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locally compact groups

Helge Glöckner and C. R. E. Raja

Communicated by Linus Kramer

Abstract. We study topological automorphisms ˛ of a totally disconnected, locally com-
pact group G which are expansive in the sense that\

n2Z

˛n.U / D ¹1º

for some identity neighbourhood U � G. Notably, we prove that the automorphism
induced by an expansive automorphism ˛ on a quotient group G=N modulo an ˛-stable
closed normal subgroup N is always expansive. Further results involve the contraction
groups

U˛ WD ¹g 2 G W ˛
n.g/! 1 as n!1º:

If ˛ is expansive, then U˛U˛�1 is an open identity neighbourhood inG. We give examples
where U˛U˛�1 fails to be a subgroup. However, U˛U˛�1 is an ˛-stable, nilpotent open
subgroup of G if G is a closed subgroup of GLn.Qp/. Further results are devoted to the
divisible and torsion parts of U˛ , and to the so-called “nub” nub.˛/ D U˛ \ U˛�1 of an
expansive automorphism.

Introduction and statement of results

We consider automorphisms ˛WG ! G (thus ˛ is a group automorphism such
that both ˛ and ˛�1 are continuous) of a totally disconnected locally compact
topological group G which are expansive in the sense that\

n2Z

˛n.U / D ¹1º

for some identity neighbourhoodU � G. Expansive automorphisms of totally dis-
connected, compact groups were studied in [14, 22] and recently in [31]. The im-
portance of expansive automorphisms for the theory of general automorphisms
is highlighted by the fact that every automorphism ˛ of a totally disconnected
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compact group G is a projective limit

˛ D lim
 �

j̨

of expansive automorphisms j̨ of certain Hausdorff quotient groups G=Nj of G
such that G D lim

 �
G=Nj (see [31]).

Our goal is to improve the understanding in the case of non-compact groups.
Special cases of expansive automorphisms are automorphisms ˛WG ! G which
are contractive in the sense that ˛n.g/! 1 as n!1 for each g 2 G (see
Remark 1.10). The structure of totally disconnected, locally compact groups ad-
mitting contractive automorphisms was elucidated in [10] (building on earlier
works like [24] and [26]), and the results obtained there can also be used as tools
in the investigation of expansive automorphisms (as we shall see). Further tools
come from the structure theory of totally disconnected, locally compact groups
([29, 30]), in which contractive automorphisms play an important role (as worked
out in [1]).

Note that every automorphism ˛ of a discrete groupG (e.g., ˛ D idG) is expan-
sive (as we may choose U D ¹1º then). Therefore discrete groups and their auto-
morphisms are part of the theory of expansive automorphisms. As a consequence,
groups permitting expansive automorphisms need not have any particular algebraic
properties. However, there are topological implications: a totally disconnected, lo-
cally compact group admitting an expansive automorphism ˛ is always metrizable
(cf. [15]) and has a second countable, ˛-stable open subgroup (Lemma 1.1 (a)).

Our first main result generalizes [31, Proposition 6.1] (devoted to the case of
compact groups). As usual, a subset H � G is called ˛-stable if ˛.H/ D H .

Theorem A. Let ˛WG ! G be an automorphism of a totally disconnected, locally
compact group, let N � G be an ˛-stable closed normal subgroup and let
N̨ WG=N ! G=N , gN 7! ˛.g/N be the automorphism of G=N induced by ˛.
Then ˛ is expansive if and only if both ˛jN and N̨ are expansive.

With a view towards our next result, recall that a topological group G is called
topologically perfect if its commutator group ŒG;G� is dense in G.

Composition series play a central role in the study of contractive automor-
phisms [10]. In the case of expansive automorphisms, composition series need
not exist. However, certain substitutes are available.

Theorem B. If ˛WG ! G is an expansive automorphism of a totally disconnected,
locally compact group G, then there exist ˛-stable closed subgroups

G D G0 � G1 � � � � � Gn D ¹1º

of G such that Gj is normal in Gj�1 for j 2 ¹1; : : : ; nº and every j̨ -stable
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closed normal subgroup of Gj�1=Gj is discrete or open, where j̨ denotes the
induced automorphism Gj�1=Gj ! Gj�1=Gj , gGj 7! ˛.g/Gj . Moreover, one
can achieve this in such a way that each of the quotient groups Gj�1=Gj is dis-
crete, abelian or topologically perfect.

In addition, one may assume that all abelian, non-discrete factors Gj�1=Gj are
simple contraction groups with respect to the automorphism j̨ or its inverse, or
isomorphic to an infinite powerCZ

p of a cyclic group of prime order, endowed with
the right-shift (cf. Remark 6.1 and Proposition 6.2). For second countable groups,
more detailed information on the perfect factors is available (see Remark 4.2). The
proofs of Theorem A and Theorem B hinge on the fact that there is a bound on the
number of non-discrete factors in series for .G; ˛/ (see Proposition 2.7).

According to [30], a compact open subgroup V � G is called tidy for ˛ if it has
the following properties:

(T1) V D VCV�, where VC WD
T1
nD0 ˛

n.V / and V� WD
T1
nD0 ˛

�n.V /,

(T2) The ˛-stable subgroups VCC WD
S
n2N0

˛n.VC/, V�� WD
S
n2N0

˛�n.V�/

are closed in G.

Note that

VC � ˛.VC/ � ˛
2.VC/ � � � �

and

V� � ˛
�1.V�/ � ˛

�2.V�/ � � � �

here. The index

s.˛/ WD Œ˛.VC/ W VC� 2 N

is called the scale of ˛; it is independent of the choice of the tidy subgroup V (see
[30]). Following [31], the intersection nub.˛/ of all subgroups V which are tidy
for ˛ is called the nub of ˛; it is a compact, ˛-stable subgroup of G.

If ˛WG ! G is an automorphism of a totally disconnected, locally compact
group G, then

U˛ WD ¹g 2 G W ˛
n.g/! 1 as n!1º

is a subgroup ofG called the associated contraction group. In general,U˛ need not
be closed. However, if ˛ is expansive, then the topology onU˛ can be made locally
compact, i.e., it can be refined to a totally disconnected, locally compact group
topology �� with respect to which ˛jU˛ is contractive (see [25, Proposition 9] for
this fact, or our Lemma 2.3). In this way, the structure theory of locally compact
contraction groups (see [10, 24, 26]) becomes available. In particular, the set

T˛ WD tor.U˛/
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of all torsion elements in the group U˛ and the set

D˛ WD div.U˛/

of divisible elements are ˛-stable closed subgroups of .U˛; ��/, and

.U˛; �
�/ D D˛ � T˛

internally as a topological group, if we endow D˛ and T˛ with the topology
induced by .U˛; ��/ (see [10, Theorem B]).

Recall that the closure U˛ of the contraction group U˛ in G plays a role in the
structure theory of totally disconnected, locally compact groups; for example, the
scale s.˛�1/ can be calculated as the module of the restriction of ˛�1 to U˛ (see
[1, Proposition 3.21 (3)]). Our next theorem provides information on U˛, and on
the divisible part D˛ of U˛.

Theorem C. Let G be a totally disconnected, locally compact group and let
˛WG ! G be an automorphism such that U˛ can be made locally compact
(for example, any expansive automorphism). Then U˛ D D˛ � T˛ (internally) as
a topological group, and T˛ D T˛ nub.˛/. In particular, D˛ is an ˛-stable closed
subgroup of G, and both the closure T˛ of T˛ in G and nub.˛/ centralize D˛.

We mention that the nub of an expansive automorphism ˛ need not have an
open normalizer in G (see Remark 5.2), in which case not both of U˛ and U˛�1
normalize nub.˛/.

Classes of examples are also considered. An analytic automorphism ˛ of a Lie
group G over a totally disconnected local field K is expansive if and only if the
associated Lie algebra automorphismL.˛/ is expansive, which means that none of
its eigenvalues in an algebraic closure has absolute value 1. The Lie algebra L.G/
of G is then nilpotent (see Proposition 7.1). In the case of p-adic Lie groups for
a prime number p, we obtain:

Theorem D. Let G be a p-adic Lie group which is linear in the sense that there
exists an injective continuous homomorphismG ! GLn.Qp/ for some n 2 N. Let
˛WG ! G be an expansive automorphism. ThenG has an open ˛-stable subgroup
which is nilpotent.

If ˛WG ! G is an expansive automorphism of a totally disconnected, locally
compact group G, then U˛U˛�1 is an open subset of G (see Proposition 1.1). This
is essential for our studies; for instance, it allows finiteness properties of locally
compact contraction groups (viz. bounds for the length of series of ˛-stable closed
subgroups) to be exploited in the proof of Theorem B.
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In many examples, U˛U˛�1 happens to be a subgroup of G (for instance, for
all expansive automorphisms of closed subgroups G � GLn.Qp/, see Proposi-
tion 7.8). However, this is not always so, as can be seen from Remark 7.7. We also
consider the localized completion Gp;q of a Baumslag–Solitar group

BS.p; q/ D ha; t j tapt�1 D aqi

with primes p 6D q, as recently studied in [4]. Then BS.p; q/ � Gp;q . We show
the following theorem.

Theorem E. Let ˛WGp;q ! Gp;q be the conjugation by t . Then ˛ is expansive but
U˛U˛�1 is not a subgroup of Gp;q .

