A generalization of weak commutativity between two isomorphic groups

Bruno C. R. Lima and Said N. Sidki

Communicated by Dessislava H. Kochloukova

Abstract. The operator χ of weak commutativity between isomorphic groups H and H^{ψ} , defined by

$$\chi(H) = \langle H, H^{\psi} \mid [h, h^{\psi}] = 1 \text{ for all } h \in H \rangle,$$

is known to preserve group properties such as finiteness, solvability and polycyclicity. We introduce here the group construction

$$\mathcal{E}(H) = \langle H, H^{\psi} \mid [[h_1, h_2^{\psi}], h_3^{-1} h_3^{\psi}] = 1 \text{ for all } h_1, h_2, h_3 \in H \rangle.$$

The group $\mathcal{E}(H)$ maps onto $\chi(H)$ and onto $H \otimes H$, the non-abelian tensor square. The operator \mathcal{E} preserves solvability and preserves polycyclicity provided the abelianization $\frac{H}{H'}$ is finite. Moreover, if H is perfect, then $\mathcal{E}(H)$ is perfect and $\mathcal{E}(H) \cong \chi(H)$. Furthermore, $\mathcal{E}(H)$ is a finite group if and only if H is a finite perfect group.

1 Introduction

The concept of weak permutability between two groups was introduced in 1980 [9] and a finiteness criterion result was established for a group generated by two such groups. In Section 4 of the same work, the notion of weak commutativity motivated the definition of the group

$$\chi(H) = \langle H, H^{\psi} \mid [h, h^{\psi}] = 1 \text{ for all } h \in H \rangle.$$

It was shown then that χ , when interpreted as an operator acting on groups, preserves the group properties: finite P-group for any finite set P of primes, solvable, finite nilpotent, perfect. Later, it was proven that if H is finitely generated nilpotent of nilpotency class c, then $\chi(H)$ is nilpotent and bounds for the nilpotency degree of $\chi(H)$ were found in terms of c (see [3]). Recently, the properties polycyclic and polycyclic-by-finite were added to this list [5]. Moreover, a study of homological and homotopical properties of $\chi(H)$ have lead to proving that χ preserves the property of solvable of type FP_{∞} (see [4]).

The definition of $\chi(H)$ implies that the relations

$$[h_1, h_2^{\psi}]^{h_3^{\psi}} = [h_1, h_2^{\psi}]^{h_3}$$

(equivalently, $[[h_1, h_2^{\psi}], h_3^{-1}h_3^{\psi}] = 1$) hold for all $h_1, h_2, h_3 \in H$. These same relations form an essential part of the definition of the *non-abelian tensor square*

$$H \otimes H = \langle h_1 \otimes h_2 \mid h_1 h_2 \otimes h_3 = ((h_1)^{h_2} \otimes (h_3)^{h_2})(h_2 \otimes h_3),$$
$$h_1 \otimes h_2 h_3 = (h_1 \otimes h_3)((h_1)^{h_2} \otimes (h_3)^{h_2})$$
for all $h_1, h_2, h_3 \in H$,

by Brown-Loday in 1987 [2] and of the definition of

$$\nu(H) = \langle H, H^{\psi} \mid [h_1, h_2^{\psi}]^{h_3^{\psi}} = [h_1, h_2^{\psi}]^{h_3} = [h_1^{h_3}, (h_2^{h_3})^{\psi}]$$
for all $h_1, h_2, h_3 \in H \rangle$

by Rocco in 1991 [7] who proved the subgroup $[H, H^{\psi}]$ of v(H) to be isomorphic to $H \otimes H$.

We focus here on the similarity between these constructions by defining the group

$$\mathcal{E}(H) = \langle H, H^{\psi} \mid [[h_1, h_2^{\psi}], h_3^{-1} h_3^{\psi}] = 1 \text{ for all } h_1, h_2, h_3 \in H) \rangle.$$

The group $\mathcal{E}(H)$ admits an automorphism $h \leftrightarrow h^{\psi}$ of order 2, which will be denoted by the same symbol ψ .

It is easy to see that if H is cyclic of order 2, then $\mathcal{E}(H)$ is the infinite dihedral group. Though \mathcal{E} fails to preserve finiteness and nilpotency, still it preserves many features of χ . Some of our main results are gathered together in

Theorem 1. *The following statements hold.*

- (1) Let H be a solvable group with derived series of length k. Then $\mathcal{E}(H)$ is a solvable group of length at most k+2.
- (2) Suppose H is a polycyclic group. Then $\mathcal{E}(H)$ is polycyclic if and only if the abelianization H/H' is a finite group.
- (3) Suppose H is a perfect group. Then $\mathcal{E}(H)$ is perfect and $\mathcal{E}(H) \cong \chi(H)$.
- (4) The group $\mathcal{E}(H)$ is finite if and only if H is a finite perfect group.

2 Preliminaries

We use standard notation as can be found in [8].

2.1 Some epimorphisms

We start by defining four epimorphisms of $\mathcal{E}(H)$ and stating some of their properties:

$$\rho: \mathcal{E}(H) \to H, \quad h \mapsto h, \ h^{\psi} \mapsto h \quad \text{for all } h \in H,$$

with

$$\ker(\rho) = \mathcal{L}(H) = [H, \psi] = \langle h^{-1}h^{\psi} \mid h \in H \rangle,$$

$$\mathcal{E}(H) = \mathcal{L}(H) \cdot H, \quad \mathcal{L}(H) \cap H = 1;$$

and

$$\pi: \mathcal{E}(H) \to H \times H, \quad h \mapsto (h, 1), \ h^{\psi} \mapsto (1, h) \quad \text{for all } h \in H,$$

with

$$\ker(\pi) = \mathcal{D}(H) = [H, H^{\psi}] = \langle [h_1, h_2^{\psi}] \mid h_1, h_2 \in H \rangle,$$

$$\mathcal{E}(H) = (\mathcal{D}(H) \cdot H) \cdot H^{\psi}, \quad \mathcal{D}(H) \cap (H \cdot H^{\psi}) = 1;$$

and

$$\delta: \mathcal{E}(H) \to \chi(H), \quad h \mapsto h, h^{\psi} \mapsto h^{\psi} \quad \text{for all } h \in H,$$

with

$$\ker(\delta) = \Delta(H) = \langle [h, h^{\psi}] \mid h \in H \rangle^{\mathcal{E}(H)};$$

and

$$\xi: \mathcal{E}(H) \to \nu(H), \quad h \mapsto h, h^{\psi} \mapsto h^{\psi} \quad \text{for all } h \in H.$$

The subgroups $\mathcal{L}(H)$, $\mathcal{D}(H)$, $\Delta(H)$ are ψ -invariant. In addition to these, we have the normal ψ -invariant subgroups of $\mathcal{E}(H)$

$$W(H) = \mathcal{D}(H) \cap \mathcal{L}(H),$$

$$\mathcal{R}(H) = [[H, \mathcal{L}(H)], H^{\psi}].$$

We mention two more normal subgroups

$$\mathcal{L}_1(H) = [\mathcal{L}(H), H], \quad \mathcal{L}_2(H) = [\mathcal{L}(H), H^{\psi}];$$

these are interchanged by ψ .

