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A generalization of weak commutativity between
two isomorphic groups
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Abstract. The operator y of weak commutativity between isomorphic groups H and HY,
defined by
x(Hy= (H, HY | [h,h¥] = 1 forallh € H),

is known to preserve group properties such as finiteness, solvability and polycyclicity. We
introduce here the group construction

E(H) = (H,HY | [[hy.hY].h3'hY] = 1 forall hy, hy, hs € H).

The group &(H) maps onto y(H) and onto H ® H, the non-abelian tensor square. The
operator & preserves solvability and preserves polycyclicity provided the abelianization
% is finite. Moreover, if H is perfect, then & (H ) is perfect and &(H) = x(H ). Further-
more, &(H ) is a finite group if and only if H is a finite perfect group.

1 Introduction

The concept of weak permutability between two groups was introduced in 1980
[9] and a finiteness criterion result was established for a group generated by two
such groups. In Section 4 of the same work, the notion of weak commutativity
motivated the definition of the group

x(H) = (H HY | [h,h?] = 1 forall h € H).

It was shown then that y, when interpreted as an operator acting on groups, pre-
serves the group properties: finite P-group for any finite set P of primes, solvable,
finite nilpotent, perfect. Later, it was proven that if H is finitely generated nilpotent
of nilpotency class ¢, then y(H ) is nilpotent and bounds for the nilpotency degree
of y(H) were found in terms of ¢ (see [3]). Recently, the properties polycyclic
and polycyclic-by-finite were added to this list [S]. Moreover, a study of homolog-
ical and homotopical properties of y(H ) have lead to proving that y preserves the
property of solvable of type FPo, (see [4]).
The definition of y(H ) implies that the relations

W
[y, hY1 = [hy, hY 1"
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(equivalently, [[/1, hzvf], h;lh;p] = 1) hold for all i1,h5,h3 € H. These same rela-
tions form an essential part of the definition of the non-abelian tensor square
H&H=(h&hy| hihy ®hs = ()" @ (h3)") (h2 ® h3),

I ® hahy = (h1 ® h3)((h)"> ® (h3)"2)
forall iy, ha, hs € H),

by Brown—Loday in 1987 [2] and of the definition of

V(H) = (H.HY | T h8 19 = [ i1 = 02, 0) )

forall iy, hy, hs € H)

by Rocco in 1991 [7] who proved the subgroup [H, H¥] of v(H) to be isomorphic

to H®H.
We focus here on the similarity between these constructions by defining the
group
E(H) = (H,HY | [[h1.hY].h3'hY] = 1 forall hy, hy, hs € H)).
The group &(H) admits an automorphism /4 <> h¥ of order 2, which will be
denoted by the same symbol .
It is easy to see that if H is cyclic of order 2, then & (H) is the infinite dihedral

group. Though & fails to preserve finiteness and nilpotency, still it preserves many
features of y. Some of our main results are gathered together in

Theorem 1. The following statements hold.

(1) Let H be a solvable group with derived series of length k. Then &(H) is
a solvable group of length at most k + 2.

(2) Suppose H is a polycyclic group. Then & (H) is polycyclic if and only if the
abelianization H/H' is a finite group.

(3) Suppose H is a perfect group. Then &(H) is perfect and & (H) = y(H).
(4) The group & (H) is finite if and only if H is a finite perfect group.

2 Preliminaries

We use standard notation as can be found in [8].

2.1 Some epimorphisms

We start by defining four epimorphisms of &(H) and stating some of their prop-
erties:
0:8H)—>H, hwh h¥—h forallhe H,
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with
ker(p) = £(H) = [H,y] = ("'h¥ | h € H),
E(H)=%(H)-H, $H)NH=1;
and
n:&8H)—>HxH, hw (h1), Y~ (1,h) forallhe H,
with
ker(r) = D(H) = [H, HY] = ([, hY] | hi,h2 € H),
EH)=(D(H)-H).HY, DH)N(H-HY)=1,
and
§:6(H)— x(H), hwh h¥ —h¥ forallh e H,
with
ker(8) = A(H) = ([h.hY] | h € H)®UD:
and

£:6H)—>v(H), hwh hY—h?¥ forallhe H.

