain the following result.

Proposition 2.5. Let X be an Afl -polyhedron, n > 2. Then
B"2(X) = €(X)/8+(X).

3 Self-homotopy equivalences of finite type A2-polyhedra

Henceforth, an A2-polyhedron will mean an (n — 1)-connected, (n + 2)-dimen-
sional CW-complex of finite type. Recall that, for simply connected and finite
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type spaces, the homology and homotopy groups H,(X) and 7, (X) are finitely
generated and abelian forn > 1.

The I'-sequence tool introduced in Section 2 will help us to illustrate, from an
algebraic point of view, how different restrictions on an Aﬁ-polyhedron X affect
the quotient group &(X)/&E«(X). We devote this section to that matter. We also
obtain several results that are needed in the proof of Theorem 1.1 and Theorem 1.3.
The following result is a generalisation of [6, Theorem 4.5].

Proposition 3.1. Let X be an A,Z,-polyhedron and suppose that the Hurewicz ho-
momorphism hy42: 7y +2(X) — Hy42(X) is onto. Then every automorphism of
Hy 12 (X) is realised by a self-homotopy equivalence of X.

Proof. As part of the exact sequence (2.1) for X, we have

hn+2 bn42
v = Tpp2(X) —— Hppa(X) —— T (Hp(X)) — Tpg1(X) — -

Then, since /47 is onto by hypothesis, b, 45 is the trivial homomorphism. Thus,
forevery fn42 € Aut(Hy42(X)), wehave by 42 fu+2 = byt = 0,s0if Q = id,
(fu+2.id,id) € B"T2(X). Then there exists f € &(X) with Hy42(f) = fut2

Hy1(f) =1id, Hy(f) = id. o

We can easily prove that automorphism groups can be realised; a result that can
also be obtained as a consequence of [14, Theorem 2.1].

Example 3.2. Let G be a group isomorphic to Aut(H) for some finitely generated
abelian group H. Then, for any integer n > 2, there exists an A2-polyhedron X
such that G 2= B"12(X): take the Moore space X = M(H,n + 1), which in par-
ticular is an Aﬁ—polyhedron. The I'-sequence of X is

Hp12(X)=0—> T H (X)) =0— H > H — 0.

Then, for every f € Aut(H), taking Q = f, we see that (id, f,id) € 8" T2(X),
and those are the only possible I"-isomorphisms. Thus 8" +2(X) =~ Aut(H) = G.

The use of Moore spaces is not required in the n = 2 case.

Example 3.3. Let G be a group isomorphic to Aut(H ) for some finitely generated
abelian group H . Consider the following object in I'-sequences®:

b =
Z =5 T(Zy) = Zs — H — H —> 0. (3.1)
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By Theorem 2.3, there exists an A%-polyhedron X realising this object. In particu-
lar, H4y(X) = Z, H3(X) = n3(X) = H and Hy(X) = Z5. It is clear from (3.1)
that (id, £,id) is a ['-isomorphism for every f € Aut(H). Now, Aut(Zy) is the
trivial group while Aut(Z) = {—id, id}. It is immediate to check that (—id, f,id) is
not a I'-isomorphism since id b4 # b4(—id). Then we obtain B*(X) = Aut(H).

Observe that not every group G is isomorphic to the automorphism group of
an abelian group (for example Z, if p is odd). Hence, examples from above only
provide a partial positive answer to the realisability problem for 8" 72(X). Indeed,
the automorphism group of an abelian group (other than Z,) has elements of even
order. The following results go in that direction.

Lemma 3.4. Let X be an A%-polyhedron, n > 2. If H,(X) is not an elementary
abelian 2-group, then B"T2(X) has an element of order 2.

Proof. Since H,(X) is not an elementary abelian 2-group, it admits a non-trivial
involution —id: H,(X) — H,(X). But F,% (—id) = id for every n > 2, so we have
(id, id, —id) € B8"12(X), and the result follows. ]

Notice a key difference between the n = 2 and the n > 3 cases: T21 (A4) =T(A)
is never an elementary abelian 2-group when A is finitely generated and abelian,
as can be deduced from Proposition 2.1. However, for n > 3, F,} (A) = AR Zyis
always an elementary abelian 2-group. Taking advantage of this fact we can prove
the following result.

