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Abstract. We prove the existence and main properties of signed Young modules for the
symmetric group, using only basic facts about symmetric group representations and the
Broué correspondence. We then prove new reduction theorems for the signed p-Kostka
numbers, defined to be the multiplicities of signed Young modules as direct summands
of signed Young permutation modules. We end by classifying the indecomposable signed
Young permutation modules and determining their endomorphism algebras.

1 Introduction

Let F be a field of odd prime characteristic p and let ©, denote the symmet-
ric group of degree n. In this article we investigate the modular structure of the
p-permutation F&,-modules defined by inducing a linear representation of
a Young subgroup of &, to &,,.

Let 222 (n) be the set of all pairs of partitions («|8) such that || 4+ || = n. For
(«|B) € Z2%(n), the signed Young permutation module M(ct|B) is the F &,-mod-
ule defined by

M(@]B) = ndg" o (F(Gq) @ sgn(Sp)). (1.1)

In [7, p.651], Donkin defines a signed Young module to be an indecomposable
direct summand of a signed Young permutation module and proves the following
theorem.
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Theorem 1.1 (Donkin [7]). There exist indecomposable F&,-modules Y (A|pu)
for (A|pp) € P2(n) with the following properties:

G) if (@|B) € P2(n), then M(a|B) is isomorphic to a direct sum of modules
YAl p) for (A|pp) € 22 (n) such that (A pp) = («|B),

(i) [MA|pp) : YA pp)] =1,

(iii) if A = YI_o p'AG) and u = Z;;(l) p' u(i) are the p-adic expansions of A
and [, as defined in (2.1), then Y (A| pjt) has as a vertex a Sylow p-subgroup
of the Young subgroup ©,, where p is the partition of n having exactly
|A(D)| + |u(i — 1)| parts of size p' for eachi € {0, ... r}.

Here (A|pp) > (| B) refers to the dominance order on %2 (n), as defined in
Section 2.3 below and, in (iii), u(—1) should be interpreted as the partition of 0.

Donkin’s definition of signed Young modules and his proof of his theorem use
the Schur superalgebra. In Section 4 we give an independent proof using only
basic facts about symmetric group representations and the Broué correspondence
for p-permutation modules; our proof shows that the Y (A|pu) may be defined by
Definition 4.11. (Theorem 1.1 characterizes the signed Young module Y (A|pu) as
the unique summand of M (A|puw) appearing in M(«|B) only if (A|pu) > («|B),
so the two definitions are equivalent.) As a special case we obtain the existence and
main properties of the Young modules, which we define by Y = Y(A|@). These
are precisely the indecomposable summands of the Young permutation modules
M® = M(«|@). We state this result, and discuss the connection with [10], and
with the original definition of Young modules via the Schur algebra [18], in Sec-
tion 5.1.

In [14], Hemmer conjectured, motivated by known results on tilting modules for
Schur algebras, that the signed Young modules are exactly the self-dual modules
for symmetric groups with Specht filtrations. This was shown to be false in [23];
the fourth author later proved in [26] that if » > 66 and G is a subgroup of &, such
that the ordinary character of M = Indg” F is multiplicity free, then every inde-
composable summand of M is a self-dual module with a Specht filtration. Despite
the failure of Hemmer’s conjecture, it is clear that signed Young modules are of
considerable interest. In particular, a strong connection between simple Specht
modules and signed Young modules has been established by Hemmer [14] and
by Danz and the second author [6]. More precisely, Hemmer showed that every
simple Specht module is isomorphic to a signed Young module, and Danz and the
second author established their labels.

In Section 6 we study signed p-Kostka numbers, defined to be the multiplici-
ties of signed Young modules as direct summands of signed Young permutation
modules. These generalize the p-Kostka numbers considered in [11, 12,15, 16].
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Given the p-Kostka numbers for &, it is routine to calculate the decomposition
matrix of &, in characteristic p (see [12, Section 3]). It is therefore no surprise
that a complete understanding of the p-Kostka numbers seems to be out of reach.
However, as the references above demonstrate, many partial results and significant
advances have been obtained. Our first main theorem is a relation between signed
p-Kostka numbers. We refer the reader to Notation 3.8 for the definitions of the
composition §© and the set A((«|B). p).

Theorem 1.2. Let («|B), (A| pi) € Z22%(n). Then

[M(palpB) : Y(pAlp*w)] < [M(@|B) : Y(A p)]-
Furthermore, if 89 = & for all (y|8) € A((«|B). p), then equality holds.

Example 6.4 shows that strict inequality may hold in Theorem 1.2. This is an
important fact, since it appears to rule out a routine proof of Theorem 1.2 using
the theory of weights for the Schur superalgebra: we explain this obstacle later in
the introduction. However, in Corollary 6.3, we obtain the following asymptotic
stability of the signed p-Kostka numbers:

[M(@|p) : YR pw)] = [M(palpB) Y (pA|p* )]
= [M(p*a|p?B) : Y(p*Alp> )] =--- .

If B = @, then the condition on §® holds for all (y|8) € A((«|B). p) and Theo-
rem 1.2 specializes to Gill’s result [12, Theorem 1] that [M P% : Y PA] = [M* : Y*]
for all partitions o and A of n.

Our second main theorem describes the relation between signed p-Kostka num-
bers for partitions differing by a p-power of a partition. Let € (m) be the set con-
sisting of all pairs of compositions («|8) such that |x| + |8] = m. We refer the
reader to equation (5.1) in Section 5.2 for the definition of £, (A|ppu).

Theorem 1.3. Let m, n and k be natural numbers. Let (|7) € €%(m), (A pp) €
P%(m), (pl¢) € €*(n) and (a|pB) € P>(n). If k > Lp(X|pp), then

[M(r + p*$I7 + p*¢) : YO + pPalp(u + p*B))]
> [M(x[7) : YA p)|[M(pglpd) : Y (pa| pB)].
Moreover, if p* > max{m, 71}, then equality holds.
In particular, taking ¢ = o = (r) anda = f = &, we see that
[M(x + p ()7 : YO A+ p* ()l pw)] = M[(=[7) - YA pp)]

with equality whenever p* > max{r, 71}
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Our third main theorem classifies the indecomposable signed Young permuta-
tion modules.

Theorem 1.4. Let («|B) € 22 (n). The signed Young permutation module M (c|B)
is indecomposable if and only if one of the following conditions holds.

(1) (a|B) = ((m)|(n)) for some non-negative integers m, n such that either
(@) m =0,
(b) n =0, or
(¢c) m + n is divisible by p.

(ii) («|p) is either ((kp — 1, 1)|@) or (2| (kp — 1, 1)) for some k € N.

In cases (i) (a) and (i) (b), we have Endrg, M(a|B) = F. In the remaining cases
we have Endpg, M(a|f) = F[x]/(x?).

In particular, Theorem 1.4 classifies all indecomposable Young permutation
modules up to isomorphism, recovering [12, Theorem 2] for fields of odd charac-
teristic. Note that the Young permutation module M =11 = M((n —1,1)|2) =
M((n — 1)|(1)) appears in both parts (i) and (ii). If M(«|B) is indecomposable,
then there exist unique partitions A and u such that M(«x|B) = Y (A|pu). These
partitions are determined in Proposition 7.1.

Schur algebras

Our results may be applied to obtain corollaries on modules for the Schur algebra.
Fix n,d € N with d > n and let GL;(F) be the general linear group of d x d
matrices over F. Let p : GL;(F) — GL,,(F) be a representation of GL; (F') of
dimension m. We say that p is a polynomial representation of degree n if the matrix
coefficients p(X);; for each i, j € {1,...,m} are polynomials of degree » in the
coefficients of the matrix X. Given a polynomial representation p : GLy(F) —
GL(V) of degree n, the image of V' under the Schur functor f is the subspace of V'
on which the diagonal matrices diag(ay,...,ay) € GLy(F) actasaj ...ay,. Itis
easily seen that f(V) is preserved by the permutation matrices in GL4 (F') that fix
the final d —n vectors in the standard basis of F¢. Thus f(V') is a module for F&,,.

The category of polynomial representations of GL; (F') of degree n is equiva-
lent to the category of modules for the Schur algebra Sg (d, n). We refer the reader
to [13] for the definition of Sg(d,n) and further background. In this setting, the
Schur functor may be defined by V + eV, where e € SF(d,n) is an idempotent
such that eSg(d,n)e =~ F&,. It follows that f is an exact functor from the cat-
egory of polynomial representations of GL;(F) of degree n to the category of
F&,,-modules.
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Let E denote the natural GL; (F)-module. Given o € £ (n), let Sym*(E) and
/\ﬂ (E) denote the corresponding divided symmetric and exterior powers of E,
defined as quotient modules of E®". The mixed powers Sym*E ® /\’3 E for
(«|B) € 2%(n) generate the category of GL4(F)-modules of degree n. In [7],
Donkin defines a listing module to be an indecomposable direct summand of
a mixed power. (As the nautical parlance suggests, listing modules generalize
tilting modules). By [7, Proposition 3.1 c], for each (A|u) € £2%(n) there exists
a unique listing module List(A|pu) such that f(List(A|pw)) = Y(A|pw). By [7,
Proposition 3.1a], we have

f(Sym*E @ NPE) = M(«|p).
Moreover, by [7, Proposition 3.1b], the Schur functor induces an isomorphism
Endgy,(r)(Sym*E ® \PE) = Endg, (M («|B)).

Thus each of our three main theorems has an immediate translation to a result
on multiplicities of listing modules in certain mixed powers. For example Theo-
rem 1.4 classifies the indecomposable GL; (F')-mixed powers and shows that each
has an endomorphism algebra, as a GL; (F)-module, of dimension at most 2. It is
also worth noting that many of Gill’s results from [12] are reproved in greater
generality in the Schur algebra setting in a recent paper of Donkin [8].

Steinberg tensor product formula

As Gill remarks in [12], some of his results can be obtained using weight spaces
and the Steinberg Tensor Product Theorem for irreducible representations of the
group GL; (F'). We explain the connection here, since this remark is also relevant
to this work. Let o be a composition of n where d > n and let &, € SF(d,n) be
the idempotent defined in [13, Section 3.2] such that &,V is the a-weight space,
denoted V,, of the SF (d, n)-module V'; the idempotent e defining the Schur func-
tor is §(1n). For A a partition of n, let L(1) denote the irreducible representation of
GL, (F) with highest weight A, thought of as a module for S (d, n). Let Proj(1)
be the projective cover of L(A). By James’ original definition of Young modules
(this is shown to be equivalent to ours in Section 5.1), we have Y = f(Proj(1));
moreover,

[M* : Y*] = [Sym,(E) : Proj(A)]
= dimp Hom(S(d, n)&q, L(1))
= dimp £, L(A).

(Here Symy(E) C E ®n is the contravariant dual, as defined in [13, 2.7a], of the
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quotient module Sym*(E) of E®".) Thus
[M® : Y*] = dimp L(A)q. 1.2)

As an example of this relationship between p-Kostka numbers and dimensions
of weight spaces, we use (1.2) to deduce Theorem 1 in [12]. By the Steinberg
Tensor Product Theorem, L(pA) = L(A)7, where .Z is the Frobenius map, acting
on representing matrices by sending each entry to its pth power. Clearly there is
a canonical vector space isomorphism (L(1)7) pa = L(A)q. Therefore

[MP® . YP*] = dimp L(pA)pe = dimp LX)y = [M¥ : Y]

as required.