Maintaining the notation used for subgroups of $\chi(H)$, we write

$$\mathcal{L}(H)^{\delta} = L(H), \quad \mathcal{D}(H)^{\delta} = D(H), \quad \mathcal{W}(H)^{\delta} = W(H),$$

 $\mathcal{R}(H)^{\delta} = R(H), \quad \mathcal{L}_1(H)^{\delta} = L_1(H), \quad \mathcal{L}_2(H)^{\delta} = L_2(H).$

The subgroup $\mathcal{R}(H)$ is key to understanding the structure of $\mathcal{E}(H)$. We will prove later

Theorem 2. Let $\xi : \mathcal{E}(H) \to \nu(H)$ be as defined above. Then $\ker(\xi) = \mathcal{R}(H)$.

Remark 1. (i) It follows directly from the definition of $\mathcal{E}(H)$ that

$$[\mathcal{D}(H), \mathcal{L}(H)] = 1$$

and therefore W(H) is central in the product $\mathcal{D}(H)\mathcal{L}(H)$. We conclude from

$$[h^{\psi}, h] = [h(h^{-1}h^{\psi}), h] = [h^{-1}h^{\psi}, h] \in \mathcal{D}(H) \cap \mathcal{L}(H) = \mathcal{W}(H)$$

that

$$\Delta(H) \leq \mathcal{W}(H)$$
.

(ii) Using [9, Proposition 4.1.4], the quotient group $\frac{\mathcal{E}(H)}{W(H)} \cong \frac{\chi(H)}{W(H)}$ embeds into the triple product $H \times H \times H$ by

$$\tau: \mathcal{W}(H)h \to (h, h, 1), \quad \mathcal{W}(H)h^{\psi} \to (1, h, h)$$

for all $h \in H$. Thus,

$$\tau: \mathcal{W}(H)(h^{-1}h^{\psi}) \to (h^{-1}, 1, h),$$

$$\mathcal{W}(H)[h_1, h_2^{\psi}] \to (1, [h_1, h_2], 1),$$

$$\mathcal{W}(H)([h_1^{-1}h_1^{\psi}, h_2]) \to ([h_1^{-1}, h_2], 1, 1),$$

$$\mathcal{W}(H)([h_1^{-1}h_1^{\psi}, h_2^{\psi}]) \to (1, 1, [h_1, h_2])$$

for all $h, h_1, h_2 \in H$.

2.2 Commutator relations

It is convenient to denote $h^{-1}h^{\psi}$ by $[h, \psi]$.

Lemma 1. The following statements hold.

- (1) Let $h_1, h_2, h_3 \in H$. Then:
 - (i) $[h_1, \psi]$ commutes with $[h_2, h_3^{\psi}]$,
 - (ii) $[h_1, h_2^{\psi}] = [\psi, h_2, h_1][h_1, h_2]$ (thus $\mathcal{D}(H) \leq [\mathcal{L}(H), H]H'$),
 - (iii) in $\mathcal{R}(H)$,

$$[h_1, h_3(h_3^{\psi})^{-1}, h_2^{\psi}]^{h_3^{\psi}} = [h_1, h_2^{\psi}]^{-h_3^{\psi}} [h_1^{h_3}, (h_2^{h_3})^{\psi}].$$

(2) Let $w=w(z_1^{\epsilon_1},z_2^{\epsilon_2},\ldots,z_n^{\epsilon_n})$ be a word in $z_1^{\epsilon_1},z_2^{\epsilon_2},\ldots,z_n^{\epsilon_n}$ of length n, where $z_i\in H, \epsilon_k\in\{1,\psi,\}$. Also, let $w'=w(z_1,z_2,\ldots,z_n)$. Then

$$[h_1, h_2^{\psi}]^w = [h_1, h_2^{\psi}]^{w'}$$
 for all $h_1, h_2 \in H$.

(3) Elements of W(H) have the form

$$[h_1, h_2^{\psi}] \cdots [h_s, h_{s+1}^{\psi}],$$

where $h_1, h_2, ..., h_{s+1} \in H$ and s is an odd number such that

$$[h_1, h_2] \cdots [h_s, h_{s+1}] = 1.$$

Proof. (1) (i) The assertion follows from the definition of $\mathcal{E}(H)$.

(ii) Note that

$$[h_1, h_2^{\psi}] = [h_1, h_2[h_2, \psi]] = [h_1, [h_2, \psi]][h_1, h_2]^{[h_2, \psi]}$$

and since by item (i) $[h_1, h_2^{\psi}]$ commutes with $[\psi, h_2]$, we obtain

$$[h_1, h_2^{\psi}] = [h_1, [h_2, \psi]]^{[\psi, h_2]} [h_1, h_2] = [\psi, h_2, h_1] [h_1, h_2].$$

(iii) We compute

$$\begin{split} \left[h_{1}^{h_{3}},(h_{2}^{h_{3}})^{\psi}\right] &= \left[h_{1}^{h_{3}},(h_{2}^{\psi})^{h_{3}^{\psi}}\right] = \left[h_{1}^{h_{3}(h_{3}^{\psi})^{-1}},h_{2}^{\psi}\right]^{h_{3}^{\psi}} \\ &= \left[h_{1}\left[h_{1},h_{3}(h_{3}^{\psi})^{-1}\right],h_{2}^{\psi}\right]^{h_{3}^{\psi}} \\ &= \left(\left[h_{1},h_{2}^{\psi}\right]^{\left[h_{1},h_{3}(h_{3}^{\psi})^{-1}\right]} \left[\left[h_{1},h_{3}(h_{3}^{\psi})^{-1}\right],h_{2}^{\psi}\right]^{h_{3}^{\psi}}. \end{split}$$

Since $[h_1, h_2^{\psi}] \in \mathcal{D}(H)$ and $[h_1, h_3(h_3^{\psi})^{-1}] \in \mathcal{L}(H)$, it follows that

$$\begin{aligned} \left[h_1^{h_3}, (h_2^{h_3})^{\psi}\right] &= \left(\left[h_1, h_2^{\psi}\right] \left[\left[h_1, h_3(h_3^{\psi})^{-1}\right], h_2^{\psi}\right]\right)^{h_3^{\psi}} \\ &= \left[h_1, h_2^{\psi}\right]^{h_3^{\psi}} \left[\left[h_1, h_3(h_3^{\psi})^{-1}\right], h_2^{\psi}\right]^{h_3^{\psi}} \end{aligned}$$

and therefore,

$$\left[\left[h_1, h_3(h_3^{\psi})^{-1}\right], h_2^{\psi}\right]^{h_3^{\psi}} = \left[h_1, h_2^{\psi}\right]^{-h_3^{\psi}} \left[h_1^{h_3}, (h_2^{h_3})^{\psi}\right].$$

(2) By item (i),

$$[h_1, h_2^{\psi}]^{z_1 z_2^{\psi}} = [h_1, h_2^{\psi}]^{z_1 z_2}.$$

The more general statement follows by induction on n.