1 Preliminaries and basic facts

We write N D ¹1; 2; : : :º, N0 WD N [ ¹0º and Z WD N0 [ �N. If J is a finite set,
we let #J be its cardinality. We write X � Y for inclusion of sets, while X � Y
means that X is a proper subset of Y . As usual, we write N C G if N is a nor-
mal subgroup of G. All topological groups considered in this article are assumed
Hausdorff, and locally compact topological groups are simply called locally com-
pact groups. Totally disconnected, locally compact non-discrete topological fields
(like the field of p-adic numbers) will be called local fields (see [27] for further
information). See [3] and [23] for basic information on Lie groups over local
(and more general complete ultrametric) fields (which we always assume finite-
dimensional). If we say that ˛ is an automorphism of a topological group, then
we assume that both ˛ and ˛�1 are continuous; similarly, both ˛ and ˛�1 are as-
sumed analytic if ˛ is an automorphism of an analytic Lie group over a local field.
We write Aut.G/ for the group of all automorphisms of a topological group G. If
a subgroup N � G is stable under all ˛ 2 Aut.G/, then N is called topologically
characteristic. A topological group G is called topologically perfect if its com-
mutator group ŒG;G� is dense in G. If F is a finite group and X a set, we write
FX WD

Q
x2X F for the direct power endowed with the compact product topol-

ogy. By contrast, F .X/ � FX is the subgroup of all .gx/x2X 2 FX such that
gx D 1 for all but finitely many x 2 X . We shall always endow F .X/ with the dis-
crete topology. Surjective, open, continuous homomorphisms between topological
groups are called quotient morphisms. A topological space X is called � -compact
if it is a union X D

S
n2N Kn of a sequence of compact sets Kn � X .

If ˛WG ! G is an automorphism of a locally compact group, choose a Haar
measure � on G and denote the module of ˛ by �G.˛/; thus

�G.˛/ D �.˛.K//=�.K/
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for any compact subset K � G with non-empty interior. If ˛WG ! G is an auto-
morphism of a totally disconnected, locally compact group, we define nub.˛/, the
contraction group U˛ and its subgroups T˛ and D˛ as explained in the introduc-
tion. If V � G is a compact open subgroup, we shall use the subgroups VC, VCC,
V� and V�� defined there, and abbreviate

V0 WD VC \ V� D
\
n2Z

˛n.V /: (1.1)

We shall also need the so-called Levi factor

M˛ WD ¹g 2 G W ¹˛
n.g/ W n 2 Zº is relatively compactºI

it is known that M˛ is an ˛-stable closed subgroup of G (see [1, p. 224]). The
following lemma compiles basic facts concerning expansive automorphisms.

Lemma 1.1. If ˛ is an expansive automorphism of a totally disconnected, locally
compact group G, then the following holds:

(a) G is metrizable and has an ˛-stable, � -compact open subgroup,

(b) V�� D U˛ and VCC D U˛�1 for each compact open subgroup V � G such
that V0 D ¹1º,

(c) G has a compact open subgroup V such that V D VCV� and V0 D ¹1º,

(d) U˛U˛�1 is open in G,

(e) ˛jH is expansive, for each ˛-stable subgroup H � G.

Proof. (a) Since ˛ is expansive, there exists an identity neighbourhood V such thatT
n2Z ˛

n.V / D ¹1º. After replacing V with a smaller compact identity neighbour-
hood if necessary, we may assume that V is compact. Since V is compact and
.
Tn
kD�n ˛

k.V //n2N a decreasing sequence of closed identity neighbourhoods
in V with intersection ¹1º, the members of the sequence form a basis of iden-
tity neighbourhoods. Hence G is metrizable. The subgroup of G generated byS
n2Z ˛

n.V / is ˛-stable, open and � -compact.
(b) By [1, Proposition 3.16], we have V�� D U˛V0 and thus V�� D U˛. Like-

wise, VCC D U˛�1 .
(c) and (d) Using expansiveness and van Dantzig’s Theorem [11, Theorem 7.7],

we find a compact open subgroup W � G such that\
n2Z

˛n.W / D ¹1º:

By [29, Lemma 1], there exists m 2 N such that V WD
Tm
kD1 ˛

k.W / satisfies
V D VCV�. Then we have V0 � W0 D ¹1º and thus V0 D ¹1º, proving (c). The
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latter entails U˛ D V�� and U˛�1 D VCC, by (b). In particular, V� � U˛ and
VC � U˛�1 , entailing that V D VCV� � U˛U˛�1 . Thus U˛U˛�1 is an identity
neighbourhood. Given g 2 U˛ and h 2 U˛�1 , the mapG ! G given by x 7! gxh

is a homeomorphism which takes U˛U˛�1 onto itself and 1 to gh. Hence U˛U˛�1
has gh in its interior and thus U˛U˛�1 is open.

(e) If V � G is an identity neighbourhood with
T
n2Z ˛

n.V / D ¹1º, then
V \H is an identity neighbourhood in H and

T
n2Z ˛

n.V \H/ D ¹1º.

The first statement of Lemma 1.1 (a) also follows from [15, Lemma 2.4].

1.2. Let ˛ be an automorphism of a totally disconnected, locally compact groupG.
The following facts are useful:

(a) The closure of U˛ in G is U˛ D U˛ nub.˛/ (see [1, Corollary 3.30] if G is
metrizable; the general case follows with [13]).

(b) nub.˛/ D U˛ \ U˛�1 (see [1, Corollary 3.27] if G is metrizable; the general
case follows with [13]).

(c) Both nub.˛/ \ U˛ and nub.˛/ \ U˛�1 are dense in nub.˛/ (see [31, Theo-
rem 4.1 (v) and Proposition 5.4 (i)]).

(d) If N � G is a closed ˛-stable normal subgroup, qWG ! G=N the canoni-
cal quotient morphism and N̨ the automorphism of G=N induced by ˛, then
q.U˛/ D U N̨ (see [1, Theorem 3.8] if G is metrizable, [13] in the general
case).

(e) U˛ is closed if and only if U˛�1 is closed, if and only if G has small sub-
groups tidy for ˛, i.e., every identity neighbourhood of G contains some tidy
subgroup (see [1, Theorem 3.32] if G is metrizable; the general case can be
deduced using the techniques from [13]).

(f) The so-called parabolic subgroup

P˛ WD ¹g 2 G W ¹˛
n.g/ W n 2 N0º is relatively compactº

normalizes U˛ (see [1, Proposition 3.4]). Hence also its subgroups M˛ D

P˛ \ P˛�1 and nub.˛/ �M˛ normalize U˛.

The following results help to show that certain automorphisms are expansive.

Proposition 1.3. Let ˛ be an automorphism of a totally disconnected, locally com-
pact group G. Then the following holds:

(a) ˛ is expansive if and only if its restriction ˛jM˛ to the Levi factor is expansive.

(b) If U˛ is closed, then ˛ is expansive if and only if U˛U˛�1 is open in G, if and
only if M˛ is discrete.
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Proof. (a) In view of Lemma 1.1 (e), we only need to show that if ˛jM˛ is expan-
sive, then so is ˛. Let P �M˛ be a compact, open identity neighbourhood such
that

T
n2Z ˛

n.P / D ¹1º. There is a compact identity neighbourhoodQ � G such
that Q \M˛ D P . If g 2 I WD

T
n2Z ˛

n.Q/, then ˛n.g/ 2 Q for each n 2 Z,
whence ˛Z.g/ is relatively compact and thus g 2M˛. Hence I �M˛. Since I is
˛-stable and I � Q \M˛ D P , we deduce that

I D
\
n2Z

˛n.I / �
\
n2Z

˛n.P / D ¹1º:

Thus
T
n2Z ˛

n.Q/ D ¹1º and thus ˛ is expansive.
(b) If ˛ is expansive, then U˛U˛�1 is open by Lemma 1.1 (d). If U˛ is closed,

then the set U˛M˛U˛�1 is open in G and the product map

U˛ �M˛ � U˛�1 ! U˛M˛U˛�1 ; .x; y; z/ 7! xyz

is a homeomorphism (by 1.2 (e) above and part (f) from the theorem in [5]). Hence
U˛U˛�1 \M˛ D ¹1º. If U˛U˛�1 is open, this implies that M˛ is discrete. If M˛

is discrete, then ˛jM˛ is expansive and hence also ˛, by (a).

1.4. If ˛ is an automorphism of a totally disconnected, compact group G, then U˛
and U˛�1 are normal in G (since G DM˛ DM˛�1 in 1.2 (f)), and hence so is
nub.˛/ D U˛ \ U˛�1 .

1.5. Recall that a groupG is called a torsion group of finite exponent if there exists
m 2 N such that gm D 1 for all g 2 G. If such a group is a subgroup of a topo-
logical group H , then also gm D 1 for all g in the closure G of G in H , and thus
also G is a torsion group of finite exponent.

1.6. Let ˛ be an expansive automorphism of a totally disconnected, compact
group G. Then the following holds:

(a) nub.˛/ is open in G (see [31, Lemma 5.1]), whence also U˛ and U˛�1 are
open in G (by 1.2 (b)).

(b) G is a torsion group of finite exponent. [By (a) and 1.4, nub.˛/ is a normal
subgroup and G=nub.˛/ is finite, hence a torsion group of finite exponent. It
therefore suffices to show that nub.˛/ is a torsion group of finite exponent.
This is immediate from [31, Proposition 4.4, Theorem 6.2, Proposition 6.3]).

(c) Since U˛ and U˛�1 are normal in G, the set U˛U˛�1 is an open ˛-stable
subgroup of G contained in nub.˛/. Thus nub.˛/ D U˛U˛�1 by [31, Corol-
lary 4.3].
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Lemma 1.7. Let ˛ be an automorphism of a totally disconnected, locally compact
group G. Let H � G be a closed, ˛-stable subgroup. Then the following holds:

(a) Then nub of ˛jH is contained in nub.˛/.