Schur superalgebras

Our Theorem 1.2 generalizes the result just proved, so it is natural to ask if it can be
proved in a similar way, replacing the Schur algebra with the Schur superalgebra
defined in [7]. Let a, b € N. Given (A|pp) € 22%(n) where A has at most a parts
and p has at most b parts, let L(A|pu) denote the irreducible module of highest
weight (A|pu) for the Schur superalgebra S(a|b,n), defined in [7, p.661]. By
[7, Section 2.3], we have

[M(a|B) : Y (Al p)] = dimp L(A|pp) () (1.3)

generalizing (1.2).

Let GL(a|b) denote the super general linear group defined in [4, Section 2].
As E®" is a generator for the category of polynomial representations of GL(a|b)
of degree n, it follows from [7, p. 660, (1)] that the category of such modules is
equivalent to the module category of S(a|b,n). Taking the even degree part of
GL(a|b) recovers GL,(F) x GLy(F). (More precisely, the even degree part is
isomorphic to the product of the affine group schemes corresponding to these two
general linear groups.) The Frobenius map is identically zero on the odd degree
part of GL(a|b), so induces a map .% : GL(a|b) — GL4(F) x GLy(F). Let #*
be the corresponding inflation functor, sending modules for GL, (F) x GLy (F) to
modules for GL(a|b). By [4, Remark 4.6 (iii)] we have

L(pAlpp) = F*(L(A) ® L(w),
where X denotes an outer tensor product. Taking weight spaces we get
L(pAlpi)(paipp) = LMo B L(1)p.

By (1.3) we have [M (pa|pB) : Y(pA|pu)] = dimp L(A)q dimp L(1)g. Replac-
ing ¢ with pu and applying the Steinberg Tensor Product Formula, this implies the
asymptotic stability of signed p-Kostka numbers mentioned after Theorem 1.2.
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Stated for GL(a|b)-modules, the remaining part of Theorem 1.2 becomes

dimp L(pA|p1®) (paipp) < dimp LA i) aip)-

This does not follow from the results mentioned so far, or from the version of the
Steinberg Tensor Product Theorem for GL(a|b)-modules proved in [22], because
the module on the right-hand side is not an inflation. Moreover, translated into
this setting, a special case of Example 6.4 shows that dimg L((1)|2)(g|1)) = 1
whereas dimg L((p)|D)(g|(p)) = dimg L((p))z dimg L(D)(,) = 0,soitis cer-
tainly not the case that equality always holds. (Further examples of this type are
given by the general case of Example 6.4.) Whether or not a proof using super-
groups is possible, the authors believe that since Theorem 1.2 can be stated within
the context of symmetric groups, it deserves a proof in this setting.

Klyachko’s multiplicity formula

Klyachko’s multiplicity formula [21, Corollary 9.2] expresses the p-Kostka num-
ber [M® :Y*] in terms of p-Kostka numbers for p-restricted partitions. Our
Corollary 5.2 gives a generalization to signed Young modules. Specializing this
result we obtain a symmetric group proof of Klyachko’s formula in the form

[M® YA = 3 [Tim?" Yo, (1.4)

@19)eA((@|D),p) i=0

where A = Y"7_, p'A(i) is the p-adic expansion of A, p is the partition defined in
Theorem 1.1 (iii) and the set A((@|®), p) is as defined in Notation 3.8.

Outline

In Section 2 we recall the main ideas concerning the Brauer construction for
p-permutation modules and set up our notation for symmetric group modules
and modules for wreath products. In Section 3 we find the Broué quotients of
signed Young permutation modules. In Section 4 we use these results, together
with James’ Submodule Theorem, to define Young modules and signed Young
modules in the symmetric group setting. We then prove Donkin’s Theorem 1.1.
We give some immediate corollaries of this theorem in Section 5. In Sections 6
and 7, we prove Theorems 1.2, 1.3 and 1.4.

2 Preliminaries

We work with left modules throughout. For background on vertices and sources
and other results from modular representation theory we refer the reader to [1].
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For an account of the representation theory of the symmetric group we refer the
reader to [17] or [19], or for more recent developments, to [20].

2.1 Indecomposable summands

Let G be a finite group. Let M and N be FG-modules. We write N | M if N is
isomorphic to a direct summand of M. We have already used the notation [M : N|
for the number of summands in a direct sum decomposition of M that are isomor-
phic to the indecomposable module N. This multiplicity is well defined by the
Krull-Schmidt Theorem (see [1, Section 4, Lemma 3]). The proof of the follow-
ing lemma is easy.

Lemma 2.1. Let M and N be FG-modules, and let N be indecomposable. Sup-
pose that H is a normal subgroup of G acting trivially on both the modules M
and N. Let M and N be the corresponding F[G/H |-modules. Then

[M :N]=[M:N].

2.2 Broué correspondence

Let G be a finite group. An F'G-module V is said to be a p-permutation module
if for every Sylow p-subgroup P of G there exists a linear basis of V' that is
permuted by P. A useful characterization of p-permutation modules is given by
the following theorem (see [3, (0.4)]).

Theorem 2.2. An indecomposable FG-module V is a p-permutation module if
and only if there exists a p-subgroup P of G such that V| Indg F; equivalently,
V' has trivial source.

It easily follows that the class of p-permutation modules is closed under restric-
tion and induction and under taking direct sums, direct summands and tensor
products.

We now recall the definition and the basic properties of Brauer quotients. Given
an FG-module V' and P a p-subgroup of G, the set of fixed points of P on V is
denoted by

VP ={veV:gv=vforalge P)}.

It is easy to see that VP is an FNg(P)-module on which P acts trivially. For Q

a proper subgroup of P, the relative trace map Trg : V€ — VP is the linear map

defined by
Trg (v) = Z gv,

gerP/Q
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where the sum is over a complete set of left coset representatives for Q in P. The
definition of this map does not depend on the choice of the set of representatives.
We observe that
P (V)= Y TrH(V9)
Q<P
is an F'Ng(P)-module on which P acts trivially. We define the Brauer quotient
of V' with respect to P to be the F[Ng(P)/P]-module

v(P)=VvEP /Tt (v).

If V is an indecomposable F'G-module and P is a p-subgroup of G such that
V(P) # 0, then P is contained in a vertex of V. Broué proved in [3] that the
converse holds for p-permutation modules.

Theorem 2.3 ([3, Theorem 3.2]). Let V be an indecomposable p-permutation
module and let P be a vertex of V. Let Q be a p-subgroup of G. Then V(Q) # 0
if and only if Q < 8 P for some g € G.

Here & P denotes the conjugate gPg~! of P. If V is an FG-module with
p-permutation basis B with respect to a Sylow p-subgroup PofGand P <P,
then, taking for each orbit of P on B the sum of the basis elements in that orbit,
we obtain a basis for V£, Each sum over an orbit of size p or more is a relative
trace from a proper subgroup of P. Hence V(P) is isomorphic to the F-span of

B ={(veB:gv=vforalge P).
Thus Theorem 2.3 has the following corollary.

Corollary 2.4. Let V be a p-permutation F G-module with p-permutation basis B
with respect to a Sylow p-subgroup of G containing a subgroup P. The Brauer
quotient V(P) has BF as a basis. Moreover, V has an indecomposable summand
with a vertex containing P if and only if BY # 9.

The next result states what is now known as the Broué correspondence.

Theorem 2.5 ([3, Theorems 3.2 and 3.4]). An indecomposable p-permutation
FG-module V has vertex P if and only if V(P) is a projective F[Ng(P)/ P]-mod-
ule. Furthermore, we have the following statements.

(i) The Brauer map sending V to V(P) is a bijection between the isomor-
phism classes of indecomposable p-permutation F G-modules with vertex
P and the isomorphism classes of indecomposable projective modules for
F[Ng(P)/P]. Regarded as an F Ng(P)-module, V(P) is the Green corre-
spondent of V.
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(1) Suppose that V has vertex P. If M is a p-permutation F G-module, then V
is a direct summand of M if and only if V(P) is a direct summand of M(P).
Moreover, [M : V] = [M(P) : V(P)].

The following lemma allows the Broué correspondence to be applied to mono-
mial modules such as signed Young permutation modules.

Lemma 2.6. Let A be a subset of F*. Let M be an F G-module with an F -basis

B ={my,...,my} such that, if g € G and m; € B, then gm; = am; for some
a € Aand somem; € B. Then, for any p-subgroup P of G, there exist coefficients
ai,...,ar € A such that {aymy, ...,arm;} is a p-permutation basis of M with

respect to P.

Proof. Let {i1,...,is} be a subset of {1,...,r} such that B is the disjoint union
of By,..., By, where, foreach 1 < j <,
Bj = {my : gmi; = agmy forsome g € P and ag € A}.
Suppose that gm;, = amy and g’'m;, = a’my for some g. g’ € P anda.,a’ € A.
Then we have g~ ' ¢'m;; = a’a™'m;, and, consequently, Fm;; is a 1-dimensional
F (g~ 'g’)-module. Since P is a p-subgroup, it follows that Fm;  1s the trivial
F (g~ 'g’)-module. Hence a = a’. Thus the coefficient ag is independent of the
choice of g, and depends only on m;; and my.
Foreach1 < j <, let
Aj ={agmy : gmi; = apmy for some g € P and a; € A}.

By the previous paragraph, szl Aj is a basis of M. It is sufficient to prove
that each A; is permuted by P. Let x € P, and let agmy, agmy € A;. Sup-
pose that x(ag:mys) = b(agmy) for some b € F. We have gm;; = ajmy and
g'm;; = apmy for some g, g’ € P. Thus g_lxg’mij = bm;;. Repeating the
argument in the first paragraph, we see that F'm;; is the trivial F( g 'xg’)-module
andso b = 1. |

The Brauer quotient of an outer tensor product of p-permutation modules is
easily described.

Lemma 2.7. Let G| and G, be finite groups, let My, My be p-permutation F G-
and F Gy-modules, and let Py and Py be p-subgroups of G1 and G, respectively.
Then

(M1 X M) (Py x P2) = M1(P1) X Mz(P2)

as a representation of
NG, xG,(P1 X P2)/(P1 x Pp) = (Ng,(P1)/P1) x (NG,(P2)/P>).

Proof. The statement follows from an easy application of Theorem 2.5. o
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2.3 Partitions and compositions

Let n € Ng. A composition of n is a sequence of non-negative integers o =
(o1,...,ar) such that o # 0 and @y + --- + o = n. In this case, we write
{(a) = r and |o| = n. The unique composition of 0 is denoted by @; we have
£(2) = 0. The Young subgroup © is the subgroup Gy, x -+ x &4, of &,, where
the ith factor G, actsonthe set {org +---+oj—1 +1,..., 01+ +oi—1 +a;}.
Let o = («y,...,0r) and B = (B1, ..., Bs) be compositions and let ¢ € N. We
denote by go and « e B the compositions of ¢|«| and || + || defined by

qo = (qal,...,qar),
O{.ﬂ = (O{l,...,ar,ﬂly--'VﬂS)’

respectively. We set 0w = @. We denote by o + B the composition of || + |B]
defined by

a—i_ﬁ = (al +,317---,as+,Bs,as+ly---,ar),

where we have assumed, without loss of generality, that s < r. We define o —
similarly, in the case when B; < «; foreachi < s.

