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On products of groups with abelian subgroups of
small index
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Abstract. It is proved that every group of the form G D AB with two subgroups A and
B each of which is either abelian or has a quasicyclic subgroup of index 2 is soluble
of derived length at most 3. In particular, if A is abelian and B is a locally quaternion
group, this gives a positive answer to Question 18.95 of the “Kourovka notebook” posed
by A. I. Sozutov.

1 Introduction

Let the group G D AB be the product of two subgroups A and B , i.e. G is of
the form G D ¹ab j a 2 A; b 2 Bº. It was proved by N. Itô that the group G is
metabelian if the subgroups A and B are abelian (see [1, Theorem 2.1.1]).

In connection with Itô’s theorem a natural question is whether every group
G D AB with abelian-by-finite subgroups A and B is metabelian-by-finite (see
[1, Question 3]) or at least soluble-by-finite. However, this seemingly simple ques-
tion is very difficult to attack and only partial results in this direction are known.
A positive answer was given for linear groups G by the second author in [8] (see
also [9]) and for residually finite groups G by J. Wilson [1, Theorem 2.3.4]. Fur-
thermore, N. S. Chernikov proved that every group G D AB with central-by-finite
subgroups A and B is soluble-by-finite (see [1, Theorem 2.2.5]).

It is natural to consider first groups G D AB where the two factors A and B

have abelian subgroups with small index. There are a few known results in the
case when both factors A and B have an abelian subgroup of index at most 2. It
was shown in [3] that G is soluble and metacyclic-by-finite if A and B have cyclic
subgroups of index at most 2, and it is proved in [2] that G is soluble if A and B
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are periodic locally dihedral subgroups. A more general result that G D AB is
soluble if each of the factors A and B is either abelian or generalized dihedral was
obtained in [4] by another approach. Here a group is called generalized dihedral
if it contains an abelian subgroup of index 2 and an involution which inverts the
elements of this subgroup. Clearly dihedral groups and locally dihedral groups, i.e.
groups with a local system of dihedral subgroups, are generalized dihedral.

We recall that a group is called quasicyclic (or a Prüfer group) if it is an infinite
locally cyclic p-group for some prime p. It is well known that quasicyclic sub-
groups of abelian groups are their direct factors. Furthermore, it seems to be known
and will be shown below that every non-abelian group having a quasicyclic sub-
group of index 2 is either an infinite locally dihedral or a locally quaternion group.
It should be noted that for each prime p, up to isomorphism, there exists a unique
locally dihedral group whose quasicyclic subgroup is a p-group, and there is only
one locally quaternion group. These and other details about such groups can be
found in [6, pp. 45–50].

Theorem 1.1. Let the group G D AB be the product of two subgroups A and B

each of which is either abelian or has a quasicyclic subgroup of index 2. Then G is
soluble with derived length at most 3. Moreover, if the subgroup B is non-abelian
and X is its quasicyclic subgroup, then AX D XA is a metabelian subgroup of
index 2 in G.

As a direct consequence of this theorem, we have an affirmative answer to Ques-
tion 18.95 of the “Kourovka notebook” [7] posed by A. I. Sozutov.

Corollary 1.2. If a group G D AB is the product of an abelian subgroup A and
a locally quaternion subgroup B , then G is soluble.

It is also easy to see that if each of the factors A and B in Theorem 1.1 has
a quasicyclic subgroup of index 2, then their quasicyclic subgroups are permutable.
As a result of this the following holds.

Corollary 1.3. Let the group G D A1A2 � � �An be the product of pairwise per-
mutable subgroups A1; : : : ; An each of which contains a quasicyclic subgroup of
index 2. Then the derived subgroup G0 is a direct product of the quasicyclic sub-
groups and the factor group G=G0 is elementary abelian of order 2m for some
positive integer m � n.

The notation is standard. If H is a subgroup of a group G and g 2 G, then the
normal closure of H in G is the normal subgroup of G generated by all conjugates
of H in G, and gG is the conjugacy class of G containing g, respectively.
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2 Preliminary lemmas

Our first lemma lists some simple facts concerning groups with quasicyclic sub-
groups of index 2 which will be used without further explanation.

