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Abstract. We prove the existence and main properties of signed Young modules for the
symmetric group, using only basic facts about symmetric group representations and the
Broué correspondence. We then prove new reduction theorems for the signed p-Kostka
numbers, defined to be the multiplicities of signed Young modules as direct summands
of signed Young permutation modules. We end by classifying the indecomposable signed
Young permutation modules and determining their endomorphism algebras.

1 Introduction

Let F be a field of odd prime characteristic p and let Sn denote the symmet-
ric group of degree n. In this article we investigate the modular structure of the
p-permutation FSn-modules defined by inducing a linear representation of
a Young subgroup of Sn to Sn.

Let P2.n/ be the set of all pairs of partitions .˛jˇ/ such that j˛j C jˇj D n. For
.˛jˇ/ 2P2.n/, the signed Young permutation module M.˛jˇ/ is the FSn-mod-
ule defined by

M.˛jˇ/ D IndSn
S˛�Sˇ

�
F.S˛/� sgn.Sˇ /

�
: (1.1)

In [7, p. 651], Donkin defines a signed Young module to be an indecomposable
direct summand of a signed Young permutation module and proves the following
theorem.
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Theorem 1.1 (Donkin [7]). There exist indecomposable FSn-modules Y.�jp�/
for .�jp�/ 2P2.n/ with the following properties:

(i) if .˛jˇ/ 2P2.n/, then M.˛jˇ/ is isomorphic to a direct sum of modules
Y.�jp�/ for .�jp�/ 2P2.n/ such that .�jp�/ D .˛jˇ/,

(ii) ŒM.�jp�/ W Y.�jp�/� D 1,

(iii) if � D
Pr
iD0 p

i�.i/ and � D
Pr�1
iD0 p

i�.i/ are the p-adic expansions of �
and �, as defined in (2.1), then Y.�jp�/ has as a vertex a Sylow p-subgroup
of the Young subgroup S�, where � is the partition of n having exactly
j�.i/j C j�.i � 1/j parts of size pi for each i 2 ¹0; : : : ; rº.

Here .�jp�/ D .˛jˇ/ refers to the dominance order on P2.n/, as defined in
Section 2.3 below and, in (iii), �.�1/ should be interpreted as the partition of 0.

Donkin’s definition of signed Young modules and his proof of his theorem use
the Schur superalgebra. In Section 4 we give an independent proof using only
basic facts about symmetric group representations and the Broué correspondence
for p-permutation modules; our proof shows that the Y.�jp�/ may be defined by
Definition 4.11. (Theorem 1.1 characterizes the signed Young module Y.�jp�/ as
the unique summand of M.�jp�/ appearing in M.˛jˇ/ only if .�jp�/ D .˛jˇ/,
so the two definitions are equivalent.) As a special case we obtain the existence and
main properties of the Young modules, which we define by Y � D Y.�j¿/. These
are precisely the indecomposable summands of the Young permutation modules
M ˛ DM.˛j¿/. We state this result, and discuss the connection with [10], and
with the original definition of Young modules via the Schur algebra [18], in Sec-
tion 5.1.

In [14], Hemmer conjectured, motivated by known results on tilting modules for
Schur algebras, that the signed Young modules are exactly the self-dual modules
for symmetric groups with Specht filtrations. This was shown to be false in [23];
the fourth author later proved in [26] that if n � 66 andG is a subgroup of Sn such
that the ordinary character of M D IndSn

G F is multiplicity free, then every inde-
composable summand ofM is a self-dual module with a Specht filtration. Despite
the failure of Hemmer’s conjecture, it is clear that signed Young modules are of
considerable interest. In particular, a strong connection between simple Specht
modules and signed Young modules has been established by Hemmer [14] and
by Danz and the second author [6]. More precisely, Hemmer showed that every
simple Specht module is isomorphic to a signed Young module, and Danz and the
second author established their labels.

In Section 6 we study signed p-Kostka numbers, defined to be the multiplici-
ties of signed Young modules as direct summands of signed Young permutation
modules. These generalize the p-Kostka numbers considered in [11, 12, 15, 16].
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Given the p-Kostka numbers for Sn it is routine to calculate the decomposition
matrix of Sn in characteristic p (see [12, Section 3]). It is therefore no surprise
that a complete understanding of the p-Kostka numbers seems to be out of reach.
However, as the references above demonstrate, many partial results and significant
advances have been obtained. Our first main theorem is a relation between signed
p-Kostka numbers. We refer the reader to Notation 3.8 for the definitions of the
composition ı.0/ and the set ƒ..˛jˇ/; �/.

Theorem 1.2. Let .˛jˇ/; .�jp�/ 2P2.n/. Then�
M.p˛jpˇ/ W Y.p�jp2�/

�
�
�
M.˛jˇ/ W Y.�jp�/

�
:

Furthermore, if ı.0/ D ¿ for all .
jı/ 2 ƒ..˛jˇ/; �/, then equality holds.

Example 6.4 shows that strict inequality may hold in Theorem 1.2. This is an
important fact, since it appears to rule out a routine proof of Theorem 1.2 using
the theory of weights for the Schur superalgebra: we explain this obstacle later in
the introduction. However, in Corollary 6.3, we obtain the following asymptotic
stability of the signed p-Kostka numbers:�

M.˛jˇ/ W Y.�jp�/
�
�
�
M.p˛jpˇ/ W Y.p�jp2�/

�
D
�
M.p2˛jp2ˇ/ W Y.p2�jp3�/

�
D � � � :

If ˇ D ¿, then the condition on ı.0/ holds for all .
jı/ 2 ƒ..˛jˇ/; �/ and Theo-
rem 1.2 specializes to Gill’s result [12, Theorem 1] that ŒMp˛ W Y p��D ŒM ˛ W Y ��

for all partitions ˛ and � of n.
Our second main theorem describes the relation between signed p-Kostka num-

bers for partitions differing by a p-power of a partition. Let C 2.m/ be the set con-
sisting of all pairs of compositions .˛jˇ/ such that j˛j C jˇj D m. We refer the
reader to equation (5.1) in Section 5.2 for the definition of p̀.�jp�/.

Theorem 1.3. Let m, n and k be natural numbers. Let .�je�/ 2 C 2.m/, .�jp�/ 2
P2.m/, .�je�/ 2 C 2.n/ and .˛jpˇ/ 2P2.n/. If k > p̀.�jp�/, then�

M.� C pk�je� C pke�/ W Y.�C pk˛jp.�C pkˇ//�
�
�
M.�je�/ W Y.�jp�/��M.p�jpe�/ W Y.p˛jp2ˇ/�:

Moreover, if pk > max¹�1;e�1º, then equality holds.

In particular, taking � D ˛ D .r/ ande� D ˇ D ¿, we see that�
M.� C pk.r/je�/ W Y.�C pk.r/jp�/� �M �

.�je�/ W Y.�jp�/�
with equality whenever pk > max¹�1;e�1º.
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Our third main theorem classifies the indecomposable signed Young permuta-
tion modules.

Theorem 1.4. Let .˛jˇ/ 2P2.n/. The signed Young permutation moduleM.˛jˇ/
is indecomposable if and only if one of the following conditions holds.

(i) .˛jˇ/ D ..m/j.n// for some non-negative integers m; n such that either

(a) m D 0,

(b) n D 0, or

(c) mC n is divisible by p.

(ii) .˛jˇ/ is either ..kp � 1; 1/j¿/ or .¿j.kp � 1; 1// for some k 2 N.

In cases (i) (a) and (i) (b), we have EndFSnM.˛jˇ/ Š F . In the remaining cases
we have EndFSnM.˛jˇ/ Š F Œx�=hx

2i.

In particular, Theorem 1.4 classifies all indecomposable Young permutation
modules up to isomorphism, recovering [12, Theorem 2] for fields of odd charac-
teristic. Note that the Young permutation moduleM .n�1;1/ DM..n � 1; 1/j¿/ D
M..n � 1/j.1// appears in both parts (i) and (ii). If M.˛jˇ/ is indecomposable,
then there exist unique partitions � and � such that M.˛jˇ/ Š Y.�jp�/. These
partitions are determined in Proposition 7.1.

Schur algebras

Our results may be applied to obtain corollaries on modules for the Schur algebra.
Fix n; d 2 N with d � n and let GLd .F / be the general linear group of d � d
matrices over F . Let � W GLd .F /! GLm.F / be a representation of GLd .F / of
dimensionm. We say that � is a polynomial representation of degree n if the matrix
coefficients �.X/ij for each i; j 2 ¹1; : : : ; mº are polynomials of degree n in the
coefficients of the matrix X . Given a polynomial representation � W GLd .F /!
GL.V / of degree n, the image of V under the Schur functor f is the subspace of V
on which the diagonal matrices diag.a1; : : : ; ad / 2 GLd .F / act as a1 : : : an. It is
easily seen that f .V / is preserved by the permutation matrices in GLd .F / that fix
the final d�n vectors in the standard basis ofF d . Thusf .V / is a module for FSn.

The category of polynomial representations of GLd .F / of degree n is equiva-
lent to the category of modules for the Schur algebra SF .d; n/. We refer the reader
to [13] for the definition of SF .d; n/ and further background. In this setting, the
Schur functor may be defined by V 7! eV , where e 2 SF .d; n/ is an idempotent
such that eSF .d; n/e Š FSn. It follows that f is an exact functor from the cat-
egory of polynomial representations of GLd .F / of degree n to the category of
FSn-modules.
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Let E denote the natural GLd .F /-module. Given ˛ 2P.n/, let Sym˛.E/ andVˇ
.E/ denote the corresponding divided symmetric and exterior powers of E,

defined as quotient modules of E˝n. The mixed powers Sym˛E ˝
Vˇ

E for
.˛jˇ/ 2P2.n/ generate the category of GLd .F /-modules of degree n. In [7],
Donkin defines a listing module to be an indecomposable direct summand of
a mixed power. (As the nautical parlance suggests, listing modules generalize
tilting modules). By [7, Proposition 3.1 c], for each .�j�/ 2P2.n/ there exists
a unique listing module List.�jp�/ such that f .List.�jp�// Š Y.�jp�/. By [7,
Proposition 3.1a], we have

f
�
Sym˛E ˝

Vˇ
E
�
ŠM.˛jˇ/:

Moreover, by [7, Proposition 3.1b], the Schur functor induces an isomorphism

EndGLd .F /
�
Sym˛E ˝

Vˇ
E
�
Š EndSn

�
M.˛jˇ/

�
:

Thus each of our three main theorems has an immediate translation to a result
on multiplicities of listing modules in certain mixed powers. For example Theo-
rem 1.4 classifies the indecomposable GLd .F /-mixed powers and shows that each
has an endomorphism algebra, as a GLd .F /-module, of dimension at most 2. It is
also worth noting that many of Gill’s results from [12] are reproved in greater
generality in the Schur algebra setting in a recent paper of Donkin [8].

Steinberg tensor product formula

As Gill remarks in [12], some of his results can be obtained using weight spaces
and the Steinberg Tensor Product Theorem for irreducible representations of the
group GLd .F /. We explain the connection here, since this remark is also relevant
to this work. Let ˛ be a composition of n where d � n and let �˛ 2 SF .d; n/ be
the idempotent defined in [13, Section 3.2] such that �˛V is the ˛-weight space,
denoted V˛, of the SF .d; n/-module V ; the idempotent e defining the Schur func-
tor is �.1n/. For � a partition of n, let L.�/ denote the irreducible representation of
GLd .F / with highest weight �, thought of as a module for SF .d; n/. Let Proj.�/
be the projective cover of L.�/. By James’ original definition of Young modules
(this is shown to be equivalent to ours in Section 5.1), we have Y � D f .Proj.�//;
moreover,

ŒM ˛
W Y �� D ŒSym˛.E/ W Proj.�/�

D dimF Hom.S.d; n/�˛; L.�//

D dimF �˛L.�/:

(Here Sym˛.E/ � E
˝n is the contravariant dual, as defined in [13, 2.7a], of the
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quotient module Sym˛.E/ of E˝n.) Thus

ŒM ˛
W Y �� D dimF L.�/˛: (1.2)

As an example of this relationship between p-Kostka numbers and dimensions
of weight spaces, we use (1.2) to deduce Theorem 1 in [12]. By the Steinberg
Tensor Product Theorem,L.p�/ D L.�/F , where F is the Frobenius map, acting
on representing matrices by sending each entry to its pth power. Clearly there is
a canonical vector space isomorphism .L.�/F /p˛ Š L.�/˛. Therefore

ŒMp˛
W Y p�� D dimF L.p�/p˛ D dimF L.�/˛ D ŒM ˛

W Y ��

as required.

Schur superalgebras

Our Theorem 1.2 generalizes the result just proved, so it is natural to ask if it can be
proved in a similar way, replacing the Schur algebra with the Schur superalgebra
defined in [7]. Let a; b 2 N. Given .�jp�/ 2P2.n/ where � has at most a parts
and � has at most b parts, let L.�jp�/ denote the irreducible module of highest
weight .�jp�/ for the Schur superalgebra S.ajb; n/, defined in [7, p. 661]. By
[7, Section 2.3], we have

ŒM.˛jˇ/ W Y.�jp�/� D dimF L.�jp�/.˛jˇ/ (1.3)

generalizing (1.2).
Let GL.ajb/ denote the super general linear group defined in [4, Section 2].