A composition « is a partition if it is non-increasing. A partition « is called
p-restricted if a;j — a1 < p for all i > 1. We denote the set of compositions,
partitions and p-restricted partitions of n by ¢ (n), & (n) and ZZ(n), respec-
tively. A partition « is p-regular if its conjugate «’, defined by a]’. ={i:a >7J},
is p-restricted. It is well known that if A is a partition, then there exist unique
p-restricted partitions A (i) for i € Ny such that

A= p'ad). 2.1)

>0

We call this expression the p-adic expansion of A.

Let 22(n), €%(n) and 2272 (n) be the sets consisting of all pairs (1|v) of parti-
tions, compositions and p-restricted partitions, respectively, such that |A|+|v]| = n.
Here A or v may be the empty composition @. For (A|v), («|B) € £2(n), we say
that (A|v) dominates («|B), and write (A|v) > («|B), if, for all k > 1, we have

(@ Yo A = Y @, and
®) A+ X5 v = el + X5, 8.

(As a standing convention we declare that A; = 0 whenever A is a partition and
i > {£()).) This defines a partial order on the set 9?%(n) called the dominance
order. This order becomes the usual dominance order on partitions when restricted

to the subsets {(1|@) € 22%(n)} or {(D|v) € 2%(n)} of P2(n).
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2.4 Modules for symmetric groups

Let n € Ny, let &, be the symmetric group on the set {1,...,n} and let 2, be
its alternating subgroup. Given a subgroup H of &,, we denote the trivial repre-
sentation of H by F(H), and the restriction of the sign representation of &, to
H by sgn(H). In the case when H = &,, for some composition y of n we write
F(y) and sgn(y) for F(H) and sgn(H ), respectively. If y = (n), we reduce the
number of parentheses by writing F(n) and sgn(n), respectively.

For A a p-regular partition of n, let D* be the F&,-module defined by

D* = §* /rad(S%),

where S* is the Specht module labelled by A (see [17, Chapter 4]). By [17, The-
orem 11.5] each D% is simple, and each simple F&,-module is isomorphic to
a unique D*. The simple F'&,-modules can also be labelled by p-restricted par-
titions. For A € 22 (n) we set D; = soc(S*). The connection between the two
labellings is given by D) =~ D* ® sgn(n). For A € Z2(n), let P* denote the
projective cover of the simple F &,-module D).

Finally, for y € #(n), let x¥ denote the ordinary irreducible character of S7,
defined over the rational field.

2.5 Modules for wreath products

Let m € N and let G be a finite group. Recall that the multiplication in the group
G &, is given by

(81 8mi0)(g1r -+ & 0") = (8185-1(1) -+ -+ EmE 1 (1)1 OO ).

for (g1,....8m:0).(g}.....8mn:0") € G2 &,,. (Our notation for wreath prod-
ucts is taken from [19, Section 4.1].) Let M be an F'G-module. The m-fold tensor
product of M becomes an F[G ? ©,,]-module with the action given by

(&1, 8m:i0) (V1 @ Q) = Sgn(a)glva—l(l) Q- ®gmvg—l(m)

for(g1,....8m;0) € GGy, v1,..., 0y € M. We denote this module by Mem,
Note that we have twisted the action of the top group &,, by the sign representa-
tion. Thus, in the notation of [19, 4.3.14], we have

e~ m ~
M®™ = (# M) ® Infg'®" (sgn(m)).

The 1-dimensional module sgl(\k) ®” will be important to us. In our applications
k will be a p-power, and so odd. Since a transposition in the top group &, acts
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on{l,...,kn} as aproduct of k disjoint transpositions, and so has odd sign, there
is a simpler definition of this module, as Resé’; G, sgn(kn). More generally, given
o € % (n) and an odd number k, we define

— Gin
sgn(k)®* = Res(éu@al)x---X(@kZ@ar) sgn(kn). (2.2)

For use in the proof of Proposition 4.5 we briefly recall the character theory
of the group C;? &,,. Let )(’1 denote the irreducible character of &, labelled by
A € G,. For (A|p) € 22(n), with |A| = m; and || = m2, we define y*™ to
be the ordinary character of the following module for C; ? &,;:

G, Gm Sm s
ndEe X@jmz)@nfgﬁl L) R (Infgznj2 2(4) ® sgn(z)®m2)>.

A standard Clifford theory argument (see for instance [19, Theorem 4.34]) shows

that the characters y*%) for (A|) € 272 (n) are precisely the irreducible charac-
ters of Cy 2 ©,,.

2.6 Sylow p-subgroups of &,

Let P, be the cyclic group ((1,2,..., p)) < &, of order p. Let P; = {1} and,
ford > 1, set

Pya+1 = Ppa Q Pp = {(o1,...,0p;) 1 01,...,0p € Pya, € Pp}.
By [19,4.1.22,4.1.24], P,a is a Sylow p-subgroup of & pa.

Letn € N. Letn = Z;=0”ipi’ where 0 < n; < pfori € {0,...,r}, and let
n, # 0 be the p-adic expansion of n. By [19, 4.1.22, 4.1.24], the Sylow p-sub-
groups of &, are each conjugate to the direct product ]—[;zo(Ppi)”" . Hence if
we define P, to be a Sylow p-subgroup of the Young subgroup []7_q(S,i )",
then P, is a Sylow p-subgroup of &,,. The normalizer Ng,(Py) of P, in &, is
denoted by N,.

Whenever p = (p1,...,pr) € €(n), we denote by P, a Sylow p-subgroup
of @, defined so that P, = [];_; Pp,. In the special case when

o= 1m0, p" . (pY"™)=(0,....1, p,....p, ..., p5.....pY),
— —— N——
mq copies  mj copies mg copies

where m; € Ny for each i, we have P, = ]_[f=0(Pp,~)mi; in particular, the group
P, has precisely m; orbits of size p' on the set {1,2,...,n} for each i. We write
Ny = Ng,, (Pp).
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3 The Brauer quotients of signed Young permutation modules

In this section, we determine the Brauer quotients of signed Young permutation
modules with respect to Sylow subgroups of Young subgroups. Our main result is
Proposition 3.12; this generalizes [9, Proposition 1]. The description of the Brauer
quotients is combinatorial, using the («|f)-tableaux defined below.

Fix n € N and («|B) € €%(n). Let & = (a1,....ar) and B = (B1..... Bs).
The diagram [o] e [B] is the set consisting of the boxes (i, j) € N? for i and j
suchthateither 1 <i <randl1 <j <ojorr+1 <i <r+sandl <j < f;i_,.
A box (i, j) is said to be in row i. The subset of [«]  [B] consisting of the boxes
belonging to the first r rows (respectively, the last s rows) is denoted by [«] @ &
(respectively, @ o [B]).

Definition 3.1. An («|f)-tableau T is a bijective function
T:[a]e[B] —{1,...,n}.
For (i, j) € [a] ® [B], the (i, j)-entry of T is T(i, j).

We represent an («|f)-tableau T by putting the (i, j)-entry of T in the box (i, j)
of the diagram [«] e [8]. Considering [«] @ @ as the Young diagram [«], we denote
the a-tableau T([] ¢ @) by T4. Similarly, we denote the B-tableau T(Z e [B])
by T_. It will sometimes be useful to write

T = (T4|T-).

The («|B)-tableau T is row standard if the entries in each row of T are increas-
ing from left to right, i.e. both T4 and T_ are row standard in the usual sense.
We denote by T®# the unique row standard («|B)-tableau such that for all i,
je{l,....n}, if i is in row a of T®# and j is in row b of T®# and i < j,
then a < b. For example,

1]2]
T@DIG) _[3

415]6]|

where the thicker line separates the two parts of the tableau.

Let 7 («|B) be the set of all («|f)-tableaux. If T € Z («|f) and g € S, then
we define g - T to be the («|fB)-tableau obtained by applying g to each entry of T,
ie. (g-T)(i,j) = g(T(i, j)). This defines an action of S, on the set 7 («x|f).
The vector space F .7 («|B) over F with basis .7 («|f) is therefore a permutation
F&,,-module.

For each T € 7 («|B), let R(T) < ©,, be the row stabilizer of T in &,,, con-
sisting of those g € &, such that the rows of T and g - T coincide as sets. Then
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R(T) = R(T4+) x R(T-), where R(T4+) and R(T-) are the row stabilizers of
T4+ and T_, respectively, in the usual sense. Denote by U(x|f) the subspace of
F 7 («|B) spanned by

{T —sgn(g2)g182-T: T e T (x|B), (g1,82) € R(T+) x R(T-)}.

In fact, U(x|pB) is an FS,-submodule of F .7 («|p), since for all h € &, and for
any (g1,g2) € R(T+) X R(T-) and T € .7 («|B) we have

h- (T —sgn(g2)g - T) = h-T—sgn("g2)’g - (h-T) € Ule|p).
where g = g1g», since g € "R(T) = R(h - T) and g> € R((h - T)_).
Definition 3.2. For each T € .7 («|f), we write
{T} = {(T+|T-)}
for the element T + U(x|B) € F.7 («|B)/U(«|B) and call it an («|B)-tabloid.

Note that g{T} = {g-T} forall g € S, and T € T («|B). f T, T' € T («|B)
are such that T_ = T_ and T/_ is obtained by swapping two entries in the same
row of T, then {T} = {T’}. On the other hand, if T4 = T/, and T_ is obtained
by swapping two entries in the same row of T_, then {T’} = —{T}. The graphical
representation of («|f)-tableaux is shown in Example 3.5 below.

Let

Qa|p) = {{T} : T is a row standard (a|,B)—tableau} C FT(x|B)/U(x|p).

It is clear that Q(«|f) is an F-basis of F.7 («|B)/U(x|B). We write FQ(«|f)
for the F&,-module F .7 («|B)/U(«|B).

Lemma 3.3. Let («|B) € €% (n).

(1) The F&,-module FQ(«|B) is isomorphic to the signed Young permutation
M (c|B).

(i) For any p-subgroup P of ©y, there exist coefficients a(ry € {£1} for each
{T} € Q(«|B) such that

{amT) : {T) € Qlp))
is a p-permutation basis for F Q(«|B) = M («|B) with respect to P.
Proof. By the remarks after Definition 3.2 there is an isomorphism
F(o) R sgn(B) = F{T*I#}
of F[©y x Gg]-modules. Since |Q2(c|B)| = dimp M («|B), part (i) follows from
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the characterization of induced modules in [1, Section 8, Corollary 3]. Part (ii) fol-
lows from Lemma 2.6, since, for all {T} € Q(«|f) and 0 € &,,, we have o{T} =
+{T’} for some {T'} € Q(«|p). |

In view of Lemma 3.3 (i), we shall identify M («|8) with FQ(«|B), so that
M («|B) has the set of («|B)-tabloids as a basis.

The next corollary follows from Lemma 3.3 and Corollary 2.4.
Corollary 3.4. Let («|B) € €?(n).

