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More on core-2 2-groups
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Abstract. Let G be a finite 2-group with the property that | H : Hg| < 2 for all subgroups
H of G. Then G has an abelian normal subgroup of index at most 4 in G. This result rep-
resents an affirmative answer to Question 18.56 from the current edition of the Kourovka
Notebook.

1 Introduction

Let n be a positive integer. A group G is called core-n if |H/Hg| < n for every
subgroup H of G; here, Hg denotes the largest normal subgroup of G contained
in H. In [4], it was shown that a locally finite core-n group has a normal abelian
subgroup whose index in the group is bounded by a function of 7. In [3] the same
authors proved that, for odd primes p, a finite core-p p-group has an abelian nor-
mal subgroup of index p?2, a best possible bound. The paper ([3, Theorem 2]) also
contains a proof of the existence of a normal abelian subgroup of index at most 2°
in a finite core-2 2-group. The authors mention that no examples of finite core-2
2-groups were known that did not possess an abelian subgroup of index at most 4.
Later ([5]) it was shown that finite core-2 groups of class 2 indeed must have
an abelian subgroup of index at most 4. The present paper is devoted to show-
ing that every finite core-2 2-group has an abelian subgroup of index at most 4.
This provides an affirmative answer to Question 18.56 from the 18th edition of the
Kourovka Notebook, posed by G. Cutolo.

The dihedral groups Dj» are core-2, which shows that core-2-ness does not
entail bounded class or bounded subgroup breadth. This places core-2 2-groups in
contrast to odd-order core-p p-groups, those being of class at most 3 ([6]). The
group Dg * Qg is core-2, which shows that 4 is the best possible upper bound for
the index of an abelian subgroup in a core-2 2-group. Our main result reads as
follows:

Theorem. Let G be a finite 2-group. Suppose that |H/Hg| < 2 for every subgroup
H of G. Then G has an abelian subgroup that contains ®(G) and has index at
most four in G.
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We note that the corresponding result for odd p is an immediate corollary of
the results of [3]. Letting p be an odd prime and G a finite core-p p-group, G has
anormal abelian subgroup A of index p2 ([3, Theorem 1]). We may obviously take
A to be a maximal abelian subgroup of G. Then, according to [3, Lemma 1.1 (iii)],
81(G) < Z(G) < Aand G’ < A, because G/ A is too small to be nonabelian.

We conclude this introduction with three very helpful observations: Subgroups
as well as quotients of a core-n group are core-n. If G is a core-p p-group, then
(xP) <« G whenever x € G and |E : EN Z(G)| < pif E is an elementary abelian
subgroup of G. We also note a corollary.

Corollary. Let G be a finite core-2 group. Then G has an abelian subgroup of
index at most 8, and this bound is best possible.

Proof. Let G be a finite core-2 group of composite order, and let @ = O»/(G).
Then Q is abelian of odd order, every subgroup of Q isnormalin G and G = QS
with S € Syl>(G). The group § is core-2, and, since |S : Sg| < 2, Cs(Q) has
index at most 2 in S. A direct product of a core-2 2-group with an abelian group
of odd order is core-2; if [S, Q] # 1 and T = Cs(Q), then the corresponding
semidirect product SQ is core-2 if and only if S normalises every subgroup of Q,
|S:T|=2,Siscore-2and T NU < S whenever U < § = T U. By the theorem,
T has an abelian subgroup of index at most 4 and the direct product of this with Q
has index at most 8 in G. Now let

y=st=1t =1 [x,y] =%

2= lsr) ="

S = (x,y,s,t|)c2

2

N t

Then S = D6 * Qg is core-2, but there is no abelian subgroup of index 4 in S
that does not contain y. Now let G = SQ, where Q = C3, Cs(Q) = (x,y2,s.1)
and y inverts the elements of Q. This G does not have an abelian subgroup of
index four. o

The reader interested in the structure of core- p-groups of class 2 may find the
results of Lemma 2.9 somewhat relevant.

2 Preliminaries

Lemma 2.1 ([2, Lemma 3.4.1]). Let X be a finite group and let B be an abelian
normal subgroup of X. Let N be the subgroup of X consisting of elements induc-
ing power automorphisms on B. Let n = exp B and let U be the unit subgroup
of Z/nZ. There is a homomorphism € : X — U given by b* = b¢™®) whenever
be Bandx € N.
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Notation. Let X be a finite group. Following Blackburn’s notation, we let
JX) =[x eX |[x* =1}

Lemma 2.2 ([1, Satz 1]). Let P be a 2-group and let 1 # N < Q1(Z(P)). Let J
be the set of maximal subgroups of N. Then

> Jj(P/U) = |H|j(P/N)+ j(P).

Uedt

The fact that core-p p-groups have abelian Frattini subgroup is proved in [3, see
Lemma 1.1 (ii)—(iii) for odd p and Proposition 2.11 for p = 2]. We include a short
proof for p = 2, as this will be a vital ingredient of the forthcoming proof.

Lemma 2.3 ([3, Proposition 2.11]). A finite core-2 2-group P has abelian Frattini
subgroup.

Proof. Let P be a counterexample of minimal order. Since ®(P)" < (u) when-
ever 1 #£u € Z(P), Z(P) is cyclic and ®(P) = Q1(Z(P)). Let s and ¢ be
involutions in ®(P). If [s, 7] # 1, then (s,¢) =~ Dg. Now P normalises a maxi-
mal subgroup V of (s,t), of order 4; this, however, implies that [®(P), V] =1,
a contradiction. Let Q1(®P(P)) = Y. We have just seen that Y is elementary
abelian, whence |Y : Y N Z(P)| <2, implying |Y| <4 and Y < Z(®(P)). Let
QUZ(P))=(z).If ze U < P(P), then U < O(P). Since Q1({x)) < Z(P)
for every x in P of order greater than 2, a subgroup U of ®(P) not containing
z must be contained in Y, hence in Z(®(P)). Thus ®(P) is Hamiltonian, i.e.
®d(P) = Q x E with E elementary abelian and Q =~ Qg. At least one maximal
subgroup V of Q must be normal in P, such that [®(P), V] =1 = Q’, a contra-
diction. |

The following is a variation of [8, Lemma 8] and its proof is analogous
to [8, Lemma 2]. We provide a short proof.

Lemma 2.4. Let P be a finite p-group. Let U and V be subgroups of P satisfy-
ing [S,T] < Qu(Z(P)). If|U : Cy()| < pforallvinV, then |[U, V]| < p or
U :Cy(V)| = p.

Proof. Letv e V\ Cy(U)and w € V. If [U,w] £ [U,v] and Cy (w) ¥ Cy (v),
then [U, vw] = [Cy (v)Cy (w), vw] = [Cy (w), v][Cy (v), w] = [U, v] x [U, w],
of order p2. It follows that every element of V belongs to Cy (Cy (v)) or belongs
to the subgroup {x € V | [U, x] < [U, v]} of V. The assertion follows because V'
cannot be the union of two proper subgroups. |



196 B. Wilkens

A proof of the following lemma could be compiled from references to the avail-
able literature on metacyclic groups.

Lemma 2.5. Let U = (u, v) be a 2-group with [u, v] € (u*). Unless o([u, v]) < 2,
there is x € U with (x?) 4 U.

Proof. Assume that o([u, v]) > 2; it will suffice to establish the corresponding
statement in the quotient U/([u, v]*). Hence assume o(u) = 2”72 with n > 2
and ([u,v]) = (u2"). Observe that this implies y3(U) = 1. Let |U : (u)| = 2.
A generator w of (1) may be chosen such that 02" s equal to a power wze; as
Cuy(v) = (u*) and Cipy(u) = (v*), wehave m > 2 < {.

Assuming £ < m, let x = wu=2""". Note that the order of x(u) in U/(u) is
equal to 2¢ Since £ > 2andm — £ > 1,

4 ¢ —g 2t
x2 = w? v_zm[v,w]zm (%) — 1.

It follows that 0(x) = o(x(u)) = 2¢ and (x) N (u) = 1. However,

n+1
— uZ

[xz,v] = [w”,v] =

and (x2) A U.
We have established that £ > m. Letting y = vw_zl_m, we find that

y2m _ vzmw_zé [w’ v]ze—m(Zgn) c <u2n+£—l).

So y2" =1 unless £ =2 = m. Now n > 2 implies [u2""",v]> = 1. Hence if
{ =2 =m, then (vw_luzn_l)4 = (142"+1)2 = 1. Accordingly, v{u) = x(u) with
o(x) =2 and (x) N (u) = 1. However, [v2,u] # 1 yields (x?) 4 U. ]

Notation. As usual, “<” denotes “maximal subgroup of” and d(P) the minimal
number of generators of the p-group P.

Observe that the core-p-ness of a p-group G is already guaranteed if |H :
Hg| < p is required for all subgroups of G generated by (no more than) two ele-
ments. Indeed, suppose |(x, ¥) : (x, y)g| < p for all elements x, y of the p-group
G. This property carries over to subgroups and quotients. Let O < G and let
G = G/Q¢. Subgroups of Q are core-free, and if |Q| > p, then Q has a 2-gen-
erated subgroup of order greater than p, a contradiction. Another equivalent char-
acterisation of core-p-ness may be found in [3, Lemma 1.3]: The group G enjoys
core- p-ness if and only if every nontrivial subgroup H of G has a maximal sub-
group M with [M,G] < ®(H).

For the remainder of this paper, p is a prime and G denotes a finite core-p
p-group of order greater than p. The equivalent formulation of core-p-ness of
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a p-group predominantly used in the proofs to come is a mixture of the two charac-
terisations given in the previous paragraph: Every nontrivial subgroup of a core-p
p-group generated by two elements has a maximal subgroup that is normal in the
group.

Observe that (x?) < G whenever x € G and that |E : E N Z(G)| < p for each
elementary abelian subgroup E of G.