Lemma 2.1. Let G be a non-abelian group containing a quasicyclic p-subgroup
X of index 2 and y 2 G nX . Then y2 2 X and the following statements hold:

(1) Every subgroup of X is characteristic in G.

(2) The group G is either locally dihedral or locally quaternion.

(3) The derived subgroup G0 coincides with X .

(4) Every proper normal subgroup of G is contained in X .

(5) If G is locally quaternion, then p D 2, y4 D 1, xy D x�1 for all x 2 X ,
the center Z.G/ coincides with hy2i and is contained in every non-trivial
subgroup of G, the coset yX coincides with the conjugacy class yG D yX .

(6) If G is locally dihedral, then y2 D 1, xy D x�1 for all x 2 X , Z.G/ D 1

and the coset yX coincides with the conjugacy class yG D yX for p > 2

and Z.G/ is the subgroup of order 2 in X for p D 2.

(7) The factor group G=Z.G/ is locally dihedral.

Proof. In fact, only statement (2) needs an explanation. Clearly G D Xhyi for
some y 2 G with y2 2 X and each cyclic subgroup hxi of X is normal in G.
Therefore for p > 2 we have y2 D 1 and either xy D x or xy D x�1. Since X

contains a unique cyclic subgroup of order pn for each n � 1, the equality xy D x

for some x ¤ 1 holds for all x 2 X , contrary to the hypothesis that G is non-
abelian. Therefore xy D x�1 for all x 2 X and hence the group G is locally dihe-
dral. In the case p D 2 each subgroup hxi of X properly containing the subgroup
hy2i has index 2 in the subgroup hx; yi. If x is of order 2n for some n > 3, then
the element y can be chosen such that either y4 D 1 and hx; yi is a generalized
quaternion group with xy D x�1 or y2 D 1 and hx; yi is one of the following
groups: dihedral with xy D x�1, semidihedral with xy D x�1C2n�2

or a group
with xy D x1C2n�2

(see [5, Theorem 5.4.3]). It is easy to see that from this list
only generalized quaternion and dihedral subgroups can form an infinite ascend-
ing series of subgroups, so that the 2-group G can be either locally quaternion or
locally dihedral, as claimed.

Lemma 2.2. Let G be a group and M an abelian minimal normal p-subgroup
of G for some prime p. Then the factor group G=CG.M/ has no non-trivial finite
normal p-subgroup.
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Proof. Indeed, if N=CG.M/ is a finite normal p-subgroup of G=CG.M/ and x

is an element of order p in M , then the p-subgroup K D hxN i is finite and N

acts on K as a finite p-group of automorphisms. Therefore the centralizer CK.N /

of N in K is non-trivial and hence CM .N / is a non-trivial normal subgroup of G

properly contained in M , contradicting the minimality of M .

We will say that a subset S of G is normal in G if Sg D S for each g 2 G

which means that sg 2 S for every s 2 S .

Lemma 2.3. Let G be a group, and let A and B be subgroups of G. If a normal
subset S of G is contained in the set AB and S�1 D S , then the normal subgroup
of G generated by S is also contained in AB . In particular, if i is an involu-
tion with iG � AB and N is the normal closure of the subgroup hii in G, then
AN \ BN D A1B1 with A1 D A \ BN and B1 D AN \ B .

Proof. If s; t 2 S , then t D ab and .s�1/a D cd for some elements a; c 2 A and
b; d 2 B . Therefore s�1t D s�1ab D a.s�1/ab D .ac/.db/ 2 AB and hence the
subgroup hs j s 2 Si is contained in AB and normal in G. Moreover, if N is a nor-
mal subgroup of G and N � AB , it is easy to see that AN\BN D .AN\B/N D

.AN \ B/N D .A \ BN /.AN \ B/ (for details see [1, Lemma 1.1.4]).

The following slight generalization of Itô’s theorem was proved in [8] (see also
[9, Lemma 9]).

Lemma 2.4. Let G be a group and let A; B be abelian subgroups of G. If H is
a subgroup of G contained in the set AB , then H is metabelian.

3 The product of an abelian group and a group containing
a quasicyclic subgroup of index 2

In this section we consider groups of the form G D AB with an abelian sub-
group A and a subgroup B D Xhyi in which X is a quasicyclic p-subgroup of
index 2 and y 2 B nX .