Lemma 3.5. Let X be an A,%-polyhedron, n > 3. If any of the homology groups
of X is not an elementary abelian 2-group (in particular, if Hy42(X) # 0), then
B"T2(X) contains a non-trivial element of order 2.

Proof. Under our assumptions, F,} (H,(X)) is an elementary abelian 2-group.
For Q2 = —id, the triple (—id, —id, —id) is a ['-isomorphism of order 2 unless
Hy42(X), Hy1(X) and H, (X) are all elementary abelian 2-groups. ]

We remark that this result does not hold for A%-polyhedra. Indeed, if we con-
sider the construction in Example 3.3 for H = Z,, then 8*(X) = Aut(Z,) = {*}
does not contain a non-trivial element of order 2 although H4(X) = Z is not an
elementary abelian 2-group.

We now prove some results regarding the finiteness of 8”12 (X).

Proposition 3.6. Let X be an A2-polyhedron, n > 2, withrank Hy,42(X) > 2 and
every element of T (H, (X)) of finite order. Then 8" 2(X) is an infinite group.
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Proof. Since rank Hy,42(X) > 2, we may write H,12(X) = Z?> ® G, G a (pos-
sibly trivial) free abelian group. Consider the I'-sequence of X,

5 bpi2 1 in hn+1
280G —TI,(Hy(X)) — mpy1(X) — Hpp1(X) — 0.

Since by4+2(Z?%) < T1(H,(X)) is a finitely generated Z-module with finite or-
der generators, it is a finite group. Define k = exp(b,+2(Z?)), and consider the
automorphism of Z? given by the matrix

((1) ’f) € GLy(Z),

which is of infinite order. If we take f @ idg € Aut(Z? @ G), then we have
buia(f ®id) = bya, thus (f @ idg.id,id) € B8"12(X), which is an element
of infinite order. o

As previously mentioned, T'}(H, (X)) is an elementary abelian 2-group for
n > 3. Hence, from Proposition 3.6 we get:

Corollary 3.7. Let X be an A2-polyhedron, n > 3, with rank Hy42(X) > 2. Then
B"T2(X) is an infinite group.

This result does not hold, in general, for n = 2. However, if A is a finite group,
Proposition 2.1 implies that I"(A) is finite as well, so from Proposition 3.6, we get
the following.

Corollary 3.8. Let X be an A%-polyhedron with rank Hq(X) > 2 and H,(X) fi-
nite. Then 8*(X) is an infinite group.

We end this section with one more result on the infiniteness of 8" 2(X).

Proposition 3.9. Let X be an A%—polyhea’ron, n>3If Hy(X)=Z* & G for
a certain abelian group G, then 8" 12(X) is an infinite group.

Proof. If H,(X) = Z? ® G, then
Tp(Hn(X)) = Ho(X) ® Zp = 23 ® (G ® Z»).

Hence GL,(Z) < Aut(Hy, (X)) and GL,(Z,) < Aut(H, (X) ® Z,). Moreover, for
every f € GLy(Z), we have f @ idg € Aut(H,(X)), which yields, through T},
an automorphism (f ®idg) ® Z2 = (f ® Z2) ®idgez, € Aut(Hy(X) ® Z,).
This means that the functor I'} restricts to GL»(Z) — GL2(Z2). Moreover, we
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have that — ® Z,: GL,(Z) — GL,(Z>) has an infinite kernel. Hence, there are in-
finitely many morphisms f € Aut(H, (X)) such that f ® Z, = id. For any such
a morphism f, (id,id, ) is an element of B"%2(X). Therefore, B"12(X) is
infinite. |

4 Obstructions to the realisability of groups

We have seen in Section 3 that the group 8" 72(X) contains elements of even or-
der unless strong restrictions are imposed on the homology groups of the A42-poly-
hedron X . Since we are interested in realising an arbitrary group G as 8" 2(X)
for X a finite type A2-polyhedron, in this section, we focus our attention on the
remaining situations and prove Theorems 1.1 and 1.3. We first give some previous
results.