As E˝n is a generator for the category of polynomial representations of GL.ajb/
of degree n, it follows from [7, p. 660, (1)] that the category of such modules is
equivalent to the module category of S.ajb; n/. Taking the even degree part of
GL.ajb/ recovers GLa.F / � GLb.F /. (More precisely, the even degree part is
isomorphic to the product of the affine group schemes corresponding to these two
general linear groups.) The Frobenius map is identically zero on the odd degree
part of GL.ajb/, so induces a map F W GL.ajb/! GLa.F / � GLb.F /. Let F?

be the corresponding inflation functor, sending modules for GLa.F / � GLb.F / to
modules for GL.ajb/. By [4, Remark 4.6 (iii)] we have

L.p�jp�/ D F?.L.�/� L.�//;

where� denotes an outer tensor product. Taking weight spaces we get

L.p�jp�/.p˛jpˇ/ Š L.�/˛ � L.�/ˇ :

By (1.3) we have ŒM.p˛jpˇ/ W Y.p�jp�/� D dimF L.�/˛ dimF L.�/ˇ . Replac-
ing�with p� and applying the Steinberg Tensor Product Formula, this implies the
asymptotic stability of signed p-Kostka numbers mentioned after Theorem 1.2.
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Stated for GL.ajb/-modules, the remaining part of Theorem 1.2 becomes

dimF L.p�jp�2/.p˛jpˇ/ � dimF L.�jp�/.˛jˇ/:

This does not follow from the results mentioned so far, or from the version of the
Steinberg Tensor Product Theorem for GL.ajb/-modules proved in [22], because
the module on the right-hand side is not an inflation. Moreover, translated into
this setting, a special case of Example 6.4 shows that dimF L..1/j¿/.¿j.1// D 1
whereas dimF L..p/j¿/.¿j.p// D dimF L..p//¿ dimF L.¿/.p/ D 0, so it is cer-
tainly not the case that equality always holds. (Further examples of this type are
given by the general case of Example 6.4.) Whether or not a proof using super-
groups is possible, the authors believe that since Theorem 1.2 can be stated within
the context of symmetric groups, it deserves a proof in this setting.

Klyachko’s multiplicity formula

Klyachko’s multiplicity formula [21, Corollary 9.2] expresses the p-Kostka num-
ber ŒM ˛ W Y �� in terms of p-Kostka numbers for p-restricted partitions. Our
Corollary 5.2 gives a generalization to signed Young modules. Specializing this
result we obtain a symmetric group proof of Klyachko’s formula in the form

ŒM ˛
W Y �� D

X
.
j¿/2ƒ..˛j¿/;�/

rY
iD0

ŒM
.i/
W Y �.i/�; (1.4)

where � D
Pr
iD0 p

i�.i/ is the p-adic expansion of �, � is the partition defined in
Theorem 1.1 (iii) and the set ƒ..˛j¿/; �/ is as defined in Notation 3.8.

Outline

In Section 2 we recall the main ideas concerning the Brauer construction for
p-permutation modules and set up our notation for symmetric group modules
and modules for wreath products. In Section 3 we find the Broué quotients of
signed Young permutation modules. In Section 4 we use these results, together
with James’ Submodule Theorem, to define Young modules and signed Young
modules in the symmetric group setting. We then prove Donkin’s Theorem 1.1.
We give some immediate corollaries of this theorem in Section 5. In Sections 6
and 7, we prove Theorems 1.2, 1.3 and 1.4.

2 Preliminaries

We work with left modules throughout. For background on vertices and sources
and other results from modular representation theory we refer the reader to [1].
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For an account of the representation theory of the symmetric group we refer the
reader to [17] or [19], or for more recent developments, to [20].

2.1 Indecomposable summands

Let G be a finite group. Let M and N be FG-modules. We write N jM if N is
isomorphic to a direct summand ofM . We have already used the notation ŒM W N�
for the number of summands in a direct sum decomposition of M that are isomor-
phic to the indecomposable module N . This multiplicity is well defined by the
Krull–Schmidt Theorem (see [1, Section 4, Lemma 3]). The proof of the follow-
ing lemma is easy.

Lemma 2.1. Let M and N be FG-modules, and let N be indecomposable. Sup-
pose that H is a normal subgroup of G acting trivially on both the modules M
and N . Let M and N be the corresponding F ŒG=H�-modules. Then

ŒM W N� D ŒM W N�:

2.2 Broué correspondence

Let G be a finite group. An FG-module V is said to be a p-permutation module
if for every Sylow p-subgroup P of G there exists a linear basis of V that is
permuted by P . A useful characterization of p-permutation modules is given by
the following theorem (see [3, (0.4)]).

Theorem 2.2. An indecomposable FG-module V is a p-permutation module if
and only if there exists a p-subgroup P of G such that V j IndGP F ; equivalently,
V has trivial source.

It easily follows that the class of p-permutation modules is closed under restric-
tion and induction and under taking direct sums, direct summands and tensor
products.

We now recall the definition and the basic properties of Brauer quotients. Given
an FG-module V and P a p-subgroup of G, the set of fixed points of P on V is
denoted by

V P D ¹v 2 V W gv D v for all g 2 P º:

It is easy to see that V P is an FNG.P /-module on which P acts trivially. For Q
a proper subgroup of P , the relative trace map TrPQ W V

Q ! V P is the linear map
defined by

TrPQ.v/ D
X

g2P=Q

gv;
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where the sum is over a complete set of left coset representatives for Q in P . The
definition of this map does not depend on the choice of the set of representatives.
We observe that

TrP .V / D
X
Q<P

TrPQ.V
Q/

is an FNG.P /-module on which P acts trivially. We define the Brauer quotient
of V with respect to P to be the F ŒNG.P /=P �-module

V.P / D V P =TrP .V /:

If V is an indecomposable FG-module and P is a p-subgroup of G such that
V.P / ¤ 0, then P is contained in a vertex of V . Broué proved in [3] that the
converse holds for p-permutation modules.

Theorem 2.3 ([3, Theorem 3.2]). Let V be an indecomposable p-permutation
module and let P be a vertex of V . Let Q be a p-subgroup of G. Then V.Q/ ¤ 0
if and only if Q � gP for some g 2 G.

Here gP denotes the conjugate gPg�1 of P . If V is an FG-module with
p-permutation basis B with respect to a Sylow p-subgroup eP of G and P � eP ,
then, taking for each orbit of P on B the sum of the basis elements in that orbit,
we obtain a basis for V P . Each sum over an orbit of size p or more is a relative
trace from a proper subgroup of P . Hence V.P / is isomorphic to the F -span of

BP
D ¹v 2 B W gv D v for all g 2 P º:

Thus Theorem 2.3 has the following corollary.

Corollary 2.4. Let V be a p-permutationFG-module with p-permutation basis B

with respect to a Sylow p-subgroup of G containing a subgroup P . The Brauer
quotient V.P / has BP as a basis. Moreover, V has an indecomposable summand
with a vertex containing P if and only if BP 6D ;.

The next result states what is now known as the Broué correspondence.

Theorem 2.5 ([3, Theorems 3.2 and 3.4]). An indecomposable p-permutation
FG-moduleV has vertexP if and only ifV.P / is a projectiveF ŒNG.P /=P �-mod-
ule. Furthermore, we have the following statements.

(i) The Brauer map sending V to V.P / is a bijection between the isomor-
phism classes of indecomposable p-permutation FG-modules with vertex
P and the isomorphism classes of indecomposable projective modules for
F ŒNG.P /=P �. Regarded as an FNG.P /-module, V.P / is the Green corre-
spondent of V .
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(ii) Suppose that V has vertex P . If M is a p-permutation FG-module, then V
is a direct summand ofM if and only if V.P / is a direct summand ofM.P /.
Moreover, ŒM W V � D ŒM.P / W V.P /�.

The following lemma allows the Broué correspondence to be applied to mono-
mial modules such as signed Young permutation modules.

Lemma 2.6. Let A be a subset of F �. Let M be an FG-module with an F -basis
B D ¹m1; : : : ; mrº such that, if g 2 G and mi 2 B, then gmi D amj for some
a 2 A and somemj 2 B. Then, for any p-subgroupP ofG, there exist coefficients
a1; : : : ; ar 2 A such that ¹a1m1; : : : ; armrº is a p-permutation basis of M with
respect to P .

Proof. Let ¹i1; : : : ; isº be a subset of ¹1; : : : ; rº such that B is the disjoint union
of B1; : : : ;Bs , where, for each 1 � j � s,

Bj D ¹mk W gmij D agmk for some g 2 P and ag 2 Aº:

Suppose that gmij D amk and g0mij D a
0mk for some g; g0 2 P and a; a0 2 A.

Then we have g�1g0mij D a
0a�1mij and, consequently, Fmij is a 1-dimensional

F hg�1g0i-module. Since P is a p-subgroup, it follows that Fmij is the trivial
F hg�1g0i-module. Hence a D a0. Thus the coefficient ag is independent of the
choice of g, and depends only on mij and mk .

For each 1 � j � s, let

ƒj D ¹akmk W gmij D akmk for some g 2 P and ak 2 Aº:

By the previous paragraph,
Ss
jD1ƒj is a basis of M . It is sufficient to prove

that each ƒj is permuted by P . Let x 2 P , and let akmk , ak0mk0 2 ƒj . Sup-
pose that x.ak0mk0/ D b.akmk/ for some b 2 F . We have gmij D akmk and
g0mij D ak0mk0 for some g, g0 2 P . Thus g�1xg0mij D bmij . Repeating the
argument in the first paragraph, we see that Fmij is the trivial F hg�1xg0i-module
and so b D 1.

The Brauer quotient of an outer tensor product of p-permutation modules is
easily described.

Lemma 2.7. Let G1 and G2 be finite groups, let M1;M2 be p-permutation FG1-
and FG2-modules, and let P1 and P2 be p-subgroups ofG1 andG2, respectively.
Then

.M1 �M2/.P1 � P2/ ŠM1.P1/�M2.P2/

as a representation of

NG1�G2.P1 � P2/=.P1 � P2/ Š .NG1.P1/=P1/ � .NG2.P2/=P2/:

Proof. The statement follows from an easy application of Theorem 2.5.
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2.3 Partitions and compositions

Let n 2 N0. A composition of n is a sequence of non-negative integers ˛ D
.˛1; : : : ; ˛r/ such that ˛r ¤ 0 and ˛1 C � � � C ˛r D n. In this case, we write
`.˛/ D r and j˛j D n. The unique composition of 0 is denoted by ¿; we have
`.¿/ D 0. The Young subgroup S˛ is the subgroup S˛1 � � � � �S˛r of Sn, where
the i th factor S˛i acts on the set ¹˛1C� � �C˛i�1C1; : : : ; ˛1C� � �C˛i�1C˛iº.
Let ˛ D .˛1; : : : ; ˛r/ and ˇ D .ˇ1; : : : ; ˇs/ be compositions and let q 2 N. We
denote by q˛ and ˛ � ˇ the compositions of qj˛j and j˛j C jˇj defined by

q˛ D .q˛1; : : : ; q˛r/;

˛ � ˇ D .˛1; : : : ; ˛r ; ˇ1; : : : ; ˇs/;

respectively. We set 0˛ D ¿. We denote by ˛ C ˇ the composition of j˛j C jˇj
defined by

˛ C ˇ D .˛1 C ˇ1; : : : ; ˛s C ˇs; ˛sC1; : : : ; ˛r/;

where we have assumed, without loss of generality, that s � r . We define ˛ � ˇ
similarly, in the case when ˇi � ˛i for each i � s.

A composition ˛ is a partition if it is non-increasing. A partition ˛ is called
p-restricted if ˛i � ˛iC1 < p for all i � 1. We denote the set of compositions,
partitions and p-restricted partitions of n by C .n/, P.n/ and RP.n/, respec-
tively. A partition ˛ is p-regular if its conjugate ˛0, defined by ˛0j D j¹i W ˛i � j ºj,
is p-restricted. It is well known that if � is a partition, then there exist unique
p-restricted partitions �.i/ for i 2 N0 such that

� D
X
i�0

pi�.i/: (2.1)

We call this expression the p-adic expansion of �.
Let P2.n/, C 2.n/ and RP2.n/ be the sets consisting of all pairs .�j�/ of parti-

tions, compositions andp-restricted partitions, respectively, such that j�jCj�j D n.
Here � or � may be the empty composition ¿. For .�j�/; .˛jˇ/ 2P2.n/, we say
that .�j�/ dominates .˛jˇ/, and write .�j�/ D .˛jˇ/, if, for all k � 1, we have

(a)
Pk
iD1 �i �

Pk
iD1 ˛i , and

(b) j�j C
Pk
iD1 �i � j˛j C

Pk
iD1 ˇi .