(3) Let
$$\omega = [h_1, h_2^{\psi}] \cdots [h_s, h_{s+1}^{\psi}] \in \mathcal{D}(H)$$
. Then by item (ii),

$$\omega = [\psi, h_2, h_1][h_1, h_2] \cdots [\psi, h_{s+1}, h_s][h_s, h_{s+1}] = c[h_1, h_2] \cdots [h_s, h_{s+1}],$$

where $c \in \mathcal{L}(H)$. Since $H \cap \mathcal{L}(H) = 1$, we obtain

$$\omega \in \mathcal{W}(H) \iff [h_1, h_2] \cdots [h_s, h_{s+1}] = 1.$$

2.3 The subgroups $\mathcal{L}_1(H)$, $\mathcal{L}_2(H)$

Recall

$$\mathcal{L}_1(H) = [\mathcal{L}(H), H], \quad \mathcal{L}_2(H) = [\mathcal{L}(H), H^{\psi}].$$

By Remark 1 (ii),

$$\tau: \mathcal{W}(H)[h_1, h_2^{\psi}] \to (1, [h_1, h_2], 1),$$

$$\mathcal{W}(H)([h_1^{-1}h_1^{\psi}, h_2]) \to ([h_1^{-1}, h_2], 1, 1),$$

$$\mathcal{W}(H)([h_1^{-1}h_1^{\psi}, h_2^{\psi}]) \to (1, 1, [h_1, h_2])$$

for all $h_1, h_2 \in H$. Therefore

$$\tau: \frac{\mathcal{D}(H)}{\mathcal{W}(H)} \to 1 \times H' \times 1,$$
$$\frac{\mathcal{W}(H)\mathcal{L}_1(H)}{\mathcal{W}(H)} \to H' \times 1 \times 1,$$
$$\frac{\mathcal{W}(H)\mathcal{L}_2(H)}{\mathcal{W}(H)} \to 1 \times 1 \times H'$$

are epimorphisms.

Lemma 2. We have

$$\mathcal{L}_1(H) = \mathcal{L}(H) \cap (\mathcal{D}(H) \cdot H'),$$

$$\mathcal{L}_2(H) = \mathcal{L}(H) \cap (\mathcal{D}(H) \cdot (H')^{\psi}),$$

$$\mathcal{L}_1(H) \cap \mathcal{L}_2(H) = \mathcal{W}(H).$$

Proof. Since

$$[h_1^{\psi}h_1^{-1}, h_2] = [h_1^{\psi}, h_2]^{h_1^{-1}}[h_1^{-1}, h_2]$$

holds for all $h_1, h_2 \in H$, we conclude

$$\mathcal{L}_1(H) = [\mathcal{L}(H), H] \le \mathcal{D}(H)H' \le \mathcal{L}(H) \cap (\mathcal{D}(H)H').$$

By item (ii) of the previous lemma,

$$\mathcal{D}(H) \leq [\mathcal{L}(H), H]H' = \mathcal{L}_1(H)H'.$$

Therefore,

$$W(H) \le \mathcal{L}(H) \cap (\mathcal{D}(H)H') \le \mathcal{L}(H) \cap (\mathcal{L}_1(H)H')$$

$$\le \mathcal{L}_1(H)(\mathcal{L}(H) \cap H') = \mathcal{L}_1(H).$$

Hence,

$$\mathcal{L}_1(H) = \mathcal{L}(H) \cap (\mathcal{D}(H)H').$$

Apply ψ to $\mathcal{L}_1(H)$, to obtain

$$\mathcal{L}_2(H) = \mathcal{L}(H) \cap (\mathcal{D}(H)(H')^{\psi}).$$

Clearly,

$$\mathcal{W}(H) = \mathcal{L}(H) \cap \mathcal{D}(H) \subseteq \mathcal{L}_1(H) \cap \mathcal{L}_2(H).$$

From [9, Lemma 4.1.10 (iii)], we know that the intersection $\frac{L_1(H)}{W(H)} \cap \frac{L_2(H)}{W(H)}$ is trivial in $\frac{\chi(H)}{W(H)} (\cong \frac{\mathcal{E}(H)}{W(H)})$; therefore,

$$\mathcal{L}_1(H) \cap \mathcal{L}_2(H) = \mathcal{W}(H).$$

3 The groups $\mathcal{R}(H)$ and $\nu(H)$

Proposition 1. The subgroup $\mathcal{R}(H)$ satisfies the following properties:

- (i) $\mathcal{R}(H) = [\mathcal{L}_1(H), H^{\psi}] = [\mathcal{L}_2(H), H],$
- (ii) $[\mathcal{W}(H), \mathcal{E}(H)] \subseteq \mathcal{R}(H) \subseteq \mathcal{W}(H)$.

Proof. (i) By definition,

$$\mathcal{R}(H) = [H, \mathcal{L}(H), H^{\psi}] = [\mathcal{L}_1(H), H^{\psi}].$$

Since $[\mathcal{D}(H), \mathcal{L}(H)] = [H, H^{\psi}, \mathcal{L}(H)] = 1$, we obtain, by the Hall–Witt identity, that

$$[H^{\psi},\mathcal{L},H]=[H,\mathcal{L},H^{\psi}]$$

and consequently that $\mathcal{R}(H) = [\mathcal{L}_2(H), H]$.