Lemma 4.1. For G an elementary abelian 2-group, I'(—): Aut(G) — Aut(I'(G))
is injective.

Proof. Let us show that the kernel of I'(—) is trivial. Assume that G is generated
by {e; | j € J}, J an ordered set. If f € Aut(G) is in the kernel of I'(—), then,
fordeach J € J, there exists a finite subset /; C J such that f(e;) = Zielj e,
an

ylen) = T(vep =vflep =y(Ye) = D v+ e ®ex,

iel; iel; i<k

as a consequence of Proposition 2.1(3), so I; = {j} and f(e;) = e; for every
jeJ. o

Lemma 4.2. Let Hy = @_, Z», and let x € T'(Hz) be an element of order 4.
If there exists a non-trivial automorphism of odd order [ € Aut(H) such that
L' (f)(x) = x, then there exists g € Aut(Hy) of order 2 such that T'(g)(x) = x.

Proof. Notice that according to [15, p.66], we can write h @ h = 2y(h) for any
element i € H,. Therefore, given a basis {h1, hs,...,h,} of H,, and replacing
3y(hi) by y(h;) + h; ® h; if needed, we can write

x=>_alyh)+ > al.j)hi ®h;.

i=1 ij=1

where every coefficient a(i), a(i, j) is either O or 1. We now inductively con-
struct a basis {ey, ea, ..., e, } of Hy as follows. Without loss of generality, assume
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a(l) = 1, and define e; = Z?=1 a(i)h;. Then {eq, hs, ..., h,} is again a basis
of Hp and

n

n
r=ven+mage +pra o (b + Y ailih i,
§=2

i,j>1
where every coefficient in the equation is either O or 1. Assume a basis

{et.....ep hpgn, ... hy)

has been constructed such that

r—1

r
x=ve)+ ) aje; e+ Y e ®ejt
j=1 =1

+ma®(

n

Z b(r,s)hs) + Z ar(i, j)hi @ hj,

s=r+1 i,j>r

where every coefficient is either O or 1. We may assume b(r, 7 + 1) = 1 and define

er+1 = Z?zr_H b(r,s)hg. Thus {eq,...,er+1,hr+2,...,h,} is again a basis of
H> and
r+1 r
=yl + ) aje®ei+ ) Biej ®ejr
j=1 j=1
n n
e @ ( 2 btk )+ Y arnl @,
s=r+2 i,j>r+1
Finally, we obtain a basis {e1, ez, ..., e, } of Hy such that
n n—1
A=yl + Y e, ®ej+ Y Biej®ejt (4.1)
j=1 j=1

for some coefficients
a;j €{0,1}, j=12,....n, and B; €{0,1}, j=12,....n—1

Now, for n = 1, Hy = Z» has a trivial group of automorphisms, so the result
holds. For n = 2, assume that there exists f € Aut(H>) such that I'( f)(x) = x.
From equation (4.1), y = I'(f)(y(e1)) + T'(f)(P), where

P e Q(T(Hy)) = {h € T(Ha) : ord(h) | 2}.
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Then I'(f)(y(e1)) has a multiple of y(e1) as its only summand of order 4, which
implies f(e;) = ey. Then either f(e2) = ea, so f is trivial, or f(ez) = e1 + e2,
so f has order 2.

For n > 3, we define g € Aut(/>) by g(ej) =e; for j =1,2,...,n —2,and
g(en—1) and g(e,), depending on a,—; and B,—1—;, for j = 0,1, in equation
(4.1), according to the following table.

an PBn-1 an—1  Pu—2 glen—1) g(en)

0 0 Oorl Oorl e,—1 en—1 + en
0 1 0 0 en en—1

0 1 0 1 en—2 +ep en—2 +en—1
0 1 1 0 ep—1 + ey én

0 1 1 1 ep—2 +en—1+en en

1 0 0 0 ep—2 +en_1 én

1 0 0 1 ep—2 +en—1 en—2 + en
1 0 1 0 en en—1

1 0 1 1 en—n + en—1 én

1 1 Oorl Oorl e, eén—1 +en

A simple computation shows that, in all cases, g has order 2 and I'(g)(y) = 1,
so the result follows. O

Definition 4.3. Let f: H — K be a morphism of abelian groups. We say that
a non-trivial subgroup A < K is f-split if there exist groups B < H and C < K
suchthat H ~ A® B, K = A® C and f can be written as
id4pg:A®B—> A C forsomeg:B — C.
Henceforward, we will make extensive use of this notation applied to

hnt1: Tn+1(X) — Hp1(X),

the Hurewicz morphism. We prove the following.