(As a standing convention we declare that �i D 0 whenever � is a partition and
i > `.�/.) This defines a partial order on the set P2.n/ called the dominance
order. This order becomes the usual dominance order on partitions when restricted
to the subsets ¹.�j¿/ 2P2.n/º or ¹.¿j�/ 2P2.n/º of P2.n/.
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2.4 Modules for symmetric groups

Let n 2 N0, let Sn be the symmetric group on the set ¹1; : : : ; nº and let An be
its alternating subgroup. Given a subgroup H of Sn, we denote the trivial repre-
sentation of H by F.H/, and the restriction of the sign representation of Sn to
H by sgn.H/. In the case when H D S
 for some composition 
 of n we write
F.
/ and sgn.
/ for F.H/ and sgn.H/, respectively. If 
 D .n/, we reduce the
number of parentheses by writing F.n/ and sgn.n/, respectively.

For � a p-regular partition of n, let D� be the FSn-module defined by

D� D S�=rad.S�/;

where S� is the Specht module labelled by � (see [17, Chapter 4]). By [17, The-
orem 11.5] each D� is simple, and each simple FSn-module is isomorphic to
a unique D�. The simple FSn-modules can also be labelled by p-restricted par-
titions. For � 2 RP.n/ we set D� D soc.S�/. The connection between the two
labellings is given by D� Š D�

0

˝ sgn.n/. For � 2 RP.n/, let P � denote the
projective cover of the simple FSn-module D�.

Finally, for 
 2P.n/, let �
 denote the ordinary irreducible character of S
 ,
defined over the rational field.

2.5 Modules for wreath products

Let m 2 N and let G be a finite group. Recall that the multiplication in the group
G oSm is given by

.g1; : : : ; gmI �/.g
0
1; : : : ; g

0
mI �

0/ D .g1g
0

��1.1/
; : : : ; gmg

0

��1.m/
I �� 0/;

for .g1; : : : ; gmI �/; .g01; : : : ; g
0
mI �

0/ 2 G oSm. (Our notation for wreath prod-
ucts is taken from [19, Section 4.1].) LetM be an FG-module. Them-fold tensor
product of M becomes an F ŒG oSm�-module with the action given by

.g1; : : : ; gmI �/ � .v1 ˝ � � � ˝ vm/ D sgn.�/g1v��1.1/ ˝ � � � ˝ gmv��1.m/

for .g1; : : : ; gmI �/ 2 G oSm, v1; : : : ; vm 2M . We denote this module bycM˝m.
Note that we have twisted the action of the top group Sm by the sign representa-
tion. Thus, in the notation of [19, 4.3.14], we have

cM˝m D .m# M/e˝ InfGoSm
Sm

.sgn.m//:

The 1-dimensional module 1sgn.k/˝n will be important to us. In our applications
k will be a p-power, and so odd. Since a transposition in the top group Sn acts
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on ¹1; : : : ; knº as a product of k disjoint transpositions, and so has odd sign, there
is a simpler definition of this module, as ResSkn

SkoSn
sgn.kn/. More generally, given

˛ 2 C .n/ and an odd number k, we define

1sgn.k/˝˛ D ResSkn
.SkoS˛1 /�����.SkoS˛r /

sgn.kn/: (2.2)

For use in the proof of Proposition 4.5 we briefly recall the character theory
of the group C2 oSn. Let �� denote the irreducible character of Sn labelled by
� 2 Sn. For .�j�/ 2P2.n/, with j�j D m1 and j�j D m2, we define �.�j�/ to
be the ordinary character of the following module for C2 oSn:

IndC2oSn
C2o.Sm1�Sm2 /

�
InfC2oSm1

Sm1
.��/�

�
InfC2oSm2

Sm2
.��/˝ 1sgn.2/˝m2

��
:

A standard Clifford theory argument (see for instance [19, Theorem 4.34]) shows
that the characters �.�j�/ for .�j�/ 2P2.n/ are precisely the irreducible charac-
ters of C2 oSn.

2.6 Sylow p-subgroups of Sn

Let Pp be the cyclic group h.1; 2; : : : ; p/i � Sp of order p. Let P1 D ¹1º and,
for d � 1, set

PpdC1 D Ppd o Pp D ¹.�1; : : : ; �pI�/ W �1; : : : ; �p 2 Ppd ; � 2 Ppº :

By [19, 4.1.22, 4.1.24], Ppd is a Sylow p-subgroup of Spd .
Let n 2 N. Let n D

Pr
iD0 nip

i , where 0 � ni < p for i 2 ¹0; : : : ; rº, and let
nr 6D 0 be the p-adic expansion of n. By [19, 4.1.22, 4.1.24], the Sylow p-sub-
groups of Sn are each conjugate to the direct product

Qr
iD0.Ppi /

ni . Hence if
we define Pn to be a Sylow p-subgroup of the Young subgroup

Qr
iD0.Spi /

ni ,
then Pn is a Sylow p-subgroup of Sn. The normalizer NSn.Pn/ of Pn in Sn is
denoted by Nn.

Whenever � D .�1; : : : ; �r/ 2 C .n/, we denote by P� a Sylow p-subgroup
of S�, defined so that P� D

Qr
iD1 P�i . In the special case when

� D .1m0 ; pm1 ; : : : ; .ps/ms / D .1; : : : ; 1„ ƒ‚ …
m0 copies

; p; : : : ; p„ ƒ‚ …
m1 copies

; : : : ; ps; : : : ; ps„ ƒ‚ …
ms copies

/;

where mi 2 N0 for each i , we have P� D
Qs
iD0.Ppi /

mi ; in particular, the group
P� has precisely mi orbits of size pi on the set ¹1; 2; : : : ; nº for each i . We write
N� D NSn.P�/.
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3 The Brauer quotients of signed Young permutation modules

In this section, we determine the Brauer quotients of signed Young permutation
modules with respect to Sylow subgroups of Young subgroups. Our main result is
Proposition 3.12; this generalizes [9, Proposition 1]. The description of the Brauer
quotients is combinatorial, using the .˛jˇ/-tableaux defined below.

Fix n 2 N and .˛jˇ/ 2 C 2.n/. Let ˛ D .˛1; : : : ; ˛r/ and ˇ D .ˇ1; : : : ; ˇs/.
The diagram Œ˛� � Œˇ� is the set consisting of the boxes .i; j / 2 N2 for i and j
such that either 1 � i � r and 1 � j � ˛i or rC1 � i � rCs and 1 � j � ˇi�r .
A box .i; j / is said to be in row i . The subset of Œ˛� � Œˇ� consisting of the boxes
belonging to the first r rows (respectively, the last s rows) is denoted by Œ˛� �¿
(respectively, ¿ � Œˇ�).

Definition 3.1. An .˛jˇ/-tableau T is a bijective function

T W Œ˛� � Œˇ�! ¹1; : : : ; nº:

For .i; j / 2 Œ˛� � Œˇ�, the .i; j /-entry of T is T.i; j /.

We represent an .˛jˇ/-tableau T by putting the .i; j /-entry of T in the box .i; j /
of the diagram Œ˛� � Œˇ�. Considering Œ˛� �¿ as the Young diagram Œ˛�, we denote
the ˛-tableau T.Œ˛� �¿/ by TC. Similarly, we denote the ˇ-tableau T.¿ � Œˇ�/
by T�. It will sometimes be useful to write

T D .TCjT�/:

The .˛jˇ/-tableau T is row standard if the entries in each row of T are increas-
ing from left to right, i.e. both TC and T� are row standard in the usual sense.
We denote by T˛jˇ the unique row standard .˛jˇ/-tableau such that for all i ,
j 2 ¹1; : : : ; nº, if i is in row a of T˛jˇ and j is in row b of T˛jˇ and i � j ,
then a � b. For example,

T.2;1/j.3/ D
1 2
3

4 5 6

where the thicker line separates the two parts of the tableau.
Let T .˛jˇ/ be the set of all .˛jˇ/-tableaux. If T 2 T .˛jˇ/ and g 2 Sn, then

we define g � T to be the .˛jˇ/-tableau obtained by applying g to each entry of T,
i.e. .g � T/.i; j / D g.T.i; j //. This defines an action of Sn on the set T .˛jˇ/.
The vector space FT .˛jˇ/ over F with basis T .˛jˇ/ is therefore a permutation
FSn-module.

For each T 2 T .˛jˇ/, let R.T/ � Sn be the row stabilizer of T in Sn, con-
sisting of those g 2 Sn such that the rows of T and g � T coincide as sets. Then
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R.T/ D R.TC/ �R.T�/, where R.TC/ and R.T�/ are the row stabilizers of
TC and T�, respectively, in the usual sense. Denote by U.˛jˇ/ the subspace of
FT .˛jˇ/ spanned by

¹T � sgn.g2/g1g2 � T W T 2 T .˛jˇ/; .g1; g2/ 2 R.TC/ �R.T�/º:

In fact, U.˛jˇ/ is an FSn-submodule of FT .˛jˇ/, since for all h 2 Sn and for
any .g1; g2/ 2 R.TC/ �R.T�/ and T 2 T .˛jˇ/ we have

h � .T � sgn.g2/g � T/ D h � T � sgn.hg2/hg � .h � T/ 2 U.˛jˇ/;

where g D g1g2, since hg 2 hR.T/ D R.h � T/ and hg2 2 R..h � T/�/.

Definition 3.2. For each T 2 T .˛jˇ/, we write

¹Tº D ¹.TCjT�/º

for the element TC U.˛jˇ/ 2 FT .˛jˇ/=U.˛jˇ/ and call it an .˛jˇ/-tabloid.

Note that g¹Tº D ¹g � Tº for all g 2 Sn and T 2 T .˛jˇ/. If T;T0 2 T .˛jˇ/

are such that T� D T0� and T0
C

is obtained by swapping two entries in the same
row of TC, then ¹Tº D ¹T0º. On the other hand, if TC D T0

C
and T0� is obtained

by swapping two entries in the same row of T�, then ¹T0º D �¹Tº. The graphical
representation of .˛jˇ/-tableaux is shown in Example 3.5 below.

Let

�.˛jˇ/ D
®
¹Tº W T is a row standard .˛jˇ/-tableau

¯
� FT .˛jˇ/=U.˛jˇ/:

It is clear that �.˛jˇ/ is an F -basis of FT .˛jˇ/=U.˛jˇ/. We write F�.˛jˇ/
for the FSn-module FT .˛jˇ/=U.˛jˇ/.

Lemma 3.3. Let .˛jˇ/ 2 C 2.n/.

(i) The FSn-module F�.˛jˇ/ is isomorphic to the signed Young permutation
M.˛jˇ/.

(ii) For any p-subgroup P of Sn, there exist coefficients a¹Tº 2 ¹˙1º for each
¹Tº 2 �.˛jˇ/ such that ®

a¹Tº¹Tº W ¹Tº 2 �.˛jˇ/º

is a p-permutation basis for F�.˛jˇ/ ŠM.˛jˇ/ with respect to P .

Proof. By the remarks after Definition 3.2 there is an isomorphism

F.˛/� sgn.ˇ/ Š F ¹T˛jˇ º

of F ŒS˛ �Sˇ �-modules. Since j�.˛jˇ/j D dimF M.˛jˇ/, part (i) follows from
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the characterization of induced modules in [1, Section 8, Corollary 3]. Part (ii) fol-
lows from Lemma 2.6, since, for all ¹Tº 2 �.˛jˇ/ and � 2 Sn, we have �¹Tº D
˙¹T0º for some ¹T0º 2 �.˛jˇ/.

In view of Lemma 3.3 (i), we shall identify M.˛jˇ/ with F�.˛jˇ/, so that
M.˛jˇ/ has the set of .˛jˇ/-tabloids as a basis.

The next corollary follows from Lemma 3.3 and Corollary 2.4.

Corollary 3.4. Let .˛jˇ/ 2 C 2.n/.

(i) Let P be a p-subgroup of Sn. The F ŒNSn.P /=P �-moduleM.˛jˇ/.P / has
a linear basis consisting of all the .˛jˇ/-tabloids ¹Tº that are fixed by P .

(ii) Let � D .1n0 ; pn1 ; : : : ; .pr/nr / be a partition of n. The group

N�=P� Š Sn0 � ..Np=Pp/ oSn1/ � � � � � ..Npr=Ppr / oSnr /

acts on the set of P�-fixed .˛jˇ/-tabloids by transitively permuting the
entries in P�-orbits of size pi according to Sni and, within each P�-orbit of
size pi , permuting its entries according toNpi=Ppi , for all i 2 ¹0; 1; : : : ; rº.

More explicitly, the basis in Corollary 3.4 (i) consists of all .˛jˇ/-tabloids ¹Tº
such that T is row standard and each row of T is a union of orbits of P on
¹1; : : : ; nº. This can be seen in the following example.