Notation. Let p = 2. Forand y € G \ {1}, the involution in (y) is denoted by y.

Although our theorem only concerns the prime 2, a few lemmas in this section
will be stated for all primes. This was done where it would not increase the length
of the respective proof inordinately and it was felt that the information contained
in the lemma could be of some interest beyond the requirements of the present

paper.

Lemma 2.6. Let A be an abelian normal subgroup of G such that [A, G] <
Q1(Z(G)) and not every subgroup of A is normal in G. Let p* be the mini-

mal order of a cyclic subgroup of A that is not a normal subgroup of G. Then
Qr—1(4) = Z(G).

Proof. Let a be any element of A of order pk and let z € Qr_1(A). Let (t) be
a complement of (a) in (a, z). Note that o(r) < pK. There is a* € (aP) satisfy-
ing 0(a*) = o(t). Both (t) and (a*t) are normal in G, while a* € Z(G). Thus
t € Z(G),ie. z € (aP,t) < Z(G). ]

Lemma 2.7. Assume |G'| = p. Then |G : Z(G)| = p? unless p =2, expG = 4
and G = UV x E, where E is elementary abelian, [U,V] =1, V = Qg, and
U = (u,v) with ([u,v]) = G', v = 1 and (u?) # G'.

Proof. The commutator map induces a symplectic form on G/®(G), whence
G/Z(G) is elementary abelian of even degree. Let exp G = p”.

Assume that p is odd. If n = 1, then G is a direct product Q x E with Q
extraspecial and E elementary abelian. Letting |Q| = p?™T 1, m is the degree of
a maximal elementary abelian core-free subgroup of Q,i.e. m = 1.

Now assume n > 1. If ®(P) is noncyclic, then thereis 1 # s € Q21(Z(P)) such
that Z(P/(s)) = Z(P/(s)) and the theorem follows by induction. Hence ®(P)
may be supposed to be cyclic. There is x € G \ Z(G) of order p”. Since n > 1,
exp ®(P) = p"~ 1,50 ®(P) = (xP). Since p is odd, raising elements to their pth
power is an endomorphism of G, such that G = (x)Q21(G) and exp 21(G) = p.
Hence there is t € G with t? =1 # [x,t]. Let Q = Cg({x,?)), noting that
G = (x,t)Q.Foru € Q1(Q)\ Z(Q), (t,u) is core-free elementary abelian of
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order p2. Thus v? ¢ (xpz) whenever v € Q\ Z(Q). Yetif v € Q satisfies o(v) =
0(x), then ®(G) = (v?) and Q = (v)Q; with exp Q1 = p, i.e. Q1 < Z(Q).
Since Q/Q is cyclic, Q is abelian after all.

Now let p = 2,let G’ = (z) and let x € G \ Z(G) have order 2",

We first prove the lemma making the additional assumption that ®(G) is cyclic.
Then ®(G) is a cyclic group generated by elements of order at most 2”1, i.e.
®(G) = (x?). Let y € G\ Cg(x) and Q = Cg({x,y)), observing that G =
(x,y)Q and Q < Z(G) if and only if Q is abelian.

Assume that n > 3. For each v € G, there is a generator w of (x) such that
v2 = w2 with some £ > 1. Either (vw_z(H)2 =1l,or =1, [v,x] # 1 and
(vw_lxznﬂ)2 = 1. In particular, y may be chosen of order 2. Assume that Q
is nonabelian. If exp Q = 2", then an analogous argument yields an involution s
in Q \ Z(Q). However, this would mean (s, y)g = 1. Thus exp Q < 2" and, for
u € Q, wehave u? € (x*) and there is an involution sy, satisfying u (x?) = s, (x?).
Ifue Q\Z(G),thens, ¢ Z(Q) and (sy, y)g = 1.

We turn to the case n = 2. Then G = D * E with D extraspecial and E abel-
ian. The group Dg * Dg is not core-2, whence either |G : Z(G)| =4 or D =~
Dg x Qg and E is elementary abelian, a scenario covered by the assertion.

From now on, ®(G) is assumed to be noncyclic; observe this implies that
|21(Z(G))] > 2. Let Q1(Z(G)) = N and s € N \ (z). Then Z(G/(s)) =
Z(G)/(s), and |G : Z(G)| € {4, 16} is immediate by induction on the group
order. Induction also yields that if |G : Z(G)| = 16, then 8,(G) < (s) whenever
s € N\ (z). Thus |G : Z(G)| = 16 implies exp G = 4.

Now assume thatexp G = 4, |G : Z(G)| = 16 and d(P(G)) > 2. Let

S={seG|s?e(z)})

Then S < G, in particular G # S U Z(G). Let u € G \ Z(G) with u? ¢ (z), let
t € G\ Cg(u)andlet Cq({u,t)) = Q.

Forg € Q\ Z(Q) and r € {u,t,ut}, (q,r) is an abelian subgroup of G with
z € {¢%,r?). Suppose that |(u?,1%,z)] = 8. If ¢ € Q \ Z(Q), then (¢?) =
(g%.t) N (g?,u) = (z). Consequently, we have Q = (x,y) x E with E ele-
mentary abelian, (x, y) = Qg, and x? = y? = z. Now let W = (ux,ty). Then
W =CyxCqand WNZ(G) = DW) = (uz,ut?) # z, 50 Wg = d(W).

We have seen that (u?,12) < (u?,z) whenever t € G \ Cg (u). We shall show
that Q1(G) £ Z(G). Assume otherwise. Let t € G \ Cg(u). If t? = u?z, then
(ut)? =1, so t? € {u?,z}. Since (G \ Cg(u)) = G > S, it follows that ¢ may
be assumed to satisfy 12 = u?. Let O = Cg((u,t)) and g € Q \ Z(Q). Then
tq ¢ Cg(u), while (1¢)?> = u? would imply ¢ = 1. Hence we have (1¢)? = z,
ie.q?> =u?z.Nowletq’ € O\ Cg(q). Then (¢")* = u?z = (¢q')> = z, a con-
tradiction.
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We have confirmed the existence of an involution v in the set G \ Z(G). Since
G # S UCg(v), the element u may be assumed to satisfy [u,v] =z. Let
U = (u,v)andlet Q = Cg(U).Forw € O\ Z(Q),z € (w,v),s0Q =V X E
with V' = Qg and elementary abelian E. This completes the proof. |

Notation. The elementary abelian group of order p™ will, as usual, be denoted
by Eprn.

Let U < G and x € G. Following [8], we define by (x), the breadth of x in U,
as by (x) =log, |U : Cy(x)|. We write b(x) instead of b (x). The breadth b(A)
in G of the subgroup A is defined as max{b(a)|a € A}.

Let N = Q1(Z(G)). For a subgroup U of N, let Dy be the preimage of
Z(G/U)inG.

Lemma 2.8. Suppose that p =2 and G' < N. Then |G : Dy| € {2*,22,1} for
U < N. For any subgroup Wof N such that |N : W| = 4and WG' = N, there is
at most one maximal subgroup M of N with W C M and |G : Dps| = 2*.

Proof. The first assertion is a straightforward application of Lemma 2.7 applied
to G/M, where M < N.

For the second assertion, let |G/N| = 2" and let W < N with [N/W| = 4 and
N = WG'. Note that W is contained in exactly three maximal subgroups of N.

Let M be a maximal subgroup of N with |G : Dys| = 2% Let G/M = X
and let X’ = (z). By Lemma 2.7, 82(G) < M and |®(G)N/N| < 2. Assume
that (G) £ N.ByLemma 2.7, X = UV x E, where E = E,n—s5, V = Qg and
U = (u,v) withu? ¢ ®(V)and v? = 1. Lettingu? = sand V = (x, y), we have
Q(UV) = (z,5,v) = Eg. Accordingly, j(X) = 2"2. Certainly j(G/M) <
2"*1 for any maximal subgroup M of N not containing G’. Soif |G : Dyps| = 16
for at least two maximal subgroups of N containing W, then

> J(G/M) < 2" 42" < 3.2" = 3|G/N]|,
W<M<N
which Blackburn’s formula (Lemma 2.2) makes impossible. Thus ®(G) < N.

We note: For4 <n € N, j(Qg * Dg X Eyn-a) =3-2""2, j(Dg x Eyn2) =
3.2 j(Qg x Eyn—2) = 2" and j(Qg * C4 X Epn—3) = 2".

Let M < N.From Lemma 2.7 and ®(G) = 16, we deduce that |G : Dys| = 16
if and only if G/M =~ Qg * Dg X Eyn—a. From ®(G) < N it also follows that,
if M < N satisfies |G : Dps| = 4, then G/M is isomorphic to one of the groups
Dg x Eyn—2, Qg X Eon—2,0r Qg * Cq X Eyn—3. Suppose that |G : Dys| = 16 for
at least two maximal subgroups M containing W. Then, as we have seen,

> J(G/M)<3-2" =3|G/N|.
W<M<N
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However, j(G/W) > 0, and Blackburn’s formula is good for another contradic-
tion. o

The assertions of the next lemma, describing finite core-p p-groups G with
®(G) € Z(G), are partly contained in [3, Theorem 1] and [5, Theorem]. We shall,
however, require more detail than is provided in the referenced sources.

Lemma 2.9. Suppose that G' < N. Let A be an abelian subgroup of G of maximal
order. Then the following hold:

o If pisodd, then |G : A| < p? and if |G : A| = p?, then |A : Z(G)| = p.

e If p =2 theneither |G : A| <20r|G: A|=4>|A:Z(G)|. If|[A: Z(G)| =4,
then A = (c,d)Z(G) with b(c) = b(d) = 1, in particular |[A, G]| < 4.

e If p=2and Q(A) < Z(G), then |G : A| <2o0r|A: Z(G)| <2.

