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On products of groups with abelian subgroups of
small index
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Abstract. It is proved that every group of the form G = AB with two subgroups A and
B each of which is either abelian or has a quasicyclic subgroup of index 2 is soluble
of derived length at most 3. In particular, if A is abelian and B is a locally quaternion
group, this gives a positive answer to Question 18.95 of the “Kourovka notebook™ posed
by A.I. Sozutov.

1 Introduction

Let the group G = AB be the product of two subgroups A and B, i.e. G is of
the form G = {ab | a € A, b € B}. It was proved by N. It6 that the group G is
metabelian if the subgroups A and B are abelian (see [1, Theorem 2.1.1]).

In connection with It6’s theorem a natural question is whether every group
G = AB with abelian-by-finite subgroups A and B is metabelian-by-finite (see
[1, Question 3]) or at least soluble-by-finite. However, this seemingly simple ques-
tion is very difficult to attack and only partial results in this direction are known.
A positive answer was given for linear groups G by the second author in [8] (see
also [9]) and for residually finite groups G by J. Wilson [1, Theorem 2.3.4]. Fur-
thermore, N. S. Chernikov proved that every group G = A B with central-by-finite
subgroups A and B is soluble-by-finite (see [1, Theorem 2.2.5]).

It is natural to consider first groups G = AB where the two factors A and B
have abelian subgroups with small index. There are a few known results in the
case when both factors A and B have an abelian subgroup of index at most 2. It
was shown in [3] that G is soluble and metacyclic-by-finite if A and B have cyclic
subgroups of index at most 2, and it is proved in [2] that G is soluble if A and B
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are periodic locally dihedral subgroups. A more general result that G = AB is
soluble if each of the factors A and B is either abelian or generalized dihedral was
obtained in [4] by another approach. Here a group is called generalized dihedral
if it contains an abelian subgroup of index 2 and an involution which inverts the
elements of this subgroup. Clearly dihedral groups and locally dihedral groups, i.e.
groups with a local system of dihedral subgroups, are generalized dihedral.

We recall that a group is called quasicyclic (or a Priifer group) if it is an infinite
locally cyclic p-group for some prime p. It is well known that quasicyclic sub-
groups of abelian groups are their direct factors. Furthermore, it seems to be known
and will be shown below that every non-abelian group having a quasicyclic sub-
group of index 2 is either an infinite locally dihedral or a locally quaternion group.
It should be noted that for each prime p, up to isomorphism, there exists a unique
locally dihedral group whose quasicyclic subgroup is a p-group, and there is only
one locally quaternion group. These and other details about such groups can be
found in [6, pp. 45-50].

Theorem 1.1. Let the group G = AB be the product of two subgroups A and B
each of which is either abelian or has a quasicyclic subgroup of index 2. Then G is
soluble with derived length at most 3. Moreover, if the subgroup B is non-abelian
and X is its quasicyclic subgroup, then AX = XA is a metabelian subgroup of
index2in G.

As a direct consequence of this theorem, we have an affirmative answer to Ques-
tion 18.95 of the “Kourovka notebook™ [7] posed by A. 1. Sozutov.

Corollary 1.2. If a group G = AB is the product of an abelian subgroup A and
a locally quaternion subgroup B, then G is soluble.

It is also easy to see that if each of the factors A and B in Theorem 1.1 has
a quasicyclic subgroup of index 2, then their quasicyclic subgroups are permutable.
As a result of this the following holds.

Corollary 1.3. Let the group G = A1 Ay -+ A, be the product of pairwise per-
mutable subgroups A, ..., An each of which contains a quasicyclic subgroup of
index 2. Then the derived subgroup G’ is a direct product of the quasicyclic sub-
groups and the factor group G/G’ is elementary abelian of order 2™ for some
positive integer m < n.

The notation is standard. If H is a subgroup of a group G and g € G, then the
normal closure of H in G is the normal subgroup of G generated by all conjugates
of H in G, and g is the conjugacy class of G containing g, respectively.
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2 Preliminary lemmas

Our first lemma lists some simple facts concerning groups with quasicyclic sub-
groups of index 2 which will be used without further explanation.