Lemma 3.1. Let the group G D AB be the product of an abelian subgroup A and
a non-abelian subgroup B with a quasicyclic p-subgroup X of index 2. If G has
non-trivial abelian normal subgroups, then one of these is contained in the set AX .

Proof. Suppose the contrary and let N be the set of all non-trivial normal sub-
groups of G contained in the derived subgroup G0. Then AG D 1 and ANX ¤ AX

for each N 2 N . Since G D AB D AX [ AXy and AX \ AXy D ;, for every
N 2 N the intersection NX \ AXy is non-empty and so G D ANX . Moreover,
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as X D B 0 � G0 by Lemma 2.1, it follows that G0 D DNX with D D A \G0. It
is also clear that G D hA; Xi, because otherwise hA; Xi D AX is a normal sub-
group of index 2 in G. In particular, A \X D 1.

For each N 2 N we put AN D A \ BN and BN D AN \ B . Then AN N D

BN N D AN BN by [1, Lemma 1.1.4], and the subgroup BN is not contained in X ,
because otherwise N is contained in the set AX , contrary to the assumption. Let
XN D BN \X and CN D AN \NXN . Then XN is a subgroup of index 2 in
BN and CN N D NXN is a normal subgroup of G, because .NXN /X D NXN

and .NCN /A D NCN . Put M D
T

N2N N .
Since G D ANX for each N 2 N , the factor group G=N is metabelian by

Lemma 2.4. Therefore also the factor group G=M is metabelian and so its derived
subgroup G0=M is abelian. Clearly if M D 1, then D D A \G0 � AG D 1 and
hence G0 D

T
N2N NX D X , contrary to the assumption. Thus M is the unique

abelian minimal normal subgroup of G. We show first that the centralizer CG.M/

of M in G does not contain the subgroup X .
Indeed, otherwise the group G D A.MX/ is metabelian by Itô’s theorem and

so the derived subgroup G0 D DMX is abelian. Since G D AG0, it follows that
D D A \G0 � AG D 1 and so G0 DMX . If M contains elements of order p,
then it is an elementary abelian p-subgroup and hence X is the finite residual
of G0. In the other case M has no element of order p, so that X is the maximal
p-subgroup of G0. Therefore in both cases X is a characteristic subgroup of G0

and so normal in G, contrary to the assumption. Thus X ” CG.M/ which implies
in particular that the subgroup M is infinite and the centralizer CX .M/ is finite.

Now, if M is a p-subgroup, then the factor group NG D G=CG.M/ has no non-
trivial finite normal p-subgroup by Lemma 2.2. On the other hand, G D AMX

and G0 D DMX with D D A \G0, so that G D AG0. Using bars for images
under the homomorphism G ! NG, we derive that the group NG D NA NX D NA NG0 is
metabelian and the derived subgroup NG0 D ND NX is abelian. Therefore the intersec-
tion NA \ NG0 is a central subgroup of NG and hence it has no subgroup of order p.
Since ND � NA \ NG0, it follows that NX is the maximal p-subgroup of NG0 and so nor-
mal in NG. As NX is the union of its finite p-subgroups each of which is also normal
in NG, this implies NX D 1 and thus X � CG.M /, contrary to the above.

Suppose next that M is not a p-subgroup and so M has no element of order p.
As was shown above, the subgroup MXM D CM M is normal in G. If XM D X ,
then G D A.MX/ D A.CM M/ D AM and so G0 DM . But then X �M which
is not the case. Therefore the subgroup XM is finite of order pk for some k � 0.
If the subgroup MXM is non-abelian, then its center is trivial, because the sub-
group M is minimal normal in G. In particular, CM \M D 1 and hence the sub-
groups AM and BM are finite of order 2pk . As AM M D BM M D AM BM , the
subgroup M is also finite which contradicts what has been proved above.
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Thus the subgroup MXM is abelian and hence XM is its maximal p-subgroup.
Therefore XM is normal in G and so XM D 1 by assumption. Then AM \X D 1

and the subgroup BM DAM\B is of order 2, because BM\X D 1 and M ” A by
assumption. Therefore AM D ABM and BM D hyi with y2 D 1. Since the sub-
group B is non-abelian by the hypothesis of the lemma, it follows from Lemma 2.1
that B D X Ì hyi is locally dihedral and so xy D x�1 for each x 2 X . Further-
more, the index of A in AM is equal to 2 and so A \M is a subgroup of index 2

in M . As M is abelian and minimal normal in G, it follows that M is an elemen-
tary abelian 2-subgroup. It is also clear that the subgroup AM is nilpotent and the
intersection A \M is centralized by y.