(b) If nub.˛/ � H , then nub.˛jH / D nub.˛/.

Proof. (a) Using 1.2 (b) twice, we deduce that

nub.˛jH / D U˛jH \ U.˛jH /�1 � U˛ \ U˛�1 D nub.˛/:

(b) Since nub.˛/ � H , we have U˛ \ nub.˛/ � U˛ \H D U˛jH and thus

nub.˛/ D nub.˛/ \ U˛ � U˛jH

(using 1.2 (c)). Likewise, nub.˛/ � U.˛jH /�1 . Hence

nub.˛/ � U˛jH \ U.˛jH /�1 D nub.˛jH /:

Since nub.˛jH / � nub.˛/ by (a), equality follows.

We shall also need certain facts concerning contractive automorphisms.

1.8. Let ˛ be a contractive automorphism of a topological group G.

(a) If G 6D ¹1º, then G is infinite and non-discrete. [If x 2 G n ¹1º, then we have
˛n.x/ 6D 1 for all n and ˛n.x/! 1, entailing that the topological group G is
not discrete and hence infinite.]

(b) IfG is locally compact, then ˛ is compactly contractive, i.e., for each identity
neighbourhood U � G and compact setK � G there existsm 2 N such that
˛n.K/ � U for all n � m (see [24, Lemma 1.4 (iv)]). Moreover, G is non-
compact (unless G D ¹1º); see [24, Section 3.1].

1.9. Let ˛ be a contractive automorphism of a totally disconnected, locally com-
pact group G. Then the following holds:

(a) If G 6D ¹1º, then �G.˛�1/ is an integer � 2 (see [10, Proposition 1.1 (e)]).

(b) If G D G0 � G1 � G2 � � � � � Gn D ¹1º is a series of ˛-stable closed sub-
groups of G such that Gj is a proper normal subgroup of Gj�1 for all
j 2 ¹1; : : : ; nº, then n is bounded by the number of prime factors of�G.˛�1/
(see [10, Lemma 3.5]).

(c) G D div.G/ � tor.G/ as a topological group for a divisible torsion free group
div.G/ and a torsion group tor.G/ of finite exponent (cf. [10, Theorem B]).
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(d) IfN � G is an ˛-stable closed normal subgroup, qWG ! G=N the canonical
quotient morphism and N̨ the automorphism of G=N induced by ˛, then

q.div.G// D div.G=N/ and q.tor.G// D tor.G=N/:

[The inclusions q.div.G//� div.G=N/ and q.tor.G//� tor.G=N/ are clear.
Since we haveG=N D q.div.G/ tor.G//D q.div.G//q.tor.G// andG=N D
div.G=N/ � tor.G=N/, equality follows.]

Remark 1.10. If an automorphism ˛WG ! G of a totally disconnected, locally
compact group is contractive, then it is also expansive. To see this, let V � G
be any compact neighbourhood of the identity. If g 2 G n ¹1º, then G n ¹gº is an
identity neighbourhood, whence there exists n 2 N such that ˛n.V / � G n ¹gº
(see 1.8 (b)). Thus g 62 ˛n.V / and we have shown that

T
n2Z ˛

n.V / D ¹1º.

2 Making contraction groups locally compact

The problem of refining group topologies on contraction groups was studied by
Siebert [25]. The following special case is useful for our purposes.

Definition 2.1. Let G be a topological group, with topology � , and let

˛W .G; �/! .G; �/

be a contractive automorphism. We say that .G; ˛/ (or simply G) can be made
locally compact if there exists a locally compact topology �� on G making it
a topological group such that � � �� and ˛W .G; ��/! .G; ��/ is a contractive
automorphism. We write G� for G, endowed with the topology ��.

If � is totally disconnected, then also �� is totally disconnected (as the inclusion
map G� ! G is continuous).

The topology �� is unique (if it exists): see [25, Corollary 8] for a discussion in
a more general framework. We give a streamlined proof in our setting.

Lemma 2.2. The topology �� is uniquely determined by the properties from Defi-
nition 2.1.

Proof. Assume that O� is a group topology on G with the same properties as ��.
We show that the identity map

�W .G; O�/! .G; ��/; x 7! x

is continuous. Reversing the roles of O� and ��, also ��1 will be continuous and
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thus O� D ��. Because � is a homomorphism, we need only prove its continu-
ity at 1. By local compactness, there exists a compact identity neighbourhood
V � .G; O�/. After replacing V with the closure of its interior V 0 in .G; O�/, we may
assume that V 0 is dense in V . Then V is also compact in .G; �/. Let U � .G; ��/
be an arbitrary identity neighbourhood, and letW � .G; ��/ be a compact identity
neighbourhood such that WW �1 � U . Then W is also compact in .G; �/, hence
closed in .G; �/ and hence closed in .G; O�/. Since ˛W .G; ��/! .G; ��/ is contrac-
tive, we have G D

S
n2N0

˛�n.W /. Hence V is the countable union of the closed
subsets V \ ˛�n.W /, for n 2 N0. By the Baire Category Theorem, there exists
m 2 N0 such that V \ ˛�m.W / has non-empty interior in V . Since V 0 is dense
in V , we deduce that ˛�n.W / \ V 0 has non-empty interior in V 0, and so W has
non-empty interior W 0 in .G; O�/. Then W 0.W 0/�1 is an identity neighbourhood
in .G; O�/ and hence U is an identity neighbourhood in .G; O�/. Since U D ��1.U /,
we see that � is continuous at 1.

See also [25, Proposition 9] for the following fact.

Lemma 2.3. Let G be a totally disconnected, locally compact group. If an auto-
morphism ˛WG ! G is expansive, then .U˛; ˛jU˛ / and .U˛�1 ; ˛

�1jU
˛�1

/ can be
made locally compact.

Proof. Let V � G be a compact open subgroup such that
T
n2Z ˛

n.V / D ¹1º.
Then ˛n.V�/ D V� \

Tn
kD1 ˛

k.V / is open in V� for each n 2 N0. Since V�
is compact and

T
n2N0

˛n.V�/ D
T
n2Z ˛

n.V / D ¹1º, it follows that the open
subgroups ˛n.V�/ form a basis of identity neighbourhoods in V�, for n 2 N0.
If n 2 N and g 2 U˛ D V�� D

S
k2N0

˛�k.V�/ (see Proposition 1.1 (c)), then
g 2 ˛�k.V�/ for some k 2 N0 and ˛n.V�/ is an open subgroup of the topological
group ˛�k.V�/. Hence, there exists m 2 N0 such that g˛m.V�/g�1 � ˛n.V�/.
By the preceding, there exists a group topology �� on U˛ for which the set
¹˛n.V�/ W n 2 N0º is a basis of identity neighbourhoods. Thus V� is an open sub-
group of .U˛; ��/, and the latter group induces the given compact topology on V�
(as ¹˛n.V�/ W n 2 N0º is a basis of identity neighbourhoods for both topologies
on the subgroup V�). Thus .U˛; ��/ is a totally disconnected, locally compact
group and ˛ is still continuous (being continuous on the open subgroup V�) as
well as ˛�1 (being continuous on the subgroup ˛.V�/ which is open in V�). Since
U˛ D

S
n2N0

˛�n.V�/ and .˛n.V�//n2N0 is a basis of identity neighbourhoods,
it readily follows that the automorphism ˛ of .U˛; ��/ is contractive.

Remark 2.4. The group U˛ can also be made locally compact if ˛ is an arbitrary
(not necessarily expansive) analytic automorphism of a Lie group G over a local
field (see Proposition 13.3 (b) in the extended preprint version of [7]).
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Example 2.5. The right-shift ˛ is an automorphism of the compact group
G WD .Zp/Z, where Zp is the additive group of p-adic integers. The contraction
group U˛ is non-trivial, as it is the group of all .zn/n2Z such that zn ! 0 as
n! �1. Then U˛ cannot be locally compact, because tor.U˛/ � tor.G/ D ¹0º
and div.U˛/ � div.G/ D ¹0º. Thus, if U˛ could be made locally compact, then
we would have U˛ D D˛ C T˛ D ¹0º (using 1.9 (c)), contrary to U˛ 6D ¹0º.

Lemma 2.6. Let G be a topological group and ˛WG ! G a contractive automor-
phism such that .G; ˛/ can be made locally compact. Then we have:

(a) .H; ˛jH / can be made locally compact for each closed ˛-stable subgroup H
of G (or G�), and H� carries the topology induced by G�.

(b) If �WG ! H is a continuous homomorphism to a topological groupH admit-
ting an automorphism ˇWH ! H such that ˇ ı � D � ı ˛, then ˇj�.G/ is
contractive, �.G/ can be made locally compact and

G� ! �.G/�; x 7! �.x/

is a topological quotient map.

Proof. (a) Let � and �� be as in Definition 2.1. Since � � ��, H is closed in G�

(in either case) and hence H is a locally compact group in the topology � on H
induced by G�, which is finer than the topology induced by G and turns ˛jH into
a contractive automorphism of .H; �/. Thus H� D .H; �/.