Lemma 2.1. Let G be a non-abelian group containing a quasicyclic p-subgroup
X ofindex2and y € G\ X. Then y? € X and the following statements hold:

(1) Every subgroup of X is characteristic in G.

(2) The group G is either locally dihedral or locally quaternion.
(3) The derived subgroup G' coincides with X .

(4) Every proper normal subgroup of G is contained in X .

(5) If G is locally quaternion, then p =2, y* =1, x¥ = x~! for all x € X,
the center Z(G) coincides with (y?) and is contained in every non-trivial
subgroup of G, the coset yX coincides with the conjugacy class y© = yX.

(6) If G is locally dihedral, then y2 =1, xY=x"1! forall x € X, Z(G) =1
and the coset yX coincides with the conjugacy class yG =yX for p>2
and Z(G) is the subgroup of order 2 in X for p = 2.

(7) The factor group G/ Z(G) is locally dihedral.

Proof. In fact, only statement (2) needs an explanation. Clearly G = X (y) for
some y € G with y2 € X and each cyclic subgroup (x) of X is normal in G.
Therefore for p > 2 we have y2 = 1 and either x” = x or x” = x~!. Since X
contains a unique cyclic subgroup of order p” for each n > 1, the equality x” = x
for some x # 1 holds for all x € X, contrary to the hypothesis that G is non-
abelian. Therefore x¥ = x~! for all x € X and hence the group G is locally dihe-
dral. In the case p = 2 each subgroup (x) of X properly containing the subgroup
(y?) has index 2 in the subgroup (x, y). If x is of order 2”* for some n > 3, then
the element y can be chosen such that either y* = 1 and (x, y) is a generalized
quaternion group with x¥ = x~! or y2 = 1 and (x, y) is one of the following
groups: dihedral with x? = x~!, semidihedral with x? = x~1+2"72 o a group
with x? = x1+2"72 (see [5, Theorem 5.4.3]). It is easy to see that from this list
only generalized quaternion and dihedral subgroups can form an infinite ascend-
ing series of subgroups, so that the 2-group G can be either locally quaternion or
locally dihedral, as claimed. o

Lemma 2.2. Let G be a group and M an abelian minimal normal p-subgroup
of G for some prime p. Then the factor group G/ Cg (M) has no non-trivial finite
normal p-subgroup.
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Proof. Indeed, if N/Cg(M) is a finite normal p-subgroup of G/Cg(M) and x
is an element of order p in M, then the p-subgroup K = (x) is finite and N
acts on K as a finite p-group of automorphisms. Therefore the centralizer Cg (N)
of N in K is non-trivial and hence Cps (/) is a non-trivial normal subgroup of G
properly contained in M, contradicting the minimality of M. |

We will say that a subset S of G is normal in G if S8 = § for each g € G
which means that s8 € S forevery s € S.

Lemma 2.3. Let G be a group, and let A and B be subgroups of G. If a normal
subset S of G is contained in the set AB and S~™' = S, then the normal subgroup
of G generated by S is also contained in AB. In particular, if i is an involu-
tion with i C AB and N is the normal closure of the subgroup (i) in G, then
AN N BN = A1 By with Ay = AN BN and By = AN N B.

Proof. If s,t € S, thent = ab and (s~1)? = cd for some elements a, ¢ € 4 and
b,d € B. Therefore s~!'t = s lab = a(s~1)?b = (ac)(db) € AB and hence the
subgroup (s | s € S) is contained in A B and normal in G. Moreover, if N is a nor-
mal subgroupof G and N € AB,itiseasytoseethat ANNBN = (ANNB)N =
(AN N B)N = (AN BN)(AN N B) (for details see [1, Lemma 1.1.4]). ]

The following slight generalization of [t6’s theorem was proved in [8] (see also
[9, Lemma 9]).

Lemma 2.4. Let G be a group and let A, B be abelian subgroups of G. If H is
a subgroup of G contained in the set AB, then H is metabelian.

3 The product of an abelian group and a group containing
a quasicyclic subgroup of index 2

In this section we consider groups of the form G = AB with an abelian sub-
group A and a subgroup B = X (y) in which X is a quasicyclic p-subgroup of
index2and y € B\ X.