(ii) We note

$$\mathcal{R}(H) \subseteq \mathcal{L}_1(H) \cap \mathcal{L}_2(H) = \mathcal{W}(H);$$

therefore,

$$[\mathcal{W}(H), H], [\mathcal{W}(H), H^{\psi}] \leq \mathcal{R}(H),$$
$$[\mathcal{W}(H), \mathcal{E}(H)] \subseteq \mathcal{R}(H).$$

Proof of Theorem 2. Recall

$$\nu(H) = \langle H, H^{\psi} \mid [h_1, h_2^{\psi}]^{h_3^{\psi}} = [h_1, h_2^{\psi}]^{h_3} = [h_1^{h_3}, (h_2^{h_3})^{\psi}], h_1, h_2, h_3 \in H \rangle,$$

and

$$\xi: \mathcal{E}(H) \to \nu(H), \quad h \mapsto h, h^{\psi} \mapsto h^{\psi} \quad \text{for all } h \in H.$$

By Lemma 1 (iii), the commutator relations

$$\left[\left[h_{1},h_{3}(h_{3}^{\psi})^{-1}\right],h_{2}^{\psi}\right]=\left(\left(\left[h_{1},h_{2}^{\psi}\right]^{h_{3}^{\psi}}\right)^{-1}\left[h_{1}^{h_{3}},(h_{2}^{h_{3}})^{\psi}\right]\right)^{(h_{3}^{\psi})^{-1}}$$

hold in R(H). Therefore, $R(H) \leq \ker(\xi)$ and ξ induces an epimorphism

$$\overline{\xi}: \frac{\mathcal{E}(H)}{\mathcal{R}(H)} \to \nu(H).$$

On the other hand, since both equalities

$$[h_1, h_2^{\psi}]^{h_3 \psi} = [h_1, h_2^{\psi}]^{h_3}, [h_1, h_2^{\psi}]^{h_3^{\psi}} = [h_1^{h_3}, (h_2^{h_3})^{\psi}]$$

hold in $\mathcal{E}(H)$ modulo $\mathcal{R}(H)$, we obtain the epimorphism

$$\xi': \nu(H) \to \frac{\mathcal{E}(H)}{\mathcal{R}(H)}$$

defined by $h \to \mathcal{R}(H)h$, $h^{\psi} \to \mathcal{R}(H)h^{\psi}$. The composition $\overline{\xi}\xi'$ is the identity map and thus, $\frac{\mathcal{E}(H)}{\mathcal{R}(H)} \cong \nu(H)$. With this the proof of the theorem is finished. \square

4 Restrictions and inductions of &

Proposition 2. Let $K, H_1 \leq H \leq \mathcal{E}(H)$. Then:

- (i) $[K, H_1^{\psi}]$ and $[K^{\psi}, H_1] \triangleleft \langle H_1, H_1^{\psi} \rangle$,
- (ii) $\langle K, K^{\psi} \rangle \cap \mathcal{D}(H) = [K, K^{\psi}],$
- (iii) $\langle K, K^{\psi} \rangle \cap \mathcal{L}(H) = [K, \psi].$

Proof. (i) Since H_1^{ψ} normalizes $[K, H_1^{\psi}]$ and

$$[k, h_1^{\psi}]^{y} = [k, h_1^{\psi}]^{y^{\psi}} = [k, h_1^{\psi}]^{-1}[k, h_1^{\psi}y^{\psi}]$$

hold for all $k \in K$ and $h_1, y \in H_1$, we conclude that H_1 normalizes $[K, H_1^{\psi}]$. Analogously, $[H_1, K^{\psi}] \leq \langle H_1, H_1^{\psi} \rangle$.

(ii) Denote $\langle K, K^{\psi} \rangle$ by \hat{K} . It is clear that $[K, K^{\psi}] \subseteq \hat{K} \cap \mathcal{D}(H)$. On the other hand, consider the epimorphism $\pi : \mathcal{E}(H) \to H \times H$. Since $\ker(\pi) = \mathcal{D}(H)$, we have that π induces an epimorphism

$$\frac{\hat{K}}{\hat{K} \cap \mathcal{D}(H)} \to K \times K.$$

Consider the natural epimorphism

$$K \times K \to \frac{\hat{K}}{[K, K^{\psi}]}.$$

The composition of the last two epimorphisms leads to

$$\frac{\hat{K}}{\hat{K} \cap \mathcal{D}(H)} \to \frac{\hat{K}}{[K, K^{\psi}]}$$

defined by $(\hat{K} \cap \mathcal{D}(H))x \mapsto [K, K^{\psi}]x$ for all $x \in \hat{K}$. Therefore,

$$\hat{K} \cap \mathcal{D}(H) \subseteq [K, K^{\psi}].$$

(iii) The proof here is similar to that of the last item, by considering the epimorphism $\rho: \mathcal{E}(H) \to H$ and by taking the composition of the maps

$$\frac{\hat{K}}{\hat{K} \cap \mathcal{L}} \to K \to \frac{\hat{K}}{[K, \psi]}.$$

Proposition 3. Let $\phi: H \to K$ be an epimorphism, $N = \ker(\phi)$. Then ϕ extends naturally to an epimorphism $\hat{\phi}: \mathcal{E}(H) \to \mathcal{E}(K)$ such that

- (i) $\hat{\phi}(\mathcal{D}(H)) = \mathcal{D}(K), \hat{\phi}(\mathcal{L}(H)) = \mathcal{L}(K),$
- (ii) $\ker(\hat{\phi}) = \langle N, N^{\psi} \rangle [N, H^{\psi}] [N^{\psi}, H],$
- (iii) $\ker(\hat{\phi} \mid_{\mathcal{D}(H)}) = [N, H^{\psi}][N^{\psi}, H].$

Proof. (i) The extension $\hat{\phi}$ of ϕ is determined by $h^{\hat{\phi}} = h^{\phi}$ and $(h^{\psi})^{\hat{\phi}} = (h^{\phi})^{\psi}$ for all $h \in H$. Then

$$\hat{\phi}(\mathcal{D}(H)) = \hat{\phi}([H, H^{\psi}]) = [\hat{\phi}(H), \hat{\phi}(H^{\psi})] = [K, K^{\psi}] = \mathcal{D}(K)$$

and

$$\hat{\phi}(\mathcal{L}(H)) = \hat{\phi}([H, \psi]) = [\hat{\phi}(H), \psi]) = [K, \psi].$$

(ii) Let $M = \langle N, N^{\psi} \rangle [N, H^{\psi}] [H, N^{\psi}]$. We have that $M \leq \ker(\hat{\phi})$, because $N, N^{\psi} \subseteq \ker(\hat{\phi})$. By the previous proposition, M is normal in $\mathcal{E}(H)$. The map

$$\mu: K \cup K^{\psi} \to \frac{\mathcal{E}(H)}{M}, \quad k \to M\phi^{-1}(k), \quad k^{\psi} \to M(\phi^{-1}(k))^{\psi}$$

is well-defined, since $N, N^{\psi} \subseteq M$. The restrictions of μ to K and K^{ψ} are homomorphisms and they extend uniquely to a homomorphism

$$\mu^*: K * K^{\psi} \to \mathcal{E}(H)/M.$$

Since the relations

$$[k_1, k_2^{\psi}]^{k_3} = [k_1, k_2^{\psi}]^{k_3^{\psi}}$$
 for all $k_1, k_2, k_3 \in K$