(b) Let � be the topology on �.G/ turning G� ! .�.G/; �/, x 7! �.x/ into
a quotient map. Then � is finer than the topology induced on �.G/ by H . More-
over, .�.G/; �/ Š G�= ker� is locally compact. Since

ˇj�.G/ ı � D � ı ˛WG
�
! .�.G/; �/

is continuous, the map ˇj�.G/ is continuous with respect to the quotient topol-
ogy � . Also .ˇj�.G//�1 is continuous, by an analogous argument. Finally, the
map ˇj�.G/W .�.G/; �/! .�.G/; �/ is contractive: Since ˇn ı � D � ı ˛n, this
follows from the facts that ˛WG� ! G� is contractive and �WG� ! �.G/� is
continuous.

The following observation is crucial for many of our arguments.

Proposition 2.7. Let ˛ be an expansive automorphism of a totally disconnected,
locally compact group G and let

G D G0 � G1 � � � � � Gn

be ˛-stable closed subgroups of G such that Gj is normal in Gj�1 for all indices
j 2 ¹1; : : : ; nº. Let J be the set of all j 2 ¹1; : : : ; nº such that Gj�1=Gj is not
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discrete. Then
#J � `˛ C `˛�1 ;

where `˛ is the number of prime factors of �U�˛ .˛
�1jU�˛ / and `˛�1 is the number

of prime factors of �U�
˛�1

.˛jU�
˛�1

/.

Proof. Let J˛ (resp., J˛�1) be the set of all j 2 ¹1; : : : ; nº such that

U˛ \Gj � U˛ \Gj�1

(resp., U˛�1 \Gj � U˛�1 \Gj�1). If j 2 ¹1; : : : ; nº n .J˛ [ J˛�1/, then

U˛ \Gj D U˛ \Gj�1 and U˛�1 \Gj D U˛�1 \Gj�1:

Since ˛ is expansive, it follows that .U˛ \Gj�1/.U˛�1 \Gj�1/ is open in Gj�1
(see Lemma 1.1 (d) and (e)). We deduce that Gj is open in Gj�1 and thus j 62 J .
Hence J � J˛ [ J˛�1 , whence #J � #J˛ C #J˛�1 � `˛ C `˛�1 (using 1.9 (b) in
the last step).

We shall use a simple fact.

Lemma 2.8. LetK be a compact group andD � K a subgroup which is divisible.
Then also the closure D is divisible. If K is totally disconnected, then D D ¹1º.

Proof. For each m 2 N, the map fmWD ! D given by g 7! gm is continuous
and hence has compact image. As the image contains D by hypothesis, we see
that fm.D/ D D. Thus D is divisible.

IfK is totally disconnected, thenK is a pro-finite group. In particular, the homo-
morphisms f WK ! F to finite groups F separate points on D. But each f .D/ is
both finite and divisible and therefore the trivial group. Hence also D D ¹1º.

Lemma 2.9. Let ˛ be an automorphism of a totally disconnected, locally compact
group G. If U˛ can be made locally compact (e.g., if ˛ is expansive), then the
following holds:

(a) U˛ \ nub.˛/ D T˛ \ nub.˛/;

(b) nub.˛/ D T˛ \ nub.˛/;

(c) T˛ \ U˛ D T˛;

(d) T˛ D T˛ nub.˛/.

If both U˛ and U˛�1 can be made locally compact, then we also have:

(e) nub.˛/ D T˛ \ T˛�1 .
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Proof. (a) By Lemma 2.6 (a), U˛ \ nub.˛/ can be made locally compact. Thus ˛
restricts to a contractive automorphism ˇ of .U˛ \ nub.˛//�, enabling us to write
.U˛ \ nub.˛//� D DˇTˇ . Since nub.˛/ is compact and totally disconnected, its
divisible subgroup Dˇ has to be trivial, by Lemma 2.8. Thus

U˛ \ nub.˛/ D Uˇ D Tˇ � T˛

and hence U˛ \ nub.˛/ D T˛ \ nub.˛/.
(b) As nub.˛/ D U˛ \ nub.˛/ (see 1.2 (c)), the assertion is immediate from (a).
(c) The subgroup T˛ � T˛ \ U˛ is trivial. Because T˛ is a torsion group of

finite exponent (see 1.9 (c)), also T˛ is a torsion group, see 1.5. Let ˇ the restriction
of ˛ to the closed ˛-stable subgroup T˛ \ U �˛ of U �˛ . Then T˛ \ U˛ D DˇTˇ .
Since Dˇ is torsion-free (see 1.9 (c)) and T˛ a torsion group, Dˇ D ¹1º follows.
Thus

T˛ \ U˛ D Tˇ � T˛:

(d) We have T˛ � U˛ D U˛ nub.˛/ (see 1.2 (a)). Since nub.˛/ � T˛ by (b),
we deduce that

T˛ D .U˛ \ T˛/ nub.˛/ D T˛ nub.˛/

(using (c) for the last equality).
(e) We have

nub.˛/ D U˛ \ U˛�1 � T˛ \ T˛�1

(see 1.2 (b)) and

nub.˛/ D T˛ \ nub.˛/ \ T˛�1 \ nub.˛/ � T˛ \ T˛�1

(using (b)).

Lemma 2.10. Let ˛ be an automorphism of a locally compact group G and let
H � G be an ˛-stable subgroup such that ˛jH is contractive. Then the closure
H � G is � -compact.

Proof. Let K � H be a compact identity neighbourhood. Then
S
n2Z ˛

n.K/ is
a � -compact subset ofH and generates a � -compact subgroup S ofH . Since S is
an ˛-stable open subgroup of H and ˛jH is contractive, we have H � S and thus
S D H (since S is closed). Hence H D S is � -compact.

3 Proof of Theorem A

We now prove Theorem A.

Proof of Theorem A. LetG be a totally disconnected, locally compact group, ˛ an
expansive automorphism of G and N � G an ˛-stable, closed normal subgroup.
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Let qWG ! G=N be the canonical quotient morphism and ˛ the automorphism
of G=N induced by ˛ (determined by ˛ ı q D q ı ˛). Then ˛jN is expansive, by
Lemma 1.1 (e). We show that ˛ is also expansive. By Proposition 1.3 (a), we need
only show that ˛ restricts to an expansive automorphism of M˛. After replac-
ing G with q�1.M˛/ (which is closed since M˛ is closed), we may assume that
G=N DM˛. Let U be a subgroup of G=N tidy for ˛. Then U D UC D U� as
˛Z.g/ is relatively compact for each g 2 U (cf. [29, Lemma 9]) and thus U is an
˛-stable, compact open subgroup of G=N . After replacing G with q�1.U /, we
may assume that G=N is compact. Using [31, Proposition 5.1] and the metrizabil-
ity of G=N , we find a descending sequence .Hn/n2N of ˛-stable closed normal
subgroups Hn of G=N such that ˛ induces an expansive automorphism ˛n on
.G=N/=Hn for each n 2 N and G=N is the projective limit

G=N D lim
 �
.G=N/=Hn:

Set Ln WD q�1.Hn/; then .Ln/n2N is a descending sequence of ˛-stable closed
normal subgroups of G, with

T
n2N Ln D N .

There exists m 2 N such that Ln is open in Lm for all n � m. Indeed, if this
were false, we could find a subsequence .Lnk /k2N such that, for each k 2 N, the
normal subgroup LnkC1 is not open in Lnk . This contradicts Proposition 2.7.

After passing to a subsequence, we may assume that Ln is open in L1 for
each n 2 N. HenceLn contains both U˛ \ L1 and U˛�1 \ L1. As a consequence,
N D

T
n2N Ln contains bothU˛\L1 andU˛�1\L1. HenceN is open inL1 (and

in each Ln), using the fact that ˛jL1 is expansive and thus .U˛ \L1/.U˛�1 \L1/
an open subset of L1 (see 1.1 (d) and (e)). This implies that the compact group
H1 Š L1=N is discrete and hence a finite group. Since H1 � H2 � � � � withT
n2N Hn D ¹1º, we deduce that Hn D ¹1º for some n. Since N̨ corresponds to

the expansive automorphism ˛n on .G=N/=Hn Š G=N , we see that N̨ is expan-
sive.

Conversely, assume that both ˛jN and ˛WG=N ! G=N are expansive.1 Then
there is an open identity neighbourhood P � G=N such that

T
n2Z ˛

n.P / D ¹1º,
and an open identity neighbourhood Q � N such that

T
n2Z ˛

n.Q/ D ¹1º. After
shrinkingQ, we may assume thatQ � q�1.P /. ThenQ D N \ V for some open
identity neighbourhood V � G. After replacing V with V \ q�1.P /, we may
assume that V � q�1.P /. We have

N D q�1
�\
n2Z

˛n.P /

�
D

\
n2Z

˛n.q�1.P //;

1 Compare also [31, Proposition 6.1]. The compactness of G assumed there is inessential for this
part of the proof of [31, Proposition 6.1].
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entailing that I WD
T
n2Z ˛

n.V / is an ˛-stable subset of N . Since

I D I \N � V \N D Q;

we deduce that I D
T
n2Z ˛

n.I / �
T
n2Z ˛

n.Q/ D ¹1º. Hence I D ¹1º and ˛
is expansive.

4 Proof of Theorem B

The following lemma is useful.

Lemma 4.1. Let ˛ be an expansive automorphism of a totally disconnected, locally
compact group G such that every ˛-stable, closed normal subgroup N � G is
open or discrete. Let C � G be the topologically characteristic subgroup2 of G
generated by U˛ [ U˛�1 . Then C is an open normal subgroup of G, and one of
the following cases occurs:

(a) ŒC; C � is open in G, in which case C D ŒC; C � is topologically perfect.

(b) ŒC; C � is discrete.