Lemma 3.1. Let the group G = AB be the product of an abelian subgroup A and
a non-abelian subgroup B with a quasicyclic p-subgroup X of index 2. If G has
non-trivial abelian normal subgroups, then one of these is contained in the set AX .

Proof. Suppose the contrary and let N be the set of all non-trivial normal sub-
groups of G contained in the derived subgroup G’. Then Ag = land ANX # AX
foreach N € N.Since G = AB = AX UAXy and AX N AXy = @, for every
N € N the intersection NX N AXy is non-empty and so G = AN X. Moreover,
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as X = B’ < G’ by Lemma 2.1, it follows that G’ = DNX with D = AN G'. It
is also clear that G = (A, X), because otherwise (4, X) = AX is a normal sub-
group of index 2 in G. In particular, A N X = 1.

Foreach N € N we put Ay = AN BN and By = AN N B. Then Ay N =
By N = Axy By by [1,Lemma 1.1.4], and the subgroup B is not contained in X,
because otherwise N is contained in the set AX, contrary to the assumption. Let
Xy =ByNX and Cy = Ay N NXpy. Then Xy is a subgroup of index 2 in
By and Cy N = NXy is a normal subgroup of G, because (NXy)X = NXy
and (NCy)? = NCy.Put M = (\yey N.

Since G = ANX for each N € N, the factor group G/N is metabelian by
Lemma 2.4. Therefore also the factor group G/M is metabelian and so its derived
subgroup G’/ M is abelian. Clearly if M = 1,then D = AN G’ < Ag = 1 and
hence G’ = (\yenx NX = X, contrary to the assumption. Thus M is the unique
abelian minimal normal subgroup of G. We show first that the centralizer Cg (M)
of M in G does not contain the subgroup X.

Indeed, otherwise the group G = A(M X) is metabelian by It6’s theorem and
so the derived subgroup G’ = DM X is abelian. Since G = AG’, it follows that
D=ANG <Ag =1and so G' = MX.If M contains elements of order p,
then it is an elementary abelian p-subgroup and hence X is the finite residual
of G'. In the other case M has no element of order p, so that X is the maximal
p-subgroup of G’. Therefore in both cases X is a characteristic subgroup of G’
and so normal in G, contrary to the assumption. Thus X £ Cg (M) which implies
in particular that the subgroup M is infinite and the centralizer Cy (M) is finite.

Now, if M is a p-subgroup, then the factor group G = G/Cg (M) has no non-
trivial finite normal p-subgroup by Lemma 2.2. On the other hand, G = AM X
and G' = DM X with D = AN G/, so that G = AG’. Using bars for images
under the homomorphism G — G, we derive that the group G = AX = AG' is
metabelian and the derived subgroup G’ = DX is abelian. Therefore the intersec-
tion A N G’ is a central subgroup of G and hence it has no subgroup of order p.
Since D < AN G', it follows that X is the maximal p-subgroup of G’ and so nor-
mal in G. As X is the union of its finite p-subgroups each of which is also normal
in G, this implies X = 1 and thus X < Cg (M), contrary to the above.

Suppose next that M is not a p-subgroup and so M has no element of order p.
As was shown above, the subgroup M X3y = Cpy M isnormal in G. If Xy = X,
thenG = A(MX) = A(CyyM) = AM andso G’ = M .Butthen X < M which
is not the case. Therefore the subgroup Xy is finite of order pk for some k > 0.
If the subgroup M X, is non-abelian, then its center is trivial, because the sub-
group M is minimal normal in G. In particular, Cjy N M = 1 and hence the sub-
groups Aps and By are finite of order 2pk. AsS ApyyM = By M = Apg By, the
subgroup M is also finite which contradicts what has been proved above.
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Thus the subgroup M X is abelian and hence X}y is its maximal p-subgroup.
Therefore Xpy is normal in G and so X3y = 1 by assumption. Then AM N X =1
and the subgroup Byy = AM N B is of order 2, because ByyNX = 1and M £ A by
assumption. Therefore AM = ABps and By = (y) with y2 = 1. Since the sub-
group B is non-abelian by the hypothesis of the lemma, it follows from Lemma 2.1
that B = X x (y) is locally dihedral and so x” = x~! for each x € X. Further-
more, the index of 4 in AM is equal to 2 and so A N M is a subgroup of index 2
in M. As M is abelian and minimal normal in G, it follows that M is an elemen-
tary abelian 2-subgroup. It is also clear that the subgroup AM is nilpotent and the
intersection A N M is centralized by y.