Example 3.5. Let p D 3. Consider the 3-subgroups

Q1 D h.1; 2; 3/; .4; 5; 6/; .7; 8; 9/i and Q2 D h.4; 5; 6/; .7; 8; 9/i

of S9. By Corollary 3.4 (i), since there are no ..2; 1/j.6//-tabloids fixed by Q1,
we haveM..2; 1/j.6//.Q1/ D 0. On the other hand,M.Q2/ has a basis consisting
of the ..2; 1/j.6//-tabloids8<: 1 2

3

4 5 6 7 8 9

9=; ;
8<: 1 3
2

4 5 6 7 8 9

9=; ;
8<: 2 3
1

4 5 6 7 8 9

9=;
where the bold line separates each TC from T�. Taking � D .1; 1; 1; 3; 3/, we have
P� D Q2 and

NS9.Q2/ D S3 � .NS3.P3/ oS2/ D S3 � .S3 oS2/:

The first factor S3 permutes the entries 1; 2; 3 of each tabloid without sign, and
the second factor S3 oS2 permutes the entries 4; 5; 6; 7; 8; 9 with sign. The sub-
group Q2 acts trivially on the tabloids. Thus if ¹Uº and ¹Vº are the first two
..2; 1/j.6//-tabloids above, then

ResNS9 .Q2/

S3oS2
.F ¹Uº/ Š 1sgn.3/˝2
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and .23/.45/¹Vº D �¹Uº. Note that the isomorphism above requires the sign
twist in the definition of cM for M an FSm-module that we commented on in
Section 2.5.

Given m 2 N, we define a 1-dimensional F ŒNk oSm�-module by

3sgn.Nk/
˝m
D ResSkoSm

NkoSm
1sgn.k/˝m:

Using this, we may now define three key families of modules. Let F denote
the bifunctor sending a pair .U jV / where U is an FSm1-module and V is an
FSm2-module to the F ŒC2 oSm�-module

IndC2oSm
C2o.Sm1�Sm2 /

�
InfC2oSm1

Sm1
.U /�

�
InfC2oSm2

Sm2
.V /˝ 1sgn.2/˝m2

��
:

Definition 3.6. Let k 2 N, let m 2 N0 and let .
 jı/ 2 C 2.m/. Let j
 j D m1 and
jıj D m2.

(i) We define Vk.
 jı/ to be the F ŒSk oSm�-module

IndSkoSm
.SkoSm1 /�.SkoSm2 /

�
InfSkoSm1

Sm1
.M 
 /�

�
InfSkoSm2

Sm2
.M ı/˝1sgn.k/˝m2

��
(ii) We define Wk.
 jı/ to be the F Œ.Nk=Pk/ oSm�-module obtained from

ResSkoSm
NkoSm

Vk.
 jı/

Š IndNkoSm
Nko.Sm1�Sm2 /

�
InfNkoSm1

Sm1
.M 
 /�

�
InfNkoSm2

Sm2
.M ı/˝3sgn.Nk/

˝m2
��

via the canonical surjection

Nk oSm ! .Nk oSm/=.Pk/
m
Š .Nk=Pk/ oSm:

(iii) For k � 2, we define W k.
 jı/ to be the F ŒC2 oSm�-module F .M 
 jM ı/.
We define

W 1.
 jı/ D InfC2oSm
Sm

W1.
 jı/:

Note thatWk.
 jı/may equivalently be defined to be theF Œ.Nk=Pk/oSm�-mod-
ule obtained from

IndNkoSm
Nko.S
�Sı/

�
F.Nk oS
 /�3sgn.Nk/

˝ı
�

(3.1)

via the canonical surjection as in Definition 3.6 (ii). We have

W1.
 jı/ D V1.
 jı/ ŠM.
 jı/

as FSm-modules. When k � 2, the F ŒC2 oSm�-module W k.˛jˇ/ is isomorphic
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to Vk.˛jˇ/, considered as an F ŒC2 oSm�-module via the canonical surjection

Sk oSm ! .Sk oSm/=A
m
k Š .Sk=Ak/ oSm Š C2 oSm:

Similarly, we have thatW k.˛jˇ/ is isomorphic to ResSkoSm
NkoSm

Vk.˛jˇ/, considered
as an F ŒC2 oSm�-module via the canonical surjection

Nk oSm ! .Nk oSm/=.NAk .Pk//
m
Š C2 oSm:

Lemma 3.7. For all k � 2 and all .
 jı/ 2 C 2.m/, we have

W k.
 jı/ Š V2.
 jı/;

as F ŒC2 oSm�-modules.

Proof. It suffices to show that 1sgn.k/˝m2 Š 1sgn.2/˝m2 asF ŒC2 oSm2 �-modules,
where sgn.k/ is regarded as an FC2-module via the canonical surjection

Sk ! Sk=Ak Š C2:

This is clear since sgn.k/ Š sgn.2/ as FC2-modules in this regard.

The following notation will be used to describe the direct summands of the
Brauer quotients of the signed Young permutation modules M.˛jˇ/.

Notation 3.8. Let .˛jˇ/ 2 C 2.n/ and �D .1n0 ; pn1 ; .p2/n2 ; : : : ; .pr/nr / 2C .n/.
We write ƒ

�
.˛jˇ/; �

�
for the set consisting of all pairs of tuples of compositions

.
jı/ D .
.0/;
.1/; : : : ;
.r/jı.0/; ı.1/; : : : ; ı.r// such that:

(i) ˛ D
Pr
iD0 p

i
.i/, ˇ D
Pr
iD0 p

iı.i/, and

(ii) j
.i/j C jı.i/j D ni for each i 2 ¹0; : : : ; rº.

Let .˛jˇ/ 2 C 2.n/. Recall that �.˛jˇ/ is the basis of M.˛jˇ/ consisting of
all .˛jˇ/-tabloids. As remarked after Corollary 3.4, an F -basis of M.˛jˇ/.P�/ is
obtained by taking those .˛jˇ/-tabloids ¹.TCjT�/º 2 �.˛jˇ/ such that the rows
of TC and T� are unions of the orbits ofP�. Given such a basis element ¹.TCjT�/º
and i 2 ¹0; : : : ; rº, let 
.i/j and ı.i/

k
be the numbers of P�-orbits of length pi in

rows j and k of TC and T�, respectively. For each i 2 ¹0; : : : ; rº, let


.i/ D
�


.i/
1 ;


.i/
2 ; : : :

�
;

ı.i/ D
�
ı
.i/
1 ; ı

.i/
2 ; : : :

�
:

Note that j
.i/j C jı.i/j D ni for each i , and so

.
.0/;
.1/; : : : ;
.r/jı.0/; ı.1/; : : : ; ı.r// 2 ƒ
�
.˛jˇ/; �

�
:



On signed p-Kostka numbers 655

We say that the .˛jˇ/-tabloid ¹.TCjT�/º is of �-type .
jı/. For example, if p D 3,
n D 9 and � D .13; 32/, so P� D h.4; 5; 6/; .7; 8; 9/i, then the ..3; 3/j.3//-tabloid8<: 1 2 3

7 8 9

4 5 6

9=;
has �-type ..3/; .0; 1/j¿; .1//.

We denote the set of all .˛jˇ/-tabloids of �-type .
jı/ by �..˛jˇ/; �/.
jı/.
Then the disjoint union

�
�
.˛jˇ/; �

�
D

[
.
jı/2ƒ..˛jˇ/;�/

�
�
.˛jˇ/; �/.
jı/ (3.2)

is an F -basis of M.˛jˇ/.P�/. Thus, as F -vector spaces, we have

M.˛jˇ/.P�/ D F�
�
.˛jˇ/; �

�
D

M
.
jı/2ƒ..˛jˇ/;�/

F�
�
.˛jˇ/; �

�
.
jı/

: (3.3)

It is clear that (3.3) is in fact a decomposition of FN�-modules, sinceN� permutes
orbits of P� of the same size as blocks for its action, and therefore preserves the
�-type in its action on .˛jˇ/-tabloids. Furthermore, P� fixes all .˛jˇ/-tabloids
having a specified �-type. Therefore we obtain the following lemma.

Lemma 3.9. Let .˛jˇ/ 2 C 2.n/ and let � D .1n0 ; pn1 ; : : : ; .pr/nr / be a partition
of n. The Brauer quotient of M.˛jˇ/ with respect to the subgroup P� has the
following direct sum decomposition into F ŒN�=P��-modules:

M.˛jˇ/.P�/ D
M

.
jı/2ƒ..˛jˇ/;�/

F�..˛jˇ/; �/.
jı/:

In view of Lemma 3.9, to understand the Brauer quotient M.˛jˇ/.P�/ of the
signed Young permutation module M.˛jˇ/, it suffices to understand each of the
F ŒN�=P��-modules F�..˛jˇ/; �/.
jı/.

Definition 3.10. Suppose that .˛jˇ/ 2 C 2.n/ and that � D .1n0 ; pn1 ; : : : ; .pr/nr /
is a partition of n. Let the orbits of P� of size pi be Oi;1; : : : ;Oi;ni . Let

‚ W �
�
.˛jˇ/; �

�
!

[
.
jı/2ƒ..˛jˇ/;�/

rY
iD0

�.
.i/jı.i//

be the bijective function defined as follows. Suppose that ¹Tº 2 �.˛jˇ/ is of
�-type .
jı/. For each 0 � i � r , let ¹Tiº be the .
.i/jı.i//-tabloid such that Ti
is row standard, and row k of .Ti /C (respectively, .Ti /�) contains j if and only if
row k of TC (respectively, T�) contains the orbit Oi;j . Define

‚.¹Tº/ D .¹Tiº/iD0;1;:::;r :
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We note that, by the definition of P�,

Oi;j D

´
.j � 1/pi C 1C

i�1X
`D0

n`p
`; : : : ; jpi C

i�1X
`D0

n`p
`

µ
for i 2 ¹0; : : : ; rº and j 2 ¹1; : : : ; niº. Clearly, the bijection ‚ in Definition 3.10
restricts to a bijection, also denoted ‚,

‚ W �
�
.˛jˇ/; �

�
.
jı/

!

rY
iD0

�.
.i/jı.i//:

Since j�.
.i/jı.i//j D dimF M.
.i/jı.i// D ŒSni W .S
.i/ �Sı.i//�, we obtain
the following lemma.

Lemma 3.11. Let .˛jˇ/ 2 C 2.n/, � D .1n0 ; pn1 ; : : : ; .pr/nr / such that j�j D n,
and let .
jı/ 2 ƒ

�
.˛jˇ/; �

�
. Set

H D

rY
iD0

Npi o .S
.i/ �Sı.i// D

rY
iD0

.Npi oS
.i// � .Npi oSı.i// � N� :

Then j�..˛jˇ/; �/.
jı/j D ŒN� W H�.

We have reached the main result of this section.

Proposition 3.12. Suppose that .˛jˇ/ 2 C 2.n/ and that

� D .1n0 ; pn1 ; : : : ; .pr/nr / 2 C .n/:

Regarded as an F ŒN�=P��-module, the Brauer quotientM.˛jˇ/.P�/ of the signed
Young permutation module M.˛jˇ/ with respect to P� satisfies

M.˛jˇ/.P�/ Š
M

.
jı/2ƒ..˛jˇ/;�/

r

�
iD0

Wpi .

.i/
jı.i//:

Proof. Recall that for each pair .�j�/ 2 C 2.n/, we have defined a row-standard
.�j�/-tableau T�j� immediately after Definition 3.1. Fix .
jı/ 2 ƒ..˛jˇ/; �/ and
let Z D F�..˛jˇ/; �/.
jı/. By Lemma 3.9, it suffices to show that

Z Š
r

�
iD0

Wpi .

.i/
jı.i//

as FN�-modules with P� acting trivially, or equivalently, by (3.1), that

Z Š
r

�
iD0

Ind
N
pi
oSni

N
pi
o.S
.i/�Sı.i/ /

�
F.Npi oS
.i//�3sgn.Npi /

˝ı.i/
�
: (3.4)
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Let ¹Sº 2 �
�
.˛jˇ/; �

�
.
jı/

be the unique .˛jˇ/-tabloid such that

‚.¹Sº/ D .T

.0/jı.0/ ;T


.1/jı.1/ ; : : : ;T

.r/jı.r// 2

rY
iD0

�.
.i/jı.i//:

Using the N�-action on Z, we observe that Z is a cyclic FN�-module generated
by ¹Sº. Let X be the subspace of Z linearly spanned by ¹Sº. By the definition
of ¹Sº, the subspace X is an FH -module, where

H D

rY
iD0

Npi o .S
.i/ �Sı.i// D

rY
iD0

�
.Npi oS
.i// � .Npi oSı.i//

�
� N�;

and there is an isomorphism

X Š
�
F.N1 oS
.0//� 2sgn.N1/˝ı

.0/�
� � � ��

�
F.Npr oS
.r//�3sgn.Npr /˝ı

.r/�
of FH -modules. Since dimF Z D ŒN� W H� dimF X by Lemma 3.11, we have
Z Š IndN�H X by the characterization of induced modules in [1, Section 8, Corol-
lary 3]. Hence we obtain the isomorphism (3.4) as desired.