The subgroups £(H ), D (H), A(H) are -invariant. In addition to these, we have
the normal ¥ -invariant subgroups of & (H)

W(H)=DH)NL(H),
R(H) = [[H, £(H)], H"].
We mention two more normal subgroups
L1(H) = [£(H), H], £2(H)=[2(H),H];

these are interchanged by .
Maintaining the notation used for subgroups of y(H), we write

£(H)Y = L(H), D(H)’ =DH), WH)’=WH),
R(H) = R(H), £1(H)® = Li(H), £2(H)® = Lo(H).

The subgroup R(H) is key to understanding the structure of &(H). We will
prove later

Theorem 2. Let £ : &(H) — v(H) be as defined above. Then ker(§) = R(H).
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Remark 1. (i) It follows directly from the definition of &(H ) that
[D(H).L(H)] =1
and therefore W(H) is central in the product D (H)L(H). We conclude from
WY, h] = [h(h™'hY), bl = [h~'hY, h) € D(H) N E(H) = W(H)

that
A(H) < W(H).

EH) (~ X)) ompeds

(i1) Using [9, Proposition 4.1.4], the quotient group W H)(g WH)

into the triple product H x H x H by
T WH)h — (h.h, 1), WH)RY — (1,h, h)
for all h € H. Thus,
t: WH)h YY) - (W7 1 h),
W(H)[h1, 7] — (1, [h1, b2l 1),
WCH) ([ R ha)) — (bt ha). 1.1),
WH) (7 hY hY D) — (1,1, [, ha))

forall h,hi,h, € H.

2.2 Commutator relations

It is convenient to denote A~ AY by [k, ¥].

Lemma 1. The following statements hold.
(1) Let hy, hy, h3 € H. Then:

() [h1, ¥] commutes with [ha, h3Y],

(i) [hl,hzw] = [¥, ho, hy][h1. hs] (thus D(H) < [£(H), H]|H’),

(i) in R(H),

- hy —hy
[h1 b)Y 1" = [he kY 70 (W, ()]
(2) Letw = w(zj', 252, ..., z;") beaword in z5' , 232, . . ., " of length n, where
zi € H, e € {1,v,}. Also, let w' = w(zy,z2,...,2n). Then

(hi, hY 1Y = [h1, h¥ 1Y forallhy,hy € H.
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(3) Elements of W(H) have the form
(1 By s hY
where hy, hy, ..., hgy+1 € H and s is an odd number such that
[h1,ha] - [hs, hs41] = 1.

Proof. (1) (i) The assertion follows from the definition of &(H ).
(i1) Note that

[h1.hY] = [h1. halha, 1] = [y, [ha. Y]]l ho)H2 V)
and since by item (i) [hl,hg’ ] commutes with [, h15], we obtain
(1. kY] = [ [ho Y21 [y ho) = [y by, Ay, ha).
(iii) We compute
v h3(h¥)~! Y
W, )P ] = [, )" ] = [ w1
v
= [l ha) ] nY ]
B ( NI NIoR vo1q e\
= ([A1.17] ) [[71. B3 (h3) ]’hz]) :

Since [y, hY] € D(H) and [hy, h3(h¥)™1] € £(H), it follows that

hy
[, ] = ([ i e sy~ 49)

v 12
= [h1 BY T [y hs(hY) 1] nY ]

and therefore,
v v
(Do s )] RET = [ i 1 e 0y )

(2) By item (i),
1, k15175 = [y, WY ]7172.

The more general statement follows by induction on 7.
(3)Letw = [h1, hY]---[hs, hY, ] € D(H). Then by item (i),

w = [y, ha, hillhy, ha] -+ [V, hssr, hsllhs, hs41] = c[h1, ha] -+ [hs, hsa],
where ¢ € £(H). Since H N £(H) = 1, we obtain
we WH) < [h1,h] - [hs,hs+1] = 1. o
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2.3 The subgroups £1(H), £2(H)

Recall
£1(H) = [£(H), H], £2(H)=[2(H),H"].

By Remark 1 (ii),
Tt W(H)[h1. hY] — (L. [h1, o). 1),
W(H)(hT R hal) — (b ha) 1.1,
WCH) (A RY Ry ) — (1.1, [y, o))
for all iy, hy € H. Therefore

T % —>1xH x1,
W(H)L1(H)
W(H)
W(H)L2(H)
W(H)

— H x1x1,

—1x1xH'
are epimorphisms.
Lemma 2. We have
L1(H) = L(H)N(D(H) - H),

£2(H) = L(H) N (D(H) - (H)Y),
L1(H) N L2(H) = W(H).