Proof. Note that C is an open subgroup of G as it contains the open set U˛U˛�1
(see Lemma 1.1 (d)). The closed subgroup ŒC; C � is topologically characteristic
in C , whence it is topologically characteristic inG and hence ˛-stable and normal.
Therefore ŒC; C � is open or discrete. If ŒC; C � is open, then it contains U˛ [ U˛�1 .
Hence ŒC; C � D C , using the fact thatC is the smallest topologically characteristic
subgroup of G which contains U˛ [ U˛�1 .

Proof of Theorem B. Define `˛ and `˛�1 as in Proposition 2.7. For every series

†WG D G0 B G1 B � � � B Gn D ¹1º

of ˛-stable closed subgroups of G, let J† be the set of all j 2 ¹1; : : : ; nº such that
Gj�1=Gj is not discrete. Then J† � `˛ C `˛�1 , by Proposition 2.7, entailing that
the maximum

m WD max
†
J†

over all series † exists. Let †WG D G0 B G1 B � � � B Gn D ¹1º be a series with
J† D m. Let N � Gj�1 be an ˛-stable closed normal subgroup with Gj � N .
If neither Gj�1=N nor N=Gj were discrete, we would have J†[¹N º D J† C 1,
a contradiction. Thus N will be open in Gj�1 or Gj is open in N .

2 Thus C is the subgroup generated by
S
ˇ2Aut.G/ ˇ.U˛ [ U˛�1/.
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For an index j 2 J†, let qj WGj�1 ! Gj�1=Gj be the canonical quotient
morphism, let j̨ WGj�1=Gj ! Gj�1=Gj be the automorphism induced by ˛

and let Cj � Gj�1=Gj be the topologically characteristic subgroup generated by
U

j̨
[ U˛�1

j
. If ŒCj ; Cj � is open in Gj�1=Gj , define

Mj WD Nj WD q
�1
j .Cj /I

thus we have that Gj�1=Mj Š .Gj�1=Gj /=Cj and Mj =Nj D ¹1º are discrete
and Nj =Gj Š Cj is topologically perfect. If ŒCj ; Cj � is discrete, we define

Mj WD q
�1
j .Cj / and Nj WD q

�1
j .ŒCj ; Cj �/

(by Lemma 4.1, only these two cases can occur). SoGj�1=Mj Š .Gj�1=Gj /=Cj
is discrete, Mj =Nj Š Cj =ŒCj ; Cj � is abelian and Nj =Gj Š ŒCj ; Cj � is discrete.
Hence

†0 WD † [
[
j2J†

¹Mj ; Nj º

is a series of ˛-stable closed subnormal subgroups such that all non-discrete
subfactors are abelian or topologically perfect. Since #J†0 D #J† is maximal,
all non-discrete subfactors of †0 have the property that all stable closed normal
subgroups are open or discrete.

Using the recent theory of elementary groups [28], slightly more detailed infor-
mation on the factor groups can be obtained, in the case of second countable
groups. Recall that the class of elementary groups is the smallest class of totally
disconnected, second countable, locally compact groups that contains all count-
able discrete groups and all second countable pro-finite groups, and is closed under
extensions as well as countable increasing unions. A totally disconnected, second
countable, locally compact group G is called elementary-free if all of its elemen-
tary closed normal subgroups and all of its elementary Hausdorff quotient groups
are trivial [28, Definition 7.14]. If ˛ is an expansive automorphism of a totally
disconnected, locally compact non-trivial group G and G does not have closed
˛-stable subgroups except for G and ¹1º, then .G; ˛/ is called a simple expansion
group. Note that if G is a non-trivial elementary-free group and ˛ an expansive
automorphism of G such that every ˛-stable closed normal subgroup of G is dis-
crete or open, then .G; ˛/ is a simple expansion group. We remark:

Remark 4.2. If G is second countable in Theorem B, then one can achieve there
that each of the quotient groups Gj�1=Gj is discrete, abelian, both topologically
perfect and elementary, or an elementary-free simple expansion group.

In fact, let us consider a topologically perfect factor Q WD Gj�1=Gj in a series
all of whose factors are discrete, abelian, or topologically perfect, and which has
a maximum number of non-discrete factors. By [28, Theorem 7.15], there are
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two topologically characteristic, closed subgroups D1 and D2 of Q such that
Q � D1 � D2 � ¹1º and, moreover, both D2 and Q=D1 are elementary and
D1=D2 is elementary-free. Let N1 and N2 be the pre-images of D1 and D2,
respectively, under the quotient morphism Gj�1 ! Gj�1=Gj . Then N1 and N2
are ˛-stable closed normal subgroups of Gj�1, and Gj�1 B N1 B N2 B Gj .

Case 1: If D1=D2 is non-trivial, the elementary-free group N1=N2 Š D1=D2
is non-discrete (as it would be elementary otherwise), whence N2 is not open
in N1. Hence N2 is not open in Gj�1 and hence N2=Gj is discrete (by maxi-
mality of the number of non-discrete factors). Again by maximality, Gj�1=N1
is discrete and N1=N2 does not have closed normal subgroups stable under the
induced expansive automorphism other than open or discrete subgroups. So, the
elementary-free group N1=N2 is a simple expansion group.

Case 2: If D1=D2 is trivial, then the topologically perfect group Gj�1=Gj D
Q B D1 D D2 B ¹1º is elementary, as any extension of elementary groups is.

5 Proof of Theorem C

We prove Theorem C and record some related results.

Proof of Theorem C. Since nub.˛/ � U˛, we may replace G with U˛ without
changing the nub (see 1.7), or T˛, or D˛. We may therefore assume that U˛ is
dense in G. Since nub.˛/ normalizes U˛ (see 1.2 (f)), U˛ is a normal subgroup of
G D U˛ nub.˛/ (exploiting 1.2 (a)). Hence also the characteristic subgroups D˛
and T˛ of U˛ are normal in G. Therefore also T˛ is normal in G. Since T˛ is
a torsion group (see 1.9 (c) and 1.5) and D˛ torsion-free (see 1.9 (c)), we see that
D˛ \ T˛ D ¹1º. Moreover, using the fact that T˛ nub.˛/ D T˛ by Lemma 2.9 (d),
we obtain

G D U˛ nub.˛/ D D˛T˛ nub.˛/ D D˛T˛:

Hence G D D˛ � T˛ as an abstract group. In particular, D˛ centralizes T˛. Thus
D˛ also centralizes nub.˛/ � T˛. Since T˛ is � -compact by Lemma 2.10, also
D�˛ � T˛ is a � -compact locally compact group (writingD�˛ forD˛, endowed with
the locally compact topology induced by U �˛ ). Because also G is locally compact
and the product map � WD�˛ � T˛ ! G, .x; y/ 7! xy is a continuous isomorphism
of abstract groups, we deduce from [11, Section 5.29] that � is an isomorphism of
topological groups. Hence G D D˛ � T˛ (internally). In particular, D˛ is closed
in G.

Corollary 5.1. Let G be a totally disconnected, locally compact group and ˛ an
automorphism of G such that U˛ and U˛�1 can be made locally compact (e.g.,
any expansive automorphism). Then D˛ \D˛�1 D ¹1º.
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Proof. Since D˛ and D˛�1 are closed and ˛-stable, it follows that their inter-
section H WD D˛ \D˛�1 is a totally disconnected, locally compact contraction
group for both ˛jH and ˛�1jH . Hence H D ¹1º. Indeed, if H 6D ¹1º, then both
�H .˛jH / and �H .˛j

�1
H / D �H .˛jH /

�1 would be integers � 2 (see 1.9 (a)),
which is impossible.

Remark 5.2. The nub of an expansive automorphism ˛WG ! G need not have
an open normalizer in G. To see this, let F be a finite group which is a semi-
direct product F D N ÌH of a normal subgroup N and a subgroup H which
is not normal in F (e.g., F might be the dihedral group C3 Ì C2). Let G be
the group of all .nk; hk/k2Z 2 F

Z such that .nk/k2Z 2 N
.�N/ �NN0 DWM .

Thus G DM ÌHZ as an abstract group. Endow G with the topology making
it the direct product topological space of the restricted product M and the com-
pact group HZ. Then G is a topological group, being the ascending union of the
open subgroupsH ¹k2ZWk<�mº � F ¹k2ZWk��mº form 2 N, which are topological
groups. The right-shift ˛ is an automorphism of G. We have

U˛ DM Ì .H .�N/
�HN0/

and
U˛�1 D H

�N
�H .N0/:

Thus U˛ D G, U˛�1 D H
Z and nub.˛/ D U˛ \ U˛�1 D H

Z (using 1.2 (b)). As
H is not normal in F , we see that nub.˛/ D HZ is not normal inG. If the normal-
izer NG.nub.˛// was open in G, then (being ˛-stable), it would contain the dense
subgroup U˛ ofG and hence coincide withG (a contradiction). ThusNG.nub.˛//
is not open.

6 Abelian expansion groups

We show that, after passing to a refinement if necessary, only abelian, non-discrete
groups of a special form will occur in Theorem B.

Remark 6.1. In the situation of Theorem B, let I be the set of all indices
j 2 ¹1; : : : ; nº such that Gj�1=Gj is abelian and non-discrete. Let j̨ be the auto-
morphism of Gj�1=Gj induced by ˛ and let qj WGj�1 ! Gj�1=Gj be the quo-
tient homomorphism, for j 2 I . Then U

j̨
U˛�1

j
is an open j̨ -stable subgroup

of Gj�1=Gj and hence Hj WD q�1j .U
j̨
U˛�1

j
/ is an ˛-stable open normal sub-

group ofGj�1. ThenGj�1=Hj is discrete and all stable, closed, proper subgroups
ofHj =Gj are discrete. After inserting theHj into the series for all j 2 I , we may
thus assume without loss of generality that all abelian, non-discrete subfactors
Gj�1=Gj have the property that all of their j̨ -stable, closed, proper subgroups
are discrete, and that Gj�1=Gj D U j̨

U˛�1
j

.