4 Young modules and signed Young modules

In this section we define Young modules and signed Young modules in the setting
of the symmetric group and prove Theorem 1.1.

4.1 Vertices

As a first step we identify the possible vertices of summands of signed Young
modules. Recall from Section 2.6 that Pk denotes a Sylow subgroup of Sk and, if
� is a partition of n, then P� denotes a Sylow subgroup of the Young subgroup S�

of Sn. We require the following lemma from [9]; a proof, slightly shorter than the
one in [9], is included to make the article self-contained.

Lemma 4.1 (Erdmann [9, Lemma 1]). Let G be a finite group and let M be
a p-permutation FG-module. If P and eP are p-subgroups of G such that P < eP
and dimF M.P / D dimF M.eP /, then no indecomposable summand of M has
vertex P .

Proof. Suppose, for a contradiction, that U is such a summand. Let M D U ˚ V
where V is a complementary FG-module. By Corollary 2.4, we have U.P / 6D 0
and U.eP / D 0. Thus

M.eP / D U.eP /˚ V.eP / D V.eP /
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and
M.P / D U.P /˚ V.P /:

This is a contradiction, since taking a p-permutation basis for V and applying
Corollary 2.4 shows that dimF V.P / � dimF V.eP /.
Proposition 4.2. Let .˛jˇ/ 2 C 2.n/. If P is a vertex of an indecomposable sum-
mand of M.˛jˇ/, then there exists � D .1n0 ; pn1 ; : : : ; .pr/nr / 2 C .n/ such that
P is conjugate in Sn to P�.

Proof. Let H be the Young subgroup of Sn having the same orbits as P on
¹1; : : : ; nº and let eP be a Sylow p-subgroup of H . Note that eP has the same
orbits on ¹1; : : : ; nº as P : suppose that each subgroup has exactly ni orbits of
size pi for each i 2 ¹0; : : : ; rº, so eP is conjugate in Sn to P�. It suffices to prove
that P D eP .

Let ¹Tº be an .˛jˇ/-tabloid fixed by P . As remarked following Corollary 3.4,
each row of T is a union of orbits of P . Therefore each row is a union of orbits
of eP , and so if g 2 eP , then g¹Tº D ˙¹Tº. Since g has p-power order, we see that
g¹Tº D ¹Tº. It now follows from Corollary 3.4 that

dimF M.˛jˇ/.P / D dimF M.˛jˇ/.eP /:
By Lemma 4.1 we have P D eP , as required.

Combining Proposition 3.12 and Proposition 4.2, we see that the Broué
correspondents of the non-projective indecomposable summands of M.˛jˇ/ are
certain outer tensor products of the projective indecomposable summands of the
F Œ.Npi=Ppi / oSm�-modules Wpi .
 jı/ in Definition 3.6. In fact, it is most con-
venient to factor out a further subgroup that acts trivially, and consider projective
summands of the F ŒC2 oSm�-modules Wpi .
 jı/.

4.2 Projective summands ofW k.
jı/

Fix k 2 N and m1; m2 2 N0. Let m D m1 Cm2. Recall from Section 2.5 that
if ˛ 2 RP.n/, that is, ˛ is a p-restricted partition of n, then P ˛ denotes the
projective cover of the simple FSn-module D˛.

We remind the reader that the bifunctor F was defined just before Defini-
tion 3.6.

Definition 4.3. Let .˛jˇ/ 2 RP2.m/. We define Q.˛jˇ/ D F .P ˛jP ˇ /.

Example 4.10 gives an example of these modules. Note that each tensor factor
is projective, so each Q.˛jˇ/ is projective.
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Lemma 4.4. The F ŒC2 oSm�-modules F .D˛jDˇ / for every .˛jˇ/ 2 RP2.m/

form a complete set of non-isomorphic simple F ŒC2 oSm�-modules. Moreover, the
F ŒC2 oSm�-module Q.˛jˇ/ is the projective cover of F .D˛jDˇ / and the mod-
ules Q.˛jˇ/ for .˛jˇ/ 2 RP2.m/ form a complete set of non-isomorphic inde-
composable projective modules for F ŒC2 oSm�.

Proof. The first claim follows from the construction of simple modules for wreath
products stated in [19, Theorem 4.34]. For the second, note that by functoriality,
there is a surjection Q.˛jˇ/ D F .P ˛jP ˇ /! F .D˛jDˇ /. Hence the projective
F ŒC2 oSm�-module Q.˛jˇ/ has the projective cover of F .D˛jDˇ / as a sum-
mand. Since the inertial group of

F .P ˛jP ˇ / D InfC2oSm1
Sm1

.P ˛/�
�

InfC2oSm2
Sm2

.P ˇ /˝ 1sgn.2/˝m2
�

is .C2 oSm1/ � .C2 oSm2/, it follows from [2, Proposition 3.13.2] that Q.˛jˇ/
is indecomposable. Therefore Q.˛jˇ/ is the projective cover of F .D˛jDˇ /.

Let G be a finite group. By [2, Section 3.11], we may associate a character to
a p-permutation FG-module M by taking a p-modular system .K;O; F / com-
patible with F and an OG-module MO whose p-modular reduction is M . The
ordinary character ofM is then the character of theKG-moduleK ˝O MO . IfM
is projective and indecomposable, the ordinary character of M may equivalently
be defined by Brauer reciprocity (see for instance [25, Section 15.4]).

Proposition 4.5. Let .
 jı/ 2P2.m/, where j
 j D m1 and jıj D m2. Each inde-
composable projective summand of W k.
 jı/ is isomorphic to some Q.˛jˇ/,
where .˛jˇ/ 2 RP2.m/ satisfies

(i) j˛j D m1 and jˇj D m2,

(ii) ˛ D 
 and ˇ D ı.

Proof. By Lemma 4.4, each indecomposable projective summand of W k.
 jı/ is
isomorphic to some Q.˛jˇ/. By the ‘wedge’ shape of the decomposition matrix
of Sn with columns labelled by p-restricted partitions (see for instance [20, Theo-
rem 5.2]) and Brauer reciprocity, the ordinary character of P ˛ contains the irredu-
cible character �˛ exactly once. Hence the ordinary character of Q.˛jˇ/ contains
the character

�.˛jˇ/ D IndC2oSm
C2o.Sm1�Sm2 /

�
InfC2oSm1

Sm1
.�˛/ �

�
InfC2oSm2

Sm2
.�ˇ /˝ 1sgn.2/˝m2

��
defined in Section 2.5 exactly once.

We now consider when the ordinary character ofW k.
 jı/ contains �.˛jˇ/. The
restriction of W k.
 jı/ to the base group in the wreath product C2 oSm is a direct
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sum of 1-dimensional submodules. In each such submodule, m1 of the factors in
the product Cm2 act trivially and m2 of the factors act as sgn.2/. It follows by
basic Clifford theory that the ordinary character of W k.
 jı/ contains the char-
acter �.˛jˇ/ only if j˛j D m1 and jˇj D m2. By Young’s rule (see for instance
[17, Theorem 13.13]), the ordinary character of M 
 contains �˛ only if ˛ D 
 ,
and similarly the ordinary character of M ı contains �ˇ only if ˇ D ı. It follows
that if Q.˛jˇ/ is a summand of W k.
 jı/ then ˛ 2P.m1/, ˇ 2P.m2/, ˛ D 

and ˇ D ı.

4.3 Definition of signed Young modules

We define signed Young modules as the Broué correspondents of tensor products
of suitable inflations of the modules Q.˛jˇ/. To make this precise, we need the
three further families of modules defined below: their definition follows the same
pattern as the p-permutation modules Vk.
 jı/, Wk.
 jı/ and W k.
 jı/ in Defini-
tion 3.6.

Definition 4.6. Let k 2 N, let m 2 N0, and let .˛jˇ/ 2 RP2.m/. Let m1 D j˛j
and m2 D jˇj. The F ŒSk oSm�-module Rk.˛jˇ/ is defined by

Rk.˛jˇ/ D F .P ˛jP ˇ /:

By convention,

Rk.¿jˇ/ D InfSkoSm2
Sm2

.P ˇ /˝ 1sgn.k/˝m2 ;

and similarly for Rk.˛j¿/. Furthermore if m D 0, then Rk.¿j¿/ is the trivial
FS0-module. If k D 1, then we identify Sk oSm with Sm and get

R1.˛jˇ/ D IndSm
Sm1�Sm2

�
P ˛ � .P ˇ ˝ sgn.m2//

�
:

Recall from Section 2.6 that Pk is a fixed Sylow p-subgroup of Sk and that
Nk D NSk .Pk/.

Definition 4.7. Let k 2 N, let m 2 N0, and let .˛jˇ/ 2 RP2.m/. Let Qk.˛jˇ/
be the F Œ.Nk=Pk/ oSm�-module defined by

Qk.˛jˇ/ D ResSkoSm
NkoSm

Rk.˛jˇ/

considered as an F Œ.Nk=Pk/ oSm�-module via the canonical surjection

Nk oSm ! .Nk oSm/=.Pk/
m
Š .Nk=Pk/ oSm:

Again if k D 1, we identify N1 oSm with Sm and we have

Q1.˛jˇ/ D R1.˛jˇ/:
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Since .Ak/m acts trivially on Rk.˛jˇ/, we see that .NAk .Pk/=Pk/
m acts trivially

on Qk.˛jˇ/. It is clear that

Qk.˛jˇ/ Š IndNkoSm
Nko.Sm1�Sm2 /

�
InfNkoSm1

Sm1
.P ˛/

� .InfNkoSm2
Sm2

.P ˇ /˝3sgn.Nk/
˝m2/

�
;

(4.1)

again regarded as an F Œ.Nk=Pk/ oSm�-module by this canonical surjection.

Definition 4.8. Let k 2 N, let m 2 N0, and let .˛jˇ/ 2 RP2.m/. For k � 2, let
Qk.˛jˇ/ be the F ŒC2 oSm�-module obtained from Qk.˛jˇ/ via the canonical
surjection

.Nk=Pk/ oSm ! ..Nk=Pk/ oSm/=.NAk .Pk/=Pk/
m
Š C2 oSm:

We define the F ŒC2 oSm�-module Q1.˛jˇ/ by

Q1.˛jˇ/ D InfC2oSm
Sm

Q1.˛jˇ/:

The following lemma justifies the notation Qk.˛jˇ/ for the projective modules
just defined.

Lemma 4.9. Let k � 2 and let .˛jˇ/ 2 RP2.m/, where m 2 N0. Then

Qk.˛jˇ/ Š Q.˛jˇ/ Š R2.˛jˇ/

as F ŒC2 oSm�-modules.

Proof. The first isomorphism is clear from the definitions and the second follows
as in Lemma 3.7.

We pause to give a small example showing the exceptional behaviour when
k D 1.

Example 4.10. Let p D 3 and let k � 2. Let " D InfSkoS3
S3

.sgn.3//. There are four
mutually non-isomorphic 1-dimensional simple F ŒSk oS3�-modules, namely

1F.k/˝3; 1sgn.k/˝3; 1F.k/˝3 ˝ "; 1sgn.k/˝3 ˝ ";

where the trivial module appears as 1F.k/˝3 ˝ ". The projective covers of these
modules are

Rk..1; 1; 1/j¿/; Rk.¿j.2; 1//; Rk..2; 1/j¿/; Rk.¿j.1; 1; 1//;

respectively. Quotienting out by the trivial action of the group Ak , the correspond-
ing modulesQ.˛jˇ/ for F ŒC2 oS3� are precisely the projective covers of the four
1-dimensional simple modules for F ŒC2 oS3�. The four remaining simple mod-
ules for F ŒC2 oS3�, each projective; by Lemma 4.4, they are isomorphic to the
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modules Q.˛jˇ/ where both ˛ and ˇ are non-empty. By contrast, when k D 1,
identifying S1 oS3 with S3 as described after Definition 4.6, we have

Q1..1; 1; 1/j¿/ Š Q1.¿j.2; 1// Š P .1;1;1/ ŠM .2;1/
˝ sgn

and
Q1..2; 1/j¿/ Š Q1.¿j.1; 1; 1// Š P .2;1/ ŠM .2;1/:

We are finally ready to define signed Young modules.

Definition 4.11. Let .�jp�/ 2 RP2.n/. Let

� D
X
i�0

pi�.i/ and � D
X
i�0

pi�.i/

be the p-adic expansions of � and �, as defined in (2.1). Let n0 D j�.0/j and let
ni D j�.i/j C j�.i � 1/j for each i 2 N. Let r be maximal such that nr 6D 0 and
let � D .1n0 ; pn1 ; : : : ; .pr/nr /. We define the signed Young module Y.�jp�/ to
be the unique (up to isomorphism) FSn-module V such that

V.P�/ Š Q1
�
�.0/j¿

�
�Qp

�
�.1/j�.0/

�
� � � ��Qpr

�
�.r/j�.r � 1/

�
:

We define a Young module to be a signed Young module of the form Y.�j¿/.