It was noted above that G D AMX and G0 D DMX with D D A \G0. Pass-
ing to the factor group NG D G=M and using bars for images under the homo-
morphism G ! NG, we obtain that the group NG D NA NX is metabelian and so its
derived subgroup NG0 D ND NX is abelian. Since A is abelian, the subgroup ND is cen-
tral in NG and thus the subgroup DM is normal in G. Furthermore, .DM/0 ¤M ,
because DM as a subgroup of AM is nilpotent. As M is the unique minimal nor-
mal subgroup of G, the subgroup DM must be abelian. But then D2 D 1, because
D2 D .DM /2 is a normal subgroup of G. Thus NX is the maximal p-subgroup
of NG0. Since p ¤ 2 and X is quasicyclic, this means that each subgroup of NX
is characteristic in NG0 and so normal in NG. Therefore for each x 2 X the sub-
group M hxi and MX itself are normal in G. In particular, for each g 2 G there
exists m 2M such that hxig D hxim from which it follows that gm 2 NG.hxi/

and thus G DMNG.hxi/. It is easily seen that M \NG.hxi/ D 1 and hence
M D CG.M/, because otherwise the intersection CG.M/ \NG.hxi/ is a non-
trivial normal subgroup of G which does not contain M . Moreover, as G D AB

and B is contained in NG.hxi/, it follows that NG.hxi/ D NA.hxi/B and so
NA.hxi/G D NA.hxi/B is a normal subgroup of G contained in NG.hxi/. There-
fore we have NA.hxi/ D 1 and we conclude that G D AB DM Ì B , the sub-
group B D X Ì hyi is locally dihedral and A \ B D 1.

Finally, taking an element x of order p in X and considering M as an irre-
ducible B-module, we derive from Clifford’s theorem (see [5, Theorem 4.1]) that
M is decomposed in an infinite direct product M DM1 � � � � �Mi � � � � of finite
hxi-invariant subgroups Mi . Furthermore, it was proved above that M D CG.M/

and A \M has index 2 in M and is centralized by y. This gives ŒM; y� D hai for
some involution a 2 A \M . Let N be one of the subgroups Mi which does not
contain a. Then the subgroup N y is also hxi-invariant and .A\N /y D A\N ¤ 1.
Therefore N y D N and so ŒN; y� � hai\N D 1. But then we have 1 D ŒN; y�x D

ŒN; yx� D ŒN; yx2� D ŒN; x2� and so the centralizer CM .x/ contains N . Since
M hxi is a normal subgroup of G, so is CM .x/ and thus CM .x/ DM . This final
contradiction completes the proof.
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It should be noted that if in Lemma 3.1 the subgroup B is locally dihedral,
then the group G D AB is soluble by [4, Theorem 1.1]. Therefore the following
assertion is an easy consequence of this lemma.

Corollary 3.2. If the group G D AB is the product of an abelian subgroup A and
a locally dihedral subgroup B containing a quasicyclic subgroup X of index 2,
then AX D XA is a metabelian subgroup of index 2 in G.

Proof. Indeed, let H be a maximal normal subgroup of G with respect to the
condition H � AX . If X � H , then AH D AX is a metabelian subgroup of
index 2 in G by Itô’s theorem. In the other case the intersection H \X is finite
and hence HX=H is the quasicyclic subgroup of index 2 in BH=H . Since G=H D

.AH=H/.BH=H/ is the product of the abelian subgroup AH=H and the locally
dihedral subgroup BH=H , the set .AH=H/.HX=H/ contains a non-trivial nor-
mal subgroup F=H of G=H by Lemma 3.1. But then F is a normal subgroup
of G which is contained in the set AX and properly contains H . This contradic-
tion completes the proof.