Proof. Note that Z(G) > &(G) < A < G.

We start with the case p odd. Let[A, G] = W of order p",andlet A/ Z(G) =V
of order p™. For any maximal subgroup U of W, there is a maximal subgroup Uy
of N satistying Uy N W = U. Applying Lemma 2.7 to the quotient G/ U, we
obtain |[A/U : (A/U N Z(G/U))| = p. Note that this implies that m < n.

Let & be the set of pairs ((v),U), where | Zv eV, U <W and v = aZ(G)
witha € Aand [a,G] < U. Letr = p;__ll. We list the subgroups of V' of order
pas (vi),...{(v).Fori €1,...,r,letv; = a; Z(G) and let p% = |[G,a;]|. We
assume the v; listed as to satisfy ¢; > £; 1 for all i. We count the elements of &
in two ways, to obtain

_; n_ m—1 _ _;r n—t; _
8= el =D =D = S e

1.e.

(0" 1) = (" = D" D,

‘ 1
i=1
Observe that

1 _ 1 _ _ -
F(Pn—l)(Pm 1—1):F(Pn D" =D =p" T

Suppose that £, > 1. Then

)
) 1 _ _ _ _
S ) = (T D =) =2
i=1
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1

However, p"~1 > 2p"~2 > pn—ti 4 pn=t2 whence

_2pn—1+pn—Z1+pn—€2+pn—l_pm—l — _pn—1+pn—€1+pn—ﬁz_pm—l <0,

a contradiction.

We have established that either b(A) = 1 or there is a € A such that (a, Z(G))
contains every element of A of breadth greater than 1. Assume the latter together
withm > 2. Letb € A\ (a)Z(G). Then

b(b) = b(ab) = 1,

and [a, G] = [b, G]Xx[ab, G], while Cg(b)Cg(ab) = G.Letx € Cg(b)\Cg(ab)
and y € Cg(ab) \ Cg(b). Then [ab?,x] = [ab,x] and [ab?,y] = [b, V], ie.
[a,G] = ([ab,x]) x ([b.y]) = [ab?, G], a contradiction. Thus |4 : Z(G)| = p
orb(A) = 1.

Now let p = 2. Suppose that A has a subgroup (a, b) such that |{a, b) : (a,b)N
Z(G)| = 4 and b(a) > 2 < b(b). First suppose that there are subgroups (s, )
of [G,a] and (s',t) of [G,b] such that |(s,t)(s’,t’)| = 16. Let U = (s,¢,5",t')
and let V be a complement of U in N. Let X1 = (ss’,1t'), Xo = (ss’,1s't’), and
X3 = (st/,s't).Fori = 1,2,3,let W; = V x X;. For each index i, we have U =
(s,1) x X; = (S,,l/) X X;j,while X1NXoNXzg=1land Wi NWr,NW3 =V.
Let i € {1,2,3}. Let W; < X < N; then neither a nor b belongs to Dy. Now
Lemma 2.8 may be invoked to yield that ab € Dx for at least two out of three
different choices of X; thus

[ab,G] < Wi nNW,N W3z =V.

The intersection over all complements of U in N being trivial, we obtain that
ab € Z(G) in contrast to our assumptions on (a, b). If [a, G] N [b, G] has a sub-
group U of order 4, then, similarly, [ab, G] < V whenever N = U x V, which re-
sults in ab € Z(G). The only remaining possibility is that |[a, G]| = |[b, G]| = 4,
while |[a, G] N [b, G]| = 2; let [a, G] = (s,t) and [b, G] = (s,t), U = (s,1,1'),
N =UxV, Wy =V(tt'), W = V{tst’). Lemma 2.8 again yields

[ab, Gl < Wi NW, =V

and a contradiction ensues as before.

Suppose that A has an element a of breadth greater than 1. As seen in the
two preceding paragraphs, this implies that A = (a) B, where Z(G) < B and
b(b) = b(ab) = 1 forevery b in B that satisfies |(b,a) Z(G) : Z(G)| = 4. In par-
ticular, b(B) < 1.

Assume that B # Z(G). Applying Lemma 2.4, we obtain |[B,G]| =2 or
|G : Cg(B)| =2.Forbin B\ Z(G), we have [a, G] < [b, G][ab, G], which im-
plies [a, G] = [b, G] X [ab, G] and Cg(a) = Cg(b) N Cg(ab).
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Suppose that |[B, G]| = 2. If | B : Z(G)| > 2, then there are b and ¢ in B with
G = Cg(b)Cg(c). Note that

G = Cg(b)Cg(bc) = Cg(c)Cq (be).

Ford € {b,c,bc}, we have [ad, G] = [a, Cg(d)] because of [Cg(d),a] # 1 and
b(ad) = 1. Furthermore, [ad, G] is a complement of [B, G] in [a, G]. Since there
are only two such complements, b and ¢ may be chosen such that [ab, G] =
[ac, G]. However, this yields [bc, G] = [B, G] = [b, G] = [ab, G], a contradic-
tion. Consequently, |[B, G]| = 2 entails that A = (a, b) with b(b) = 1 = b(ab),
while Cg(a) = Cg(b) N Cg(ab) = Cg(A) = A,ie. |G : A| = 4.

We turn to the case |G : Cg(B)| =2.Let b € B\ Z(G). We have Cg(B) =
Cg(b) and G = Cg(b)Cg(ab). Letting x € Cg(B) \ Cg(a), we find that

([x.a]) = ([x,ab]) =[G, ab].

Given b, ¢ € B with |[G, (b, c)]| = 4, we obtain that [G, ab] = [G,abc] = [G, c],
a contradiction. Accordingly, |B : Z(G)| =2 and if B = (b)Z(G), then once
again Cg(ab) N Cg(b) = Cg(a) = Cg(A) = A,ie. |G : A| = 4.

Letting p be any prime, assume |4 : Z(G)| = p.Let A = (a) Z(G), i.e. b(a) =
log, |G : A]. It will suffice to derive a contradiction from |G : A| = p3. For
x € G\ A, the maximality of |A| implies that Cg(x) = (Z(G), x) is a maxi-
mal abelian subgroup of G. Let x € G\ Z(G) and let y € G \ Z(G)(x). One
of the maximal subgroups of (x, y) is normal in G, say {(x, y?,[x, y]). Since
D((x,y)) = (x2,y?,[x,y]), ie. d(P({x,y))) < 3, we must have [x,G] =
Qu(@({x, ). If o(x) = p, then ((x,y)) = (y”.[x,y]), so o(x) > p and
Q1({(x)) < [x,G]. It follows that there is v € G \ (x, Z(G)) with ([v, x]) =
Q1({x)). This implies that ®({(v, x)) = (v?){xP) and there is w € (v, x) \ Z(G)
with [w, G] < ®((v, x)), a contradiction.

The final case left for us to consider is b(A) = 1. Then Lemma 2.4 yields
[[G,A]| = p or |G : Cg(A)| = |G : A] = p. Only the first case needs further
consideration. Let [G, A] = (z), of order p. We note that for U < A we have
zeUor|U:UNZ(G) < p.Let A= {a;) x--- X {an), where z projects non-
trivially into (a;) along the given decomposition. Let B = (a5) ... (an). Then
|B : BN Z(G)| < p; however, this implies that A = (a)Z(G) and |G : A| = p
or A = (a,b)Z(G) with A = Cg(a) N Cg(h),ie. |G : A| = p>.

At this point, only the final assertion of the lemma has not been taken care of.
By way of contradiction, assume that p = 2, Q,(4) < Z(G) and |G : A| =4 =
|A : Z(G)|. Recall that [[4, G]| < 4.

Let D be a subgroup of Z(G) of maximal order subject to possessing a com-
plementin A andlet A = D x E. Setting E = (a1) X ... X {(ap), eithern = 2, or
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some ¢ of the form ¢ = [[7_, a;" with &; € {0, 1} belongs to Z(G). For such a c,
(c) has a complement in E, whence (c)D has a complement in G. It follows that
n=2and A = D x {(a) x (b) with D < Z(G). Note that o(a) > 8 < o(b).

The following observation is going to be quite helpful: Suppose there is
z € N\ [A, G] such that Q5(A4/(z)) < Z(G)/(z). Since Z(G/(z)) N A/(z) =
Z(G)/{z), induction yields that |4 : Z(G)| = 2 or there is a maximal subgroup
B of G with B’ < (z). However, [B, AN B] = 1, whence BA = Gand AN B =
Z(G) < A.

(%) Letz € N\ [A4,G]. Then Q3(A4/(z)) £ Z(G)/(z).

Suppose that [4, G] < (a, l;). Letz € Q1(D). Any d € A satisfying d* = z then
belongs to D (a2, b?) < Z(G), and (x) yields D = 1.

Assume that |[4, G]| = 2. Since there is ¢ € {a, b,ab} with [c,G] < (&,13),
this implies that [4, G] < (a, 13). As we just saw, this means A = (a, b), in par-
ticular Z(G) = ®(A). Let w € G \ A. There is ¢ € A satisfying w? = ¢?2, i.e.
(we™h? = [w, ¢]. Since o(a) > 8 < o(b), [w,c] € ®(Z(G)) and the coset wA
contains an involution. Letting [A, G] = (s), it follows that G = A(x, y) with
involutions x and y satisfying [a,x] =1, [b,y] = s, [a,y] = s, and [b, y] = 1.
Now [x, y] # 1, for none of the elements x, y, xy is in Z(G). Accordingly, we
have (x,y) = Dg, and, since a maximal subgroup of (x, y) is normal in G, we
must have [x, y] = s. This implies G’ = (s) and Lemma 2.7 delivers a contradic-
tion. So |[4, G]| = 4.