608 H. Glöckner and C. R. E. Raja

Let Gj be a topological group and j̨ 2 Aut.Gj / for j 2 ¹1; 2º. We say that
.G1; ˛1/ and .G2; ˛2/ are isomorphic if there exists an isomorphism �WG1 ! G2
of topological groups such that ˛2 ı � D � ı ˛1.

Proposition 6.2. Let A 6D ¹1º be an abelian, totally disconnected, locally compact
group and let ˛WA! A be an expansive automorphism. Assume thatAD U˛U˛�1
and assume that every ˛-stable proper closed subgroup ofA is discrete. Then there
exists a prime number p such that .A; ˛/ isomorphic to one of the following:

(a) Qn
p for some n 2 N, together with a contractive linear automorphism

ˇWQn
p ! Qn

p not admitting non-trivial proper ˇ-stable vector subspaces,

(b) Qn
p for some n 2 N, together with ˇ�1 for a contractive linear automorphism

ˇWQn
p ! Qn

p not admitting non-trivial proper ˇ-stable vector subspaces,

(c) C .�N/
p � C

N0
p with the right-shift,

(d) C .�N/
p � C

N0
p with the left-shift,

(e) CZ
p with the right-shift.

Proof. LetD˛ be the divisible part and let T˛ be the torsion part of U˛, and define
D˛�1 and T˛�1 analogously. If D˛ 6D ¹1º, then D˛ D D�˛ is an ˛-stable closed
subgroup (see Theorem C) which is non-discrete (see 1.8 (a)) and thus A D D˛.
By 1.8 (a) and the hypotheses, D˛ is a divisible simple contraction group and
hence of the form described in (a) (see [10, Theorem A]). Likewise, A is of the
form described in (b) whenever D˛�1 6D ¹1º.

Throughout the rest of the proof, assume thatD˛ D D˛�1 D ¹1º. Then we have
A D U˛U˛�1 D T˛T˛�1 .

Since nub.˛/ is an ˛-stable closed subgroup ofA, it is either all ofA or discrete.
Being also compact, it is finite in the latter case, and thus ¹1º is an open ˛-stable
(normal) subgroup of nub.˛/. Now [31, Corollary 4.4] (proper such do not exist)
shows that nub.˛/ D ¹1º.

Case nub.˛/ D ¹1º: In this case T˛ D U˛ D U˛ nub.˛/ and T˛�1 D U˛�1 D
U˛�1 nub.˛/ are closed ˛-stable subgroups of A (using 1.2 (a)). If T˛ 6D ¹1º, then
T˛ is non-discrete. Hence T˛ D A by the hypotheses, and this is a simple contrac-
tion group which is a torsion group and hence of the form described in (c) (see
[10, Theorem A]). Likewise, A is of the form described in (d) if T˛�1 6D ¹1º.

Case A D nub.˛/: In this case A is compact and is irreducible in the sense of
[31, Definition 6.1] as all its proper ˛-stable closed (normal) subgroups are finite,
and moreover A is infinite (as U˛ or U˛�1 is non-trivial and hence non-discrete,
being a contraction group). Hence, by [31, Proposition 6.3], .A; ˛/ is isomorphic
to the right-shift of FZ for a finite simple group F . Since A is abelian, F Š Cp
for some p and thus A is of the form described in (e).
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Remark 6.3. Let G be a totally disconnected, locally compact group and let
˛WG ! G be an expansive automorphism. If G is abelian, then the map

� WU �˛ � U
�

˛�1
! G; .x; y/ 7! xy

is a continuous, open homomorphism with discrete kernel. For non-abelian G,
the map still has open image (see Lemma 1.1 (d)), is a local homeomorphism,
and equivariant with respect to the natural left and right actions of U˛ and U˛�1 ,
respectively.

[To see this, let V � G be a compact open subgroup such that VC \ V� D ¹1º
and V D VCV� (see Lemma 1.1 (c)). Then V� and VC are open subgroups of U �˛
and U �

˛�1
, respectively (see proof of Lemma 2.3). Then �.VC � V�/ D V is open

in G and �jVC�V� is injective, as vw D v0w0 for v; v0 2 VC, w;w0 2 V� implies
v�1v0 D w.w0/�1 2 VC\V� D ¹1º and thus v D v0 andw D w0. Since VC�V�
is compact, it follows that � restricts to a homeomorphism VC � V� ! V . Since
�.gv;wh/ D g�.v;w/h for all g 2 U˛, h 2 U˛�1 and .v; w/ 2 VC � V�, also
�jgVC�V�h is a homeomorphism onto an open set.]

Remark 6.4. It can happen that U˛ is closed for an expansive automorphism ˛ of
a totally disconnected, locally compact group G, but U N̨ is not closed for the
induced automorphism N̨ on G=N for some ˛-stable closed normal subgroup
N � G. The following example also illustrates Remark 6.3.

Given a non-trivial finite abelian group .F;C/, consider the restricted products

H1 WD F
.�N/

� FN0 and H2 WD F
�N
� F .N0/;

with V1 WD FN0 and V2 WD F�N , respectively, as compact open subgroups. Let ˛
be the right-shift on G WD H1 �H2 (i.e., on both H1 and H2). Then ˛ is an auto-
morphism and it is expansive as

T
n2Z ˛

n.V1 � V2/ D ¹0º. Moreover, U˛ D H1
and U˛�1 D H2 are closed. Also, let N̨ be the right-shift on FZ. Then

qWG ! FZ; .f; g/ 7! f C g

is a continuous surjective homomorphism. Restricted to the compact open sub-
group V1 � V2, the map q is an isomorphism of topological groups. Hence q is
open, has discrete kernel, and is a quotient morphism. Finally,U N̨ D F .�N/�FN0

is a dense proper subgroup in FZ. Hence U N̨ is not closed in FZ Š G= ker.q/.

Another property can be observed.

Proposition 6.5. Let G be a totally disconnected, locally compact group that is
abelian, and ˛WG ! G be an expansive automorphism. Then the torsion subgroup
tor.G/ is closed in G.
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Proof. Since V WD U˛U˛�1 is an open subgroup of G, we need only show that
V \ tor.G/ D tor.V / is closed. After replacing G with its ˛-stable subgroup V ,
we may therefore assume that G D U˛U˛�1 . Since D˛ and D˛�1 are torsion-free
(see 1.9 (c)) and D˛ \D˛�1 D ¹1º by Corollary 5.1, we deduce that D˛D˛�1
is isomorphic to D˛ �D˛�1 as an abstract group and hence torsion-free. Hence
D˛D˛�1 \ T˛T˛�1 D ¹1º. Combining this with

G D U˛U˛�1 D D˛D˛�1T˛T˛�1 ;

we see that

G D .D˛D˛�1/ � .T˛T˛�1/ D D˛ �D˛�1 � T˛T˛�1 (6.1)

internally as an abstract group. By equation (6.1), the torsion subgroup of G is
tor.G/ D T˛T˛�1 . Hence tor.G/ has finite exponent (like T˛ and T˛�1). Thus
also tor.G/ is a torsion group (by 1.5) and thus tor.G/ D tor.G/.

7 Example: p-adic Lie groups

Let K be a local field and let j � j be an absolute value on K defining its topol-
ogy (see [27]). We pick an algebraic closure K containing K and use the same
symbol, j � j, for the unique extension of the absolute value on K to an abso-
lute value on K (see [20, Theorem 16.1]). If E is a finite-dimensional K-vector
space and ˇWE ! E a K-linear automorphism, we write R.ˇ/ for the set of all
absolute values j�j of zeros � of the characteristic polynomial of ˇ in K. We leteE� � E ˝K K be the generalized eigenspace of ˇ ˝K idK for the eigenvalue �.
For � 2 R.ˇ/, we let

E� WD

�M
j�jD�

eE�� \E:
Then E D

L
�2R.ˇ/E� (see [17, Chapter II, Section 1]) and we recall that

E D Uˇ ˚Mˇ ˚ Uˇ�1

with
Mˇ D E1; Uˇ D

M
�<1

E� and Uˇ�1 D
M
�>1

E� (7.1)

(cf. [8, Lemma 2.5]).
IfG is a Lie group over K, then its tangent spaceL.G/ WD T1.G/ at the identity

element carries a natural Lie algebra structure, and L.˛/WL.G/! L.H/ is a Lie
algebra homomorphism for each K-analytic homomorphism ˛WG ! H between
K-analytic Lie groups. We abbreviate Ad.g/ WD L.Ig/, where Ig WG!G is given
by x 7! gxg�1 for g 2 G (cf. [23] for further information).
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Proposition 7.1. Let ˛ be an analytic automorphism of a Lie groupG over a local
field. Then the following conditions are equivalent:

(a) ˛ is expansive.

(b) ˇ WD L.˛/WL.G/! L.G/ is expansive.

(c) 1 62 R.ˇ/.

If ˛ is expansive, then L.G/ is a nilpotent Lie algebra.