It was noted above that G = AM X and G’ = DM X with D = AN G’'. Pass-
ing to the factor group G = G/M and using bars for images under the homo-
morphism G — G, we obtain that the group G = AX is metabelian and so its
derived subgroup G’ = DX is abelian. Since A is abelian, the subgroup D is cen-
tral in G and thus the subgroup DM is normal in G. Furthermore, (DM ) # M,
because DM as a subgroup of AM is nilpotent. As M is the unique minimal nor-
mal subgroup of G, the subgroup DM must be abelian. But then D? = 1, because

2 = (DM)? is a normal subgroup of G. Thus X is the maximal p-subgroup
of G'. Since p # 2 and X is quasicyclic, this means that each subgroup of X
is characteristic in G’ and so normal in G. Therefore for each x € X the sub-
group M (x) and M X itself are normal in G. In particular, for each g € G there
exists m € M such that (x)® = (x)™ from which it follows that gm € Ng ({x))
and thus G = M Ng({x)). It is easily seen that M N Ng({x)) = 1 and hence
M = Cg (M), because otherwise the intersection Cg(M) N Ng({x)) is a non-
trivial normal subgroup of G which does not contain M. Moreover, as G = AB
and B is contained in Ng({x)), it follows that Ng({x)) = N4({x))B and so
Na((x))¢ = N4({x))® is a normal subgroup of G contained in Ng ({x)). There-
fore we have N4({x)) = 1 and we conclude that G = AB = M x B, the sub-
group B = X x (y) is locally dihedral and A N B = 1.

Finally, taking an element x of order p in X and considering M as an irre-
ducible B-module, we derive from Clifford’s theorem (see [5, Theorem 4.1]) that
M is decomposed in an infinite direct product M = My X --- X M; X --- of finite
(x)-invariant subgroups M;. Furthermore, it was proved above that M = Cg (M)
and A N M has index 2 in M and is centralized by y. This gives [M, y] = (a) for
some involution a € A N M. Let N be one of the subgroups M; which does not
contain a. Then the subgroup N7 is also (x)-invariantand (ANN)Y = ANN # 1.
Therefore N = N andso [N, y] < (a)NN = 1.Butthenwe have 1 = [N, y]* =
[N, y*] = [N, yx?] = [N, x?] and so the centralizer Cp(x) contains N. Since
M (x) is a normal subgroup of G, so is Cps(x) and thus Cps(x) = M. This final
contradiction completes the proof. |



On products of groups with abelian subgroups of small index 1067

It should be noted that if in Lemma 3.1 the subgroup B is locally dihedral,
then the group G = A B is soluble by [4, Theorem 1.1]. Therefore the following
assertion is an easy consequence of this lemma.

Corollary 3.2. If the group G = AB is the product of an abelian subgroup A and
a locally dihedral subgroup B containing a quasicyclic subgroup X of index 2,
then AX = XA is a metabelian subgroup of index 2 in G.

Proof. Indeed, let H be a maximal normal subgroup of G with respect to the
condition H C AX. If X < H, then AH = AX is a metabelian subgroup of
index 2 in G by Itd’s theorem. In the other case the intersection H N X is finite
and hence H X /H is the quasicyclic subgroup of index 2in BH/H . Since G/H =
(AH/H)(BH/H) is the product of the abelian subgroup AH/H and the locally
dihedral subgroup BH/H, the set (AH/H)(HX/H) contains a non-trivial nor-
mal subgroup F/H of G/H by Lemma 3.1. But then F is a normal subgroup
of G which is contained in the set AX and properly contains H. This contradic-
tion completes the proof. o

In the following lemma G = AB is a group with an abelian subgroup A and
alocally quaternion subgroup B = X (y) in which X is the quasicyclic 2-subgroup
of index 2 and y is an element of order 4, so that x¥ = x~! foreach x € X and
z = y? is the unique involution of B. It turns out that in this case the conjugacy
class z% of z in G is contained in the set AX .