Proof. Since
Y iyt bl = (Y o) o)
holds for all 41, h, € H, we conclude
L1(H) = [£(H), H] = D(H)H' < £(H) N (D(H)H").

By item (ii) of the previous lemma,

D(H) < [£(H),H|H" = £1(H)H'.
Therefore,

W(H) = L(H)N(DH)H') < L(H) N (L1(H)H')
< Ly(H)(LH)NH') = L1(H).
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Hence,
L1(H)=L(H)N(DH)H').

Apply ¥ to £1(H ), to obtain
£2(H) = £(H) N (D(H)(H)Y).

Clearly,
WH) =L(H)ND(H) € L1(H) N L2(H).

Li(H) A La(H)

From [9, Lemma 4.1.10 (iii)], we know that the intersection WH) WH) 18
trivial in %(g %); therefore,

L1(H) N Lo(H) = W(H). O

3 The groups R(H) and v(H)
Proposition 1. The subgroup R(H ) satisfies the following properties:
() R(H) = [£1(H), HY] = [£2(H), H],
(i) [W(H).E(H)] € R(H) < W(H).
Proof. (i) By definition,
R(H) = [H.L(H). HY] = [£,(H). H"].
Since [D(H), £(H)] = [H, HY,£(H)] = 1, we obtain, by the Hall-Witt iden-

tity, that
[HY. £, H|=[H, %, HY]

and consequently that R(H) = [£2(H ), H].
(i1) We note
R(H) € £1(H) N L2(H) = W(H);

therefore,

[(W(H), H],[W(H), HY] < R(H),
[W(H),&(H)] € R(H). O

Proof of Theorem 2. Recall
v
v(H) = (H, HY | [h, k3175 = [hy, b1 = (103, (h2)Y), by, haohs € H),

and
£:68(H)—>v(H), h+—h h?Y —h¥ forallhe H.
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By Lemma 1 (iii), the commutator relations

([ k)~ 08] = (D7) [0 iy ))
hold in R(H). Therefore, R(H) < ker(§) and £ induces an epimorphism
—- &(H
E . ﬁ — V(H)

On the other hand, since both equalities

hy)—!

[y WYY = [y WYY, g RYTRS = (R ) )
hold in &(H') modulo R(H ), we obtain the epimorphism
E(H)
R(H)

defined by h — R(H)h, h¥ — R(H)h¥. The composition ££’ is the identity

map and thus, % =~ v(H). With this the proof of the theorem is finished. o

g v(H) —

4 Restrictions and inductions of &

Proposition 2. Let K, H) < H < &(H). Then:
() [K.HY)and [KY, Hy] < (Hy. HY),
(i) (K, KY)ND(H) = [K.KY],

(i) (K, K¥)NE(H) = [K, ¥].

Proof. (i) Since H 11// normalizes [K, H ;l' ] and
v _
e hY1 = ke BY P = [k by T kY yY]

hold for all k € K and hy,y € Hy, we conclude that H; normalizes [K, H IW I
Analogously, [Hy, K¥] < (Hy, HY).

(ii) Denote (K, K¥) by K. It is clear that [K, K¥] € K N D(H). On the other
hand, consider the epimorphism 7 : §(H) — H x H. Since ker(w) = D(H),
we have that 7 induces an epimorphism

A

K
—_—
KN D(H)

Consider the natural epimorphism

K x K.

A

K

KxK— ——ur.
X _>[K,KW]
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The composition of the last two epimorphisms leads to

A A

K K
= —>
KNnDH) [K.KY]

defined by (1% ND(H))x — [K,KY]x forall x € K. Therefore,
KNDH)C K, KY].

(iii) The proof here is similar to that of the last item, by considering the epimor-
phism p : &(H) — H and by taking the composition of the maps

A A

K K
KN (K. ¥]

Proposition 3. Let ¢ : H — K be an epimorphism, N = ker(¢). Then ¢ extends
naturally to an epimorphism qAﬁ :8(H) — &(K) such that

() $(D(H)) = D(K), $(L(H)) = £(K),

(i) ker(¢) = (N, NV)[N, HV][NV, H],

(iii) ker(@ |pcm)) = [N. HV]INV, H]
Proof. (i) The extension ¢ of ¢ is determined by h® = h% and (h‘/’)"g = (h?)Y
forall h € H. Then

$(D(H)) = $([H. HY]) = [$(H).$(H")] = [K.K?] = D(K)
and A A A
P(L(H)) = ¢([H.y]) = [¢(H).y]) = [K.y].