The isomorphism above is an isomorphism of projective F ŒSn0 � ..Np=Pp/ o

Sn1/� � � � � ..Npr=Ppr / oSnr /�-modules. Observe that P� is trivial if and only if
� is p-restricted and � D ¿; in this caseQ1.�.0/j¿/ is regarded as a Sn-module
by identifying N1 oSn with Sn, and since � D �.0/ we have

Y.�j¿/ D Q1.�j¿/ D P �:

The following proposition gives part of Theorem 1.1 (i).

Proposition 4.12. The following statements hold.

(i) If .˛jˇ/ 2P2.n/, then M.˛jˇ/ is a direct sum of signed Young modules.

(ii) If ˛ 2P.n/, then M ˛ is a direct sum of Young modules.

Proof. Let .˛jˇ/ 2P2.n/ and let V be an indecomposable summand ofM.˛jˇ/.
By Proposition 4.2 there exists � D .1m0 ; pm1 ; : : : ; .pr/mr / 2 C .n/ such that P�
is a vertex of V . Recall that

N�=P� Š Sn0 � ..Np=Pp/ oSn1/ � � � � � ..Npr=Ppr / oSnr /:

By Proposition 3.12, there exists .
jı/ 2 ƒ..˛jˇ/; �/ such that the projective
F ŒN�=P��-module V.P�/ is a direct summand of

W1.

.0/
jı.0//�Wp.
.1/jı.1//� � � ��Wpr .
.r/jı.r//:
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By Lemmas 4.4 and 4.9 there exist partitions�.0/; : : : ; �.r/ and�.0/; : : : ; �.r�1/
such that

V.P�/ D Q1
�
�.0/

�
�Qp

�
�.1/j�.0/

�
� � � ��Qpr

�
�.r/j�.r � 1/

�
:

By Theorem 2.5, V Š Y.�jp�/, where � D
Pr
iD0 p

i�.i/ and� D
Pr�1
iD0 p

i�.i/.
This proves part (i). For (ii), observe that if ˇ D ¿, we have ı.i/ D ¿ for each i ,
and so �.i/ D ¿ for each i .

4.4 Column symmetrization of .˛jˇ/-tabloids

To deal with the projective summands of signed Young permutation modules, we
require the following corollary of the key lemma used by James to prove his
Submodule Theorem in [17]. Given a tableau t with entries from a set O, let
Ct � SO be the group of permutations which fix the columns of t setwise. Set
�t D

P
g2Ct

sgn.g/g.

Proposition 4.13. Let � 2P.n/ and let t be a �-tableau. In any direct sum decom-
position ofM� into indecomposable modules there is a unique summand U � such
that �tU

� 6D 0. Moreover, if ˛ 2P.n/, then �tU
˛ D 0 unless � D ˛.

Proof. This follows immediately from [17, Lemma 4.6].

By the Krull–Schmidt Theorem, the U � are well-defined up to isomorphism.
It is clear that U ˛ Š U ˇ if and only if ˛ D ˇ.

We also need the following generalization of part of James’ lemma.

Lemma 4.14. Let .˛jˇ/ 2 C 2.n/ and let T D .TCjT�/ be an .˛jˇ/-tableau. Let
� 2P.n/ and let t be a �-tableau. If �t¹Tº 6D 0, then .�j¿/ D .˛jˇ/.

Proof. Let O be the set of entries of TC. Let H D SO \S�0 and let O1; : : : ;Os
be the orbits of H on O, ordered so that jO1j � : : : � jOsj. Let

� D .jO1j; : : : ; jOsj/
0
2P.j˛j/:

The j th largest orbit of H has size at most �0j . Therefore we have �0j � �
0
j for

each j 2 ¹1; : : : ; sº, and so � is a subpartition of �. It immediately follows that

kX
iD1

�i �

kX
iD1

�i (4.2)

for all k 2 N. (By our standing convention, �i D 0 if i > `.�/.)
Let t? be a �-tableau having the entries of Oj in its j th column. Observe that

Ct? � Ct. Choose g1; : : : ; gs 2 Ct such that Ct D g1Ct? [ � � � [ gsCt? , where
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the union is disjoint. We have

�t D .sgn.g1/g1 C � � � C sgn.gs/gs/�t? :

Since �t¹Tº 6D 0, we have �t?¹Tº 6D 0. Since Ct? fixes the entries in T�, it follows
that �t?¹TCº 6D 0. The argument used to prove [17, Lemma 4.6] now shows that
any two entries in the same row of ¹TCº lie in different columns of t?, and so
� D ˛. Hence, by (4.2), we have .�j¿/ D .˛jˇ/, as required.

4.5 Proof of Theorem 1.1

For convenience we repeat the statement of this theorem below.

Theorem 1.1 (Donkin [7]). There exist indecomposable FSn-modules Y.�jp�/
for .�jp�/ 2P2.n/ with the following properties:

(i) if .˛jˇ/ 2P2.n/, then M.˛jˇ/ is isomorphic to a direct sum of modules
Y.�jp�/ for .�jp�/ 2P2.n/ such that .�jp�/ D .˛jˇ/,

(ii) ŒM.�jp�/ W Y.�jp�/� D 1,

(iii) if � D
Pr
iD0 p

i�.i/ and � D
Pr�1
iD0 p

i�.i/ are the p-adic expansions of �
and �, as defined in (2.1), then Y.�jp�/ has as a vertex a Sylow p-subgroup
of the Young subgroup S�, where � is the partition of n having exactly
j�.i/j C j�.i � 1/j parts of size pi for each i 2 ¹0; : : : ; rº.

We shall prove the theorem by showing that parts (i), (ii) and (iii) of Theo-
rem 1.1 hold when Y.�jp�/ is as defined in Definition 4.11. In fact, part (iii)
holds by definition, so we may concentrate on parts (i) and (ii).

Proof of Theorem 1.1. We work by induction on n 2 N0. If n < p, then FSn

is semisimple and the modules Y.�j¿/ for � 2P.n/ form a complete set of
simple FSn-modules. Hence parts (i) and (ii) follow from Proposition 4.5. Now
let n � p.

We first deal with non-projective summands. Let .�jp�/ 2P2.n/ and suppose
that either � is not p-restricted or � 6D ¿. Let n0 D j�.0/j and let

ni D j�.i/j C j�.i � 1/j for i 2 N.

Let � D .1n0 ; pn1 ; : : : ; .pr/nr /.
By Theorem 2.5 and Proposition 3.12, ŒM.˛jˇ/ W Y.�jp�/� is equal to the sum

of the following products over all .
jı/ 2 ƒ..˛jˇ/; �/:

�
W1.


.0/
jı.0// W P �.0/

� rY
iD1

�
Wpi .


.i/
jı.i// W Qpi

�
�.i/j�.i � 1/

��
:
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Suppose the product is non-zero for .
jı/ 2 ƒ..˛jˇ/; �/. Then P �.0/ is a direct
summand ofW1.
.0/jı.0//ŠM.
.0/jı.0//. SinceP �.0/ D Y.�.0/j¿/, it follows
from the inductive hypothesis that .�.0/j¿/ D .
.0/jı.0//. Similarly we have that
Qpi .�.i/j�.i � 1// is a direct summand ofWpi .


.i/jı.i// for each i 2 ¹1; : : : ; rº.
By Proposition 4.5, we have �.i/ D 
.i/ and �.i � 1/ D ı.i/ for each such i .
Hence

� � �.0/ D

rX
iD1

pi�.i/ D
rX
iD1

pi
.i/ D ˛ � 
.0/ (4.3)

and

p� D

rX
iD1

pi�.i � 1/ D
rX
iD1

piı.i/ D ˇ � ı.0/: (4.4)

Hence � D ˛ � 
.0/ C �.0/ D ˛ and

j�j C

jX
iD1

p�i D j˛j C jı
.0/
j C

jX
iD1

p�i

� j˛j C jı.0/j C

jX
iD1

.ˇ � ı.0//i � j˛j C

jX
iD1

ˇi

for all j 2 N. Therefore .�jp�/ D .˛jˇ/. By Proposition 4.12, every summand of
M.˛jˇ/ is isomorphic to some Y.�jp�/, so this proves part (i) in the non-projec-
tive case. If .˛jˇ/ D .�jp�/, then, by divisibility considerations, 
.0/ D �.0/ and
ı.0/ D ¿. Moreover, equality holds in both (4.3) and (4.4), so we have 
.i/ D �.i/
and ı.i/ D �.i � 1/ for each i 2 ¹1; : : : ; rº. Conversely, if 
 and ı are defined in
this way, then the product is 1. This proves part (ii) in the non-projective case.

We now deal with the projective summands. By Proposition 4.12, if ˛ 2P.n/,
then M ˛ is a direct sum of modules Y.�j¿/ for � 2P.n/. The argument so far
shows that if ˛ is not p-restricted, then Y.˛j¿/ is a summand ofM ˛, and Y.˛j¿/
is a summand of M 
 only if ˛ D 
 . Therefore, inductively working down the
dominance order on partitions, we see that, for each such ˛, the submodule U ˛

in Proposition 4.13 is Y.˛j¿/. By counting, the remaining U ˛ for ˛ 2 RP.n/

are the modules Y.�j¿/ for � 2 RP.n/. Again working inductively down the
dominance order of partitions, it follows from Proposition 4.5 that U ˛ D Y.˛j¿/
for each ˛ 2 RP.n/. This proves part (i) in the projective case when ˇ D ¿, and
also proves part (ii) in the projective case.

Finally, suppose that � is p-restricted and Y.�j¿/ is a direct summand of
M.˛jˇ/. Let t be a �-tableau. By Proposition 4.12, we have �tM.˛jˇ/ 6D 0. Hence
there exists an .˛jˇ/-tabloid ¹Tº such that �t¹Tº 6D 0. By Lemma 4.14 we have
.�j¿/ D .˛jˇ/. This completes the proof of part (i) in the projective case.
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5 Applications of Theorem 1.1

5.1 Equivalent definitions

We observed in the introduction that since signed Young modules are characterized
by Theorem 1.1, our definition of signed Young modules agrees with Donkin’s
in [7]. Similarly Theorem 1.1 characterizes the Young module Y.�j¿/ as the
unique summand ofM� appearing inM� only if � D �. By [18, Theorem 3.1 (i)],
James’ Young modules admit the same characterisation. The two definitions there-
fore agree. In [10], Erdmann and Schroll consider Young modules for finite gen-
eral linear groups. Adapting their proof to symmetric groups (this is mentioned as
a possibility in [10], as a way to correct [9]), their definition of the Young modules
uses the characterization in Proposition 4.12. Our proof of Theorem 1.1 shows
these definitions agree; of course this also follows from the alternative characteri-
zation just mentioned.

Remark 5.1. (i) The counting argument used in our proof of the projective case of
Theorem 1.1 is motivated by similar counting arguments used in [10]; the authors
of [10] thank Burkhard Külshammer for suggesting this approach.

(ii) We have assumed throughout that F has odd prime characteristic p. It is
possible to construct Young modules when p D 2 and to prove the analogue of
Theorem 1.1 by adapting (and simplifying) the approach herein.

(iii) The analogue of signed Young modules for the finite general linear group
GLn.Fq/ are the linear source modules induced from powers of the determinant
representation of parabolic subgroups of GLn.Fq/. These modules seem worthy
of study, especially given the difficulty of working directly with Specht modules
for GLn.Fq/.

5.2 Klyachko’s formula and other applications

The following corollary generalizes Klyachko’s formula to signed Young modules.
It is proved in the first step of our proof of Theorem 1.1; alternatively it follows
from this theorem by taking Broué correspondents.

Corollary 5.2. If .˛jˇ/ and .�jp�/ 2P2.n/, then

ŒM.˛jˇ/ W Y.�jp�/� D
X

.
jı/2ƒ..˛jˇ/;�/

�
W1.


.0/
jı.0// W Y

�
�.0/j¿

��
�

rY
iD1

�
Wpi .


.i/
jı.i// W Qpi

�
�.i/j�.i � 1/

��
:
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We remark that the reduction formula for signed p Kostka numbers in Corol-
lary 5.2 has previously been obtained by Danz, the first and the second authors
in [5].

The proof of the following lemma is very easy and is left to the reader. Recall
that the notation � for the concatenation of two compositions was defined in
Section 2.3.

Lemma 5.3. Let
� D .1m0 ; pm1 ; : : : ; .pr/mr /;


 D .1n0 ; pn1 ; : : : ; .ps/ns /;

be partitions of m and n, respectively, and let k > r . Then

P��pk
 D P� � Ppk
 ;

NSmCpkn.P� � Ppk
 / D NSm.P�/ �NSpkn.Ppk
 /;

N��pk
=P��pk
 D .N�=P�/ � .Npk
=Ppk
 /:

Let .�jp�/ 2P2.n/. Suppose that the p-adic expansions of � and � are

� D
X
i�0

pi�.i/ and � D
X
i�0

pi�.i/;

respectively. Let �.�1/ D ¿. If r is maximal such that j�.r/j C j�.r � 1/j 6D 0,
then we set

p̀.�jp�/ D r: (5.1)

Lemma 5.4. Let .�jp�/ 2P2.n/ and let P� be a vertex of the signed Young
module Y.�jp�/.