Assume that G’ = [A,G]. For 1 # v € G’, let A, be the preimage of
Z(G/{v)) N A/{v) in A. Since exp G/(v) > 4, Lemma 2.7 yields |4 : Ay| =2
for each v. Since |4 : Z(G)| = 4, Ay # Ay whenever (v,v’) = G’, and it fol-
lows that each of the three maximal subgroups of A that contain Z(G) is equal
to some Ay, i.e. b(A) = 1. Now Lemma 2.4 yields |G : Cg(A)| =2 = |G : A,
a contradiction.

We have found that G’ 36 [4, G]. In particular, A > {a,b), which we have
seen to imply [A4, G] # (a,b). Write D = (d) x E with [A, G] £ {(a,b)E.If 1 #
z € Q1(E), then Q,(A/(z)) < Z(G)/(z). As previously mentioned, there is an
elementc € {a,b,ab} with 1 # [G,c] < (&,l;). Since |[A4, G]| = 4, it follows that
z ¢ [A, G], and (%) is contradicted. Thus E = 1, and since [4, G] < G’, we have
G' = Q(®(G)) = (a,b,d).

Suppose that o(d) = 4. There is an element ¢ € (4, 3) satisfying rd? ¢ [A, G].
Since td? ¢ B,(A) = (a, l;), condition () yields a contradiction. Hence o(d) > 8
and N < 55(G).

Let V < G'. We have seen that exp G/ V > 8, and Lemma 2.7 says that the
subgroup A/V N Z(G/V) is of index at most 2 in A/ V. Only two of the three
elements @, b, ab have breadth 1 in G, so there is an element s € [A, G] with
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Z(G/{s))NA/{s) = Z(G)/(s). Lettingt € G’ \ [A,G]and V = (s, t), we obtain
a final contradiction. O

The following three auxiliary lemmas each dispense with some scenario that
makes repeated appearances during coming proofs.

Lemma 2.10. Let P be a finite 2-group having a maximal abelian normal sub-
group B = {a) x (b) x {(d) x E. If

(@) o(a) =2,0(b) >4 <o0(d), o(b) >exp E < o(d),

(b) E = Z(P), ®(P) =< B, [P, B] = Qi(Z(P)),

(c) b(a) =1and (b) <« P > (d),

(d) |P:B[=8,

then P is not core-2.

Proof. Assume otherwise. The four conditions (a)—(d) entail Z(P) = ®(B)E
and P = (u,v,w)B with [u,a] =[u,d] =1, [u,b] = b, [v,a] = [v,d] =1,
[v,d] = d,and [w,b] = [w,d] =1 # [w,a]. Without loss, 0(b) > o(d). Neither
of the subgroups (bd) and (abd) being normal in P, so (a,(bd)?) is, conse-
quently,

[a.w]=b ifo(b) > o(d),
[a,w] = bd if o(w) = o(d), in particular [B, P] = (l;, c?) (2.1)

Forz € Q1(Z(P)) \ (l;, d ), P/(z) therefore satisfies (a)—(d) and induction yields
a contradiction. Accordingly,

Qi(Z(P)) = (b, d). (2.2)

Since E is a complement of {a,b,d) in B and contained in Z(P), condition
(2.2)yields B = (a, b, d). Note that u> # 1, for (u,a)p = 1 otherwise. Certainly
u? e Cg(u) = (a.b?,d). Setu? = a'b?/ d*.

Assume that o(b) > o(d). It follows that o(b) > 4 and there is b™ € (b) such
that (ub*)? = a’d*. Replace u by ub*. If both i and £ are odd, then [u2, w] = b
and [u?,v] = d,ie. (u?) 4 P. If i is odd and £ is not, then u(d) has an ele-
ment whose square is a, making (a) normal in P, which it is not. Accordingly,
we may take u? € (d). Since [u,b] = [ua,b] = [a,w] = b, none of the maximal
subgroups of (u, a) is normal in P. This proves

o(h) = o(d). (2.3)

If i is odd, then (2.1) yields that [u?, w] = bd, i.e. £ must be even; yet that
implies there is s € u(d) with s2 € a(b), i.e. [s2, w] ¢ (s2). Hence u? = b2/ 4¢.
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If o(b) > 4 or j is even, then there is s € u(b) satisfying s € (d), and none of
the maximal subgroups of («, s) is normal in P.

The only possibility left standing is 0(b) = o(d) = 4 and u? = b2d*. If £ is
odd, then, as before, (u,a)p = (u?), so, replacing u by an appropriate element
of u{d), we obtain u? = b2. Since this means (u?,a) & P, one of (ua) and (u)
is normal and there is no loss in taking (u) < P. By (2.3), the situation under con-
sideration is symmetric in » and d, so we may also assume v> = d2 and (v) < P.
Let Q = (u,b,v,d). Then Q =~ Qg x Qg and (uv,bd)o = (h*d?), a final con-
tradiction. |

Lemma 2.11. Let P be a finite 2-group with a normal subgroup Q such that the
following conditions are satisfied:

(@) Q' =Q1(Q) = Q1(Z(P)).

(b) O = (x1){x2){x3), where o(x1) > 0(x2) > 8 and 0(x2) > 0(x3) > 4, while
(x1) N (x2) = (x1){x2) N {x3) = 1.

(¢) P = Q(x)withu® e u'Q(Q) foru € Q.

(@) [21(QP(P)), 0] =1

Then P is not core-2.

Proof. 1t will be helpful to be aware of the fact that (u v)ze = u2"v2" when-
ever u,v € Q and £ > 2. Let Y = Q(Q). Combining conditions (a) and (b),
we see that ®(Q) = (x?) x (x3) x (xg), while Q' =Y = ([a,b].[a,c].[b,c])
whenever O = (a, b, c); in particular bg (u) = 2 for every u € Q \ ®(Q). The
condition placed on the orders of the x; in (b) entails that Y = (X1)x(X2)x(X3) =
{1} U {s]s € @ \ ®(Q)}. Let y1, y2,¥3 € Q. Then (y1, y2, y3) will be called an
admissible triple if, for i = 1,2, 3, y; has each of the properties ascribed to x; in
conditions (a) and (b). Note that this implies o(y;) = o(x;) fori = 1,2, 3. Next,
let P = Q(x).By (c), x> € Z(P) and u?>* = u~? whenever u € Q, so x inverts
every element of the abelian group ®(Q). It follows that (x)NQ < Cg(g)(x) =Y.
Thus condition (a) entails that o(x) = 2orx € Y.

Suppose that P is a core-2-group. First assume o(x) > 4. Let Q5 ({x)) = (z)
andleta € Q \ ®(Q) satisfya = X.If o(a) = 4,thenza € Q1(QP(P)), and (d)
yields [Q,a] = 1, which is not compatible with (a) and (b). Thus o(a) > 8 and
there is an involution s in z(a?). By (d), [s, Q] = 1, whence [s, P] = ([s, x]) = X.
For t € O \ ®(Q) with 7 # &, we have (s,1)p € {{t), (st)}; either possibility
yields b (¢) < 1, which contradicts ¥ = Q’. Consequently:

(1) o(x) < 4, in particular Q < P.

For u € Q, let z,, = u?[u, x], in other words (ux)? = x2z,. By condition (c),
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Q(P((u, x))) = (x2, 2,0, while ®((u, x))Y/Y = (u?)Y/Y.Let y ¢ Q. Then
it follows from (b) and (c) that [Q, y]Y /Y is abelian of degree at least 2 and neither
of the groups (y,u?, [u, y]) and (yu, u?, [u, y]) can be normal in P. Thus:

(2) Ifu € Q ¥y, then (u, y2,u>[u, y]) < P.

We intend to show that o(x) = 2. Since x is an arbitrary element of P \ Q, that
will, Q being nonabelian, suffice to establish a contradiction. So let us assume
o(x) =4.Leta € O\ ®(Q) satisfy @ = x?; by condition (2), [Q,a] = (4, z4).
Let [Q,a] = W. Since bg(a) = 2, we have Q = (a,uy,u2) with [uy,a] = z,
and [up,a] = az,. Fori € {1,2}, xu; € Np({a)), and condition (2) implies that
(xuj,a)p = (a,xzy,) = {(a, zy,), while W = (4, z,,,). Let u € uy{a, ®(Q)) U
uz{a, ®(Q)). Since Y N {x,u) < (a, zy,u) and [u, Q] £ W, condition (2) yields:

(3) Letu € Q\®(Q). Unless u € No({a)), 1 ¢ [a, O] = (x%, z4) = (x2, zy,).

Every element of Q of order less than o(x3) belongs to ®(Q), so we know
o(a) > o(x3). Suppose that o(a) = o(x3). Then Q = (a)(vy)(v2), where v| ¢
Ng({a)) and (v1,v2,a) is an admissible triple. Suppose that vy ¢ Ng({a)). By
condition (3) this means that 0 ¢ W whenever v € v, ®(Q) U v1P(Q). Accord-
ingly, 0(v1) = 0(v2), since otherwise some w in v2(v?) would satisfy 1 = 91 7,.
So vy € Ng({a)) or o(v2) = o(vy). If 0(v2) < 0o(v1), then there is an element
w € vz(v%) with w € W, while of course (vq,w,a) is admissible. If 0(vy) =
o(v1), then (v1, v1v2, @) is admissible, while, by (3) and because of V7V, = 0102,
v2 ¢ No((a)) if and only if 9> ¢ W if and only if vivy € No({(a)) if and only if
l)/1-172 eWw.