Lemma 3.3. [fG = AB and AN B = 1, then the intersection z4 N AXYy is empty.

Proof. Suppose the contrary and let z¢ = bxy for some elements a,b € A and
x € X. Then b~lz = (xy)“_l and from the equality (xy)? = z it follows that
(b 'z)*=1and b7 1zp7 1z = 29", Therefore we have h~1z%h~! = zz% and
hence bz?%b = z%z. As z% = bxy, we have b(bxy)b = (bxy)z and so bxyb =
xyz. Thus (xy)~'h(xy) = zb~ L. Furthermore, we have bxyb~! = (zb~1)%, so
that bzb~! = ((zb™1)?)* = (xy)~%b?%(xy)?, i.e. the elements z and b2 are con-
jugate in G by the element g = h~!(xy)™¢. Since g = cd for some ¢ € B and
d € A, we have b2 = z8 = z% and so z = (bz)d*‘ = b2, contrary to the hypo-
thesis of the lemma. Thus z4 N AXy = @, as desired. o

Theorem 3.4. Let the group G = AB be the product of an abelian subgroup A
and a locally quaternion subgroup B. If X is the quasicyclic subgroup of B, then
AX = XA is a metabelian subgroup of index 2 in G. In particular, G is soluble of
derived length at most 3.
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Proof. Let Z be the center of B, N the normal closure of Z in G and X = B/,
so that X is the quasicyclic subgroup of index 2 in B. If AN B # 1, then Z is
contained in A N B by statement (4) of Lemma 2.1 and so N = Z. Otherwise it
follows from Lemma 2.3 that N = Z% = Z4 is contained in the set AX. Then
N is a metabelian normal subgroup of G by Lemma 2.4 and the factor group
BN/ N is locally dihedral by statement (7) of Lemma 2.1. Since the factor group
G/N = (AN/N)(BN/N) is the product of an abelian subgroup AN/N and the
locally dihedral subgroup BN/ N, it is soluble by [4, Theorem 1.1], and so the
group G is soluble.

Now if X < N, then AN = AX is a metabelian subgroup of index 2 in G
and so the derived length of G does not exceed 3. In the other case the inter-
section N N X is finite and hence NX /N is the quasicyclic subgroup of index 2
in BN/N . Therefore AX = XA by Corollary 3.2 and this completes the proof. O

4 The product of groups each of which is locally quaternion or
generalized dihedral

Since the groups of the form G = A B with two generalized dihedral subgroups A
and B are soluble by [4, Theorem 1.1], in this section we consider the remaining
cases in which the subgroup A is locally quaternion and B is either generalized
dihedral or locally quaternion. The main part is devoted to the proof that every
group G of this form has a non-trivial abelian normal subgroup.

In what follows up to Theorem 4.5 G = AB is a group in which 4 = Q{c)
with a quasicyclic 2-subgroup Q of index 2 and an element ¢ of order 4 such that
a® =a~ ! foreacha € Q and B = X x (y) with an abelian subgroup X and an
involution y such that x” = x~! for each x € X.

Let d = ¢? denote the involution of A. The following assertion is concerned
with the structure of the centralizer Cg(d) of d in G. It follows from statement
(4) of Lemma 2.1 that the normalizer of every non-trivial normal subgroup of 4 is
contained in Cg(d).

Lemma 4.1. The centralizer Cg(d) is soluble.

Proof. If Z = (d), then the factor group Cg(d)/Z = (A/Z)(Cp(d)Z/Z) is
a product of the generalized dihedral subgroup A/Z and the subgroup Cp(d)Z/Z
which is either abelian or generalized dihedral. Therefore Cg(d)/Z and thus
Cg(d) is a soluble group by [4, Theorem 1.1], as claimed. ]

The following lemma shows that if G has no non-trivial abelian normal sub-
group, then the index of A in Cg(d) does not exceed 2.
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Lemma 4.2. If Cg(d) # 1, then either Cx(d) = 1 or G contains a non-trivial
abelian normal subgroup.