Lemma 4.4. Let X be an A%-polyhedron, n > 2. Let A < Hy41(X) be an hy41-
split subgroup; thus Hy+1(X) = A & C for some abelian group C. Then, for ev-
ery f4 € Aut(A), there exists f € &(X) inducing (id, f4 ® idc.id) € 8" T2(X).
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Proof. By hypothesis, H,+1(X) = A® C, mp+1(X) = A & B for some abelian
group B, and hj4;1 can be written as id4 @ g for some morphism g: B — C.
Thus, for every f4 € Aut(A), we have a commutative diagram

Ha2(X) —— DA (Ha(X) —— A @ B—— A C ——0

n+2 n+1
‘id jid

b hn
Huga(X) 22 TH(Hu (X)) —— A® B -5 4@ C ——0.

fa®idp fa®idc

Hence (id, f4 @ idc,id) € 8"72(X), and by Theorem 2.3, there exists f € &(X)
such that H,11(f) = f4 ®idc, Hy42(f) =id and H,(f) = id. ]

The following lemma is crucial in the proof of Theorems 1.1 and 1.3.

Lemma 4.5. Let X be an A% -polyhedron, n > 2. Suppose that there exist hy, y1-
split subgroups of Hy+1(X).

(1) Ifn > 3, then B"2(X) is either trivial or it has elements of even order.

(2) If B*(X) is finite and non-trivial, then it has elements of even order

Proof. First of all, observe that we just need to consider when H,(X) is an ele-
mentary abelian 2-group. Otherwise, the result is a consequence of Lemma 3.4.

Let A be an arbitrary /,41-split subgroup of H,41(X). If A # Z,, there is
an involution ¢ € Aut(A) that induces an element (id, : @ id,id) € 8" T2(X) of
order 2 by Lemma 4.4, and the result follows. Hence we can assume that every
hy+1-split subgroup of Hy4+1(X) is Zs.

Both assumptions, namely H,(X) being an elementary abelian 2-group and
every hy, 4+1-split subgroup of Hy,4+1(X) being Z,, imply that H,1(X) is a finite
2-group. Indeed, since Hy,(X) is finitely generated, '} (H, (X)) is a finite 2-group
and so is coker by, 4+5. Then, since H,41(X) is also finitely generated, any direct
summand of Hy+1(X) which is not a 2-group would be 4, +1-split, contradicting
our assumption that every /4 1-split subgroup of H,41(X) is Z».

To prove our lemma, we start with the case A = H,41(X) is hy, 41-split. When
Hy,4+2(X) = 0, the I'-sequence of X becomes then the short exact sequence

0— THH(X)) = TN H(X) ® Zy — 7y — 0.

Notice that any automorphism of order 2 in H, (X)) yields an automorphism of or-
der2in T} (H, (X)) since T} is injective on morphisms: it is immediate for n > 3,
and for n = 2, apply Lemma 4.1. As our sequence is split, any f € Aut(H,(X))
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induces the I"-isomorphism (id, id, /') of the same order. Hence, for H, (X) # Z»,
it suffices to consider an involution. For H,(X) = Z», since by hypothesis

Hp11(X) =7y and Hp4o(X) =0,

the only I"-isomorphism is (id, id, id), and therefore 8”72 (X) is trivial as claimed.

When H,42(X) # 0, for n > 3, the result follows directly from Lemma 3.5.
For n = 2, we also assume that 8%(X) is finite and non-trivial. Hence, since
H>(X) is an elementary abelian 2-group, Proposition 3.6 implies that H4(X) = Z.
Then, if a ['-isomorphism of the form (—id, f,id) exists, it is of even order. In
particular, if Im b4 is a subgroup of I'(H5 (X)) of order 2, (—id, id, id) is a I"-iso-
morphism of even order.