Proof. (a)) (b) By contraposition. If (b) is false, then ˇ is not expansive. To de-
duce that ˛ is not expansive, let V � G be an identity neighbourhood. Since Uˇ
is a vector subspace of L.G/ by (7.1) and hence closed, using Proposition 1.3 (b)
we deduce that Mˇ is not discrete and hence a non-trivial vector subspace (in
view of (7.1)). But then G contains a so-called centre manifold W around the
fixed point 1 of ˛, which can be chosen as a submanifold of G contained in V
that is stable under ˛ and satisfies T1.W / DM˛ (whence W 6D ¹1º); see Propo-
sition 6.3 (a) and part (b) of the Local Invariant Manifold Theorem in [8]; cf. also
[7]. Then ¹1º 6D W �

T
n2Z ˛

n.V /, and thus ˛ is not expansive.
(b), (c) Since Uˇ is closed, ˇ is expansive if and only if Mˇ D L.G/1 is

discrete. SinceL.G/1 is a vector space, the latter holds if and only ifL.G/1 D ¹0º,
i.e., 1 62 R.ˇ/.

(c)) (a) Note that U˛ and U˛�1 are immersed Lie subgroups of G with Lie
algebras Uˇ and Uˇ�1 , respectively (see [8, Theorem D]). We write U �˛ for U˛
as a Lie group; because the underlying topology is locally compact and ˛ restricts
to a contractive Lie group automorphism, this is consistent with the definition of
U �˛ in Section 2. Likewise, we consider U �

˛�1
as a Lie group. If 1 62 R.ˇ/, then

L.G/ D Uˇ ˚ Uˇ�1 , entailing that the product map � WU �˛ � U
�

˛�1
! G given by

.x; y/ 7! xy has invertible differential at .1; 1/ (the addition map Uˇ � Uˇ�1 !
L.G/ D Uˇ ˚ Uˇ�1). Thus, by the inverse function theorem [23], there exist open
identity neighbourhoods V � U �˛ andW � U �

˛�1
such that V W is open in G and

the restriction
�jV�W WV �W ! V W (7.2)

is an analytic diffeomorphism. Using [24, Lemma 3.2 (i)], we find compact open
subgroupsP � V ofU �˛ andQ � W ofU �

˛�1
such that ˛.P / � P , ˛�1.P / � V ,

˛�1.Q/ � Q and ˛.Q/ � W . Then PQ is an open identity neighbourhood in G
and we now show that

T
n2Z ˛

n.PQ/ D ¹1º. To this end, let x 2 P and y 2 Q.
If x 6D 1, then ˛�n.x/ 62 P for some n 2 N, which we choose minimal. Thus
˛�nC1.x/ 2 P and hence ˛�n.x/ 2 V . Since ˛�n.x/ 2 V n P by the preceding
and ˛�n.y/ 2 Q, we see that ˛�n.xy/ D ˛�n.x/˛�n.y/ 2 .V n P /Q. As the
map (7.2) is a bijection, we deduce that ˛�n.xy/ 62 PQ. Likewise, ˛m.xy/ 62 PQ
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for some m 2 N if y 6D 1. Thus
T
n2Z ˛

n.PQ/ D ¹1º indeed and thus ˛ is
expansive.

Final assertion. If (c) holds, then ˇ is a Lie algebra automorphism of L.G/
and j�j 6D 1 for all eigenvalues � of ˇ ˝K idK in K, entailing that none of the
� is a root of unity. Hence L.G/ is nilpotent (see [3, Exercise 21 (b) among the
exercises for Section 4 of Part I] or [12, Theorem 2]).

7.2. For each continuous homomorphism � WQp ! GLn.Qp/, there exists a nilpo-
tent n�n-matrix x 2 Qn�n

p such that �.t/ D exp.tx/ for all t 2 Qp, using the
matrix exponential function [19, Theorem 1.1]. Thus � 0.0/ D x uniquely deter-
mines � , and so does � jW for any 0-neighbourhood W � Qp.

Lemma 7.3. Let ˛ be a contractive automorphism of a p-adic Lie group G. Then
the following holds:

(a) For each g 2 G, there is a unique continuous homomorphism �g W Qp ! G

such that �g.1/ D g. Moreover, ¹� 0g.0/ W g 2 Gº D L.G/.

(b) If h � L.G/ is an L.˛/-stable Lie subalgebra, then there exists an ˛-stable
Lie subgroup H of G with L.H/ D h.

Proof. (a) Let �WL.G/ � L.G/! L.G/ be the Campbell–Hausdorff multiplica-
tion on the nilpotent Lie algebra L.G/. Because .G; ˛/ and ..L.G/;�/; L.˛//
are locally isomorphic contraction groups, they are isomorphic (see [26, Propo-
sition 2.2]). The nilpotent group .L.G/;�/ inherits unique divisibility from the
group .L.G/;C/, since ng (in the vector space L.G/) coincides with gn (in
.L.G/;�/). It is clear from this that �g.t/ D tg is the unique continuous homo-
morphism Qp ! .L.G/;�/ with �g.1/ D g. It satisfies g D � 0g.0/.

(b) We may work with the isomorphic group .L.G/;�/ instead of G. Now
H WD h is an L.˛/-stable Lie subgroup of .L.G/;�/ with Lie algebra h.

Lemma 7.4. Let G be a linear p-adic Lie group. Assume that G is generated byS
�2‚ �.Qp/ for a set ‚ of continuous homomorphisms � WQp ! G, and L.G/

is generated by ¹� 0.0/ W � 2 ‚º as a Lie algebra. Then the centre of G coincides
with the kernel of AdWG ! Aut.L.G//.

Proof. Let g 2 G. For each � 2 ‚, the map Ig ı � WQp ! G, t 7! g�.t/g�1 is
a continuous homomorphism such that .Ig ı �/0.0/ D Ad.g/� 0.0/. Thus, by 7.2,
Ig ı � D � if and only if Ad.g/� 0.0/ D � 0.0/. Since

S
�2‚ �.Qp/ generates G,

we see that g 2 Z.G/ if and only if Ad.g/� 0.0/ D � 0.0/ for all � 2 ‚. The latter is
equivalent to Ad.g/.x/ D x for all x 2 L.G/, since ¹x 2 L.G/ W Ad.g/.x/ D xº
is a Lie subalgebra of L.G/ and L.G/ is generated by � 0.0/ for � 2 ‚ by
hypothesis.
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Proof of Theorem D. After replacing G with an open subgroup, we may assume
that G is generated by U˛ [ U˛�1 (see Lemma 1.1 (d)). We prove that G is nilpo-
tent in this case, by induction on the dimension dim.G/ of G as a p-adic mani-
fold. If dim.G/ D 0, then G is discrete, whence U˛ D U˛�1 D ¹1º and the group
G D hU˛ [ U˛�1i D ¹1º is nilpotent.

Now assume that dim.G/ > 0. After replacing G with an isomorphic group,
we may assume that G is a subgroup of GLn.Qp/ for some n 2 N, and that
the inclusion map G ! GLn.Qp/ is continuous (but not necessarily a homeo-
morphism onto its image). Then L.G/ is a non-zero nilpotent Lie algebra (see
(a)) (d) in Proposition 7.1) and so it has centre Z.L.G// 6D ¹0º. The centre is
L.˛/-stable, and the restriction ˇ of L.˛/ to the centre is expansive (like L.˛/).
Hence Z.L.G// D Uˇ ˚ Uˇ�1 . After replacing ˛ with ˛�1 if necessary, we may
assume that Uˇ�1 6D ¹0º. According to Lemma 7.3 (b), there is an ˛-stable Lie
subgroup H � U˛�1 with L.H/ D Uˇ�1 . We claim that H is in the centre Z.G/
of G. If this is true, then Z.G/ has positive dimension. Thus G=Z.G/ is a Lie
group of dimension dim.G=Z.G// < dim.G/, and it is a linear Lie group as it
injects into Aut.L.G//, by Lemma 7.4.3 By induction, G=Z.G/ is nilpotent and
hence so is G.

To prove the claim, let h 2 H and let � WQp ! H � U˛�1 be a continuous
homomorphism with �.1/ D h (see Lemma 7.3 (a)). Then x WD � 0.0/ 2 L.H/ �
Z.L.G//, entailing that ad.x/ WD Œx; �� D 0. Now �.t/ D exp.tx/ for all t 2 Qp,
by 7.2. For jt j small, we have Ad.�.t// D Ad.exp.tx// D et ad.x/ D idL.G/, using
[3, Chapter III, Section 4, no. 4, Corollary 3]). Thus Ad ı � D idL.G/, by the
uniqueness assertion of 7.2, applied to Ad ı� WQp ! Aut.L.G//. In particular,
Ad.h/ D Ad.�.1// D idL.G/ and thus h 2 Z.G/, by Lemma 7.4.

7.5. If G is a totally disconnected, locally compact group which is a nilpotent
group, let ¹1º DZ0 CZ1 C � � �CZn DG be its ascending central series defined
recursively via Zk WD q�1k .Z.G=Zk�1//, where qk WG ! G=Zk�1 is the canon-
ical quotient morphism. Let ˛ be an expansive automorphism of G and ˛k the
induced automorphism of Gk=Gk�1.

Proposition 7.6. If Zk=Zk�1 D U˛kU˛�1k for all k 2 ¹1; : : : ; nº in the situation
of 7.5, then G D U˛U˛�1 . In particular, U˛U˛�1 is a subgroup of G.