Proof. If X1 = Cx(d), then X is a normal subgroup of B and Cg(d) = ACg(d).
Therefore the normal closure N = X 1G is contained in Cg(d), because X 1G =
XIBA = Xfl. Since Cg(d) and so N is a soluble subgroup by Lemma 4.1, this
completes the proof. m|

Consider now the normalizers in A of non-trivial normal subgroups of B.

Lemma 4.3. Let G have no non-trivial abelian normal subgroup. If U is a non-
trivial normal subgroup of B, then Ny(U) = 1. In particular, AN B = 1.

Proof. If Ng4(U) # 1, then d € Ng(U) and so the normal closure (d)G = (d)B
is contained in the normalizer Ng(U) = N4(U)B. Since N4(U) # A, the sub-
group N4 (U) is either finite or quasicyclic, so that Ng(U) and thus (d )G is
soluble. This contradiction completes the proof. o

Lemma 4.4. [f Cx(d) = 1, then G contains a non-trivial abelian normal sub-
group.

Proof. Since G = AB, for each x € B there exist elements a € A and b € B
such that d* = ab. If b ¢ X, then b = a~1d* is an element of order 2 and so
d*ad* =a='. As a2 = d for some k > 0, it follows that d*dd* = d and
hence ab = d* = (d*)? = (ab)? = ab?. Therefore b¥ = b and so b € Cg(d).
In particular, if Cp(d) = 1, then b € X, so that in this case the conjugacy class
d% = d8 is contained in the set AX .

Assume that Cp(d) # 1 and the group G has no non-trivial normal subgroup.
Then Cx(d) = 1 by Lemma 4.2 and without loss of generality Cp(d) = (y).
Then G = (A(y))X and so the quasicyclic subgroup Q of A is normalized by y.
In particular, d¥ = d and the subgroup Q(y) can be either abelian or locally
dihedral. We consider first the case when y centralizes Q and show that in this
case the conjugacy class d is also contained in the set AX.

Indeed, otherwise there exist elements ¢ € A and b, x € B such that d* = ab
and b ¢ X. Then b € Cp(d) = (y) by what was proved above, so that b = y
and d* = ay. As dB = d)X = 4X we may suppose that x € X. But then
d* ' = (d*)” = ay = d* and hence d** = d. Therefore we have x2 € (y) and
sox2=1.In particular, if X has no involution, then d G — gX C AX. We show
next that the case with an involution x € X cannot appear.

Clearly in this case x is a central involution in B and so the subgroup D = (d, x)
generated by the involutions d and x is dihedral. It is easy to see that d and x
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cannot be conjugate in G and the center of D is trivial, because otherwise the
centralizer Cg (x) properly contains B, contradicting Lemma 4.3. Thus dx is an
element of infinite order and so D = (dx) x (x) has no automorphism of finite
order more than 2. On the other hand, if u € A, v € B and uv normalizes D, then
(d,x*) = D¥ = DV ' = (d""' x) and so D < D*. Since u is an element of
finite order, it follows that D = D* = D' and thus Ng(D) = N4a(D)Np(D).
Therefore N4(D) = (d) and hence z = (dx)? is an element of infinite order
in Ng(D). But then z € X and so (z) is a normal subgroup of B normalized
by d, again contradicting Lemma 4.3. Thus X has no involution, as claimed.

Finally, if N is the normal closure of the subgroup (d) in G,then AN = NX =
A1 Xy withA; = ANNX and X1 = AN N X by Lemma 2.3. Therefore the sub-
group A X is soluble by Theorem 3.4, so that N and hence G has a non-trivial
abelian normal subgroup, contrary to our assumption.

Thus the subgroup Q (y) is locally dihedral and so y inverts the elements of Q.
Since A = Q{(c) with a® = a~! for all a € A, the element cy centralizes Q and
hence the subgroup Q{(cy) is abelian. But then the group G = (Q{cy))B as the
product of an abelian and a generalized dihedral subgroup is soluble by [4, Theo-
rem 1.1]. This final contradiction completes the proof. |

Theorem 4.5. Let the group G = AB be the product of a locally quaternion sub-
group A and a generalized dihedral subgroup B. Then G is soluble. Moreover,
if B has a quasicyclic subgroup of index 2, then G is metabelian.