(i) Let P be a p-subgroup of ©y. The F[Ng, (P)/P]-module M(c|B)(P) has
a linear basis consisting of all the (a|B)-tabloids {T} that are fixed by P.

(ii) Let p = (10, p"t ... (p")"") be a partition of n. The group
Ny/Pp = @y x (Np/Pp)2Gpy) x -+ X (Npr [ Ppr) 2 ©y,)
acts on the set of Py-fixed (a|B)-tabloids by transitively permuting the

entries in Py-orbits of size p' according to ©,; and, within each P-orbit of
size p', permuting its entries according to N,i [ Ppi, foralli € {0, 1,...,r}.

More explicitly, the basis in Corollary 3.4 (i) consists of all («|f8)-tabloids {T}
such that T is row standard and each row of T is a union of orbits of P on
{1,...,n}. This can be seen in the following example.

Example 3.5. Let p = 3. Consider the 3-subgroups
01={((1,2,3),(4,5,6),(7,8,9)) and Q, = ((4,5,6),(7,8,9))

of ©9. By Corollary 3.4 (i), since there are no ((2, 1)|(6))-tabloids fixed by Q1,
we have M ((2, 1)|(6))(Q1) = 0. On the other hand, M (Q») has a basis consisting
of the ((2, 1)|(6))-tabloids

12 13 23
3 ) 2 ) 1
456789 456789 456789

where the bold line separates each T from T_. Taking p = (1,1, 1, 3, 3), we have
Py, = Q2 and

Ng,(02) = G3 x (N, (P3) ¢ G3) = B3 x (632 6G3).

The first factor ©3 permutes the entries 1,2, 3 of each tabloid without sign, and
the second factor ©3 ! G, permutes the entries 4, 5, 6, 7, 8, 9 with sign. The sub-
group Q» acts trivially on the tabloids. Thus if {U} and {V} are the first two
((2, 1)|(6))-tabloids above, then

N ——
Resgomn 22 (F{U}) = sgn(3)®
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and (23)(45){V} = —{U}. Note that the isomorphism above requires the sign

twist in the definition of M for M an F&,,-module that we commented on in
Section 2.5.

Given m € N, we define a 1-dimensional F [N} ? ©,]-module by
— I @Wl —
sgn(Ny)®™ = Resstem sgn(k)®™.

Using this, we may now define three key families of modules. Let ¥ denote

the bifunctor sending a pair (U|V) where U is an F&,,,-module and V is an
F &,,,-module to the F[C3 ¢ ©,,]-module

C1G,, Gm G o (Y
Ind g2 X@mz)(lnfgf; = (U) (Infgjjz 2(V) ® sgn(2)®m2)).

Definition 3.6. Let k € N, let m € Ny and let (y|§) € €2(m). Let |y| = m; and
6] = m>.

(1) We define Vi (y|d) to be the F[Gf : ©p,]-module

GG, (YR cyalcr 8 —\®
Ind(é‘kzgm)x(@kz@mz)(Inf@’;l H(MY)R(Inf Sz (M%) @sen(k) ’"2))

(i) We define Wi (y|3) to be the F[(Ng/Py) ¢ ©,,]-module obtained from
ey
ReSNﬁ@m Vi (v18)

o T ANK B NG, NG \ercon( N ®
= IndyE e o, (InfEE S (M )R(Inf S (M) @sen(N) ©™))

via the canonical surjection

Nk 2Gm — (Nk 2 ©m)/ (Pr)™ = (Ni/ Pr) 2 Gum.

(iii) For k > 2, we define Wx(y|§) to be the F[Cs 2 ©,,]-module ¥ (MY |M?).
We define

Wi(y[8) = InfE" Wi (y[6).

Note that W (y|§) may equivalently be defined to be the F [(Ny/ Py )&, ]-mod-
ule obtained from

NG, T ®8
IndNZ?(@yx@,;)(F(Nk 2 G,) B sgn(Ng)®?) (3.1

via the canonical surjection as in Definition 3.6 (ii). We have

Wi(y|8) = Vi(y[8) = M(y|d)

as F&,,-modules. When k > 2, the F[C5 ? G,,]-module W («|B) is isomorphic
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to Vi («|B), considered as an F[C, ¢! ©,,]-module via the canonical surjection
Gk Gm = (B 2Gu,)/AY = (Ck/Uk) 2 Gy = C22 Gy

Similarly, we have that W («|B) is isomorphic to Res%}’z Sg”z Vi (¢|B), considered
as an F[C, ¢ ©,,]-module via the canonical surjection

Ni G — (Nk 2 Gm)/(Napy (P)" = Ca 2 Gy
Lemma 3.7. For all k > 2 and all (y|8) € €?(m), we have

Wi(r18) = Va(y15),
as F[Cy? G)-modules.

Proof. Tt suffices to show that sg(\k)@m2 o~ sgl(\Z)‘X’m2 as F[Cy ¢ ©,]-modules,
where sgn(k) is regarded as an F'C,-module via the canonical surjection

Cr — Gk /Ay = (.
This is clear since sgn(k) == sgn(2) as F C-modules in this regard. |

The following notation will be used to describe the direct summands of the
Brauer quotients of the signed Young permutation modules M («|f).

Notation 3.8. Let («|8) € €?(n) and p = (170, p"1, (p>)"2,....(p")") € €(n).
We write A((oz|ﬂ), p) for the set consisting of all pairs of tuples of compositions
18) = (@, D . ™ 15©@ s §0)) guch that:

(i) o =37 p'y®. p =270 p'8?. and

Gi) |yD| + 8@ | = n; foreachi € {0,...,r}.

Let («|B) € €%(n). Recall that Q(«|B) is the basis of M(«|B) consisting of
all («|B)-tabloids. As remarked after Corollary 3.4, an F-basis of M(«|B)(P,) is
obtained by taking those («|f)-tabloids {(T+|T-)} € Q(«|B) such that the rows
of T4 and T_ are unions of the orbits of P,. Given such a basis element {(T |T )}
andi € {0,...,r}, let y(l) and 8(1) be the numbers of Pp -orbits of length p' in
rows j and k of T4+ and T_, respectlvely Foreachi € {0,...,r}, let

5(1) (5(1) 8(1) )
Note that |y @] + |§©)| = n; for each i, and so
@@y O,y D18@ 50,80 € A@IB). p).
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We say that the («|8)-tabloid {(T4|T-)} is of p-type (¥ |8). For example, if p = 3,
n=9and p = (13,32),50 P, = ((4,5,6),(7,8,9)), then the ((3, 3)(3))-tabloid
123

789
456

has p-type ((3), (0, 1)|2, (1)).
We denote the set of all («|f)-tabloids of p-type (y[8) by Q((«|B).p)ys)-
Then the disjoint union

Q((@|B).p) = U e(@B).oes (32)
(18)eA(«]B).p)
is an F-basis of M(c|B8)(P,). Thus, as F-vector spaces, we have
M(@|B)(Pp) = FQ((«Ip). p) = P FQ(@lB).p)yisy- (33
(r18)eA(@]8).p)

Itis clear that (3.3) is in fact a decomposition of F'N,-modules, since N, permutes
orbits of P, of the same size as blocks for its action, and therefore preserves the
p-type in its action on («|fB)-tabloids. Furthermore, P, fixes all («|B)-tabloids
having a specified p-type. Therefore we obtain the following lemma.

Lemma 3.9. Let («|B) € €%(n) and let p = (10, p™1, ..., (p")") be a partition
of n. The Brauer quotient of M(«|B) with respect to the subgroup P, has the
following direct sum decomposition into F [N,/ Ppl-modules:

M@B)(P)= @  FQ@lB).pps)-
¥18)eA((«|B).p)

In view of Lemma 3.9, to understand the Brauer quotient M (x|B)(P,) of the
signed Young permutation module M («|p), it suffices to understand each of the
F[N,/ Ppl-modules FQ((|B), p)y|8)-

Definition 3.10. Suppose that («|8) € €?(n) and that p = (170, p"1, ..., (p")"")
is a partition of n. Let the orbits of P, of size p' be O; 1,...,0;p,. Let

,
0 :Q((@lB).p) — g [[2r®189)
I8)eA((@]B).p) i=0
be the bijective function defined as follows. Suppose that {T} € Q(«|f) is of
p-type (y]8). For each 0 <i < r, let {T;} be the (y(i)|8(i))-tabloid such that T;
is row standard, and row k of (T;)4 (respectively, (T;)—) contains j if and only if
row k of T (respectively, T_) contains the orbit O; ;. Define

O{T}H = ({Ti}i=o.1.....r-
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We note that, by the definition of Pp,

i—1 i—1
0i,j = {(j -Dp' +1+ anpg,...,jpl + anpg}
=0

=0

fori €{0,...,r}and j € {1,...,n;}. Clearly, the bijection ® in Definition 3.10
restricts to a bijection, also denoted ®,

© : Q(@lB).p) 5~ [ [ 218D
=0

Since |Q2(y@16D)| = dimp M(yD|8D) = [B,, : (8,1 x Bs®)], we obtain
the following lemma.

Lemma 3.11. Let («|B) € €%(n), p = (170, p"1, ..., (p")*") such that |p| = n,
and let (y|8) € A((|B). p). Set

r r
H =[] Ny 2(8y) x G50) = [[(N,i 0@y ) x (N,i 2 G50) < N,
=0 i=0

Then [Q((«[B). p)y18)| = [Np : H].

‘We have reached the main result of this section.
Proposition 3.12. Suppose that («|B) € €>(n) and that

p=(1"p" ... (p)") €Cn).

Regarded as an F [N,/ P,]-module, the Brauer quotient M (| B)(P)) of the signed
Young permutation module M (c|B) with respect to P, satisfies

M@Y= P KW D80,

18)eA((«lB).p) 1=0

Proof. Recall that for each pair (A|11) € €2(n), we have defined a row-standard
(A|p)-tableau TA# immediately after Definition 3.1. Fix (y|8) € A((«|B). p) and
let Z = FQ((«|B). p)(y|s)- By Lemma 3.9, it suffices to show that

r . .
Z = KW, (y[sD)
i=0
as F'N,-modules with P, acting trivially, or equivalently, by (3.1), that

r N G,. — @)
~ L . i \®8
Z = g)lnsziz(gy(i)X@S(i)) (F(Nyi 2 @y) Rsgn(N,)®% ). (3.4)
1=
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Let {S} € Q((«|B). p) (y|8) be the unique («|B)-tabloid such that

,
@({S}) — (TY(O)|5(O)’ Ty(l)w(l)’ L Ty(r)ls(r)) c 1—[ Q(y(l)|8(l))
i=0
Using the N,-action on Z, we observe that Z is a cyclic FN,-module generated

by {S}. Let X be the subspace of Z linearly spanned by {S}. By the definition
of {S}, the subspace X is an FH-module, where

r r
H = 1_[ Nyi LBy x Ggh) = H((Npi LGy) x (N 2 G5™)) < Np,

i=0

and there is an isomorphism
X = (F(N12:G,0)K Sm)@gw)) K- & (F(Npr 1@yn) K Sm)@;g(r))

of FH-modules. Since dimp Z = [N, : H]dimr X by Lemma 3.11, we have
7 =~ Indzp X by the characterization of induced modules in [1, Section 8, Corol-
lary 3]. Hence we obtain the isomorphism (3.4) as desired. o

4 Young modules and signed Young modules

In this section we define Young modules and signed Young modules in the setting
of the symmetric group and prove Theorem 1.1.