(i) The signed Young module Y.p�jp2�/ has vertex Pp�.

(ii) Suppose that k > p̀.�jp�/ and let .˛jˇ/ 2P2.m/ for some m 2 N. Then
Y.�C pk˛ jp.�C pkˇ// has vertex P� � Ppk
 , where P
 is a vertex of
Y.˛jpˇ/. Moreover, Y.�jp�/.P�/� Y.pk˛jpkC1ˇ/.Ppk
 / is isomorphic
to the Broué correspondent Y.�C pk˛jp.�C pkˇ//.P� � Ppk
 /.

Proof. Suppose that �, � have p-adic expansions
P
i�0 p

i�.i/,
P
i�0 p

i�.i/,
respectively. It is clear that the partitions p� and p� have p-adic expansions

p� D
X
i�1

pi�.i � 1/ and p� D
X
i�1

pi�.i � 1/;

respectively. So j.p�/.0/j D 0, and

j.p�/.i/j C j.p�/.i � 1/j D j�.i � 1/j C j�.i � 2/j for all i � 1,
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where we set�.�1/ D ¿. By Definition 4.11, Y.p�jp2�/ has vertexPp�, proving
part (i).

Let r D p̀.�jp�/. For part (ii), since k > r , the p-adic expansions of �C pk˛
and �C pkˇ are

�C pk˛ D
X
0�i�r

pi�.i/C
X
i�k

pi˛.i � k/;

�C pkˇ D
X
0�i�r

pi�.i/C
X
i�k

piˇ.i � k/;

respectively. By Definition 4.11, Y.�C pk˛jp.�C pkˇ// has vertex P�, where

� D
�
1j�.0/j; pj�.1/jCj�.0/j; : : : ; .pr/j�.r/jCj�.r�1/j; .pk/j˛.0/j;

.pkC1/j˛.1/jCjˇ.0/j; : : :
�
D � � pk
:

Thus P� D P��pk
 D P� � Ppk
 . By Definition 4.11 and Lemma 5.3, we have

Y.�C pk˛jp.�C pkˇ//.P��pk
 /

D Q1.�.0/j¿/�Qp.�.1/j�.0//� � � ��Qpr .�.r/j�.r � 1//

�Qpk .˛.0/j¿/�QpkC1.˛.1/jˇ.0//� � � �

Š Y
�
�jp�/.P�/� Y.pk˛jpkC1ˇ

�
.Ppk
 /;

as required.

The following result is an interesting special case of [6, Theorem 3.18]. It is
included to illustrate a technique used again in the proof of Proposition 7.1.

Lemma 5.5. Let n 2 N. If n D mp C c where m 2 N0 and 0 � c < p, then

sgn.n/ Š Y
�
.1c/j.mp/

�
:

Proof. Let n D
Pr
iD0 p

ini be the p-adic expansion of n, and let

� D .1n0 ; pn1 ; : : : ; .pr/nr /:

By Definition 4.11, the signed Young module Y..1c/j.mp// has P� as a vertex and

Y
�
.1c/j.mp/

�
.P�/ Š Q1

�
.1c/j¿

�
�Qp

�
¿j.n1/

�
� � � ��Qpr

�
¿j.nr/

�
as a module for F ŒN�=P��. Since ni < p, we have

Qpi
�
¿j.ni /

�
Š Inf

.N
pi
=P
pi
/oSni

Sni

�
F.ni /

�
˝3sgn.Npi /

˝ni

Š Res
S
pini

N
pi
oSni

�
sgn.pini /

�
;
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where the second isomorphism follows from (2.2), regarding the right-hand side
as a representation of .Npi=Ppi / oSni . Hence there is the following isomorphism
of FN�-modules:

Y
�
.1c/j.mp/

�
.P�/ Š ResSn

N�

�
sgn.n/

�
:

On the other hand, since P� is a Sylow p-subgroup of Sn, it is a vertex of sgn.n/,
and clearly

sgn.n/.P�/ Š ResSn
N�
.sgn.n//

as an FN�-module. The Broué correspondence is bijective (see Theorem 2.5), so
we have Y..1c/j.mp// Š sgn.n/.

6 Signed p-Kostka numbers

In this section we prove Theorem 1.2 and Theorem 1.3. We work mainly with
the F Œ.Nk=Pk/ oSm�-modules Wk.
 jı/ and Qk.˛jˇ/ defined in Definitions 3.6
and 4.7, and the F ŒC2 oSm�-modulesW k.
 jı/ andQk.˛jˇ/ obtained from them
by factoring out the trivial action of the even permutations in the base group of the
wreath product.

We begin with a key lemma for the proof of Theorem 1.2.

Lemma 6.1. Let n 2 N. For any .
 jı/ 2 C 2.n/ and .�j�/ 2 RP2.n/ we have

(i) ŒWpiC1.
 jı/ W QpiC1.�j�/� D ŒWpi .
 jı/ W Qpi .�j�/� for all i � 1,

(ii) ŒWp.
 j¿/ W Qp.�j¿/� D ŒW1.
 j¿/ W Q1.�j¿/�,
(iii) ŒWp.
 jı/ W Qp.�j¿/� D 0 if ı ¤ ¿.

Proof. By Lemma 3.7 and Lemma 4.9 we have

Qpj .�j�/ Š R2.�j�/ and Wpj .
 jı/ Š V2.
 jı/

for all j � 1. Part (i) now follows by applying Lemma 2.1. For (ii), if ı D � D ¿,
then

Wp.
 j¿/ Š V2.
 j¿/ D InfC2oSm
Sm

.M 
 / D W 1.
 j¿/;

Qp.�j¿/ Š R2.�j¿/ D InfC2oSm
Sm

.P �/ D Q1.�j¿/:

So �
Wp.
 j¿/ W Qp.�j¿/

�
D
�
W 1.
 j¿/ W Q1.�j¿/

�
:

Now apply Lemma 2.1. Finally, the third part follows from Proposition 4.5 and
Lemma 2.1.

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let P� be a vertex of Y.�jp�/. By Definition 4.11 we have

� D .1n0 ; pn1 ; .p2/n2 ; : : : ; .pr/nr /;

where n0 D j�.0/j and ni D j�.i/jCj�.i�1/j for all i 2 ¹1; : : : ; rº. By the Broué
correspondence (see Theorem 2.5) and the description of the Broué correspondents
of signed Young modules in Lemma 5.4, it is equivalent to show that�

M.p˛jpˇ/.Pp�/ W Y.p�jp
2�/.Pp�/

�
�
�
M.˛jˇ/.P�/ W Y.�jp�/.P�/

�
:

Let ƒ D ƒ..˛jˇ/; �/ and ƒ0 D ƒ..p˛jpˇ/; p�/ be as defined in Notation 3.8.
Observe that ƒ0 consists of all compositions

.¿;
.0/;
.1/; : : : ;
.r/j¿; ı.0/; ı.1/; : : : ; ı.r//

where .
.0/;
.1/; : : : ;
.r/jı.0/; ı.1/; : : : ; ı.r// 2 ƒ. By Lemma 3.12 applied to
M.p˛jpˇ/.Pp�/, we have

M.p˛jpˇ/.Pp�/ Š
M

.
 0jı0/2ƒ0

rC1

�
iD0

Wpi .

0.i/
jı0.i//

D

M
.
jı/2ƒ

W1.¿j¿/�
r

�
iD0

WpiC1.

.i/
jı.i//:

By Definition 4.11 and Lemma 5.4 (i), we obtain both�
M.p˛jpˇ/.Pp�/ W Y.p�jp

2�/.Pp�/
�

D

X
.
jı/2ƒ

rY
iD0

�
WpiC1.


.i/
jı.i// W QpiC1.�.i/j�.i � 1//

�
;

�
M.˛jˇ/.P�/ W Y.�jp�/.P�/

�
D

X
.
jı/2ƒ

rY
iD0

�
Wpi .


.i/
jı.i// W Qpi .�.i/j�.i � 1//

�
;

where, as usual, �.�1/ D ¿. By Lemma 6.1, we have�
WpiC1.


.i/
jı.i// W QpiC1.�.i/j�.i � 1//

�
D
�
Wpi .


.i/
jı.i// W Qpi .�.i/j�.i � 1//

�
for all i � 1, and for i D 0 whenever ı.0/ D ¿. Otherwise, when i D 0 and
ı.0/ ¤ ¿, we have

0 D
�
Wp.


.0/
jı.0// W Qp.�.0/j¿/

�
�
�
W1.


.0/
jı.0// W Q1.�.0/j¿/

�
:

This completes the proof.
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Corollary 6.2. Let .˛jˇ/; .�jp�/ 2P2.n/. Suppose that �.0/ D ¿. Then�
M.p˛jpˇ/ W Y.p�jp2�/

�
D
�
M.˛jˇ/ W Y.�jp�/

�
:

Proof. Let � 2 C .n/ be defined by

� D .1j�.0/j; pj�.1/jCj�.0/j; : : : ; .pr/j�.r/jCj�.r�1/j/:

The vertex P� of Y.�jp�/ has no fixed points in ¹1; 2; : : : ; nº. Hence ı.0/ D ¿
for any .
jı/ 2 ƒ..˛jˇ/; �/. The result now follows from Theorem 1.2.

It is now very easy to deduce the asymptotic stability of signed p-Kostka num-
bers mentioned in the introduction.

Corollary 6.3. Let .˛jˇ/; .�jp�/ 2P2.n/. Then, for every natural number k � 2,
we have�

M.pk˛jpkˇ/ W Y.pk�jpkC1�/
�
D
�
M.p˛jpˇ/ W Y.p�jp2�/

�
�
�
M.˛jˇ/ W Y.�jp�/

�
:

Proof. This follows immediately from Corollary 6.2 and Theorem 1.2.

Example 6.4. We present a family of examples where the inequality in Theo-
rem 1.2 is strict. Let 0 < c < p, letm 2 N and let n D mp C c. Since Smp �Sc

has index coprime to p in Sn, the trivial module Y..n/j¿/ is a direct summand of
M..mp; c/j¿/; the multiplicity is 1 since M..mp; c/j¿/ comes from a transitive
action of Sn. By Lemma 5.5 we have sgn.n/ Š Y..1c/j.mp//. Thus�

M
�
¿j.mp; c/

�
W Y
�
.1c/j.mp/

��
D
�
M
�
¿j.mp; c/

�
˝ sgn.n/ W Y..1c/j.mp//˝ sgn.n/

�
D
�
M
�
.mp; c/j¿

�
W Y
�
.n/j¿

��
D 1:

On the other hand,

ŒM..mp2; cp/j¿/ W Y..mp2/j.p.1c///� D 0

because, by [7, 2.3 (6)], the signed Young modules are pairwise non-isomorphic
and so the signed Young module Y..mp2/jp.1c// is not isomorphic to a Young
module. Thus we have�

M
�
¿jp.mp; c/

�
W Y
�
p.1c/jp.mp/

��
D
�
M
�
¿j.mp2; cp/

�
˝ sgn.np/ W Y

�
p.1c/jp.mp/

�
˝ sgn.np/

�
D
�
M
�
.mp2; cp/j¿

�
W Y
�
.mp2/jp.1c/

��
D 0;
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where the penultimate equation is obtained using [6, Theorem 3.18]. This shows
that�

M
�
¿jp.mp; c/

�
W Y
�
p.1c/jp.mp/

��
<
�
M
�
¿j.mp; c/

�
W Y
�
.1c/j.mp/

��
:

We now turn to the proof of Theorem 1.3. We need a further result on the Brauer
quotients of signed Young permutation modules.

Proposition 6.5. Let m; n 2 N and let .�je�/ 2 C 2.m/ and .�je�/ 2 C 2.n/. Let
� 2 C .m/ and 
 2 C .n/ be compositions of the form

� D .1m0 ; pm1 ; : : : ; .pr/mr /;


 D .1n0 ; pn1 ; : : : ; .ps/ns /:

For all k 2 N such that k > r , we have thatM.�je�/.P�/�M.pk�jpke�/.Ppk
 /
is isomorphic to a direct summand of M.� C pk�je� C pke�/.P��pk
 /. Further-
more, if pk > max¹�1;e�1º, then

M.�je�/.P�/�M.pk�jpke�/.Ppk
 / ŠM.� C pk�je� C pke�/.P��pk
 /
as F ŒNSmCpkn.P��pk
 /=P��pk
 �-modules.

Note that, in Proposition 6.5, while
Pr
iD0mip

i D m and
Pr
iD0 nip

i D n,
these need not be the base p expressions for either m or n.