Assume otherwise that Im b4 is a group of order 4. If a I'-isomorphism (id, f; id)
of odd order exists, then I'(f) o by = b4. In this situation, by Lemma 4.2 for
x = ba(1), there exists g € Aut(H»(X)), an automorphism of order 2 such that
I'(g)b4(1) = b4a(1). Moreover, as we are in the case A = H3(X) being h3-split,
(id, g,id) € B*(X) is a I'-isomorphism of order 2.

We deal now with the case A £ Hj41(X). Since A = Z is a proper hy,y1-split
subgroup of H,4+1(X), there exist non-trivial groups B and C such that

hy
Tni1(X) =Zr ® B —5 7o & C = Hpyy (X),
(t,b) — (1, g(b))

for some group morphism B 5 c. Moreover, Hy,4+1(X) is a finite 2-%roup; thus
C is a (non-trivial) finite 2-group, and there exists an epimorphism C — Z5.
Define

f e Au(Za & C) = Aut(Hp+1(X)),

Q € Aut(Zo & B) = Aut(my+1(X))
to be the non-trivial involutions given by

ft,c)=(t+1(c),c) and K(t,b) = (t + 1(g(h)),b).

By construction, hy4+12 = fhy41, and if (¢,b) € coker b4, = ker hy 41 (thus

g(b) = 0), then Q(¢,b) = (¢, b). In other words, (id, f.id) € B"+2(X), and it
has order 2. o

We now prove our main results.

Proof of Theorem 1.1. Assume that H,(X) and H,4+1(X) are elementary abel-
ian 2-groups, and Hy,+,(X) = 0. Otherwise, there would already be elements of
order 2 in 8" 72(X) as a consequence of Lemma 3.5.

Write H,(X) = @775, I an ordered set. Since n > 3, we have F,% = —Q Z»,
so T}(H,(X)) = Hy(X). We can also assume that there are no subgroups in
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Hy41(X) that are hy,41-split. Otherwise, we would deduce from Lemma 4.5 that
there are elements of order 2 in 8" +2(X). Thus H,+1(X) = @7, with J C I,
and the I'-sequence corresponding to X is

0> P2 (D7) & (P7s) > P22~
1 1-J J J
We may rewrite the sequence as
0> (P22) e (P22) > (D7) @ (D2s) > P22~ 0
1-J J 1-J J J

and assume that b(x,y) = (x,2y) and h(x,y) = y mod2. It is clear that any
f € Aut(p;_; Z») induces a I'-isomorphism (0, id, f* @ id) of the same order.

On the one hand, for |/ — J| > 2, @;_; Z» has an involution, and therefore
B"*2(X) has elements of even order. On the other hand, for |1 — J| < 2, we
consider the remaining possibilities.

Suppose that [/ — J| = 1. Then 7, 1(X) = Z> @ (P Z4). If J is trivial,
then 8" 12(X) is clearly trivial as well. Otherwise, suppose that / — J = {i} and
choose j € J. Define

feaw(ZoZoo (@ 22)) by fOr.y.2)=(xx+y.2),
I-{i,j}
g€ Aut(Zz ©Zs® ( b Z4)) by g(x.y.z) = (x.2x + y,2).
Then (id, id, /) is a I"-isomorphism of order 2 since we have a commutative dia-
gram

0‘}22@22 HZZ@Z4 *)ZZ 0
® (Dr—y, 3 Z2) ® (D1, j1 Z4) ® (D)) Z2)
Jf Jg Jid
OHZZ@ZZ HZZ@Z4 *)ZZ — 0
O (@1 y22)  ©@r—gpls) @y T

Suppose that I = J.If H,(X) = Hy41(X) = Zo, B"2(X) is trivial. If not,
choose i, j € I, and define maps

feaw(Z@Zoo( @ Z2)) by flr.r.2)=(.x.2),
1-{i.j}

g€ Aut<Z4 D Zs D ( @ Z4)) by g(x,y,z) = (y,x,2).
I-{i,j}
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We have the following commutative diagram:

OHZ2@Z2 ‘>Z4@Z4 HZz@Zz — .0
®(Dr_yi 3 Z2) ®(Dy_y 3 Za) ® (Dr_y 3 Z2)
|7 |* |7
0%22@Z2 4}24@24 4}22@22 _ 0
®(Dr_y 3 Z2) ®(Dy_y 3 Za) ® (Dr_y 3 Z2) ’

Then (0, f, f) is a ['-isomorphism of order 2. |

As a consequence, we obtain a negative answer to the problem of realising
groups as self-homotopy equivalences of A%—polyhedra.