4.1 Vertices

As a first step we identify the possible vertices of summands of signed Young
modules. Recall from Section 2.6 that Pj, denotes a Sylow subgroup of G and, if
p is a partition of n, then P, denotes a Sylow subgroup of the Young subgroup &,
of ©,,. We require the following lemma from [9]; a proof, slightly shorter than the
one in [9], is included to make the article self-contained.

Lemma 4.1 (Erdmann [9, Lemma 1]) Let G be a finite group and let M be
a p-permutation F G-module. If P and P are p-subgroups of G such that P < P
and dimp M(P) =dimgp M (P), then no indecomposable summand of M has
vertex P.

Proof. Suppose, for a contradiction, that U is such a summand. Let M = U @ V
where V' is a complementary F'G-module. By Corollary 2.4, we have U(P) # 0
and U(P) = 0. Thus

M(P)=UP)® V(P) = V(P)
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and
M(P)=U(P) D V(P).

This is a contradiction, since taking a p-permutation basis for V' and applying
Corollary 2.4 shows that dimg V(P) > dimg V(P). ]

Proposition 4.2. Let («|B) € €2%(n). If P is a vertex of an indecomposable sum-
mand of M(x|B), then there exists p = (10, p™', ... (p")*") € €(n) such that
P is conjugate in &, to P,,.

Proof. Let H be the Young subgroup of &, having the same orbits as P on
{I,...,n} and let P be a Sylow p-subgroup of H. Note that P has the same

orbits on {1,...,n} as P: suppose that each subgroup has exactly n; orbits of
size p' for eachi € {0,...,r}, so P is conjugate in &, to P,. It suffices to prove
that P = P.

Let {T} be an («|B)-tabloid fixed by P. As remarked following Corollary 3.4,
each row of T is a union of orbits of P. Therefore each row is a union of orbits
of P, and so if g€ P, then g{T} = £{T}. Since g has p-power order, we see that
g{T} = {T}. It now follows from Corollary 3.4 that

dimp M(a|)(P) = dimp M(a|B)(P).
By Lemma 4.1 we have P = ?, as required. O

Combining Proposition 3.12 and Proposition 4.2, we see that the Broué
correspondents of the non-projective indecomposable summands of M («|f) are
certain outer tensor products of the projective indecomposable summands of the
F[(Nyi/Ppi) 2t ©p]-modules Wi (y|8) in Definition 3.6. In fact, it is most con-
venient to factor out a further subgroup that acts trivially, and consider projective
summands of the F[C5 ? ©;,]-modules Wp,- (716).

4.2 Projective summands of W (y|5)

Fix k € N and m,m, € Ng. Let m = my + m». Recall from Section 2.5 that
if @ € ZF(n), that is, o is a p-restricted partition of n, then P denotes the
projective cover of the simple F&,-module D,,.

We remind the reader that the bifunctor ¥ was defined just before Defini-
tion 3.6.

Definition 4.3. Let («|8) € Z22%(m). We define O («|B) = F (P¥|PF).

Example 4.10 gives an example of these modules. Note that each tensor factor
is projective, so each Q(«|p) is projective.
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Lemma 4.4. The F[C3? ©p]-modules ¥ (Dy|Dg) for every (a|B) € RP?(m)
Sform a complete set of non-isomorphic simple F[Cy ! ©;,]-modules. Moreover, the
F[Cs 2 G,p]-module Q(c|p) is the projective cover of ¥ (Dg|Dg) and the mod-
ules Q(t|p) for (a|B) € Z#P%(m) form a complete set of non-isomorphic inde-
composable projective modules for F[Cy 2 ©,,].

Proof. The first claim follows from the construction of simple modules for wreath
products stated in [19, Theorem 4.34]. For the second, note that by functoriality,
there is a surjection Q(«|8) = ¥ (P*|P#) — F (Dg|Dg). Hence the projective
F[C3? &,y]-module Q(x|B) has the projective cover of F(Dg|Dg) as a sum-
mand. Since the inertial group of

F(P¥|PP) = nf2®m (P*) & (Infg*@mz (PP ® s@)@"z)
mj myp

is (C22 Gm,) x (C22 Gpyy), it follows from [2, Proposition 3.13.2] that O («|B)
is indecomposable. Therefore O («|fB) is the projective cover of F (Dg|D g). O

Let G be a finite group. By [2, Section 3.11], we may associate a character to
a p-permutation FG-module M by taking a p-modular system (K, @, F) com-
patible with F and an @G-module Mg whose p-modular reduction is M. The
ordinary character of M is then the character of the KG-module K ® 9 M. It M
is projective and indecomposable, the ordinary character of M may equivalently
be defined by Brauer reciprocity (see for instance [25, Section 15.4]).

Proposition 4.5. Let (y|8) € 22(m), where |y| = m1 and |§| = m». Each inde-

composable projective summand of Wy (y|8) is isomorphic to some Q(a|B),
where (a|B) € ZP?(m) satisfies

() || =my and |B| = ma,

(i) a >y and B > 6.

Proof. By Lemma 4.4, each indecomposable projective summand of W (y|8) is
isomorphic to some O (a|B). By the ‘wedge’ shape of the decomposition matrix
of &, with columns labelled by p-restricted partitions (see for instance [20, Theo-
rem 5.2]) and Brauer reciprocity, the ordinary character of P% contains the irredu-
cible character y® exactly once. Hence the ordinary character of O («|f8) contains
the character

G, Gm Gm s
1P =md i e, )(Inféijl T(%) % (Infész 2(F) ® Sgn(2)®m2))

defined in Section 2.5 exactly once. o
We now consider when the ordinary character of W (y|8) contains y@!#). The
restriction of W, (y|§) to the base group in the wreath product C, ! G, is a direct
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sum of 1-dimensional submodules. In each such submodule, 721 of the factors in
the product CJ" act trivially and my of the factors act as sgn(2). It follows by
basic Clifford theory that the ordinary character of W (y|§) contains the char-
acter y@8) only if |«| = m; and |B| = m,. By Young’s rule (see for instance
[17, Theorem 13.13]), the ordinary character of M? contains y* only if o > y,
and similarly the ordinary character of M 8 contains )(ﬂ only if 8 > §. It follows
that if Q(a|B) is a summand of Wy (y|8) then @ € P (my), B € P(m2), a >y
and B > 6. O

4.3 Definition of signed Young modules

We define signed Young modules as the Broué correspondents of tensor products

of suitable inflations of the modules Q(«|f). To make this precise, we need the
three further families of modules defined below: their definition follows the same
pattern as the p-permutation modules Vi (y|§), Wi (y|6) and W (y|6) in Defini-
tion 3.6.

Definition 4.6. Let k € N, let m € Ny, and let («|8) € ZZP?(m). Let m; = |«
and my = |fB|. The F[©k ¢ G;y]-module Ry («|p) is defined by

R (@|B) = 7 (P*|PP).
By convention,
Ri(@1B) = i (PF) @ sgn(k)®™2,

and similarly for Ry («|@). Furthermore if m = 0, then R (2|D) is the trivial
F©&p-module. If k = 1, then we identify & ? G, with &,,, and get
Ri(e|p) = Indgzl <G, (P (PP ® sgn(m,))).
Recall from Section 2.6 that Py is a fixed Sylow p-subgroup of © and that
Ni = Ne, (Pr).

Definition 4.7. Let k € N, let m € Ny, and let («|8) € Z2?(m). Let Qi (x|p)
be the F[(Ng/Px) ¢ ©;,]-module defined by

Or(@|p) = Resg '™ Ri(alB)
considered as an F[(Ng/Py) ¢ ©,,]-module via the canonical surjection
Ni 2 ©m — (Nk 0 Gm)/(Pk)™ = (Ni/Pi) 2 G,
Again if k = 1, we identify N; ¢ &,, with G,, and we have
Q1(a|p) = Ri(x[B).
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Since ()™ acts trivially on Ry (cx|B), we see that (Ngy, (Px)/Px)™ acts trivially
on QO (a|B). It is clear that

N 26"1 N 26}’"
Ok (@lp) = Ind i x@m2)<lnf6’r‘nl L(P%)

- 4.1)
® (Infgs' (PP) @ sgn(Np)®™)).

again regarded as an F[(Ny /Py ) ! ©,]-module by this canonical surjection.
Definition 4.8. Let k € N, let m € Ny, and let («|8) € Z2?*(m). For k > 2, let

O (a|B) be the F[C3 ? G,,]-module obtained from Qy (a|B) via the canonical
surjection

(Nik/Pr) Q©Gm — (N /Pi) 2 Gm)/ (Nar, (Pr)/ Pr)™ = C22 Gy
We define the F[C3 2 &,,]-module O (a|B) by
N Gm
0, (|p) = InfZ'®" 0y (alB).
The following lemma justifies the notation @k (x| B) for the projective modules
just defined.
Lemma 4.9. Let k > 2 and let (a|B) € #P?(m), where m € Ny. Then

O (@|B) = 0(|B) = Ra(a|p)
as F[Cy ! Gy,]-modules.

Proof. The first isomorphism is clear from the definitions and the second follows
as in Lemma 3.7. |

We pause to give a small example showing the exceptional behaviour when
k=1

Example 4.10. Let p = 3andletk > 2. Lete = Infg’s<2<§3 (sgn(3)). There are four
mutually non-isomorphic 1-dimensional simple F[Gx ¢ ©3]-modules, namely

FO®, sen(®)®, FIO®* @ &, sen()®’ @ &,

where the trivial module appears as f(k\)®3 ® ¢. The projective covers of these
modules are

Ri((1,1,1)|@). Re(2](2. 1)), Re((2.D[2), Re(2|(1,1,1)),

respectively. Quotienting out by the trivial action of the group 2, the correspond-
ing modules O («|B) for F[C, ? @3] are precisely the projective covers of the four
1-dimensional simple modules for F[C, ? ©3]. The four remaining simple mod-
ules for F[C;? @3], each projective; by Lemma 4.4, they are isomorphic to the
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modules O («|B) where both « and S are non-empty. By contrast, when k = 1,
identifying ©1 ¢ ©3 with ©3 as described after Definition 4.6, we have

0,((1.1.D]@) = 0,(2]2.1) = PO1D = M@ g sgn
and o o
0,(2.1)2)~0,@|(1,1,1)) = P&V =~ y@D,
We are finally ready to define signed Young modules.
Definition 4.11. Let (A| pit) € 222 (n). Let
A= A0 and p=) piul)
i>0 i>0

be the p-adic expansions of A and w, as defined in (2.1). Let ng = |A(0)] and let
n; = |A@)| + |n(@ — 1)| for each i € N. Let r be maximal such that n, # 0 and
let p = (10, p™t ..., (p")"). We define the signed Young module Y (A|pu) to
be the unique (up to isomorphism) F &,-module V' such that

V(Py) = 01(10)]2) B 0, (A(1)[1(0)) B - 8 Qpr (A(r)]a(r — 1)).