We have found an admissible triple (vi,w,a) with w € W and [w,a] = a.
Since [a,viw] = ala,vq1] and (viw,w,a) is admissible, we may even take
[v1,a] = z4. Recall that o(w) > 8. From (a, w)p = (a, w?) we get 0 # 4. Since
a € [w, Q] # W, it follows that w ¢ [w, Q]. Suppose that W = dz,. Applying
condition (2) with ¥ = w and y = xa, we obtain [w, Q] = (@zy,dzg), in par-
ticular 0 € [w, Q]. Thus the only remaining option is W = z,. If (xv1)? = ¥ or
(xviw)? =, then (2) (with ¥ =w and y = xv; or xviw, respectively)
again yields w € [w, Q] = W. Since {zy,, Zv,w} C {Za,dzq}, We are forced to
conclude that (xvq)? = Azy, = dzq4 = (xviw)? = AZy,w. It follows that z,, =
Zyyw = Zg. SINCE Zy,y = Zy, Zyw[v1, W], this yields [v1, w] = zy,. Yet now we
have w*”! = w~! and (2) says that (xvy,w)p = (w, (xv1)?) = (w,dzg). This
also implies [w, Q] = W.

Thus:

(4) Ifa € Q \ ®(Q) and @ = x2, then o(a) > o(x3).

Note that (4) entails o(x1) > o(x3). From now on, we take a to be of maximal
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order subjecttoa € Q\®(Q)andd = x2. Leto(a) = 2¢ and write a = x’ix%xé‘.

It follows from (4) that £ > 2 and

—1- -1 ; —
a= x%z l’x% jxgz Ko (%152).
Hence there is s € {x1)(x2) with o(a) < o(s) and § = 4. There is thus no loss of
generality in assuming a € (x1){x2).
Now o(a) > 8 and ar = a for all r € Q of order less than 2¢. This combines
with (3) to yield:

(5) Ifve O\ Ngo({a)), theno(v) > o(a).

Since 0(x3) < o(a) and Cg(a) = (a)P(Q) < (x1,x2)P(Q), condition (5) im-
plies that [x3,a] = a and Ng ((a)) = (a, x3)P(Q).

Suppose that 0(x2) < o(x1). Then the current restrictions on « entail @ = X
only if a € (x1)®(Q), in particular o(a) > o(x2). But x ¢ Ng({a)), so this
is made impossible by (5). Accordingly, @ € {X2, X1X2}; since (x1, y, x3) is ad-
missible whenever y € xz(x%,x%) satisfies 0(y) = o(x2), we may fix notation
such that a = x5. If 0(x1) = 0(x3), then every triple (y1, y2, x3) that satisfies
(1, y2)P(Q) = (x1, x2)P(Q) is admissible and notation may again be arranged
such that a = x».

Let W = [a, Q] as before. By (3), we have x; ¢ W. If y € x3(x1) satisfies
o(y) = o(x3), then (x1, x2, y) is admissible. Thus X3 may be assumed to be in W,
whence W = (@, X3) results. By (3), this implies that X3 € {zx,,dzx,}. Since
o(a) > o(x3), there is w € x3({a?) with ) = dzy,. Since this means (xx1)? = 1,
(1) says that (xx1, w)p = (w, zy|[x1, w]) and [w, O] = (W, zyw [x1, w]). However,
[a,w] = a # W and it follows that [w, Q] = (w,a) = W, a contradiction that
ends this proof. |

Lemma 2.12. Let P be a finite 2-group possessing a normal subgroup Q such that
the following conditions are satisfied:

@ Q"= Q1(Q) = Qi (Z(P)).

(b) [Q']=38.

(¢) O = (x1,x2,x3), where o(x1) = 8 and 0(x3) = o(x3) = 4.

(d) P = Q(x), whereu* e u='Q1(Q) foru € Q.

() [Q.21(QP(P))] = L

Then P is not core-2.

Proof. Let Y = Q1(Q), let o(x1) = 2" and let x%’%z = z. Like in the previous

proof, a triple (y1, y2, v3) of elements of Q will be called admissible whenever (c)
continues to be true after replacing x; by y; for i = 1,2,3. Observe that (b)
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implies Q' = [u, O][v, O] whenever u € Q \ ®(Q) and v € Q \ (u)®(Q), in
particular bg (u) = 2 whenever u € Q \ ®(Q). Let y € P\ Q. Combining con-
ditions (a) and (d), we obtain u” € u~'Y, in particular u¥~ = u wheneveru € Q.
Thus y2 € Z(P) and (a) implies that § € Y or o(y) = 2. Since Y < Z(P), we
have (x1) N (x2) = (x1) N {x3) = 1.

Assume that P is core-2. Our first goal is showing that some admissible triple
(y1, y2, y3) satisfies (y3) N ((y1)(y2)) = 1. Assuming that such a triple does not
exist, we have x3 € (x1)(x2). Upon replacing x3 by x3z if necessary, we may
take x% = x%. If [x2, x3] = x%, then there is w € {x2, x3, x2x3} with bg (w) < 1.
If [x2, x3] ¢ (X1, x%), then (x1, x2, Xx2x3) is an admissible triple endowed with the
extra feature we are currently seeking. If [x,, x3] = X1, then xpx3z is an involu-
tionin Q \ ®(Q), which leaves [x2, x3] = x3%; the only undiscarded option. Yet
that yields (x2x3)? = x%fcl = (x22)? = [x2x3, x2z]; letting R = (x2z, x2X3), we
have R = Qg with RN ®(Q) = ®(R). One of the three cyclic four-subgroups
of R must be normal in P, giving Q an element of breadth 1 and thus clashing
with (a). Hence:

(1) Without loss of generality, (x3) N (x1){x2) = 1.

Observe that (1) entails (xz) N ((x;)(x;)) = L for {i, j,k} = {1,2,3}, while Y =
Q' = (%1,x3,x3) and Q = (x1){x2)(x3).

Since ®(Q) = (x7,x3,x3)Q’ = (x?)Y, either every element of Y is a square
in Q, or x%x% is not. Assume the latter. If [x2, x3] = X1, then x%x% = (x2x32)?
and if [x2, x3] € x3x3(%1), then there is an involution in x,x3(s) and condition (a)
is contradicted. Accordingly, [x2, x3] € x% (X1) U x%(il). Interchanging x, and
x3 and replacing x, by x,z if necessary, we may assume [xp, x3] = x%. Since
(x1, X2, X2x3) is admissible and (x,x3)? = x%, one of the subgroups (x3, x3) and
(x2, x%) may be taken to be normal. Let {7, j } = {2, 3} with (xi,xjg) aP.

Assume that o(x) > 4. By the previous paragraph’s results, X is a square in Q
or P = Q(y) with [y, x;] = 1 and (xl,y ) < P. Since bg (x;) = 2, this implies
that y € {x X; x2} Suppose that y = x2x3 Setting (s) = Q2((y)), there is an
element v e (xz, x3s) with [v, P] = (x ) Since s € Z(P) and Q does not have
elements of breadth 1, this is not p0551ble

We have found |P : Q| > 2toimply that X is a square in Q. Let Q2 ({x)) = (s)
and s? = g2 withg € Q. Then (e) says that [Q,sq] = l and g € Z(Q) = (Q),
which means that [x, sq] = g% = £;. Letting sq = ¢, we have (¢, x2)p = (x3),
a contradiction. Accordingly:

@ |P:Q|=2.
By (1), Z(Q) = CD(Q) (xf,x%,x%) and (2) implies that x? € Cop)(x) =Y

LetV = (xz,X3,xf , X); observe thatexp V = 4.
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Assume that V' =Y. Let Uy, Uy, Us, and U, be the distinct complements
of (X1) inY.For 1 <i <4, let D, denote the preimage of Z(V/ U;) in V. Let
1<i <4.If|V:D;| =4, then x?" ¢Di<0 because of x?" € Z(Q) and
[x? 2"72 ¥ = %1 Thus O = (x1)D; and D; = (b;, ¢;)Y, where b; € {x, x?"~ ’x2)
and ¢; € {xg,x1 N x3} On the other hand, Lemma 2.8 says that |V : D;| = 16
implies |V : D;| = 4 whenever j # i. It follows that the commutator [x7, x3] lies
in the intersection of at least three complements of (x1) in Y, i.e. [x2,x3] =1,
contradicting (b).

We have seen that |V'| < 8. Assume |V'| = 4. Let V/ = (X1,s) and Y =
V’x (t). By Lemma 2.8, s may be assumed to satisfy |V /(s,t) : Z(V/(s,t))| = 4.
It follows that Q = (x1)D with D N (x;) = (X;) and [V, D] < (sz. Perhaps upon
replacing x5 and x3 by other elements of x5 (xf 2) and x3(x1 ), respectively,
we may take D = (x5, x3)Y; bearing in mind that [x5, x3] # 1, we obtain that
[x2,x3] = s, which implies V' = (x2, x3)Cy ({x2, x3)).

Letz € Cy({x2,x3))\ Q.Forw € {x3, x3, x2x3}, we have (w, z) p = (w, z2),
and [w, Q] = (w?, 2%), in particular ([x2, x3]) = [x2, Q]N[x3, Q] = (%) = (s).
For each u € {x1xp, x1x3, x1x2x3}, (U, X2, X3) is an adm1551ble triple satisfying
(u)(x2) N (x3) = 1. We are hence free to assume [x1, x;] = x fori =2,3. Let
Vi = (xz,X3,x1 7, x1z). Then V > (xl,xz,x3) =Y. Replacmg V by Vp in
the preceding paragraph yields the desired contradiction.

Since X1 € V’, only the case |V'| = (X1) is left. Then [x,, x3] = X and there
is z € Cy({x2,x3)) \ Q. The argument is continued exactly as in the previous
paragraph. |

3 Proof of the theorem

For the remainder of the paper, G denotes a minimal counterexample to the
theorem. In particular, p = 2. In view of Lemma 2.3, the following definition
makes sense:

Definition. Let 4 be the set of abelian subgroups of G of maximal order sub-
ject to containing ®(G). Let A € 4. The map x > x? induces a G-isomorphism
A/R21(A) = ®(A), i.e. every subgroup of A/Q21(A) is normal in G/ 2 (A). Let
M = G3(A)21(A) and let Hy be the preimage of Cg/pr(A/M) in G.