Proof. If n D 0, then G D ¹1º D U˛U˛�1 . If n � 1, let ˇ be the expansive auto-
morphism of G=Z.G/ induced by ˛, and let qWG ! G=Z.G/ be the canoni-

3 Let‚ be the set of continuous homomorphisms from Qp toU˛ orU˛�1 . ByG D hU˛[U˛�1i
and Lemma 7.3 (a), the first hypothesis of Lemma 7.4 is satisfied. Since L.G/ D L.U˛/ C

L.U˛�1/ andL.U˛/[L.U˛�1/ D ¹�
0.0/ W � 2 ‚º by Lemma 7.3 (a) and “(a)) (c)” in Lem-

ma 7.1, also the second hypothesis of Lemma 7.4 is satisfied.
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cal quotient morphism. Then Z1 D Z.G/ D .U˛ \Z.G//.U˛�1 \Z.G// by the
hypotheses and G=Z.G/ D UˇUˇ�1 by induction. Since

q.U˛U˛�1/ D UˇUˇ�1 D G=Z.G/;

we have

G D U˛U˛�1Z.G/

D U˛U˛�1.U˛ \Z.G//.U˛�1 \Z.G//

D U˛.U˛ \Z.G//U˛�1.U˛�1 \Z.G//

D U˛U˛�1 :

Note that we can easily achieve that G=Zn�1 D U˛nU˛�1n after replacing G
with its open subgroup generated by U˛ [ U˛�1 . However, the hypotheses on
Zk=Zk�1 for k < n cannot always be achieved by passing to an open subgroup
(as the following example illustrates).

Remark 7.7. The following example shows that even for nilpotent p-adic Lie
groups with an expansive automorphism ˛, the set U˛U˛�1 may fail to be a sub-
group. The example also provides a p-adic Lie group that admits expansive auto-
morphisms but does not admit any contractive automorphism. In fact, the group
has a closed discrete commutator group which is characteristic and hence would
inherit a contractive automorphism (contradicting the fact that non-trivial contrac-
tion groups are non-discrete).

Let H D Q3
p be the 3-dimensional p-adic Heisenberg group whose binary

operation is given by

.x1; y1; z1/.x2; y2; z2/ D .x1 C x2; y1 C y2; z1 C z2 C x1y2/

for all .x1; y1; z1/; .x2; y2; z2/ 2 H . Let N D ¹.0; 0; z/ 2 H W jzj � 1º. Then N
is a compact central subgroup ofH . IdentifyG D H=N with Qp�Qp�.Qp=Zp/
as a set. Define ˛WG ! G by

˛.x; y; z C Zp/ D .px; p
�1y; z C Zp/

for all .x; y; z C Zp/ 2 G. Then ˛ is a continuous automorphism of the p-adic Lie
group G with M˛ D ¹.0; 0; z C Zp/ W z 2 Qpº, U˛ D ¹.x; 0; 0/ W x 2 Qpº and
U˛�1 D ¹.0; y; 0/ W y 2 Qpº. Since M˛ is discrete, it follows that ˛ is an expan-
sive automorphism. As ŒU˛; U˛�1 � D ¹.0; 0; z C Zp/ W z 2 Qpº and U˛U˛�1 D
¹.x; y; xy C Zp/ W x; y 2 Qpº, we get that U˛U˛�1 is a not a subgroup.

Proposition 7.8. Let G be a closed subgroup of GLn.Qp/ and ˛ an expansive
automorphism of G. Then U˛U˛�1 is an open (unipotent algebraic) subgroup
of G.
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Proof. Replacing G by the group generated by U˛ and U˛�1 , we may assume
by Theorem E that G is a closed nilpotent subgroup of GLn.Qp/. Let G be the
Zariski closure of G. Then G is defined over Qp and G is nilpotent (cf. [2, Propo-
sition 1.3 (b) and Corollary 1 in Section 2.4]). Since U˛ and U˛�1 consists of
one-parameter (unipotent) subgroups, G is Zariski-connected. This implies that
the set of unipotent elements form a subgroup Gu, known as the unipotent radical
(cf. [2, Theorem 10.6]). Since U˛ and U˛�1 consists of one-parameter (unipotent)
subgroups, U˛; U˛�1 � Gu. This implies that G D Gu, that is G is an unipotent
algebraic group, hence G is defined over Qp (cf. [2, Section 4.5] and the fact
that Qp-closed and defined over Qp are same as characteristic of Qp is zero) and
G � G.Qp/.

For i � 1, let Di D ŒG.Qp/;Di�1� with D0 D G.Qp/ and Gi D ŒG;Gi�1�
withG0 DG. ThenDkC1 is trivial for some k � 1 as G is unipotent andGi � Di .
Thus, Gk is a closed ˛-stable subgroup of Dk which is a vector space. Let V be
the maximal vector subspace of Gk . Then V is a closed ˛-stable central subgroup
of G. The automorphism ˇWGk=V ! Gk=V defined by ˇ.x C V / D ˛.x/C V
for x 2 Gk is expansive. Since V is the maximal vector subspace of Gk and Gk
is a closed subgroup of the p-adic vector space Dk , we get that Gk=V is a com-
pact subgroup of the p-adic vector space Dk=V . Since the automorphism group
of a compact p-adic analytic group is compact, compact p-adic analytic groups do
not admit expansive automorphisms unless finite, hence V D Gk . This implies that
Gk D Dk and Gk D V D .U˛ \ V /.U˛�1 \ V /. Since G=Gk is a closed sub-
group of G.Qp/=Dk which is a linear (p-adic algebraic) group, the result follows
by induction.

Remark 7.9. In the case of linear p-adic Lie groups, even if U˛U˛�1 is an open
subgroup for an expansive automorphism, the following example shows that it is
not possible to have either of U˛ or U˛�1 to normalize the other.

LetH be the 3-dimensional p-adic Heisenberg group defined as in Remark 7.7.
For i D 1; 2, define ˛i WH ! H by

˛1.x; y; z/ D .px; p
�2y; p�1z/; ˛2.x; y; z/ D .p

2x; p�1y; pz/

for .x; y; z/ 2 H . Let G D H �H and ˛ D ˛1 � ˛2. Then

U˛ D ¹.x; 0; 0/ W x 2 Qpº � ¹.a; 0; c/ W a; c 2 Qpº

and
U˛�1 D ¹.0; y; z/ W y; z 2 Qpº � ¹.0; b; 0/ j b 2 Qpº:

Thus U˛U˛�1 D G. Since ¹.x; 0; 0/ W x 2 Qpº and ¹.0; y; 0/ W y 2 Qpº are not
normal subgroups of H , neither U˛ or U˛�1 normalize the other.
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8 Example: Baumslag–Solitar groups

Throughout this section, we fix primes p 6D q. We let

BS.p; q/ WD ha; t j tapt�1 D aqi

be the Baumslag–Solitar group. Then hai \ ghaig�1 has finite index in hai for
each g 2 BS.p; q/, and

T
g ghaig

�1 D ¹1º, hence the Schlichting completion
Gp;q of BS.p; q/ can be formed, which is a certain totally disconnected, locally
compact group in which BS.p; q/ is dense, and in which K WD hai is a compact
open subgroup (see [4], cf. [9, 21]). We are interested in the inner automorphism

˛WGp;q ! Gp;q; x 7! txt�1:

Proof of Theorem E. By [4, Proposition 8.1], K contains an open subgroup
V Š Zp � Zq and K=V is a cyclic group of order dividing gcd.p; q/ D 1. Thus
K D V Š Zp � Zq . After multiplication with a unit, we may assume that the
isomorphism takes a to .1; 1/.

Let G D Z Ë .Qp �Qq/ be the semidirect product of Z and Qp �Qq given
by

.n; u; v/.m; u0; v0/ D .nCm;uC .q=p/nu0; v C .q=p/nv0/

for all n;m 2 Z, u; u0 2 Qp and v; v0 2 Qq . The isomorphism K Š Zp � Zq
gives a homomorphism from hai to G. Since

.1; 0; 0/.0; p; p/.�1; 0; 0/ D .0; q; q/;

sending t 7! .1; 0; 0/ yields a group homomorphism �WBS.p; q/! G. Since
�jhai is a continuous homomorphism, � extends to a continuous homomorphism
of Gp;q into G which would also be denoted by �. Since �jK is an isomorphism,
ker.�/ is discrete. Moreover, as �.Gp;q/ contains both .1; 0; 0/ and Zp � Zq , it
follows that � is surjective.

Let ˇ be the inner automorphism of G given by .1; 0; 0/. Then � ı ˛ D ˇ ı �
and ˇ is expansive. Since the kernel of � is discrete, expansiveness of ˛ fol-
lows from Theorem A. As the open subgroupK Š Zp � Zq satisfies an ascending
chain condition on closed subgroups (see, e.g., [6, Proposition 3.2]), U˛ is closed
by [26, Lemma 3.2].

In case U˛U˛�1 is a group, we will now show that � is an isomorphism which
would lead to a contradiction as Gp;q is not solvable but G is solvable.4 Suppose
N WD U˛U˛�1 is a group. Then �jN is an isomorphism ofN with Qp �Qq (using
the fact that U˛ Š Qq and U˛�1 Š Qp).5 Now the group generated by t and N

4 Alternatively, BS.p; q/ would be a finitely generated linear group then and hence residually
finite by [16]. But BS.p; q/ is not residually finite for primes p 6D q, see [18].

5 In fact, V D K is tidy for ˛ with V� Š Zq , VC Š Zp and V0 D ¹1º (see [4]), whence we have
U˛ D V�� Š Qq and U˛�1 D VCC Š Qp (cf. Lemma 1.1 (b)).
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is an open subgroup of G containing both t and a, hence Gp;q D ht; N i D htiN
(as t normalizes N ). This implies that � is an isomorphism.
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