We define a Young module to be a signed Young module of the form Y (1|9).
The isomorphism above is an isomorphism of projective F'[&,, x ((Np/Pp)?
©pny) X -+ X ((Npr / Ppr) 2 Gy, )]-modules. Observe that P, is trivial if and only if

A is p-restricted and . = @; in this case Q1(A(0)|@) is regarded as a &,-module
by identifying Ny ¢ &, with &,, and since A = A1(0) we have

Y(A|2) = 01(A|2) = P*.
The following proposition gives part of Theorem 1.1 (i).

Proposition 4.12. The following statements hold.
() If (| B) € Z2%(n), then M(«|B) is a direct sum of signed Young modules.
(i) Ifa € L (n), then M¥ is a direct sum of Young modules.

Proof. Let (a|B) € 2?(n) and let V be an indecomposable summand of M («|B).
By Proposition 4.2 there exists p = (170, p™1, ... (p")™") € € (n) such that P,
is a vertex of V. Recall that

Ny/Py 2= Gy x (Np/Pp)2Gpy) X - X (Npr /Ppr) 2 Gp,).

By Proposition 3.12, there exists (y|8) € A((¢|B), p) such that the projective
F[N,/P,]-module V(P,) is a direct summand of

Wi @18 =W, (r V18N R B W (r18T)).
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By Lemmas 4.4 and 4.9 there exist partitions A(0), ..., A(r) and u(0), ..., u(r—1)
such that

V(Pp) = 01(1(0)) R Qp (A(1)|1£(0)) B -+ B Qpr (A(r)|(r — 1)).

By Theorem 2.5, V = Y(A|pp), where A = 3 _ p'A(i)and u = 3 I, L piu).
This proves part (i). For (ii), observe that if § = &, we have § () = & for each i,
and so u(i) = @ foreachi. |

4.4 Column symmetrization of («|3)-tabloids

To deal with the projective summands of signed Young permutation modules, we
require the following corollary of the key lemma used by James to prove his
Submodule Theorem in [17]. Given a tableau t with entries from a set (9, let
Ci < G be the group of permutations which fix the columns of t setwise. Set

Kt =) gec, SEN(8)8.

Proposition 4.13. Let A € & (n) and let t be a A-tableau. In any direct sum decom-
position of M A into indecomposable modules there is a unique summand U A such
that KtU’1 % 0. Moreover, if a € & (n), then ktU% = 0 unless A > «.

Proof. This follows immediately from [17, Lemma 4.6]. o

By the Krull-Schmidt Theorem, the U * are well-defined up to isomorphism.
It is clear that U% =~ U# if and only if « = B.
We also need the following generalization of part of James’ lemma.

Lemma 4.14. Let («|B) € €%(n) and let T = (T4 |T—) be an («|B)-tableau. Let
A € P(n) and let t be a A-tableau. If k:{T} # 0, then (A|@) > (x|p).

Proof. Let O be the set of entries of T. Let H = ©G9 N &,/ and let Oy, ..., Oy
be the orbits of H on O, ordered so that |O1] > ... > |Os|. Let

v=(01].....105))" € Z(|al).
The jth largest orbit of H has size at most A’;,. Therefore we have v/, < A’ for
each j € {1,...,s}, and so v is a subpartition of A. It immediately follows that
k k
A=) v (4.2)
i=1 i=1

for all k € N. (By our standing convention, v; = 0if i > £(v).)
Let t* be a v-tableau having the entries of ¢; in its jth column. Observe that
Ci» < Ct. Choose g1,...,8s € Ct such that Cy = g1C¢x U - U gsCy+, where
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the union is disjoint. We have

Kkt = (sgn(g1)g1 + -+ + sgn(gs)gs )kt

Since x+{T} # 0, we have x4+ {T} # 0. Since Cy~ fixes the entries in T_, it follows
that k¢« {T4} # 0. The argument used to prove [17, Lemma 4.6] now shows that
any two entries in the same row of {Ty} lie in different columns of t*, and so
v > «. Hence, by (4.2), we have (A|@) > («|B), as required. o

4.5 Proof of Theorem 1.1

For convenience we repeat the statement of this theorem below.

Theorem 1.1 (Donkin [7]). There exist indecomposable F&,,-modules Y (A|pu)
for (A|pp) € P2(n) with the following properties:

() if (a|B) € P2(n), then M(a|B) is isomorphic to a direct sum of modules
Y(Alp) for (A|pp) € 2% (n) such that (X| pp) = (a|B),
(ii) [MAlpp) : YA pp)] = 1,
(iii) if A = 37—y P'AG) and = Y IZ§ p' (i) are the p-adic expansions of A
and [, as defined in (2.1), then Y (A| pit) has as a vertex a Sylow p-subgroup

of the Young subgroup ©,, where p is the partition of n having exactly
[A(@)| + | (i — 1)| parts of size p* for eachi € {0, ..., r}.

We shall prove the theorem by showing that parts (i), (ii) and (iii) of Theo-
rem 1.1 hold when Y(A|pu) is as defined in Definition 4.11. In fact, part (iii)
holds by definition, so we may concentrate on parts (i) and (ii).

Proof of Theorem 1.1. We work by induction on n € Ny. If n < p, then F&,
is semisimple and the modules Y(A|@) for A € & (n) form a complete set of
simple F&;,-modules. Hence parts (i) and (ii) follow from Proposition 4.5. Now
letn > p.

We first deal with non-projective summands. Let (A| pi) € 222(n) and suppose
that either A is not p-restricted or u # @. Let ng = |A1(0)| and let

ni = |AG)| + |uG —1)] fori € N.

Let p = (170, p"t ..., (p")").
By Theorem 2.5 and Proposition 3.12, [M(«¢|B) : Y(A|pu)] is equal to the sum
of the following products over all (y|8) € A((«@|B), p):

r

(W1 @18@) - PAPOTTT[Wi 0 P18D) = 0, (M) |G = D)]-

i=1
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Suppose the product is non-zero for (y|8) € A((«|B). p). Then P*(© js a direct
summand of W; (y(0)|8(0)) ~ M(y© |8(0)). Since PA©) = Y (1(0)|@), it follows
from the inductive hypothesis that (1(0)|@) > (y©|§ Oy, Similarly we have that
Q,i (A(D)|p(i — 1)) is a direct summand of W), (yD18D) for eachi € {1,...,r}.
By Proposition 4.5, we have A(i) > y@ and u(i —1) > 89 for each such i.
Hence

r r
A=20) =Y pAi)= > ply@ =a—py©@ (4.3)
i=1 i=1

and

r r
pu=>Y pui-1ne=) p'sh=p—50 (4.4)
i=1 i=1

Hence A > o — y(o) 4+ A(0) > « and

J J
A+ ppi = lal + 1891+ > pui

i=1 i=1

j j
> Jo| + @1+ Y (B -8O); = o] + > B

i=1 i=1

forall j € N. Therefore (A|pu) > («|B). By Proposition 4.12, every summand of
M («|B) is isomorphic to some Y (A|pu), so this proves part (i) in the non-projec-
tive case. If («|8) = (A| p), then, by divisibility considerations, y(® = 1(0) and
§O0 = g Moreover, equality holds in both (4.3) and (4.4), so we have y(i ) = AD)
and §©) = u(i —1) foreachi € {1,...,r}. Conversely, if y and § are defined in
this way, then the product is 1. This proves part (ii) in the non-projective case.

We now deal with the projective summands. By Proposition 4.12, if « € & (n),
then M ¥ is a direct sum of modules Y (1|@) for A € &(n). The argument so far
shows that if « is not p-restricted, then Y («|@) is a summand of M%, and Y («¢|9)
is a summand of MY only if o > y. Therefore, inductively working down the
dominance order on partitions, we see that, for each such «, the submodule U*
in Proposition 4.13 is Y(«|@). By counting, the remaining U* for « € ZZ(n)
are the modules Y(A|@) for A € ZZ(n). Again working inductively down the
dominance order of partitions, it follows from Proposition 4.5 that U* = Y («|9)
for each @ € 2% (n). This proves part (i) in the projective case when § = @, and
also proves part (ii) in the projective case.

Finally, suppose that A is p-restricted and Y(A|@) is a direct summand of
M(x|f). Let t be a A-tableau. By Proposition 4.12, we have kt M («|8) # 0. Hence
there exists an («|B)-tabloid {T} such that k¢{T} # 0. By Lemma 4.14 we have
(A|@) > («|B). This completes the proof of part (i) in the projective case. o
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5 Applications of Theorem 1.1

5.1 Equivalent definitions

We observed in the introduction that since signed Young modules are characterized
by Theorem 1.1, our definition of signed Young modules agrees with Donkin’s
in [7]. Similarly Theorem 1.1 characterizes the Young module Y (A|@) as the
unique summand of M A appearing in M * only if A &> . By [18, Theorem 3.1 (i)],
James’ Young modules admit the same characterisation. The two definitions there-
fore agree. In [10], Erdmann and Schroll consider Young modules for finite gen-
eral linear groups. Adapting their proof to symmetric groups (this is mentioned as
a possibility in [10], as a way to correct [9]), their definition of the Young modules
uses the characterization in Proposition 4.12. Our proof of Theorem 1.1 shows
these definitions agree; of course this also follows from the alternative characteri-
zation just mentioned.

Remark 5.1. (i) The counting argument used in our proof of the projective case of
Theorem 1.1 is motivated by similar counting arguments used in [10]; the authors
of [10] thank Burkhard Kiilshammer for suggesting this approach.

(i) We have assumed throughout that F has odd prime characteristic p. It is
possible to construct Young modules when p = 2 and to prove the analogue of
Theorem 1.1 by adapting (and simplifying) the approach herein.

(iii) The analogue of signed Young modules for the finite general linear group
GL, (F4) are the linear source modules induced from powers of the determinant
representation of parabolic subgroups of GL,(IF;). These modules seem worthy
of study, especially given the difficulty of working directly with Specht modules
for GL, (Fy).

5.2 Klyachko’s formula and other applications

The following corollary generalizes Klyachko’s formula to signed Young modules.
It is proved in the first step of our proof of Theorem 1.1; alternatively it follows
from this theorem by taking Broué correspondents.

Corollary 5.2. If («|B) and (M| pj) € P?*(n), then

M@|p): YAlpwl= > [MEPs?):v(10)2)]
18)eA((«|B),p)

< [ Wi @189) : Qi (M) |12 — 1)].

i=1
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We remark that the reduction formula for signed p Kostka numbers in Corol-
lary 5.2 has previously been obtained by Danz, the first and the second authors
in [5].

The proof of the following lemma is very easy and is left to the reader. Recall
that the notation e for the concatenation of two compositions was defined in
Section 2.3.

Lemma 5.3. Let
p =170 p™ (P,
y =" p" (PP,
be partitions of m and n, respectively, and let k > r. Then
Ppephy = Pp X Ppky,
Ne,, i pkn(Pp x Ppky) = Ng,,(Pp) X Ng ,k, (Ppky),
Npepky/ Ppepky = (Np/Pp) X (Npky [ Ppky).
Let (A|pu) € 22 (n). Suppose that the p-adic expansions of A and p are
A=) p'a) and p=) p'ul),
i>0 i=0

respectively. Let u(—1) = @. If r is maximal such that [A(r)| + |u(r — 1)| # 0,
then we set

Ep(Alpp) = 1. (5.1
Lemma 5.4. Let (M| pp) € P2%(n) and let P, be a vertex of the signed Young
module Y (A pu).
(i) The signed Young module Y (pA|p? ) has vertex Ppp.