In the following lemma G D AB is a group with an abelian subgroup A and
a locally quaternion subgroup B D Xhyi in which X is the quasicyclic 2-subgroup
of index 2 and y is an element of order 4, so that xy D x�1 for each x 2 X and
z D y2 is the unique involution of B . It turns out that in this case the conjugacy
class zG of z in G is contained in the set AX .

Lemma 3.3. If G D AB and A\B D 1, then the intersection zA\AXy is empty.

Proof. Suppose the contrary and let za D bxy for some elements a; b 2 A and
x 2 X . Then b�1z D .xy/a�1

and from the equality .xy/2 D z it follows that
.b�1z/4 D 1 and b�1zb�1z D za�1

. Therefore we have b�1zab�1 D zza and
hence bzab D zaz. As za D bxy, we have b.bxy/b D .bxy/z and so bxyb D

xyz. Thus .xy/�1b.xy/ D zb�1. Furthermore, we have bxyb�1 D .zb�1/a, so
that bzb�1 D ..zb�1/2/a D .xy/�ab2.xy/a, i.e. the elements z and b2 are con-
jugate in G by the element g D b�1.xy/�a. Since g D cd for some c 2 B and
d 2 A, we have b2 D zg D zd and so z D .b2/d�1

D b2, contrary to the hypo-
thesis of the lemma. Thus zA \ AXy D ;, as desired.

Theorem 3.4. Let the group G D AB be the product of an abelian subgroup A

and a locally quaternion subgroup B . If X is the quasicyclic subgroup of B , then
AX D XA is a metabelian subgroup of index 2 in G. In particular, G is soluble of
derived length at most 3.
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Proof. Let Z be the center of B , N the normal closure of Z in G and X D B 0,
so that X is the quasicyclic subgroup of index 2 in B . If A \ B ¤ 1, then Z is
contained in A \ B by statement (4) of Lemma 2.1 and so N D Z. Otherwise it
follows from Lemma 2.3 that N D ZG D ZA is contained in the set AX . Then
N is a metabelian normal subgroup of G by Lemma 2.4 and the factor group
BN=N is locally dihedral by statement (7) of Lemma 2.1. Since the factor group
G=N D .AN=N /.BN=N / is the product of an abelian subgroup AN=N and the
locally dihedral subgroup BN=N , it is soluble by [4, Theorem 1.1], and so the
group G is soluble.

Now if X � N , then AN D AX is a metabelian subgroup of index 2 in G

and so the derived length of G does not exceed 3. In the other case the inter-
section N \X is finite and hence NX=N is the quasicyclic subgroup of index 2

in BN=N . Therefore AX D XA by Corollary 3.2 and this completes the proof.

4 The product of groups each of which is locally quaternion or
generalized dihedral

Since the groups of the form G D AB with two generalized dihedral subgroups A

and B are soluble by [4, Theorem 1.1], in this section we consider the remaining
cases in which the subgroup A is locally quaternion and B is either generalized
dihedral or locally quaternion. The main part is devoted to the proof that every
group G of this form has a non-trivial abelian normal subgroup.

In what follows up to Theorem 4.5 G D AB is a group in which A D Qhci

with a quasicyclic 2-subgroup Q of index 2 and an element c of order 4 such that
ac D a�1 for each a 2 Q and B D X Ì hyi with an abelian subgroup X and an
involution y such that xy D x�1 for each x 2 X .

Let d D c2 denote the involution of A. The following assertion is concerned
with the structure of the centralizer CG.d/ of d in G. It follows from statement
(4) of Lemma 2.1 that the normalizer of every non-trivial normal subgroup of A is
contained in CG.d/.

Lemma 4.1. The centralizer CG.d/ is soluble.

Proof. If Z D hd i, then the factor group CG.d/=Z D .A=Z/.CB.d/Z=Z/ is
a product of the generalized dihedral subgroup A=Z and the subgroup CB.d/Z=Z

which is either abelian or generalized dihedral. Therefore CG.d/=Z and thus
CG.d/ is a soluble group by [4, Theorem 1.1], as claimed.

The following lemma shows that if G has no non-trivial abelian normal sub-
group, then the index of A in CG.d/ does not exceed 2.
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Lemma 4.2. If CB.d/ ¤ 1, then either CX .d/ D 1 or G contains a non-trivial
abelian normal subgroup.