Note that Hy = {h € G | [b%, h] € (b®) for b € A}. Also observe that Hy >
A > Z(Hy4), while Lemma 2.1 entails |G : Hq| < 2.

Notation. We fix an element A of # and let H = Hy. Let Y = Q;(A4) and let
Z = Q1(Z(H)). The characteristic epimorphism G — G/Y will be denoted by
a bar. Reviving earlier notation, we let N = Q1 (Z(G)).
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Since every subgroup of G of order 4 intersects Z(G) nontrivially, |Y : N| < 2.
In particular, Z =Y or Z = N. We start off the proof by stating two slight, but
useful, observations.

Lemma 3.1. Let ¢ € A. Then the following hold:

@ [e, Ng((c)] < Q1((c*)).
(b) Letx € G\ H. If[x,Y] =1, then ¢* = ¢~ L.

Proof. Let h € Ny ({c)). The assertion being certainly true if o(c) < 4, we take
o(c) > 4. Now ([c, h]) = (c?) would imply ([c?, h]) = (c*), yet c* ¢ (c®) because
of o(c) > 4. Thus [c, h] € (c*) and Lemma 2.5 yields (a).

Letx € Cg(Y) \ H.Let W be acomplement of (¢} in Y. Since x centralises Y,
W is normalised by x. Since x? € A, conjugation by x induces an automorphism
of (c)W/W of order 2. Since x ¢ H, o(c) < 4 or conjugation by x is nontrivial
on (¢). This proves (b). o

Lemma 3.2. Suppose that Y # Z. Let Y = Z x (s). Then A = (s) x (b) x D,
where (bYD > [s, H] £ D, while every subgroup of D is normal in G.

Proof. Since Q21(®(A4)) < Z(G), the subgroup (s) has a complement C in A.
Let C = (c1) X -+ x (cr). Select b € {c1,...,cr} with the property that [s, H]
projects onto (b) along the decomposition. Let E = ]_[cj 2p{cj). Fore € E, we
have (e, s)g € {(e), (es)}, and (s, b) therefore possesses a complement D in A
that is the direct product of cyclic factors that are normal subgroups of G. In
particular, D < G. Given dy,d> in D such that (d;) < G for i = 1,2, we have
(s,di1d2)g € {(sdi1dr), (d1d>)}. Now ®({sd1d2)) < D, while, for x € H, we
have [sd1d>, x] = [s, x] (mod D), which shows that (sdjd>) cannot be normal
in G. Hence (dyd>) is. Induction on the length of d as a product of powers of the
¢; establishes the assertion. O

Lemma 3.3. [H, A] < Z.

Proof. We start by establishing [A, H] < Y. By way of contradiction, assume
there is y € H such that [4, 7] # 1. Lemma 2.1 yields the existence of n € N
satisfying ([b, 7]) = (b%") whenever b € A. Note that the definition of H implies
n > 1. Applying Lemma 2.5 to the groups (b, 7), b € A, we obtainexp A = 2" 12,

Lete € A\ Q,41(A4). By Lemma 3.1, y ¢ Ng({e)), so there is a € Y \ (e)
with ([e, y]) = (e2"a). If [a, y] = 1, then (a) < (e, y) and Lemma 2.5, applied to
(e, y,a)/{a), provides a contradiction. It follows that a ¢ Z(H ). Applying Lem-
ma 3.2 yields a direct decomposition A = {(a) x (b) x C with (b,C) > [a,y] ¢ C
and all subgroups of C normal in G. Lemma 3.1 then yields [C, H] = 1, and,
according to Lemma 2.1, expC < 2"*2 and H = (j)Cﬁ(Z).
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If (a,b) = (a,d) with (d) < G, then Lemma 3.1 implies [b, y] € ¥ > [A, H];
hence the only maximal subgroup of (a, b) possibly normal in G is (a, b?). Thus
[a. G] = Q1((b)). Since A = (b)Qp11(A4) and [A, y, y] # 1 = [Q2n41(A4). y. )]
we may, perhaps upon replacing a by a different element of a N, assume that
b, y] = b*"a

Letx € Cg(a)\A. Then [Y, x] = 1, and, as seen above, this implies [b, x] = 1.
If [x,b] ¢ Z, then ([xy,b])Z = (b?")Z and Lemma 2.5 provides a contradic-
tion when applied to the section (xy, 5)Q1(C)/R21(C). Hence Cy (a) < Cy (b?).
Thus Cy (a), Cy (b?) and the preimage of Ch/z(bZ)in H are one and the same —
maximal — subgroup.

Let 1 # ¢ € C and let b* € (b?) with o(b*) = o(c). Since {(a, (b*c)?) 4 G,
there is ¢ € {0, 1} such that (a®h*c) < G. Since [a®b*, Cg(a)] = 1, we obtain
[C.CH(a)] = 1,in particular [4, x] = ([b, x]) < Z. Since x? € C4(x), it follows
that x2 is of the form a®b?P ¢ for suitable integers & and B and ¢ € C. Thus we
have (xb™#)% = a%[x,b]. Since 2”12 > 8, there is be (b?) < C4(x) satis-
fying [x, b] = b2 (mod(a)21(C)). It follows that x(b) = u(b) with u? € (a)C.
Since (ac) #1 G whenever ¢ € C, u? € C. Next we show u? ¢ ®(C). Suppose
otherwise; then, since [u, C] = 1, there is ¢ € C with (uc)®> = 1. Letting w = uc,
we obtain that (a, w) =~ E4 with {(a,w)g = 1.

Thus u? € C\®(C), in particular o(u) > 2. Since 0(b) > exp C,2" 2 > o(u).
As (a,u?) 4 G, (a,u)g = (a®u) with ¢ € {0, 1}. It follows that ([b,u]) =
[A,u] = (u). Pick b* € (b) with o(b ) = o(u). If o(u) = 2"72, then, since
n>1, (ub)2n+l = ub[u b]( ) = iib, ifo(u) < 2"+2, then ub™ = b*u anyway.
Letw = b*u and ¢ € {0, 1}. We have just seen that = fib, whence neither [a, G]
nor#i = [u,b] = [a®w, b] is contained in (w?). It follows that none of the maximal
subgroups of (a, w) is normal in G.

We are done proving [A, H] < Y. Assume there is x € H with [4,x] £ Z.
Then Y = (a, Z) witha € [A, x]. We apply Lemma 3.2 to obtain a decomposition
A = (a) x (b) x C, where [a, H] £ C and every subgroup of C is normal in G.
Note that [{(a,C),x] < Z, and [b, x] = az with z € Z. Since both Cg(a) and
the preimage of Cg/z(bZ) in H are proper subgroups of H, we may addition-
ally assume [a, x] # 1. This yields [b, x?] = [b, x, x] = [a.x] # 1, contradicting
d(G) C A. ]

If every subgroup of A were normal in H, then |H : A| = 2 by Lemmas 2.1
and 3.3. This justifies the following:

Definition. Let £ € N be minimal with the property that there is B € #4 in which
not every subgroup of Q(B) is normal in Hp.
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We shall always assume A to be chosen to actually possess a cyclic subgroup
of order 2 that is not normal in H (= Hy). It may be useful to keep in mind that
Qr_1(4) < Z(H) (see Lemma 2.6).

Lemma 3.4. exp H' < 4 and exp H' < 2 unless k < 2.

Proof. Let u,v € H. According to Lemma 3.3, [i, 9%] = 1 = [u, 0)?[i, 0, 0]. It
follows that [if, 7] is an element of A inverted by ¥, which is possible only if
o([u,v]) < 4.

Suppose that k£ > 3. Together with Lemma 2.6, the above implies that [u, v] €
Qs(A) < Z(H), ie. [u,v]?> = [u?,v] = [v2 u] € () N (D). Thus o([u, v]) > 2
necessitates 7 = . Suppose that o([u, v]) = 4. We have seen that u? ¢ Z((u,v)) #
v2. Lemma 2.6 consequently yields o(w) > 2k+1 > 24 for w = u, v. Without
loss, there are positive integers m and £ satisfying £ > m > 2, w2’ = 12" and
(u) N (v) = (uzz). It follows that

_pl— ot —m (2
(u2"?" = 0" [u,v]? (%),

Thus (vu_ze_m)zm =1 unless 12 = m = 2. Assume the latter. Let o(u) = 2".
Then (vu~)* = [u,v]?> = u?"" . Since n > 4,

(vu_luzn_3)4 =u? [uzn_3, v]? = 1.
Thus (u, v) = (u, y) with (u) N (y) = 1 and [u, y] = [u, v]. We have seen this to

be incompatible with o([u, y]) = o([u, v]) = 4. o

The cases k > 2 and k = 1 have been allocated their own subsection each.
It will soon turn out to be the case that k = 2 is the most difficult case by far.

3.1 Thecasek >1
Lemma 3.5. k < 2.

Proof. Assume k > 3. By Lemmas 2.6, 2.9, and 3.4, H' < Z, |H : A| <4, and
|A: Z(H)| = 2.1t follows that G # H.Since H' < Z,we have ®(H) < Z(H),
while Lemma 2.1 says that y2 € C4(y) < Q2(A4) < Z(H) whenever y € G \ H.
Accordingly, ®(G) < Z(H). Let G = H{(x) and let A = (a)Z(H). Note that
o(a) > 8 because of Lemma 2.6 and that [a, H] = [A, H] is a normal elementary
abelian 4-subgroup of G.