are preserved by μ^* , it induces a homomorphism $\mathcal{E}(K) \to \frac{\mathcal{E}(H)}{M}$. On the other

hand, since $M \leq \ker(\hat{\phi})$, we have a homomorphism $\tilde{\phi}: \mathcal{E}(H)/M \to \mathcal{E}(K)$ such that $\tilde{\phi}(Mh) = \hat{\phi}(h)$ and $\tilde{\phi}(Mh^{\psi}) = \hat{\phi}(h^{\psi})$ for all $h \in H$. The composition of μ^* and $\tilde{\phi}$ gives us

$$\tilde{\phi}\mu^*(k) = \tilde{\phi}(M\phi^{-1}(k)) = k, \quad \tilde{\phi}\mu^*(k^{\psi}) = \tilde{\phi}(M(\phi^{-1}(k))^{\psi}) = k^{\psi}$$

for all $k \in K$. So, $\tilde{\phi}\mu^* = 1_{\mathcal{E}(K)}$, which shows that $\tilde{\phi}$ is an isomorphism. (iii) This item follows from

$$\begin{split} \mathcal{D}(H) \cap \ker \hat{\phi} &= \mathcal{D}(H) \cap (\langle N, N^{\psi} \rangle [N, H^{\psi}] \cdot [H, N^{\psi}]) \\ &= [N, N^{\psi}][N, H^{\psi}][N^{\psi}, H] \\ &= [N, H^{\psi}][N^{\psi}, H]. \end{split}$$

Proposition 4. Let H and K be normal subgroups of a group G such that

$$G = H \oplus K$$
.

Then

$$\mathcal{E}(G) = \langle H, H^{\psi} \rangle [H, K^{\psi}] [H^{\psi}, K] \langle K, K^{\psi} \rangle,$$

$$\mathcal{E}(H) \cong \langle H, H^{\psi} \rangle,$$

$$\mathcal{E}(K) \cong \langle K, K^{\psi} \rangle.$$

Proof. By the previous proposition, the projection $\phi: G \to H$ can be extended to an epimorphism $\hat{\phi}: \mathcal{E}(G) \to \mathcal{E}(H)$ such that

$$\ker(\hat{\phi}) = \langle K, K^{\psi} \rangle [HK, K^{\psi}] [H^{\psi} K^{\psi}, K].$$

It follows that

$$[HK, K^{\psi}] = [H, K^{\psi}][K, K^{\psi}],$$

since by Proposition 2 the subgroups K, K^{ψ} , H and H^{ψ} normalize $[H, K^{\psi}]$. Similarly, it follows that

$$[H^{\psi}K^{\psi},K] = [H^{\psi},K][K,K^{\psi}].$$

Thus,

$$\mathcal{E}(G) \cong \langle K, K^{\psi} \rangle [H, K^{\psi}] [H^{\psi}, K] \mathcal{E}(H).$$

But as $\hat{\phi}(\langle H, H^{\psi} \rangle) = \mathcal{E}(H)$, and $\mathcal{E}(H)$ maps onto $\langle H, H^{\psi} \rangle$, it follows that

$$\ker(\hat{\phi}) \cap \langle H, H^{\psi} \rangle = 1, \quad \mathcal{E}(H) \cong \langle H, H^{\psi} \rangle.$$

We conclude

$$\mathcal{E}(G) \cong \langle K, K^{\psi} \rangle [H, K^{\psi}] [H^{\psi}, K] \langle K, K^{\psi} \rangle.$$

The isomorphism $\mathcal{E}(K) \cong \langle K, K^{\psi} \rangle$ follows in a similar manner.

5 The augmentation ideal of $\mathbb{Z}(H/H')$

Let $\tilde{G} = \mathbb{Z}(H/H') \rtimes H$ denote the semidirect product of the group ring $\mathbb{Z}(H/H')$ of the abelianization of H by the group H, where H acts on $\mathbb{Z}(H/H')$ by right multiplication

$$\left(\sum x_{H'h}H'h\right)^{h_1} = \sum x_{H'h} H'hh_1$$

for all $h, h_1 \in H$. Denote the elements of \tilde{G} as pairs (w, h) with $w \in \mathbb{Z}(H/H')$, $h \in H$. Identify the complement H with $\{0\} \times H$, write \overline{h} for the coset H'h for any $h \in H$ and let $u = (\overline{1}, 1) \in \tilde{G}$. Also, let $\mathcal{A}_{\mathbb{Z}}(H/H')$ be the augmentation ideal of the group ring $\mathbb{Z}(H/H')$ and let G be the subgroup of \tilde{G} generated by $\mathcal{A}_{\mathbb{Z}}(H/H')$ and H. Note that H' acts trivially on $\mathbb{Z}(H/H')$.

Proposition 5. The map $\varepsilon: H \cup H^{\psi} \to \tilde{G}$ defined by $h \to h$, $h^{\psi} \to h^{u}$ for all $h \in H$ extends to an epimorphism $\varepsilon: \mathcal{E}(H) \to \tilde{G}$. Moreover, if H is abelian, then $\ker(\varepsilon) = \mathcal{L}(H)'$, the commutator subgroup of $\mathcal{L}(H)$.

Proof. Consider

$$[H, u] = \langle [h, u] \mid h \in H \rangle \leqslant \tilde{G}.$$

It is easy to see that

$$[h, u] = h^{-1}h^{u} = u^{-h}u = (\overline{1} - \overline{h}, 1).$$

Therefore, $[H, u] = A_{\mathbb{Z}}(H/H') \times \{1\}$ and $G = \langle H, H^u \rangle$. Since $\mathbb{Z}(H/H')$ is abelian and H' acts trivially on $\mathbb{Z}(H/H')$, we find that

$$\begin{split} [[h_1, h_2^u], [h, u]] &= [h_1^{-1} u^{-1} h_2^{-1} u h_1 u^{-1} h_2 u, [h, u]] \\ &= [u^{-h_1} (h_1^{-1} h_2^{-1} u h_1 h_2) u^{-h_2} u, [h, u]] \\ &= [u^{-h_1} u^{h_2 h_1} [h_1, h_2] u^{-h_2} u, u^{-h} u] \\ &= 1. \end{split}$$

Thus ε extends to an epimorphism $\mathcal{E}(H) \to \mathcal{A}_{\mathbb{Z}}(H/H') \rtimes H$.

By [9, Theorem 2.1.1], $G = A_{\mathbb{Z}}(H) \cdot H$ is isomorphic to the group

$$\langle H, H^{\psi} \mid [H, \psi]' = 1 \rangle$$

and so, when H is abelian, we obtain $\ker(\varepsilon) = \mathcal{L}(H)'$.

Next, we specialize H to a finite cyclic group.