Proof. If X1DCX .d/, then X1 is a normal subgroup of B and CG.d/DACB.d/.
Therefore the normal closure N D XG

1 is contained in CG.d/, because XG
1 D

XBA
1 D XA

1 . Since CG.d/ and so N is a soluble subgroup by Lemma 4.1, this
completes the proof.

Consider now the normalizers in A of non-trivial normal subgroups of B .

Lemma 4.3. Let G have no non-trivial abelian normal subgroup. If U is a non-
trivial normal subgroup of B , then NA.U / D 1. In particular, A \ B D 1.

Proof. If NA.U / ¤ 1, then d 2 NA.U / and so the normal closure hd iG D hd iB

is contained in the normalizer NG.U / D NA.U /B . Since NA.U / ¤ A, the sub-
group NA.U / is either finite or quasicyclic, so that NG.U / and thus hd iG is
soluble. This contradiction completes the proof.

Lemma 4.4. If CX .d/ D 1, then G contains a non-trivial abelian normal sub-
group.

Proof. Since G D AB , for each x 2 B there exist elements a 2 A and b 2 B

such that dx D ab. If b … X , then b D a�1dx is an element of order 2 and so
dxadx D a�1. As a2k

D d for some k � 0, it follows that dxddx D d and
hence ab D dx D .dx/d D .ab/d D abd . Therefore bd D b and so b 2 CB.d/.
In particular, if CB.d/ D 1, then b 2 X , so that in this case the conjugacy class
dG D dB is contained in the set AX .

Assume that CB.d/ ¤ 1 and the group G has no non-trivial normal subgroup.
Then CX .d/ D 1 by Lemma 4.2 and without loss of generality CB.d/ D hyi.
Then G D .Ahyi/X and so the quasicyclic subgroup Q of A is normalized by y.
In particular, dy D d and the subgroup Qhyi can be either abelian or locally
dihedral. We consider first the case when y centralizes Q and show that in this
case the conjugacy class dG is also contained in the set AX .

Indeed, otherwise there exist elements a 2 A and b; x 2 B such that dx D ab

and b … X . Then b 2 CB.d/ D hyi by what was proved above, so that b D y

and dx D ay. As dB D d hyiX D dX , we may suppose that x 2 X . But then
dx�1

D .dx/y D ay D dx and hence dx2

D d . Therefore we have x2 2 hyi and
so x2 D 1. In particular, if X has no involution, then dG D dX � AX . We show
next that the case with an involution x 2 X cannot appear.

Clearly in this case x is a central involution in B and so the subgroup DD hd; xi

generated by the involutions d and x is dihedral. It is easy to see that d and x
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cannot be conjugate in G and the center of D is trivial, because otherwise the
centralizer CG.x/ properly contains B , contradicting Lemma 4.3. Thus dx is an
element of infinite order and so D D hdxi Ì hxi has no automorphism of finite
order more than 2. On the other hand, if u 2 A, v 2 B and uv normalizes D, then
hd; xui D Du D Dv�1

D hdv�1

; xi and so D � Du. Since u is an element of
finite order, it follows that D D Du D Dv�1

and thus NG.D/ D NA.D/NB.D/.
Therefore NA.D/ D hd i and hence z D .dx/2 is an element of infinite order
in NB.D/. But then z 2 X and so hzi is a normal subgroup of B normalized
by d , again contradicting Lemma 4.3. Thus X has no involution, as claimed.

Finally, if N is the normal closure of the subgroup hd i in G, then AN D NX D

A1X1 with A1 D A \NX and X1 D AN \X by Lemma 2.3. Therefore the sub-
group A1X1 is soluble by Theorem 3.4, so that N and hence G has a non-trivial
abelian normal subgroup, contrary to our assumption.

Thus the subgroup Qhyi is locally dihedral and so y inverts the elements of Q.
Since A D Qhci with ac D a�1 for all a 2 A, the element cy centralizes Q and
hence the subgroup Qhcyi is abelian. But then the group G D .Qhcyi/B as the
product of an abelian and a generalized dihedral subgroup is soluble by [4, Theo-
rem 1.1]. This final contradiction completes the proof.