Assume there is s € Y \ Z(G). Since [a, H] = [as, H], either [a, H] = (s, a),
or (s,a)G = (s.a?). In either case [x,s] = a. Since [x, 5] is independent of a, it
follows that o(a) = 2K = exp 4 and Qj_1(4) = Z(H), i.e. A = (a) x D with
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D <Qi_1(Z(H))=Z(H).Leth € H\ A. Since h? € C4(h) = Z(H), we have
o(h) < 2% and since k > 3, there is an element a* € (a) satisfying (ha*)? € D.
Yetif h2 € D, then (s, h?) 4 G, whence (s, h)g € {(h), (sh)}. It follows that H =
A(g.h) with g? € D > h? and (g) < G 1> (h). Since b(a) = 2, this forces the con-
clusion [a, g] = g, [a,h] = h and (g) N (h) =1, from which [g, ] = 1 results.
However, we have seen that ®(G) < Z(H), which, since |Z(H)(h, g)| > |A]|,
contradicts the fact that A € 4. Accordingly,

Y < Z(G). 3.1

By (3.1) and part (b) of Lemma 3.1, 5* = b~! whenever b € A. Since exp A >
2K > 4, it follows that Cg(Q22(®(G))) = H, in particular H = Hp whenever
B € A.Since Z(H){h) € A whenever h € H \ Z(H), this implies in conjunction
with (3.1) that Qo(H) < Z(H), Y = Q(H) = Q1(Z(G)) and h* € h~'Y for
all h € H. Note that x> € C4(x) < Q2(A) < Z(H), so o(x) <8 and x? € Z(G).

Assuming that Y # H’,wecanfindz € Y \ (H’U{a}). Induction yields a nor-
mal subgroup B of G with |G : B| <4, ®(G) < B, and B’ = (z). If B < H,
then B € #, a contradiction. Hence G = HB. However, a®> € ®(G) < B and if
y € B\ A, then a®’ = a2, leaving 0(a) = 8 and z = a* the only possibility.
Yet z # a. Accordingly,

Y=H' (3.2)

For a supplement Q of Z(H) in H, (3.2) yields H' = Q;(H) = Q’, in particular
0 <xG. Welet H=Z(H){a,b,c) and Q = (a,b,c). Note that D(H) N Q =
P(Q)=2Z(Q)=Z(H)N Q. Let expQ = 2™ and let u € Q be of order 2.
As a cyclic subgroup of maximal order in ®(Q), (u?) has a complement D
in ®(Q). Note that (u)®(Q) = (u) x D. Since Q' <Y, every coset w{u)®(Q)
withw € Q \ (u)®(Q) contains an element y with y2 € DY . Since we know that
Qy(H) < Z(H), it follows that exp D > 2.
Let d be an element of D of maximal order and let D = (d) x E. Then

Q' < (u?) x (d*)E ¥ ©(Q),

and there is v € Q with v? ¢ (u?,d?)E, in particular v ¢ (u)®(Q). Assume that
(v) N (u) # 1. Let 2" = |(v) : (u) N (v)|. Note that n > 2. Without loss v2" is
a power u? ; note that £ > n. It follows that (vu_(zz_n))ﬂ = 1. There is hence no
loss in presuming (v) N (1) = 1. It follows that (u2,d) x E = ((u?) x (v?))E,
in particular [®(Q)| = [(u?)|[(d)[|E| < [{u*)|[(v?)||E|. If 0(v*) > o(d), then
o(u?) > o(d) and ¥ = 1. Accordingly, ®(Q) = (u?) x (v?) x E.

Finally, let w € Q \ (u, v)®(Q). Since Q' < Y, there is an element y € (u, v)
satisfying (wy)? € (i1,0) x E. Since o(u) > 8 <o(v) and Q,(H) < Z(H),
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there is an element z € Q5 ((u?, v?)) such that (wyz)? € E. Hence we may take
w? € E and it follows that (w) N (u)(v) = (w?) N (u?,v?) = 1. Accordingly,
H = Q' = (u,0,w)and QO = (u){v)(w). Each of the elements u, v, w has order
at least 8, in particular Q,(Q) < ®(Q). Let P = Q(x). We have established that
P satisfies conditions (a), (b), and (c¢) of Lemma 2.11. Moreover, we know that
o(x) < 8and x? € Z(G). Thus either |P : Q| =2oro(x) =8, (x) N Q0 = (x*%)
and any element s of Q(®(P)Q) \ O satisfies s = x?y with y € Q,(0). Any
such s has to centralise 0, which shows that condition (d) in the premise of
Lemma 2.11 applies as well. So Lemma 2.11 yields a contradiction. |

Lemma 3.6. If k > 1, then ([u, v]) < H whenever u,v € H.

Proof. Suppose otherwise. Due to Lemmas 2.6 and 3.4, k = 2 and exp H' = 4.
Let u,v € H be such that ([u,v]) 4 H and let (u,v) = V. Since k > 1,
o([u,v]) = 4. Let {x, y} be a generating set of V. Then ([x, y])Y = ([u,v])Y, in
particular ([x, y]) ¥ H. Since [x, y, x] = [x2, y][x, y]? € (*)[x, y]?, the product
U = (x){[x, y]) is a subgroup of H. Note that

Hp31(U) = @U) = (x*)([x,y]?) and [x,y]* = [u,v]*.

Next, y ¢ Ng({x)®(U)) — otherwise [x, y] € (x2, [x, y]?),i.e. [x,y] € (x?) and
([x,y]) <« H. Since (x[x, y])®U) = ({x)®(U))”, the only maximal subgroup
of U available for normality in G is ([x, y], x2). Note that this is possible only if
o(x) > 2.

If [x,y]? € (x2), then a power x* of x? satisfies ([x,y]x*)? = I. Letting
[x,y]x* = w, k > 1 implies w € Z(H) and [x,y, H] = [x*, H] < (%) <
([x, y]?), a contradiction. We summarise:

(1) Letx € V \ ®(V). Then
o(x)>2, (x)yNn{u,v])=1, [u,v,H]< ([u,v]z,fc).

If [u, v, x] = 1, then [x2, y] = [u,v]? = X, contradicting (1). Thus:

) Cy(u,v]) = ®(V) and [u,v, H] = [u,v, V] = (X, [u, v]?) holds for every
x eV \o).

By (2), V £ Ng({Ju, v])). We choose notation such that u ¢ Ng({[u, v])) 3 v.
Let o(u) = 2", noting that (1) implies n > 1. From [u, v]*[u, v, u] = [u?,v] # 1
and Lemma 2.6, we deduce

(3) n > 3and [u?,v] = [u, v]*[u, v, u] = i.
Furthermore, (1) implies that [v2, u] = [u, v]*[u, v, v] € (D) N ([u,v]) = 1, ie.

@) [u,v?] = 1and [u,v,v] = [u,v]*
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Suppose that o(v) > o(u). Let s € (v?) be of order 2. Then (4) implies that
[u,s] = 1. In particular, (1) may be used to exclude the possibility that i1 = 0,
for this would yield the existence of in u(s). Next, (3) implies that

[u?s?,v] = [(us)?,v] =1 € (us).

But n > 1 and, as we have seen, us = 10 # u. It follows that 2" > o(v). Since
uv)? = u?v?v, u]’ = u?v?u,v], (W?v2u,v]) < G. By 3), [u?v?[u,v],u] =
[u,v,u] = it[u, v]2. By (1), [u, v]*> ¢ (i1), and we obtain that if o(v) < 2", then
n=3.

Assume that o(v) = 2"". If I # 0, then (2) implies [u, v]?> = 40, while (3) says
[u,v,u] = 9. Thus [u?v?[u,v],u] = 0 € (u*v*[u, v]?). Thus n > 3 — otherwise
o(u?v?[u,v]) <2-and ¥ = D, impossible. Accordingly, i = 9. Let |(v) : (u)N
(v)| = 2¢, observing that £ > 2. Suppose that £ = 2. Then, without loss, u* = v,
and (uv~1)* = [u, v]?, contradicting (1). If £ > 3, then there is a generator v; of
(v) with the property that

Qi (P02, v]) = @02,

Combined with (3) and (4), this yields

~ £—1 —1
202w, v],v] = au,v]*> = u? 0¥ .

Hence there also is a generator u of (u) satisfying
—1 —1
u? vl = [u )

. . — {— . . . .
Since £ > 3, it follows that s = u? 2U% 2[u, v] is now an involution contained
in [u,v]Z(H), contradicting k > 1. Now £ = 3 is the only option left: then there
is a generator vy of (v) satisfying

Q1 ((u?v?[u, v]) = (uhvifu, v]?),
ie. fifu,v]?> = u*vfu,v]?, ie. 4 = u*vf. Yet this implies v* € (u) and clashes
with £ = 3.
The outcome of the preceding two paragraphs is that o(u) = 8 and o(v) = 4.
If u* = v2, then o(uv) = 8, while (uv)* = u*[u, v]?> # u* and the pair (uv,v)
satisfies every constraint previously placed on (u, v). We summarise:

(5) o(u) = 8,0(v) = 4, and u and v may be chosen to satisfy (1) N (v) = 1.
We shall assume (1) N (v) = 1 from now on. By (2),
[u,v, H] = ([u,v]?, @) = ([u,v]?.0) = (u* v?).

Thus, (1) yields [u, v]* = u*v?.
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Suppose that A has an element b of order 8. Then (vh)* = b* # 1, while
[u,vb] € [u,v]Z. Every assertion so far made about (u,v) equally applies to
(u, vb), whence (5) delivers a contradiction. It follows that
(6) exp A = 4, in particular G = H.