Corollary 1. Let $H = \langle x \rangle$ be a cyclic group of order n. Then

$$\mathcal{E}(H) \cong \mathbb{Z}^{n-1} \rtimes H.$$

Proof. We need to show $\ker(\varepsilon) = 1$; that is, $\mathcal{L}(H)$ is abelian. We note that

$$1 = [x^n, \psi] = [x, \psi]^{x^{n-1}} [x, \psi]^{x^{n-2}} \cdots [x, \psi],$$
$$[x, \psi]^{x^{n-1}} = [x, \psi]^{-x^{n-2}} \cdots [x, \psi]^{-1};$$

therefore,

$$\mathcal{L}(H) = \langle [x, \psi], [x, \psi]^{x^2}, \dots, [x, \psi]^{x^{n-2}} \rangle.$$

We compute

$$[x^i, x^{\psi}] = [x^i, x \cdot x^{-1} x^{\psi}] = [x^i, [x, \psi]] = [x, \psi]^{-x^i} [x, \psi]$$
 for all $i \in \mathbb{Z}$.

Since $[\mathcal{D}(H), \mathcal{L}(H)] = 1$, it follows that

$$1 = [[x^i, x^{\psi}], [x, \psi]] = [[x, \psi]^{-x^i}, [x, \psi]]$$

and thus $\mathcal{L}(H)$ is an abelian group.

6 & of solvable groups

Proof of Theorem 1 (i). Since H is a solvable group with derived length k, we apply [9, Corollary 4.1.8] to conclude $\chi(H)^{(k+1)} = 1$. As $\ker(\delta) = \Delta(H)$ is abelian, we conclude further that $\mathcal{E}(H)^{(k+2)} = 1$ and this ends the proof.

6.1 Abelian groups

Given a group G we denote its center by Z(G).

Proposition 6. Let H be an abelian group. Then:

(i) we have

$$\mathcal{D}(H) = \mathcal{W}(H) = [\mathcal{L}(H), H] = [\mathcal{L}(H), H^{\psi}],$$

$$\mathcal{R}(H) = [\mathcal{D}(H), H] = [\mathcal{L}(H), H, H],$$

(ii) $\mathcal{L}(H)$ is nilpotent of class at most 2,

$$\mathcal{L}(H)' \subseteq \mathcal{D}(H) \subseteq Z(\mathcal{L}(H)), \quad \mathcal{L}(H)' \subseteq Z(\mathcal{E}(H)).$$

Proof. (i) By Lemma 2,

$$\mathcal{L}_1(H) = [\mathcal{L}(H), H] = \mathcal{L}(H) \cap \mathcal{D}(H)H',$$

$$\mathcal{L}_2(H) = [\mathcal{L}(H), H^{\psi}] = \mathcal{L}(H) \cap \mathcal{D}(H)H'^{\psi}.$$

Since H is abelian group, we have that

$$W(H) = \mathcal{L}(H) \cap \mathcal{D}(H) = \mathcal{L}_1(H) = \mathcal{L}_2(H).$$

Since $\mathfrak{D}(H) \subseteq [\mathfrak{L}(H), H]H'$ and H abelian, we obtain

$$\mathcal{D}(H) \subseteq [\mathcal{L}(H), H] \subseteq \mathcal{L}(H) \cap \mathcal{D}(H) = \mathcal{W}(H);$$

therefore, $\mathcal{D}(H) = [\mathcal{L}(H), H] = [\mathcal{L}(H), H^{\psi}]$. From this last equality, we obtain

$$\mathcal{R} = [H, \mathcal{L}(H), H^{\psi}] = [\mathcal{D}(H), H^{\psi}] = [\mathcal{D}(H), H] = [\mathcal{L}(H), H, H].$$

(ii) It is clear that H centralizes $\mathcal{L}(H)$ modulo $[\mathcal{L}(H), H] (= \mathcal{D}(H))$ and H^{ψ} centralizes $\mathcal{L}(H)$ modulo $[\mathcal{L}(H), H^{\psi}] (= \mathcal{D}(H))$; therefore,

$$\mathcal{L}(H)' \subseteq [\mathcal{E}(H), \mathcal{L}(H)] \subseteq \mathcal{D}(H).$$

On the other hand

$$[\mathcal{D}(H), \mathcal{L}(H)] = [\mathcal{L}(H), H, \mathcal{L}(H)] = [H, \mathcal{L}(H), \mathcal{L}(H)] = 1;$$

therefore.

$$[\mathcal{L}(H), \mathcal{L}(H), H] = [\mathcal{L}(H)', H] = 1.$$

Proceeding in the same way, we obtain

$$1 = [\mathfrak{D}(H), \mathfrak{L}(H)] = [\mathfrak{L}(H), H^{\psi}, \mathfrak{L}(H)] = [H^{\psi}, \mathfrak{L}(H), \mathfrak{L}(H)]$$

and

$$[\mathcal{L}(H), \mathcal{L}(H), H^{\psi}] = [\mathcal{L}(H)', H^{\psi}] = 1.$$

We have reached the desired conclusion:

$$\mathcal{L}(H)' \subseteq Z(\mathcal{E}(H)).$$

Proposition 7. Let H be an abelian group. Then

$$\mathcal{L}(H)' = \langle [a^{\psi}, b][a, b^{\psi}] \text{ for all } a, b \in H \rangle.$$

Proof. Consider $l_1, l_2 \in \mathcal{L}(H)$. Then

$$l_1 = [h_1, \psi][h_2, \psi] \cdots [h_s, \psi],$$

$$l_2 = [h'_1, \psi][h'_2, \psi] \cdots [h'_r, \psi]$$

for some $s, r \in \mathbb{N}$ and $h_1, h_2, \ldots, h_s, h'_1, h'_2, \ldots, h'_r \in H$.

Since $\mathcal{L}(H)' \leq \mathcal{D}(H)$ and $[\mathcal{L}(H), \mathcal{D}(H)] = 1$ we have

$$[l_1, l_2] = \prod_{i=1}^{s} \prod_{j=1}^{r} [[h_i, \psi], [h'_j, \psi]].$$

However,

$$\begin{split} [[h_{i}, \psi], [h'_{j}, \psi]] &= [h_{i}^{-1}h_{i}^{\ \psi}, h'_{j}^{-1}h'_{j}^{\ \psi}] \\ &= [h_{i}^{-1}, h'_{j}^{\ '-1}h'_{j}^{\ '}]^{h_{i}^{\ \psi}} [h_{i}^{\ \psi}, h'_{j}^{\ '-1}h'_{j}^{\ '}] \\ &= [h_{i}^{-1}, h'_{j}^{\ '}]^{h_{i}^{\ \psi}} [h_{i}^{\ \psi}, h'_{j}^{\ '-1}]^{h'_{j}^{\ \psi}} \\ &= [h_{i}^{-1}, h'_{j}^{\ '}]^{h_{i}} [h_{i}^{\ \psi}, h'_{j}^{\ '-1}]^{h'_{j}} \\ &= [h_{i}, h'_{j}^{\ '}]^{-1} [h_{i}^{\ \psi}, h'_{j}]^{-1} \\ &= [h'_{j}^{\ \psi}, h_{i}] [h'_{j}, h_{i}^{\ \psi}], \end{split}$$

which proves the assertion.