Proof. Since k > r , by Lemma 5.3, we have

P��pk
 D P� � Ppk
 :

To ease the notation, we denote byM ,M1,M2 the modulesM.�Cpk�je�Cpke�/,
M.�je�/,M.pk�jpke�/, respectively. Further, let P D P��pk
 . By Corollary 3.4,
we know that M.P / has as a basis the subset B of �.� C pk�je� C pke�/
consisting of all ¹Rº such that R is a row standard .� C pk�je� C pke�/-tableau
whose rows are unions of P -orbits. Similarly, we define bases B1 and B2 of
�.�je�/ and �.pk�jpke�/ for M1.P�/ and M2.Ppk
 /, respectively; here each
.pk�jpke�/-tableau S of B2 is filled with the numbers mC1;mC2; : : : ; mCpkn.

For ¹Tº 2 B1 and ¹Sº 2 B2, let

 W B1 �B2 ! B

be the map defined by

 .¹Tº; ¹Sº/ D
®
.RCjR�/

¯
;

where RC is the row standard .�Cpk�/-tableau such that row i of RC is the union
of row i of TC and row i of SC, and R� is the row standard .e� C pke�/-tableau
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such that row i of R� is the union of row i of T� and row i of S�. Here we have
used the convention row i of TC is empty if i > `.�/, and so on. The map is well
defined since the rows of R D .RCjR�/ are union of orbits of P D P� � Ppk

on ¹1; 2; : : : ; mC pknº.

Clearly  is injective and so it induces an injection of vector spaces

� WM1.P�/�M2.Ppk
 /!M.P /

defined by �.¹Tº˝¹Sº/ D  .¹Tº; ¹Sº/. By Lemma 5.3, we may regard the domain
and codomain of � as FNSmCpkn.P /-modules with trivial P -action. It is not
difficult to check that

�.g.¹Tº ˝ ¹Sº// D g�.¹Tº ˝ ¹Sº/

for all g 2 NSmCpkn.P /, ¹Tº 2 B1 and ¹Sº 2 B2. Therefore � is an injective
homomorphism of FNSmCpkn.P /-modules, and hence an injective homomor-
phism of F ŒNSmCpkn.P /=P �-modules. Since both M1.P�/ and M2.Ppk
 / are
projective and hence injective, their outer tensor product is also injective. There-
fore, the map � splits and we obtain that M1.P�/�M2.Ppk
 / is a direct sum-
mand of M.P /.

The second assertion follows easily by observing that, if pk > max¹�1;e�1º,
then the map  defined above is a bijection.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let � 2 C .m/ and 
 2 C .n/ be defined by

� D .1j�.0/j; pj�.1/jCj�.0/j; : : : ; .pr/j�.r/jCj�.r�1/j/;


 D .1j˛.0/j; pj˛.1/jCjˇ.0/j; : : : ; .ps/j˛.s/jCjˇ.s�1/j/;

where r D p̀.�jp�/ and s D p̀.˛jpˇ/, respectively. By Definition 4.11, P� is
a vertex of Y.�jp�/ and P
 is a vertex of Y.˛jpˇ/. Since k > r , by Lemma 5.3,
we have P��pk
 D P� � Ppk
 and

NSmCpkn.P� � Ppk
 / D NSm.P�/ �NSpkn.Ppk
 /:

By Lemma 5.4, Y.pk˛jpkC1ˇ/ has vertexPpk
 and Y.�Cpk˛jp.�Cpkˇ// has
vertex P��pk
 . Moreover, the Broué correspondent of Y.�C pk˛ jp.�C pkˇ//
is

Y.�jp�/.P�/� Y.pk˛jpkC1ˇ/.Ppk
 /:

By Proposition 6.5, we have

M.�je�/.P�/�M.pk�jpke�/.Ppk
 / jM.� C pk�je� C pke�/.P��pk
 /:
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Therefore, using Theorem 2.5 (ii), we deduce that�
M.� C pk� je� C pke�/ W Y.�C pk˛ jp.�C pkˇ//�
D
�
M.� C pk� je� C pke�/.P��pk
 / W Y.�C pk˛ jp.�C pkˇ//.P��pk
 /�

�
�
M.�je�/.P�/�M.pk�jpke�/.Ppk
 / W

Y.�jp�/.P�/�Y.pk˛jpkC1ˇ/.Ppk
 /
�

D
�
M.�je�/.P�/ W Y.�jp�/.P�/�
�
�
M.pk�jpke�/.Ppk
 / W Y.pk˛jpkC1ˇ/.Ppk
 /�

D
�
M.�je�/ W Y.�jp�/��M.pk�jpke�/ W Y.pk˛jpkC1ˇ/�

D
�
M.�je�/ W Y.�jp�/��M.p�jpe�/ W Y.p˛jp2ˇ/�;

where the final equality follows from Corollary 6.3. If pk > max¹�1;e�1º, then
Proposition 6.5 implies that we have equalities throughout.

7 Indecomposable signed Young permutation modules

In this section, in the spirit of Gill’s result [12, Theorem 2], we classify all inde-
composable signed Young permutation modules over the field F and determine
their endomorphism algebras and their labels as signed Young modules. By [12],
we know that any indecomposable Young permutation module is of the formM .m/

or M .kp�1;1/. It is immediate from the definition of signed Young permutation
modules in (1.1) that

M.˛jˇ/ Š IndSj˛jCjˇj
Sj˛j�Sjˇj

�
M ˛ � .M ˇ

˝ sgn.jˇj/
�
:

As such, by Gill’s result, any indecomposable signed Young permutation module
is of one of the forms M..m/j.n//, M..m/j.kp � 1; 1//, M..kp � 1; 1/j.m// or
M..kp � 1; 1/j.`p � 1; 1//. Since

M..m/j.kp � 1; 1//˝ sgn.mC kp/ ŠM..kp � 1; 1/j.m//;

there are essentially three different forms to consider.

Proof of Theorem 1.4. Let M1 DM..m/j.n//. If m D 0, then M1 is the sign rep-
resentation, and if n D 0, then M1 is the trivial representation. In these cases, M1

is simple with 1-dimensional endomorphism ring. Suppose that both m and n are
non-zero. By the Littlewood–Richardson rule, the module M1 has a Specht series
with top Specht factor S .mC1;1

n�1/ and bottom Specht factor S .m;1
n/. IfmC n is

not divisible by p, then the p-cores of .mC 1; 1n�1/ and .m; 1n/ are non-empty
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and distinct and so S .mC1;1
n�1/ and S .m;1

n/ lie in different blocks. Consequently,
M1 is decomposable. Now suppose that mC n is divisible by p. In this case, by
Peel’s result [24],

S .mC1;1
n�1/
D

8̂̂<̂
:̂
F; n D 1;"
D�

D


#
; n � 2;

S .m;1
n/
D

8̂̂<̂
:̂

sgn.mC n/; m D 1;"
D�

D�

#
; m � 2;

where �, � and 
 are the p-regularization of the partitions .m; 1n/, .mC 1; 1n�1/
and .mC 2; 1n�2/, respectively (see [19, 6.3.48]). If m D 1, then M..1/j.n// Š
M.¿j.n;1// is indecomposable. Similarly, if n D 1, we have that M..m/j.1// Š
M..m;1/j¿/ is indecomposable. Moreover, sinceM..m;1/j¿/ has a Loewy series
with factors F;D.m;1/; F , the endomorphism algebra EndFSmC1M..m; 1/j¿/ is
2-dimensional. Tensoring by the sign representation we obtain the same result
for EndFSnC1.¿j.n; 1//.

We now study the case when m; n � 2. In this case, both the head and socle
of M1 contain the simple module D�. Also, as a signed Young permutation mod-
ule,M1 is self-dual. Suppose thatD
 is not isomorphic to a composition factor of
any direct summand ofM1 containingD� in its head (and hence in its socle). Then
D
 is necessarily isomorphic to a direct summand of M1. From the Specht series,
there is a surjection  from M1 onto the Specht module S D S .mC1;1

n�1/. Since
S has composition factorsD
 andD�, we have .D
 /¤ 0 and so .D
 /ŠD
 .
Let Y be an indecomposable direct summand of M1 such that  .Y / contains
a composition factor D�. This shows that  .Y / Š D� and hence

S D  .D
 ˚ Y / Š D
 ˚ Y=.Y \ ker / Š D
 ˚D�:

This is absurd since S is indecomposable. Hence there exists an indecomposable
direct summand of M1 containing D� in its head and that does not contain D
 in
its head or in its socle. Dually, there exists an indecomposable direct summand of
M1 containing D� in its head, that does not contain D� in its head or in its socle.
Thus the only possibility is that M1 is indecomposable with the Loewy structure264 D�

D� D


D�

375
and has 2-dimensional endomorphism ring.

LetM2 DM..kp � 1; 1/j.m//. By Gill’s result, ifm D 0, thenM2 is indecom-
posable and if m D 1, then M2 ŠM..kp � 1; 1

2/j¿/ is decomposable. Suppose
that m � 2. By the Young and Littlewood–Richardson rules, M2 has a Specht
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series with Specht factors

S1 D S
.kpC1;1m�1/; S2 D S

.kp;2;1m�2/; S3 D S
.kp;1m/;

S4 D S
.kp�1;2;1m�1/; S5 D S

.kp�1;1mC1/;

with S3 occurring twice. Ifm 6� 0mod p, then S1 and S3 lie in different blocks. If
m � 0 mod p, then S3 and S4 belong to different blocks. Thus we conclude that
M2 is decomposable whenever m � 2.

LetM3 DM..kp � 1; 1/j.`p � 1; 1//. ThenM3 ŠM..kp � 1; 1
2/j.`p � 1//.

By Gill’s result, since M .kp�1;12/ is decomposable, we have that

M
�
.kp � 1; 12/j.`p � 1/

�
D IndSkpC`p

SkpC1�S`p�1

�
M .kp�1;12/ � .M .`p�1/

˝ sgn.`p � 1//
�

is decomposable.

We end by determining the labels of the indecomposable signed Young per-
mutation modules. By the remark immediately following the statement of Theo-
rem 1.4, it suffices to consider the modules M..m/j.n// where either m D 0,
n D 0 or mC n is divisible by p.

Proposition 7.1. Letm; n 2N. Let nD n0Cpn0, where 0� n0 <p. There are iso-
morphisms M..m/j¿/ Š Y..m/j¿/, M.¿j.n// Š Y..1n0/j.pn0// and, provided
mC n is divisible by p, M..m/j.n// Š Y..m; 1n0/j.pn0//.

Proof. ClearlyM..n/j¿/ Š Y..n/j¿/ Š F.n/. The second isomorphism follows
from Lemma 5.5. In the remaining case,m, n > 0 andmC n is divisible by p. Let
m D

P
i�0mip

i and let n D
P
i�0 nip

i be the p-adic expansions. Let r be the
greatest integer such thatmrCnr 6D 0. Let P be a Sylow p-subgroup of Sm�Sn.
By Proposition 3.12 we have an isomorphism of F ŒNSmCn.P /=P �-modules

M
�
.m/j.n/

�
.P / Š W1

�
.m0/j.n0/

�
�Wp

�
.m1/j.n1/

�
� � � ��Wpr

�
.mr/j.nr/

�
:

By Definition 4.11, the signed Young module Y..m; 1n0/j.pn0// satisfies

Y
�
.m; 1n0/j.pn0/

�
.P / D Y..m0; 1

n0/j¿/�
r

�
iD1

Qpi ..mi /j.ni //;

where Qpi ..mi /j.ni // is the F Œ.Nk=Pk/ oSm�-module defined in Definition 4.7.
The Broué correspondence is bijective (see Theorem 2.5), so it suffices to prove
that the tensor factors in these two modules agree.

Observe that m0 C n0 is a multiple of p and m0 C n0 < 2p. If m0 D n0 D 0,
we have

W1.¿j¿/ D Y.¿j¿/:
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Next, we assume that m0 C n0 D p. The FSp-module

W1
�
.m0/j.n0/

�
ŠM

�
.m0/j.n0/

�
is indecomposable by Theorem 1.4. The only signed Young module for FSp

that is not a Young module is the sign representation. Since n0 < p, we see that
M..m0/j.n0// is a Young module. The proof of Theorem 1.4 shows that it has
a Specht filtration with S .m0;1

n0 / at the bottom and S .m0C1;1
n0�1/ at the top.

Therefore W1..m0/j.n0// DM..m0/j.n0// Š Y..m0; 1n0/j¿/, as required.
Finally, suppose that i � 1. By Definition 3.6 (ii), we have that Wpi ..mi /j.ni //

is the F Œ.Npi=Ppi / oSmiCni �-module obtained from

Ind
N
pi
oSmiCni

N
pi
o.Smi�Sni /

�
Inf
N
pi
oSmi

Smi
.F.mi //�

�
.Inf

N
pi
oSni

Sni
.F.ni //˝3sgn.Npi /

˝ni
��
:

by the canonical surjection .Npi oSmiCni /=.Ppi /
miCni Š .Npi=Ppi / oSmiCni .

Sincemi ; ni < p the projective covers P .mi / and P .ni / are the trivial FSmi - and
FSni -modules, respectively. Therefore, by (4.1), we have

Wpi ..mi /j.ni // Š Qpi ..mi /j.ni //;

again as required.
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