(ii) Suppose that k > £,(A|pp) and let (¢|B) € 2%(m) for some m € N. Then
Y(A + p¥a| p(u + p¥B)) has vertex P, x Pyky, where Py is a vertex of
Y(at| pB). Moreover, Y (A| pw)(Pp) B Y (p*a| p¥T1B)(Ppky) is isomorphic
to the Broué correspondent Y (A + pFa|p(n + pkﬁ))(Pp X Ppky).

Proof. Suppose that A, u have p-adic expansions } ;- piAGD), 2i>0 piu),
respectively. It is clear that the partitions pA and pu have p-adic expansions

pA=>_pAi—1) and pu=>_ p'ui-1).

i>1 i=1

respectively. So |(pA)(0)| = 0, and

(P D]+ [(pr) (i = D = [AG = D] + [ =2)| foralli =1,
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where we set 1(—1) = @. By Definition4.11, Y(pA| p? 1) has vertex Py, proving
part (i).

Letr = £,(A|pu). For part (ii), since k > r, the p-adic expansions of 1 + pka
and u + p¥ B are

At pra= )" pai)+ ) plai —k).

0<i=<r i>k
pAp =Y plu@+> p'Bi—k).
o<i<r i>k

respectively. By Definition 4.11, Y(A + p¥a|p(u + p¥B)) has vertex Py, where
N = (IIA(O)\’pIA(l)HIM(O)I’ o (pD)RONF G =D (ke O]

(pk+1)|a(1)|+|ﬁ(0)|’.”) = pepky.
Thus Py = Pjepky = Pp X Ppky,. By Definition 4.11 and Lemma 5.3, we have

YO A+ pXalp(u + p*B)(Ppapry)
= 01(A0)[2) K Qp(A(1)[1(0)) W --- B Qpr (A(r)[uu(r — 1))
X 0,k («(0)|2) B Qpr+1(a(1)[B(0) K ---
= Y (Al p) (Pp) B Y (p*a| P B) (Ppry).

as required. o

The following result is an interesting special case of [6, Theorem 3.18]. It is
included to illustrate a technique used again in the proof of Proposition 7.1.

Lemma 5.5. Letn € N. Ifn = mp + ¢ where m € Ny and 0 < ¢ < p, then

sgn(n) = Y ((19)[(mp)).

Proof. Letn =Y ;_, p'n; be the p-adic expansion of n, and let

p= (1", p"t ... (p")").

By Definition 4.11, the signed Young module Y ((1¢)|(mp)) has P, as a vertex and
Y ((19](mp))(Pp) = 01((19)|2) B Qp(2(n1)) B --- R Opr (2](n))

as a module for F'[N,/P,). Since n; < p, we have

(Npi /Ppi)zelTi (
ni

0, (](n)) = Infg F(n7)) ® sgn(N,1)®"

i

G i, .
= ReSN:i2@n,~ (sen(p'n;)),
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where the second isomorphism follows from (2.2), regarding the right-hand side
as a representation of (N, / P,i) ¢ ©p;. Hence there is the following isomorphism
of F'N,-modules:

Y((lc)|(mp))(Pp) o~ Resﬁz (sgn(n)).

On the other hand, since P, is a Sylow p-subgroup of G,, it is a vertex of sgn(n),
and clearly

sgn(n)(Pp) = Resﬁz (sgn(n))
as an FN,-module. The Broué correspondence is bijective (see Theorem 2.5), so
we have Y ((1¢)|(mp)) = sgn(n). o

6 Signed p-Kostka numbers

In this section we prove Theorem 1.2 and Theorem 1.3. We work mainly with
the F[(Ny/Px) Q ©m]-modules W (y|8) and Qg («x|B) defined in Definitions 3.6
and 4.7, and the F[C3 ¢ ©,]-modules W (y|§) and Qy («|B) obtained from them
by factoring out the trivial action of the even permutations in the base group of the
wreath product.

We begin with a key lemma for the proof of Theorem 1.2.

Lemma 6.1. Let n € N. For any (y|8) € €%(n) and (A1) € ZP?(n) we have
@) [Wyit1(18) : Qpivr(Aw)] = [Wyi (v18) : Qi (Al)] forall i = 1,
(i) [Wp(r19) : Qp(A[@)] = W1(y|2) : Q1(A[D)],
(i) [Wy(718) : Qp(A|2)] = 0if§ # 2.
Proof. By Lemma 3.7 and Lemma 4.9 we have
0, (A1) = Ro(A|p) and - W5 (y18) = Va(y[6)

forall j > 1. Part (i) now follows by applying Lemma 2.1. For (ii), if § = u = @,
then

Wy(y|@) = Va(y|@) = Inf " (MY) = W1(y|2).
0,(A2) = Ray(A|@) = It (P*) = 0,(A|2).

So

[(Wr(r12): 0,(A2)] = [W1(y|2) : 01(A|2)].
Now apply Lemma 2.1. Finally, the third part follows from Proposition 4.5 and
Lemma 2.1. o

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let P, be a vertex of Y(A|pu). By Definition 4.11 we have

p= (1", p" (p*)"2, ... (p")"),

where ng = |[A(0)] and n; = |A(i)|+|n(i—1)| foralli € {1,...,r}. By the Broué
correspondence (see Theorem 2.5) and the description of the Broué correspondents
of signed Young modules in Lemma 5.4, it is equivalent to show that

[M(pa| pB)(Ppp) : Y(pAI P2 ) (Ppp)] < [M(c|B)(Pp) : Y(A| p)(Pp)].

Let A = A((«|B).p) and A’ = A((pa|pB). pp) be as defined in Notation 3.8.
Observe that A’ consists of all compositions

(2,7 O 0z 5O M) 50y
where (y©@,p M . y®1g©@ g1~ §0)) e A By Lemma 3.12 applied to
M(pa|pB)(Ppp), we have

r+1 . .
M(pa|pB)(Ppp) = P X W, (y'P18'D)

(r'18")er =0
r . .
= P m@lo)B X Wi (y@[sD).
(18)eA i=0

By Definition 4.11 and Lemma 5.4 (i), we obtain both
[M(pa| pB)(Ppp) : Y(pAIp* 1) (Ppp) ]
= > JIWpt1@18D) : Qi M@ i — 1))],
(y18)eA i=0
[M(«|B)(Pp) : Y (Al pp)(Pp)]
= Y [ @189): 0, A ni — 1)),
(y|8)eAi=0
where, as usual, (—1) = @. By Lemma 6.1, we have
[Wyie1 D189 2 Q it (D) i = 1))]
= Wy ¢ P18D) 1 0,0 (M)l — 1))]

for all i > 1, and for i = 0 whenever § 0 = &, Otherwise, when i = 0 and
5O # @, we have

0=[W,»@15©): 0,(1(0)|2)] < [W1 (¥ @18@) : 01(1(0)|2)].

This completes the proof. |
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Corollary 6.2. Let («|B), (A| pp) € P2(n). Suppose that 1(0) = . Then

[M(palpB) : Y(pAlp?*w)] = [M(«|B) : Y(App)]-
Proof. Let p € €(n) be defined by

p = (1AO1 HADFROI  (,r) AR Iae-DI)

. (p

The vertex P, of Y (A|pu) has no fixed points in {1,2,...,n}. Hence §0 = g
for any (p|8) € A((¢|B), p). The result now follows from Theorem 1.2. o

It is now very easy to deduce the asymptotic stability of signed p-Kostka num-
bers mentioned in the introduction.

Corollary 6.3. Let («|B). (A| pp) € Z2(n). Then, for every natural number k > 2,
we have

[M(p*alp®B) - Y(PFAI P )] = [M(pal pB) : Y (pAI )]
< [M(@|B) : Y(A pw)]-
Proof. This follows immediately from Corollary 6.2 and Theorem 1.2. |
Example 6.4. We present a family of examples where the inequality in Theo-
rem 1.2 is strict. Let 0 < ¢ < p,letm € N and letn = mp + c¢. Since &, x &,
has index coprime to p in &, the trivial module Y ((n)|@) is a direct summand of

M ((mp, c¢)|D); the multiplicity is 1 since M ((mp, c)|@) comes from a transitive
action of ©,. By Lemma 5.5 we have sgn(n) = Y ((1¢)|(mp)). Thus

[M(2](mp.c)) : Y ((1)](np))]
= [M(2](mp.c)) ® sgn(n) : Y((1)|(mp)) ® sgn(n)]
= [M((mp.c)|D) : Y ((n)|2)]
=1.
On the other hand,
[M((mp?,cp)|@) - Y (mp?)|(p(19)))] = 0

because, by [7, 2.3 (6)], the signed Young modules are pairwise non-isomorphic
and so the signed Young module Y ((mp?)|p(1€)) is not isomorphic to a Young
module. Thus we have

[M(2|p(mp.c)) : Y (p(19)| p(mp))]
= [M(2|(mp?.cp)) @ sgn(np) : Y (p(1°)| p(mp)) & sgn(np)]

= [M ((mp*.cp)|D) : Y ((mp>)| p(1)]
= O,
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where the penultimate equation is obtained using [6, Theorem 3.18]. This shows
that

[M(2|p(mp.c)) : Y (p(19)| p(mp))] < [M(@|(mp.c)) : ¥ ((19)|(mp))].
We now turn to the proof of Theorem 1.3. We need a further result on the Brauer

quotients of signed Young permutation modules.

Proposition 6.5. Let m,n € N and let (7|7) € €2(m) and (¢|¢) € €2(n). Let
p € € (m)andy € € (n) be compositions of the form

p= 1" p" (P,

y = 1", p" o (ph)™).

Forallk € N suchthatk > r, we have that M (t |7)(P,) X M(pk¢|pk¢)(Ppky)
is lsomorphzc to a direct summand of M(mr + pk¢|n + pk¢)(Pp.p ). Further-
more, if p*¥ > max{m1, 71}, then

M(x|7)(Pp) B M(p*§| p* @) (Ppry) = M(x + p*o|7 + pX@)(Ppepty)
as F[Ne,n+pkn(Ppopky)/Ppopky]-mOdMles.

Note that, in Proposition 6.5, while Y 7_m;p' =m and Y I_,n;ip’ = n,
these need not be the base p expressions for either m or n.

Proof. Since k > r, by Lemma 5.3, we have
Ppepky = Pp X Ppky.