Proposition 8. Let H be an abelian group and let $a, b \in H$, have orders n and m, respectively. Then the element $[a, b^{\psi}][a^{\psi}, b]$ has order a divisor of gcd(n, m).

Proof. From

$$1 = [a^n, b^{\psi}] = [a, b^{\psi}]^{a^{n-1}} [a, b^{\psi}]^{a^{n-2}} \cdots [a, b^{\psi}],$$

we obtain

$$1 = [a^{\psi}, b]^{(a^{n-1})^{\psi}} [a^{\psi}, b]^{(a^{n-2})^{\psi}} \cdots [a^{\psi}, b],$$

since $[\mathcal{D}(H), \mathcal{L}(H)] = 1$. Also, since $\mathcal{D}(H) = \mathcal{W}(H)$, by multiplying together these two equations, we obtain

$$1 = [a, b^{\psi}]^{a^{n-1}} [a, b^{\psi}]^{a^{n-2}} \cdots [a, b^{\psi}] [a^{\psi}, b]^{(a^{n-1})} [a^{\psi}, b]^{(a^{n-2})} \cdots [a^{\psi}, b]$$

$$= ([a, b^{\psi}] [a^{\psi}, b])^{(a^{n-1})} ([a, b^{\psi}] [a^{\psi}, b])^{(a^{n-2})} \cdots [a, b^{\psi}] [a^{\psi}, b]$$

$$= ([a, b^{\psi}] [a^{\psi}, b])^{n},$$

since $\mathcal{L}' \leq Z(\mathcal{E}(H))$. Similarly, $([a, b^{\psi}][a^{\psi}, b])^m = 1$; therefore, the order of $[a, b^{\psi}][a^{\psi}, b]$ divides $\gcd(n, m)$.

The next corollary follows directly from the above proposition.

Corollary 2. If H is a finite abelian group, then so is $\mathcal{L}(H)'$.

6.2 Polycyclic groups

A. McDermott defined in his thesis [6] the subgroup of the free product $H * H^{\psi}$,

$$K = \langle [h_1, h_2^{\psi}]^{h_3} [h_1^{h_3}, h_2^{h_3 \psi}]^{-1} \mid h_1, h_2, h_3 \in H \rangle^{H * H^{\psi}}$$

which is clearly related to our group $\mathcal{R}(H)$. The following result is a consequence of [6, Theorem 2.2.8].

Theorem 3. Let H be a polycyclic group with polycyclic generating sequence $S = \{a_i \mid 1 \le a_i \le n\}$. Then the set of generators of K can be reduced:

$$K = ([a_i, a_j^{\psi}]^{a_k} [a_i^{a_k}, a_j^{a_k \psi}]^{-1} | a_i, a_j, a_k \in S)^{H * H^{\psi}}.$$

Proposition 9. Let T be a transversal of H' in H. Then

$$\mathcal{R}(H) = \left\langle [h_1, h_2^{\psi}]^{h_3} [h_1^{h_3}, h_2^{h_3 \psi}]^{-1} \mid h_1, h_2, h_3 \in H \right\rangle^T.$$

Proof. Define the subgroup

$$\mathcal{J}(H) = \left\langle [h_1, h_2^{\psi}]^{h_3} [{h_1}^{h_3}, {h_2}^{h_3}^{\psi}]^{-1} \mid h_1, h_2, h_3 \in H \right\rangle^{\mathcal{E}(H)}$$

of $\mathcal{R}(H)$, normal in $\mathcal{E}(H)$. We recall the epimorphism $\xi : \mathcal{E}(H) \to \nu(H)$ defined by $h \mapsto h$, $h^{\psi} \mapsto h^{\psi}$ for all $h \in H$, with kernel $\mathcal{R}(H)$. Then ξ induces

$$\overline{\xi}: \frac{\mathcal{E}(H)}{\mathcal{J}(H)} \to \nu(H).$$

On the other hand, the map $\sigma: \nu(H) \to \frac{\mathcal{E}(H)}{J(H)}$ defined by

$$h \mapsto \mathcal{J}(H)h, \quad h^{\psi} \mapsto \mathcal{J}(H)h^{\psi}$$

extends to an epimorphism $\bar{\sigma}: \nu(H) \to \frac{\mathcal{E}(H)}{J(H)}$, and the relations

$$[h_1, h_2^{\psi}]^{h_3^{\psi}} = [h_1, h_2^{\psi}]^{h_3} = [h_1^{h_3}, (h_2^{h_3})^{\psi}] \text{ for all } h_1, h_2, h_3 \in H$$

hold in $\frac{\mathcal{E}(H)}{\mathcal{J}(H)}$. Since $\bar{\sigma}\xi$ is the identity on $\frac{\mathcal{E}(H)}{\mathcal{J}(H)}$, we have

$$\mathcal{R}(H) = \mathcal{J}(H).$$

By Lemma 1 (ii),

$$\mathcal{R}(H) \leq \mathcal{W}(H) \leq Z(\mathcal{D}(H));$$

therefore.

$$\mathcal{R}(H) = \langle [h_1, h_2^{\psi}]^{h_3} [h_1^{h_3}, (h_2^{h_3})^{\psi}]^{-1} \mid h_1, h_2, h_3 \in H \rangle^H,$$

and

$$[\mathcal{R}(H), H'] = [\mathcal{R}(H), \mathcal{D}(H)] = 1.$$

Thus

$$\mathcal{R}(H) = \left\langle [h_1, h_2^{\psi}]^{h_3} [h_1^{h_3}, h_2^{h_3 \psi}]^{-1} \mid h_1, h_2, h_3 \in H \right\rangle^T.$$

Proposition 10. Let H be a polycyclic group, with polycyclic generating sequence $S = \{a_1, a_2, \dots, a_n\}$ and let T be a transversal of H' in H. Then

$$\mathcal{R}(H) = \left\{ [a_i, a_j^{\psi}]^{a_k} [a_i^{a_k}, a_j^{a_k \psi}]^{-1} \mid a_i, a_j, a_k \in S \right\}^T.$$