Corollary 4.6. Let G be a non-nilpotent finite group of odd order. Then, for any
n > 3 and for any A%-polyhedron X, we have G % &(X).

Proof. Assume that there exists an A2-polyhedron X such that €(X) = G. Then,
if §(X) # E«(X), the quotient & (X)/Ex(X) is a finite group of odd order, which
contradicts Theorem 1.1. Thus G = § (X)) = &+ (X). However, since X is a 1-con-
nected and finite-dimensional C W-complex, &.(X) is a nilpotent group, [8, The-
orem D], which contradicts the fact that G is non-nilpotent. O

We end this paper by proving our second main result.

Proof of Theorem 1.3. By hypothesis, 84(X) is a finite group of odd order. From
Lemma 3.4, we deduce that H>(X) is an elementary abelian 2-group, and from
Proposition 2.1, we deduce that I'(H, (X)) is a 2-group. In particular, every ele-
ment of I'(H,(X)) is of finite order, and therefore rank H4(X) < 1 by Proposi-
tion 3.6, so we have Theorem 1.3 (1). Now, any element in B84(X) is of the form
(0, f2, f3) if H4(X) =0, or (id, f2, f3) if H4(X) = Z. Notice that a I"-mor-
phism of the form (—id, f, f3) has even order thus it cannot be a I'-isomorphism
under our hypothesis. Therefore, if H4(X) = Z, then b4 (1) generates a Z4 factor
in I'(H2(X)), and under our hypothesis, the equation

rank I'(H2 (X)) = rank H4(X) + rank(coker by4)

holds for rank Hq(X) < 1.
Observe that any I'-isomorphism of X induces a chain morphism of the short
exact sequence

h
0 — cokerby — m3(X) = H3;(X) — 0.
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We will draw our conclusions from this induced morphism, which can be seen
as an automorphism of 73(X) that maps the subgroup i (coker b4) to itself, thus
inducing an isomorphism on the quotient, H3(X).

As we mentioned above, I'(H» (X)) is a 2-group. Then coker b4 is a quotient
of a 2-group so a 2-group itself. We claim that H3(X) is also a 2-group; other-
wise, H3(X) has a summand whose order is either infinite or odd, and therefore
this summand would be /3-split, which from Lemma 4.5 implies that 84(X) has
elements of even order, leading to a contradiction. Since coker b4 and H3(X) are
2-groups, so is 73(X), proving thus Theorem 1.3 (2).

Moreover, as a consequence of Lemma 4.5, no subgroup of H3(X) can be /h3-
split, and thus rank H3(X) < rank(coker b4) = rank I'(H» (X)) — rank H4(X).
We can compute rank I'(H (X)) using Proposition 2.1 and immediately obtain
Theorem 1.3 (3).

Now, for a 2-group G, define the subgroup 21(G) = {g € G : ord(g) | 2}.
One can easily check that 1 (73(X)) < iz(coker by), and from [10, Ch. 5, The-
orem 2.4], we obtain that any automorphism of odd order of 73(X) acting as the
identity on 75 (coker b4) must be the identity.

Then, if (id, f3, f>) € 8*(X) is a ['-morphism with f3 non-trivial, f3 has odd
order, so we may assume that Q:73(X) — m3(X) (see Definition 2.2) has odd
order too. By the argument above, it must induce a non-trivial homomorphism on
iz (coker b4), and therefore f5 is non-trivial as well. So the natural action of B84 (X)
on H,(X) must be faithful since any I'-automorphism (id, f3, f>) € 8*(X) in-
duces a non-trivial f> € Aut(H>(X)). Then Theorem 1.3 (4) follows. ]
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