To ease the notation, we denote by M, My, M5 the modules M (7 + pX ¢ |7+ p¥ ),
M(r|%), M(pk$|p¥¢), respectively. Further, let P = Ppepky. By Corollary 3.4,
we know that M(P) has as a basis the subset B of Q(r + pKo|7 + pk;;l;)
consisting of all {R} such that R is a row standard (7 + p¥¢|7 + pK¢)-tableau
whose rows are unions of P-orbits. Similarly, we define bases 8B; and B, of
Q(x|7) and Q(pk¢|pk¢) for M1(Pp) and M>(Ppk,), respectively; here each
(pk¢|pk¢) tableau S of B, is filled with the numbers m+1,m+2, ..., m+p¥n.
For {T} € 81 and {S} € B5, let

1# . 31 X £2 — B
be the map defined by
YTHASH = {R+ RO},

where R is the row standard (7 + pk ¢)-tableau such that row 7 of R is the union
of row i of T4+ and row i of S, and R_ is the row standard (7 + pk ¢)-tableau
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such that row i of R_ is the union of row i of T_ and row i of S_. Here we have
used the convention row i of T is empty if i > £(7r), and so on. The map v is well
defined since the rows of R = (R4|R_) are union of orbits of P = P, x Ppk,,
on{l,2,....m+ pkn}.

Clearly v is injective and so it induces an injection of vector spaces

6 : My(P,) & My(Ppky) — M(P)

defined by 0({T}®{S}) = v ({T}, {S}). By Lemma 5.3, we may regard the domain
and codomain of 6 as FNg,  k,(P)-modules with trivial P-action. It is not
difficult to check that

0(g({T} ® {S})) = g({T} ® {S}))

for all g € Ng,,, ,k,(P), {T} € By and {S} € B,. Therefore 0 is an injective
homomorphism of F~Ng,,, «,(P)-modules, and hence an injective homomor-
phism of F[Ng,, ,k,(P)/P]-modules. Since both M1(P,) and M>(Ppky) are
projective and hence injective, their outer tensor product is also injective. There-
fore, the map 6 splits and we obtain that My (P,) & M»(Ppky) is a direct sum-
mand of M(P).

The second assertion follows easily by observing that, if pk > max{my, 71},
then the map v defined above is a bijection. |

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. Let p € ¥ (m) and y € % (n) be defined by
p = (1101 HAMIFRO] - ry A+ rr=Dl)
y = (11O Hla@IHBO@I - (ps)le@I+BGs—DIy,
where r = {,(A|pp) and s = £, (x| ppB), respectively. By Definition 4.11, P, is

a vertex of Y(A|pu) and Py is a vertex of Y («|pp). Since k > r, by Lemma 5.3,
we have Ppepky, = Py x Ppk, and

N@m+pkn (Pp X Ppky) = N@m (Pp) X N@pkn(Ppky).

By Lemma 5.4, Y (p¥a| p¥*18) has vertex Ppky and Y(A+ pXa|p(u+ p¥B)) has
vertex Ppepky. Moreover, the Broué correspondent of Y(A + pka| p(u + p*B))
is

YA p)(Pp) B Y (pFa| pFT1B)(Ppiy).

By Proposition 6.5, we have

M(x|7)(Pp) ® M(p*p| p¥@)(Ppry) | M(rr + pF§IT + p*G)(Ppepiy).
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Therefore, using Theorem 2.5 (ii), we deduce that

[M(r + p*¢ |7 + p¥¢) : YL + pFa| p(u + pFB))]
= [M(r + p*¢ |7 + PX)(Ppopiy) : YA + pXar| puu + pFB)(Ppepty)]
> [M(x[7)(P)BM (p*p| p* @) (Ppry) :
Y (Al pp)(Pp)RY (pFar| p* 1 B)(Ppry)]

= [M(x|7)(Pp) : Y(A|p)(Pp)]

[M(p*p1p* @) (Ppiy) : Y(pFa| p* 1 BY(Ppiy)]
= [M@x[@) : YA pw) ][ M(p*$|p$) : Y(pFal p*T1 )]
= [Mx[7@) : YA pw)|[M(p$|pd) : Y (pa| p>B)].

where the final equality follows from Corollary 6.3. If pk > max{my, 71}, then
Proposition 6.5 implies that we have equalities throughout. |

7 Indecomposable signed Young permutation modules

In this section, in the spirit of Gill’s result [12, Theorem 2], we classify all inde-
composable signed Young permutation modules over the field F and determine
their endomorphism algebras and their labels as signed Young modules. By [12],
we know that any indecomposable Young permutation module is of the form M (™)
or M®P=LD Tt is immediate from the definition of signed Young permutation
modules in (1.1) that

M(a|p) = Indge!tE (M® R (MP @ sgn(|B))).

As such, by Gill’s result, any indecomposable signed Young permutation module
is of one of the forms M ((m)|(n)), M((m)|(kp —1,1)), M((kp — 1,1)|(m)) or
M((kp — 1, 1)|({p — 1, 1)). Since

M((m)|(kp —1.1)) ® sgn(m + kp) = M((kp — 1, 1)[(m)),
there are essentially three different forms to consider.

Proof of Theorem 1.4. Let M1 = M((m)|(n)). If m = 0, then M is the sign rep-
resentation, and if n = 0, then M is the trivial representation. In these cases, M1
is simple with 1-dimensional endomorphism ring. Suppose that both m and n are
non-zero. By the Littlewood—Richardson rule, the module M has a Specht series
with top Specht factor S (m+1.1""1 and bottom Specht factor S 1) I m + nis
not divisible by p, then the p-cores of (m + 1,1"7!) and (m, 1") are non-empty
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and distinct and so S T11""") and §@.1") Jje in different blocks. Consequently,
M is decomposable. Now suppose that m + n is divisible by p. In this case, by
Peel’s result [24],

F, n=1, sgn(m +n), m=1,
glm+1,1771) D> §m1 _ I hp
[DV}’ nz=2, [D"}’ m=72,

where p, A and y are the p-regularization of the partitions (m, 1), (m + 1,1"71)
and (m + 2, 1"72), respectively (see [19, 6.3.48]). If m = 1, then M((1)|(n)) =
M (2|(n, 1)) is indecomposable. Similarly, if n = 1, we have that M ((m)|(1)) =
M ((m, 1)|@) is indecomposable. Moreover, since M ((m, 1)|@) has a Loewy series
with factors F, D1 F_ the endomorphism algebra Endrg,, , M((m,1)|D) is
2-dimensional. Tensoring by the sign representation we obtain the same result
for Endrg, , (9|(n,1)).

We now study the case when m,n > 2. In this case, both the head and socle
of M contain the simple module D*. Also, as a signed Young permutation mod-
ule, M is self-dual. Suppose that DY is not isomorphic to a composition factor of
any direct summand of M containing D* inits head (and hence in its socle). Then
DY is necessarily isomorphic to a direct summand of M. From the Specht series,
there is a surjection ¥ from M; onto the Specht module S = § (m+1.1""1) gince
S has composition factors D and D*, we have ¢ (D?) # 0 and so ¢ (DY) = D?.
Let Y be an indecomposable direct summand of M; such that ¥ (Y) contains
a composition factor D*. This shows that ¥ (Y) = D* and hence

S=y(D"®Y)=D"®Y/(Y Nkery) = DY & D*.

This is absurd since S is indecomposable. Hence there exists an indecomposable
direct summand of M; containing D* in its head and that does not contain D? in
its head or in its socle. Dually, there exists an indecomposable direct summand of
M containing D* in its head, that does not contain D* in its head or in its socle.
Thus the only possibility is that M is indecomposable with the Loewy structure

D)l
D* DY
DA
and has 2-dimensional endomorphism ring.
Let M, = M((kp — 1, 1)|(m)). By Gill’s result, if m = 0, then M5 is indecom-
posable and if m = 1, then My = M((kp — 1,1?)|D) is decomposable. Suppose
that m > 2. By the Young and Littlewood—Richardson rules, M, has a Specht
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series with Specht factors

S| = S(kp+1,1m_l)’ S, = S(kP,Z,lm_z), S3 = §kp.1")
s, = §kp=121"7hH g glp—1,1mF)

with S3 occurring twice. If m % 0 mod p, then S; and S3 lie in different blocks. If
m = 0 mod p, then S3 and S4 belong to different blocks. Thus we conclude that
M5 is decomposable whenever m > 2.

Let M3 = M((kp — 1, 1)|(€p2— 1,1)). Then M3 = M((kp — 1,1?)|({p — 1)).
By Gill’s result, since M (kp—1,17) g decomposable, we have that

M((kp —1.1%)|(p — 1))
cy kp—1,12 {p—1
=Tndgi?t 0, (MEPTER MY @ sgn(tp — 1))

is decomposable. |

We end by determining the labels of the indecomposable signed Young per-
mutation modules. By the remark immediately following the statement of Theo-
rem 1.4, it suffices to consider the modules M ((m)|(n)) where either m = 0,
n = 0 or m + n is divisible by p.

Proposition 7.1. Let m,n € N. Letn = no+ pn’, where 0 < ng < p. There are iso-
morphisms M((m)|2) = Y((m)|@), M(2|(n)) = Y((1"°)|(pn’)) and, provided
m + n is divisible by p, M((m)|(n)) = Y ((m, 1"0)|(pn’)).

Proof. Clearly M((n)|@) = Y((n)|@) = F(n). The second isomorphism follows
from Lemma 5.5. In the remaining case, m, n > 0 and m + n is divisible by p. Let
m=y . m;p' and let n = Y >0 n; p' be the p-adic expansions. Let 7 be the
greatest integer such that m, +n, # 0. Let P be a Sylow p-subgroup of &, x S,,.
By Proposition 3.12 we have an isomorphism of F[Ng,,, ., (P)/P]-modules

M ((m)|(m))(P) = W1 ((mo)|(110)) & Wy ((m1)[(n1)) B -+ & Wpr ((my)| (7).
By Definition 4.11, the signed Young module Y ((m, 1"0)|(pn’)) satisfies

,
Y ((m, 1")|(pn"))(P) = Y((mo, 1"°)|2) K IZI1 Qpi ((m;)[(ny)),
i=

where Qi ((m;)|(n;)) is the F[(Ng/Pi) ! ©m]-module defined in Definition 4.7.
The Broué correspondence is bijective (see Theorem 2.5), so it suffices to prove
that the tensor factors in these two modules agree.

Observe that mg + ng is a multiple of p and mo +no < 2p. lf mg =ng =0,
we have

W (2|2) = Y(2|9).
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Next, we assume that mo 4+ no = p. The I'G ,-module

W1 ((mo)|(no)) = M ((mo)|(no))

is indecomposable by Theorem 1.4. The only signed Young module for &,
that is not a Young module is the sign representation. Since ng < p, we see that
M ((mo)|(no)) is a Young module. The proof of Theorem 1.4 shows that it has
a Specht filtration with §0:1"°) at the bottom and S (mo+1,1"071) ¢ the top.
Therefore Wy ((mo)|(no)) = M((mo)|(no)) = Y ((mo, 1*°)|D), as required.
Finally, suppose that i > 1. By Definition 3.6 (ii), we have that W, ; ((m;)|(n;))
is the F[(Nyi/Ppi) 2 ©m; 4n,;]-module obtained from
Indx; f@mr;;r;éni) (Infg’;:@m' (F(mj))® ((Infgiieen' (F(n;))® Sgn(Np,:)®ni)).
by the canonical surjection (N, ¢ @mi+ni)/(Pp,-)mi+”i = (Nyi / Ppi)  Omj4n; -
Since m;,n; < p the projective covers Pmi) and P ) are the trivial F ©m; - and
F &, -modules, respectively. Therefore, by (4.1), we have

Wi ((mi)|(ni)) = Qi ((mi)|(ni)),

again as required. |
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