Theorem 4.5. Let the group G D AB be the product of a locally quaternion sub-
group A and a generalized dihedral subgroup B . Then G is soluble. Moreover,
if B has a quasicyclic subgroup of index 2, then G is metabelian.

Proof. If A \X ¤ 1, then the centralizer CG.d/ is of index at most 2 in G and so
G is soluble by Lemma 4.1. Let N be a normal subgroup of G maximal with
respect to the condition A \NX D 1. Then BN D .A \ BN /B and the sub-
group A \ BN is of order at most 2. Therefore the subgroup N is soluble and
the factor group G=N D .AN=N /.BN=N / is the product of the locally quater-
nion subgroup AN=N and the subgroup BN=N which is either abelian or gen-
eralized dihedral. Hence it follows from Theorem 3.4 and Lemmas 4.2 and 4.4
that G=N has a non-trivial abelian normal subgroup M=N . Put L DMQ \MX ,
Q1 D Q\MX and X1 DMQ\X . We have L DMQ1 DMX1 and Q1 ¤ 1,
because A \MX ¤ 1 by the choice of M . It is also clear that L is a soluble
normal subgroup of G, because .MQ1/A DMQ1 and .MX1/B DMX1. There-
fore the factor group G=L and so the group G is soluble if AL=L is of order 2.
In the other case AL=L is locally dihedral and BL=L is abelian or generalized
dihedral. Since G=L D .AL=L/.BL=L/, it follows that G=L and so G is soluble
by [4, Theorem 1.1]. Moreover, if the subgroup X is quasicyclic, then the sub-
groups Q and X centralize each other by [1, Corollary 3.2.10], so that QX is an
abelian normal subgroup of index 2 or 4 in G and thus G is metabelian.
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Our last theorem describes the structure of groups which are products of two
locally quaternion subgroups.

Theorem 4.6. Let the group G D AB be the product of two locally quaternion
subgroups A and B . If X and Y are quasicyclic subgroup of A and B , respectively,
then XY D YX is an abelian subgroup of index 2 or 4 in G. In particular, G is
metabelian.

Proof. Let x and y be the unique involution of A and B , respectively. If G is
soluble, then XY D YX by [1, Corollary 3.2.10]. We show now that the group G

satisfies this condition.
Indeed, if A \ B ¤ 1, then x D y is a central involution of G and the factor

group G=hxi D .A=hxi/.B=hxi/ is the product of two locally dihedral subgroups
A=hxi and B=hxi. Therefore G is soluble by [4, Theorem 1.1].

Let A\B D 1 and D D hx; yi. Then D is a dihedral subgroup of G and the nor-
malizer NG.D/ can be written in the form NG.D/ D NA.D/NB.D/ by [1, Lem-
ma 1.2.2 (i)]. It is easy to see that NA.D/ \D D hxi and NB.D/ \D D hyi,
so that each of the factor groups NA.D/D=D and NB.D/D=D is either abelian
or locally dihedral. Since NG.D/=D D .NA.D/D=D/.NB.D/D=D/, the factor
group NG.D/=D and so also NG.D/ is soluble by [4, Theorem 1.1]. Then NG.D/

is a 2-group by [1, Corollary 3.2.7], and hence D is a dihedral 2-subgroup of G.
Therefore D contains a central involution z which is different from x and y. As
z D ab for some a 2 A and b 2 B , it follows that b ¤ 1 and x D xab D xb . But
then x D xy , because y 2 hbi, so that D D hxi�hyi and CG.D/ D CA.y/CB.x/

is a soluble 2-subgroup.
It is clear that if CG.D/ is of finite index in G, then G is soluble. In the other

case one of the centralizers CA.y/ and CB.x/, for example the second one, must
be finite and thus the centralizer CG.x/ D ACB.x/ is soluble. But then the normal
closure N D hyiG D hyiA � ACB.x/ of hyi in G is also soluble. Furthermore, in
the factor group G=N D .AN=N /.BN=N the subgroup AN=N is either locally
quaternion or locally dihedral and BN=N is locally dihedral. Therefore G=N and
so also G is soluble by Theorem 4.5 or by [4, Theorem 1.1], as claimed.

The proof of Theorem 1.1 is completed by a direct application of Corollary 3.2
and Theorems 3.4, 4.5 and 4.6.
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