(ii) Let M = (N, NY)[N, HY][H, N"¥]. We have that M < ker(¢), because
N, NV C ker(¢). By the previous proposition, M is normal in & (H ). The map

w:KUKY — %, k— M¢p~ k), k¥ = M@~ (k)Y

is well-defined, since N, N v C M. The restrictions of u to K and K ¥ are homo-
morphisms and they extend uniquely to a homomorphism

w* K« K¥ > &(H)/M.
Since the relations

ki kY16 = [y, ko¥ 15 forall ki, ka ks € K

are preserved by p*, it induces a homomorphism &(K) — % On the other
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hand, since M < ker(qg), we have a homomorphism $:8(H)/M — &(K) such
that (M h) = ¢(h) and (Mh¥) = ¢(hV) for all h € H. The composition of
u* and ¢ gives us

ot k) = pMop~ (k) =k, u*kV) =M@ (k)¥) =k

forall k € K. So, quL* = lg(k), which shows that ¢~> is an isomorphism.
(iii) This item follows from

D(H)Nkerd = D(H) N (N, NY)[N,HV]-[H,NY])
= [N, NY][N, HY][NV, H]
=[N, HV][NY, H]. o
Proposition 4. Let H and K be normal subgroups of a group G such that
G=HaK.
Then
€(G) = (H,H")[H,KV][HY, K](K,K"),
E(H) = (H,HY),
&(K) = (K, KY).

Proof. By the previous proposition, the projection ¢ : G — H can be extended to
an epimorphism ¢ : §(G) — &(H ) such that

ker(¢) = (K, KY)[HK,KY][HY KV, K].

It follows that
[HK,K¥] = [H,KY][K,K"],

since by Proposition 2 the subgroups K, K¥, H and HY normalize [H, KV].
Similarly, it follows that

[HYKY K] =[HY K]|[K.K"].
Thus,
8(G) = (K,KV)[H,KV|[HY, KI&(H).
Butas ¢((H, HY)) = E(H), and € (H) maps onto (H, HV), it follows that
ker(p) N (H,HY) =1, &(H)= (H HY).

We conclude
€(G) = (K,KY)[H,KY|[HY, K|(K.KY).

The isomorphism &(K) = (K, K¥) follows in a similar manner. ]
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5 The augmentation ideal of Z(H/H")

Let G = Z(H/H')x H denote the semidirect product of the group ring Z(H/H')
of the abelianization of H by the group H, where H acts on Z(H/H') by right

multiplication
h
(Z XH/hH/h) : = ZXH’h H//’l]’ll

for all b, hy € H. Denote the elements of G as pairs (w, h) with w € Z(H/H'),
h € H. Identify the complement H with {0} x H, write & for the coset H'h for
any h € H and let u = (1,1) € G. Also, let Az(H/H') be the augmentation
ideal of the group ring Z(H/H’) and let G be the subgroup of G generated by
Az (H/H’) and H. Note that H' acts trivially on Z(H/H').

Proposition 5. The map ¢ : HU HY — G defined by h — h, hY — h* for all
h € H extends to an epimorphism ¢ : &(H) — G. Moreover, if H is abelian, then
ker(e) = £(H)', the commutator subgroup of £.(H).

Proof. Consider .
[H,ul] = ([h,u] | h e H) £G.

It is easy to see that
houl = ' =uu=1-h1).

Therefore, [H,u] = Az(H/H')x{1}and G = (H, H"). Since Z(H /H') is abel-
ian and H' acts trivially on Z(H/H'), we find that

[y, B%), [, u]] = [hy u ™ Y ey Yuhu™ hou, (7, u]]
= [ (7 By by ha)u T, B
= [ w2y holu 2, umh]
=1.

Thus ¢ extends to an epimorphism &(H) — Az(H/H') x H.
By [9, Theorem 2.1.1], G = Az (H) - His isomorphic to the group

(H.HV | [Hy] =1)
and so, when H is abelian, we obtain ker(s) = £(H)'. |
Next, we specialize H to a finite cyclic group.