Proof. Considering the natural epimorphism $\phi: H * H^{\psi} \to \mathcal{E}(H)$, we have that $\phi(K) = \mathcal{R}(H)$. By the above proposition,

$$\mathcal{R}(H) = \langle [a_i, a_j^{\psi}]^{a_k} [a_i^{a_k}, a_j^{a_k \psi}]^{-1} \mid a_i, a_j, a_k \in S \rangle^{\mathcal{E}(H)}$$

$$= \langle [a_i, a_i^{\psi}]^{a_k} [a_i^{a_k}, a_j^{a_k \psi}]^{-1} \mid a_i, a_j, a_k \in S \rangle^T.$$

Proof of Theorem 1 (ii). In one direction, let $\mathcal{E}(H)$ be polycyclic. Then, on recalling the epimorphism $\varepsilon: \mathcal{E}(H) \to A_{\mathbb{Z}}(H/H')H$, we conclude that $A_{\mathbb{Z}}(H/H')$ is finitely generated and therefore H/H' is finite. In the other direction, on letting H/H' be finite, we obtain that R(H) is a finitely generated abelian group. Since by [1], v(H) is polycyclic and since $\frac{\mathcal{E}(H)}{\mathcal{R}(H)} \cong v(H)$, we conclude that $\mathcal{E}(H)$ is polycyclic.

This ends the proof of part (ii) of Theorem 1.

7 & of perfect groups

When H is a perfect group, one finds a complete description of $\chi(H)$ in [9, Section 4.4], where it is shown that $\chi(H)$ is a certain stem extension of $H \times H \times H$ by the Schur multiplier M(H) of H.

Proof of Theorem 1 (iii). (a) Since $\frac{\mathcal{E}(H)}{\mathcal{D}(H)L(H)} \cong \frac{H}{H'}$, it follows that

$$\mathcal{E}(H) = \mathcal{D}(H)\mathcal{L}(H)$$

and therefore, $W(H) \leq Z(\mathcal{E}(H))$. From the formula

$$\mathcal{E}(H)' = \mathcal{D}(H)'\mathcal{L}(H)'[\mathcal{D}(H),\mathcal{L}(H)],$$

we derive

$$\mathcal{E}(H)' = \mathcal{D}(H)' \mathcal{L}(H)'.$$

By [9, Lemma 4.4.6], $\chi(H)$ and its subgroups $D = [H, H^{\psi}], L = [H, \psi]$ are all perfect groups. We conclude

$$\begin{split} &\Delta(H) \leq \mathcal{W}(H) \leq Z(\mathcal{E}(H)), \\ &\mathcal{D}(H) = \Delta(H)\mathcal{D}(H)', \\ &\mathcal{L}(H) = \Delta(H)\mathcal{L}(H)', \\ &\mathcal{E}(H) = \mathcal{D}(H)\mathcal{L}(H) = \Delta(H)\mathcal{D}(H)'\mathcal{L}(H)' = \mathcal{E}(H)'. \end{split}$$

(b) Consider
$$\overline{\mathcal{E}(H)} = \frac{\mathcal{E}(H)}{\mathcal{D}(H)'}$$
. Then

$$\overline{\mathcal{D}(H)}(=\overline{[H,H^{\psi}]})=\overline{\mathcal{W}(H)},$$

which is contained in the center of $\overline{\mathcal{E}(H)}$. Therefore,

$$[\overline{H^{\psi}}, \overline{H}, \overline{H^{\psi}}] = [\overline{H}, \overline{H^{\psi}}, \overline{H^{\psi}}] = 1$$

and by the Witt identity,

$$\begin{split} [\overline{H^{\psi}}, \overline{H^{\psi}}, \overline{H}] &= 1, \\ [\overline{(H')^{\psi}}, \overline{H}] &= [\overline{H^{\psi}}, \overline{H}] = 1. \end{split}$$

Thus,

$$\mathfrak{D}(H) = \mathfrak{D}(H)'$$
, a stem extension of H.

(c) From the structure of $\chi(H)$, we have that W(H) is central in D(H),

$$\frac{D(H)}{W(H)} \cong H$$
 and $W(H) \cong M(H)$;

that is, D(H) is a total covering of H. As H is perfect, D(H) is the total covering of H. Therefore the map γ from the generating set $\{[h, h^{\psi}] \mid h \in H\}$ of D(H) into the generating set $\{[h, h^{\psi}] \mid h \in H\}$ of D(H) defined by

$$[h, h^{\psi}] \mapsto [h, h^{\psi}],$$

extends to an epimorphism $\gamma:D(H)\to D(H)$. Hence, the composition

$$\delta \gamma : D(H) \to D(H)$$

is the identity and $\Delta(H) = 1$ follows.

This ends the proof of part (iii) of Theorem 1.

Proof of Theorem 1 (iv). Assume that H is a finite group. Since $\mathcal{E}(H)$ maps onto $A_{\mathbb{Z}}(H/H') \rtimes H$, on supposing $\mathcal{E}(H)$ finite, we obtain H = H'. Reciprocally, on supposing H perfect, we obtain by the previous theorem, $\mathcal{E}(H) \cong \chi(H)$.

This proves the final part of Theorem 1.

Acknowledgments. The authors would like to thank the referee for suggestions which improved the readability of the original text.

Bibliography

- [1] R. D. Blyth and R. F. Morse, Computing the nonabelian tensor squares of polycyclic groups, *J. Algebra* **321** (2009), no. 8, 2139–2148.
- [2] R. Brown and J. L. Loday, Van Kampen theorems for diagrams of spaces, *Topology* **26** (1987), 311–335.
- [3] N. Gupta, N. Rocco and S. Sidki, Diagonal embeddings of nilpotent groups, *Illinois J. Math.* **30** (1986), no. 2, 274–283.
- [4] D. Kochloukova and S. Sidki, On weak commutativity in groups, *J. Algebra* **471** (2017), 319–347.
- [5] B. C. R. Lima and R. N. Oliveira, Weak commutativity between two isomorphic polycyclic groups, *J. Group Theory* **19** (2016), 239–248.
- [6] A. McDermott, *The nonabelian tensor product of groups: Computations and structural results*, PhD thesis, National University of Ireland, Galway, 1998.
- [7] N. Rocco, On a construction related to the nonabelian tensor square of a group, *Bol. Soc. Brasil. Mat. (N.S.)* **22** (1991), no. 1, 63–79.
- [8] D. J. S. Robinson, *A Course in the Theory of Groups*, 2nd ed., Grad. Texts in Math. 80, Springer, New York, 1996.
- [9] S. Sidki, On weak permutability between groups, J. Algebra 63 (1980), 186–225.

Received April 11, 2016; revised September 14, 2016.

Author information

Bruno C. R. Lima, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Formosa-Go, Brazil.

E-mail: bruno.crlima84@gmail.com

Said N. Sidki, Departamento de Matemática, Universidade de Brasília, 70910 Brasília-DF, Brazil.

E-mail: ssidki@gmail.com