Proof. If AN X # 1, then the centralizer Cg (d) is of index at most 2 in G and so
G is soluble by Lemma 4.1. Let N be a normal subgroup of G maximal with
respect to the condition AN NX = 1. Then BN = (AN BN)B and the sub-
group A N BN is of order at most 2. Therefore the subgroup N is soluble and
the factor group G/N = (AN/N)(BN/N) is the product of the locally quater-
nion subgroup AN/N and the subgroup BN/N which is either abelian or gen-
eralized dihedral. Hence it follows from Theorem 3.4 and Lemmas 4.2 and 4.4
that G/ N has a non-trivial abelian normal subgroup M/N.Put L = MQ N M X,
O1r=0NMXand X; = MQNX.Wehave L = MQ{ = MX;and Q; # 1,
because A N M X # 1 by the choice of M. It is also clear that L is a soluble
normal subgroup of G, because (MQ1)4 = MQ; and (M X1)8 = M X;. There-
fore the factor group G/L and so the group G is soluble if AL/L is of order 2.
In the other case AL /L is locally dihedral and BL/L is abelian or generalized
dihedral. Since G/L = (AL/L)(BL/L), it follows that G/L and so G is soluble
by [4, Theorem 1.1]. Moreover, if the subgroup X is quasicyclic, then the sub-
groups Q and X centralize each other by [1, Corollary 3.2.10], so that QX is an
abelian normal subgroup of index 2 or 4 in G and thus G is metabelian. o
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Our last theorem describes the structure of groups which are products of two
locally quaternion subgroups.

Theorem 4.6. Let the group G = AB be the product of two locally quaternion
subgroups A and B. If X and Y are quasicyclic subgroup of A and B, respectively,
then XY = YX is an abelian subgroup of index 2 or 4 in G. In particular, G is
metabelian.

Proof. Let x and y be the unique involution of A and B, respectively. If G is
soluble, then XY = Y X by [1, Corollary 3.2.10]. We show now that the group G
satisfies this condition.

Indeed, if AN B # 1, then x = y is a central involution of G and the factor
group G/{x) = (A/({x))(B/{x)) is the product of two locally dihedral subgroups
A/(x) and B/(x). Therefore G is soluble by [4, Theorem 1.1].

Let ANB = land D = (x, y). Then D is a dihedral subgroup of G and the nor-
malizer Ng (D) can be written in the form Ng(D) = Ng(D)Ng(D) by [1, Lem-
ma 1.2.2(1)]. It is easy to see that N4(D) N D = (x) and Ng(D)N D = (y),
so that each of the factor groups Ng(D)D/D and Np(D)D/D is either abelian
or locally dihedral. Since Ng(D)/D = (N4(D)D/D)(Ng(D)D/D), the factor
group Ng(D)/D and so also Ng (D) is soluble by [4, Theorem 1.1]. Then Ng (D)
is a 2-group by [1, Corollary 3.2.7], and hence D is a dihedral 2-subgroup of G.
Therefore D contains a central involution z which is different from x and y. As
z = ab for some a € A and b € B, it follows that b £ 1 and x = x% = xb But
then x = x”, because y € (b),sothat D = (x)x(y)and Cg(D) = C4(y)Cp(x)
is a soluble 2-subgroup.

It is clear that if Cg (D) is of finite index in G, then G is soluble. In the other
case one of the centralizers C4(y) and Cp(x), for example the second one, must
be finite and thus the centralizer Cg (x) = ACp(x) is soluble. But then the normal
closure N = (y)G = (y)A < ACpg(x) of (y) in G is also soluble. Furthermore, in
the factor group G/N = (AN/N)(BN/N the subgroup AN/N is either locally
quaternion or locally dihedral and BN/ N is locally dihedral. Therefore G/N and
so also G is soluble by Theorem 4.5 or by [4, Theorem 1.1], as claimed. o

The proof of Theorem 1.1 is completed by a direct application of Corollary 3.2
and Theorems 3.4, 4.5 and 4.6.
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