Corollary 1. Let H = (x) be a cyclic group of order n. Then
EH)=Z"'xH.
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Proof. We need to show ker(e) = 1; that is, £(H) is abelian. We note that
n—1 n—2
1= [xan] = [x7W]x [x7W]x "'[X’W]’
n—1 N2 _
oy = eyl ey

therefore, , L
L(H) = (] be vyl )

We compute
', x¥] =[x, xx" %Y =[x [x, v]] = [x, W]_xi [x,y¥] foralli € Z.
Since [D(H ), £L(H)] = 1, it follows that

=[x byl = [y e vl
and thus L(H) is an abelian group. |

6 & of solvable groups
Proof of Theorem 1 (i). Since H is a solvable group with derived length k, we
apply [9, Corollary 4.1.8] to conclude y(H)**1 = 1. Asker(§) = A(H) is abel-
ian, we conclude further that &(H)®**2) = 1 and this ends the proof. |
6.1 Abelian groups
Given a group G we denote its center by Z(G).
Proposition 6. Let H be an abelian group. Then:
(i) we have
D(H) =W(H) = [£(H). H] = [£(H). H"].
R(H) = [D(H), H] = [£(H), H, H],
(i) £(H) is nilpotent of class at most 2,
L(H) € D(H) € Z(£(H)), L(H) S Z(E(H)).
Proof. (1) By Lemma 2,
L1(H) =[£(H),H] = £(H) N D(H)H',
Lo(H) =[L(H),HY] = £(H)NDH)H'"Y.
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Since H is abelian group, we have that
WH)=LH)NDH) =L1(H) = L2(H).
Since D(H) C [£(H), H]H' and H abelian, we obtain
D(H) S [L(H). H] < £(H)ND(H) = W(H);
therefore, D(H) = [£(H), H] = [£(H), HY]. From this last equality, we obtain
R=[H £H),HY]=[D(H), HY] = [D(H), H] = [£(H), H, H].

(ii) It is clear that H centralizes £(H) modulo [£(H), H](= D (H)) and HY
centralizes £(H) modulo [£(H), HY](= D(H)); therefore,

£(H) C[6(H), £(H)] S D(H).
On the other hand
[(D(H), L(H)] = [£(H), H. L(H)] = [H, L(H), £(H)] = 1;

therefore,
[£(H), £(H),H] = [£(H)',H] = 1.

Proceeding in the same way, we obtain
1= [D(H). £(H)] = [£(H). H. £(H)] = [H" . £(H). £(H)]

and
[£(H),£(H),HY] = [£(H) HY] = 1.

We have reached the desired conclusion:
L(H) € Z(E(H)). o
Proposition 7. Let H be an abelian group. Then
L(H) = ([a¥.bla,b¥] foralla,b € H).
Proof. Consider /1,1l € £(H). Then
Iy = [k, ¥llh2, ] - [hs, ]
I = Wy Yllhy. -+ [hy. Y]

for some s,r € N and hy, ha, ... hg, by, h)y, ... k), € H.
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Since £(H) < D(H) and [£(H), D(H)] = 1 we have

[h.1) = HH[[h,,w1 [, vl

i=1j=1
However,
(Ui ). 0 ) = T~ hi ™ 0y
S TR ey 1AG LA 1P A A
= oYY g T
= [ Y g T
= [y, BT Y ]
= 1Y il V1,
which proves the assertion. O

Proposition 8. Let H be an abelian group and let a,b € H, have orders n and m,
respectively. Then the element [a,b¥][a¥ , b] has order a divisor of gcd(n, m).

Proof. From

n—1

1= [a",b¥] = [a,b¥]" '[a,b¥]*" .- [a, bY],

we obtain
1 =[a", b](a”_l)"’[aw’ b](a”_z)‘” - [a?, b,

since[D(H), £(H)] = 1. Also, since D(H) = W(H), by multiplying together

these two equations, we obtain

a1

a2 n—2)

1=1[a,bY]*" [a,bY] - [a,b¥][a¥, p]@" D[a¥ , b]@ - [a¥,b]
= ([a.b")a” . 6DV ([a.b¥][a” b)) - [a. bV ][ . b]
= (la.b¥][a”.b)",

since &' < Z(€(H)). Similarly, ([a,b¥][a?¥,b])™ = 1; therefore, the order of
[a.b¥][a¥ . b] divides ged(n, m). o

The next corollary follows directly from the above proposition.

Corollary 2. If H is a finite abelian group, then so is L(H)'.
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6.2 Polycyclic groups
A. McDermott defined in his thesis [6] the subgroup of the free product H x HY,

K = ([ kY1 g™ 1" 10 by g by € HYEHT

which is clearly related to our group &R (H ). The following result is a consequence
of [6, Theorem 2.2.8].

Theorem 3. Let H be a polycyclic group with polycyclic generating sequence
S ={a; | 1 <a; < n}. Then the set of generators of K can be reduced:

_ HxHY
K:([ai,a}p]ak[aiak,ajakw] 1 |a,~,aj,ak€S) .

Proposition 9. Let T be a transversal of H' in H. Then
v T
R(H) = (A1, k13 "2 ™17V b ho by € H)'

Proof. Define the subgroup

JCH) = ([, BT, 1Y T | By o, hs € H)EED
of R(H), normal in & (H). We recall the epimorphism & : &(H) — v(H ) defined
by h > h, h¥ + hY forall h € H, with kernel R(H ). Then & induces

E(H)

E:m—ﬂj(H).

On the other hand, the map o : v(H) — % defined by

hs (H)h, hY— g(H)hY

&(H)

T and the relations

extends to an epimorphism ¢ : v(H) —

[y BYTS = [y WY1 = [0 (hE)Y] forall hy.ho,hs € H

hold in ;EZ; Since G € is the identity on ggg; we have

R(H) = J(H).

By Lemma 1 (ii),
R(H) = W(H) = Z(D(H));

therefore,

R(H) = ([h1, RSV, (hy"3)Y) | by ko hs € HYY
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and
[R(H),H'] = [R(H), D(H)] = 1.

Thus

)" o

v
R(H) = ([h1, K31 " 0" 17 by hohs € H
Proposition 10. Let H be a polycyclic group, with polycyclic generating sequence
S ={ayi,as,...,a,} andlet T be a transversal of H' in H. Then

_ T
R(H) = ([ai,a}!’]“k[ai“k,ajakw] b aj,aj,ar € S) .

Proof. Considering the natural epimorphism ¢ : H x H¥ — &(H ), we have that
¢(K) = R(H). By the above proposition,

R(H) = ([ai,a}/f]ak [aiak,ajakw]_l |ai,aj,ar € S)g(H)

V- T
= ([ai.a}1% [a;* .a;** V1" | ai.a;.a € S)". =

Proof of Theorem 1 (ii). In one direction, let & (H ) be polycyclic. Then, on recall-
ing the epimorphism ¢ : §(H) — Az (H/H')H, we conclude that Az (H/H') is
finitely generated and therefore H/H' is finite. In the other direction, on letting
H/H' be finite, we obtain that R(H) is a finitely generated abelian group. Since
by [1], v(H) is polycyclic and since ;;% ~ v(H), we conclude that &(H) is
polycyclic.

This ends the proof of part (ii) of Theorem 1. |

7 & of perfect groups

When H is a perfect group, one finds a complete description of y(H) in [9, Sec-
tion 4.4], where it is shown that y(H) is a certain stem extension of H x H x H
by the Schur multiplier M (H) of H.

Proof of Theorem 1 (iii). (a) Since % >~ %, it follows that
E(H)=DH)L(H)
and therefore, W(H) < Z(&(H)). From the formula
E(H) = D(H) L(H)'[D(H), L(H)],

we derive

E(H) = D(H) £(H).
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By [9, Lemma 4.4.6], y(H) and its subgroups D = [H, HY], L = [H, ] are all
perfect groups. We conclude

A(H) < W(H) < Z(E(H)),

D(H) = A(H)D(H),

L(H) = AH)Z(H)',

E(H)=D(H)E(H) = AH)D(H) £(H) = &(H).

(b) Consider §(H) = % Then

D(H)(=[H. HY]) = W(H),

which is contained in the center of & (H'). Therefore,

Thus,
D(H) = D(H)', a stem extension of H.

(c) From the structure of y(H), we have that W(H) is central in D(H ),
D(H)
W(H)

that is, D(H) is a total covering of H. As H is perfect, D(H ) is the total covering
of H. Therefore the map y from the generating set {[#,h¥] | h € H} of D(H)
into the generating set {[i, h¥] | h € H} of D(H) defined by

[, h?] > [k, RV,

~H and W(H)==~ M(H);

extends to an epimorphism y : D(H) — D(H). Hence, the composition
8y : D(H) — D(H)

is the identity and A(H) = 1 follows.
This ends the proof of part (iii) of Theorem 1. o

Proof of Theorem 1 (iv). Assume that H is a finite group. Since & (H ) maps onto
Az(H/H') x H, on supposing & (H ) finite, we obtain H = H'. Reciprocally, on
supposing H perfect, we obtain by the previous theorem, &(H) = y(H).

This proves the final part of Theorem 1. |
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