Together with k > 1, (6) implies that ¥ < Z(G). Let B = (u?, [u,v]). By (1)
and (5), B = C4 x Cy, and (6) yields the existence of a complement of B in A,
to be called D. Ford € D, (d,[u,v])g € {{d, [u,v]?). (d[u,v], [u,v]?)}; thus D
may be taken to be a direct product of subgroups (d) with (d,[u,v]?) < G. Let
d,d’ € D be such that (d,[u,v]?) <G > (d’, [u,v]?). Then (dd’, [u,v]?) <G,
because [dd'[u,v],u] € u*(®(D),[u,v]?). Thus (E,[u,v]?) < G for all sub-
groups E of D. Let d € D. We have seen that some element w of {u, v,uv} is
in Ng((d)). Now ®((w,d)) = (w?,d?) € {{u?,d?), (v%,d?), (u?>v?[u,v],d?)},
ie. D((w,d))Y # [u,v] € [G,w]Y = [G,wd]Y. This forces the conclusion
(d, W) «G.Now ) € {u*,v?yand [d, H] € (d?, [u,v]?) N (d?, 0),ie. (d) <G.
(7) A = (u?, [u,v]) x D with every subgroup of D normal in G.

Assuming exp D = 4, let d € D \ Q1(D). Due to [u,vd] € ([u,v])Z, we may
replace v by vd in (1)—(4), to obtain [u, v, G] < ((vd)?, [u,v]?) N (v2, [u, v]?).
If [v,d] = 1, this yields d? € (v2,u*), a contradiction. By (7), this means that
v inverts each element of D. It follows that ®((v, [u,v]d)) = (vZ, u*d?), and,
since [u?,v] = [u?, v[u,v]d] = u*, we obtain [[u,v]d,G] < (vZ,u*d?). Now
[d,uv] = 1 is impossible, as it would imply

[, v]d, uv] = [u, v, ul[u, v, v] = u.

Thus [D,u] = 1 — according to (7), Cg(D) < G. Let (u?d, [u,v]) = W. From
w?du,v],u] = [u,v,u] =v? ¢ (u*d? u*v?) = ®(W), we infer that [u?d, G] <
®(W). Since both (u?) and (d) are normal in G, this yields

w2d,G] < (w*d? u*v?) N (u* d?) = (u*d?),

ie. (u?d) <« G. Lemma 2.1 yields Cg (u?) = Cg(D). By (1)~(4),
G = (u)Ng(([u,v])) = (u,v)Cq([u, v]).
Since 0(v) = 4 and G = H, we have
(uv)? = u?[u, v] (mod Z(G)),

i.e. (u*[u,v]) <« G. Thus we obtain that Cg ([u, v]) < Cg(4?), and

Cg([u,v]) = C6(([u,v],u?, D)) = Cg(4) = A.
Accordingly, |G : A| = 4.
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We have seen that exp D = 2, i.e. A = BZ. By (1), B < G, according to (3),
([u?, G]) = (u*) = ([u?, v]) and according to (3) and (4), [u, v, G] = (u*,v?) =
[u, v, (u,v)]. If s € G satisfies [u,v,s] = 1 # [u?,s], then [u?[u,v],s] = u* #
u*[u, v]?; however, (u?[u,v]) < G. Consequently, G = (u,v)Cq ((u?, [u,v])) =
(u,v)A, a contradiction that finishes this proof. ]

Lemma 3.7. Ifk = 2, then H' < Z.

Proof. Assume otherwise. Pick x € H withx? ¢ Z(H)andlety € H \ Cg(x?).
By Lemma 2.6, Q1(®(G)) < Z and ([x, y]) < H by Lemma 3.6, so [x?2,y] =
% = [x, y]?[x. y, x] = [x, y]?. In particular, [x, y, x] = 1 and Lemmas 2.1 and 3.6
yield [H, x,x] = 1. The assumption [x, y, y] = 1, however, implies that X =
[x,yz] = . If this is true, we may assume x2" = y2 , where m > ¢ > 2 and
26 = |(»)/((x)N(y))]|. Eitherm = £ = 2, orw = yx_zm_e satisfies (w)N(x) =
1, {[x, w]) = ([x, ¥]), and [x, w, w] = 1, a contradiction. If m = £ = 2, we have
0(x%2y™2) = 2;yet [y, x2y 2] # 1 and k > 1 is contradicted.

Accordingly, [x, y, y] # 1; by Lemma 3.6, this means [x, y]” = [x, y]~!. If
o(x) > 8, then there is x* € (x*) < Z(H) such that o([x, y]x*) = 2, and k > 1
forces the conclusion [x, y, y] = 1. Thus o(x) = 8. Suppose there is u € H such
that [u2, x] # 1. Then, as we have seen, o(u) = 8 and u* = x* = [x, u]?. It fol-
lows that z = u?x? is an involution with [z, x] # 1. Finally, Lemmas 2.1 and
3.6 say that [v, y]” = [v, y]~! whenever v € H, implying y? € Z(H). We sum-
marise:

(1) Ify € H\Cy (®(H)), then y> € Z(H). Any element v of H withv? ¢ Z(H)
has order 8 and centralises ®(H ).

Let ®(H)NZ(H) =T and let K = Cg(®(H)). For all g,h € K we have
1 =[g%, h] = [g,h)?, ie. K' < Z.By (1), the Hughes subgroup of H/T is con-
tained in K/ T, whence K < H and every element of K is inverted by y modulo 7.
Suppose there is u € K with o(u) > 8. By (1), u? € Z(H), whence [w,u?] =
[w,u]? = 1 whenever w € H, in particular (xu)? = x?u?[x,u] € x>Z(H ). How-
ever, (xu)® = u® # 1, contradicting (1). Hence exp K = 8. Let L = Q,(K),
noting that, since K’ < Z,wehaveexp L < 4.Ifv € K \ (x)L, then v* # x* and
(vx)? = v2x? (mod Z). It follows that y normalises every subgroup of (v?, x2) =
(v2) x (x2). Accordingly, [v, y]?> = [v2,y] =v* # land Z(H/Z) = L/ Z. Ap-
plying Lemma 3.3, we obtain A < L. We summarise:
2) L/Z =Z(H/Z), in particularexpA = 4and G = H.
From K < H = G and Lemma 2.9, we further infer:

(3) |K : A] = 4 and either |A: Z(K)| =2, or A = {(c,d)Z(K) with bx(c) =
bg(d) = 1. In particular, |[4, K]| < 4 and |K'| < 8.
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Suppose there is an element z € Y \ K’. Via induction, G has a normal sub-
group B of index 4 satisfying B’ = (z). Unless B is abelian, B £ K. Given
te€ B\ K, wehave B> [f,X] =[y,X],and z = [x,1,¢] = [x, y, y] = x*. It is,
however, possible to choose z distinct from x*. Thus:

4) Y =K'

We consider the possibility that |4 : Z(K)| = 2 and |Y| = 8. First suppose that
|K:L|=4,ie. L =A. Letting A = (v)Z(K), we obtain K = (v, w, x)Z(K)
with o(w) = o(x) = 8 and (w) N (x) = 1. Since 0(v) = 4 and “v? € (w*, x*)”
would necessitate the existence of involutions in 4 \ Z, ({(v){w)) N (x) = 1 and
K = (w)(x)(v)Z(K). Let Q0 = (x,w,v). By 4), Y = (x*, w* v?) = Q(0).
As y inverts the elements of (w?) x (x2), Z(G)N Q =Y. Since exp A = 4,
o(y) <8.Let P = Q(y). We have already noted that P satisfies (a)—(c) in the
premise of Lemma 2.11. Suppose that ®(P)Q > Q. It follows that o(y) = 8 and
any t € Q1(®(P)Q)\ Q must be of the form t = y2g with ¢ € Q,(Q). Now
Q(Q)<LNQ=ANQsothatt € Aand k = 2 implies [Q,?] = 1. Hence P
satisfies the hypothesis of Lemma 2.11 and is not core-2. Thus:

(5) If Z(K)| =2and |Y| =8, then |K : L| = 2.

We continue to work from the assumptions |4 : Z(K)| = 2 and |Y| = 8. By (5),
we may write L = (a,v)Z(K). Letting Q = (a, v, x), we have K = Z(K)Q and
Y =Q'.LetG = K(y).Sincex” =% land[L,y] <Y,y € Ng(Q).From (1)
and (2) we know that ®(G) < Z(K), so if w € L \ Z(K), then (w, Z(K)) € +A
and k > 1 implies Q;((w, Z(K))) < Z(G). Suppose that o(y) = 8. Then we
have y2 € Z(G) < L. Any involution in Q(y?)\ Q is equal to a product y2g
with ¢ € Q2(Q), in particular ¢ € L 3 y? and y2q € Q1(L) < Z(G). Letting
P = Q(y), P therefore satisfies the hypothesis of Lemma 2.12 and is not core-2.
Consequently:

(6) If |A: Z(K)| = 2,then |Y| < 4.
We stick to the hypothesis |A : Z(K)| = 2. As |K : Z(K)| = 23, it follows that
Z(K/W) £ Z(K)/W whenever W < Y. By (6), |K’| <4, and there is v € K

with bg (v) = 1. For such a v, though, Cx (v) is an abelian subgroup of K con-
taining ®(G) and of greater order than A. So:

7) |4 : Z(K)| = 4.

By (3), |[[A4, K]| < 4. Whenever K = (x,u)A, we have Y = [A4, K]{[x, u]). Let
W be a maximal subgroup of ¥ not containing x*. By Lemma 2.7, we have that
|K/W : Z(K/W)| <4and A/W N Z(K/W) has index at most 2 in A/ W.
Assume that |[[4, K]| = 4. From 2)and k =2, A = (a,b)Z(K), where b(a) =
b(b) = 1 and b(ab) = 2. By Lemma 2.6, k > 1 implies (a,b) = C4 x C4. Note
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that this excludes K’ = [A, K]. Indeed, if that was the case, then (4) would imply
Y = (a?) x (b?) and there would be ¢ € A \ Z(K) satisfying ¢?> = x*. However,
this would make cx? an involution outside Z(G).

Let [a, K] = (s) and [b, K] = (t). We have seen |Y| = 8. Soset Y = (s,¢,r).
If x* ¢ (s.1), then W = (x*s, st) is a maximal subgroup of ¥ not containing x*
and satisfying [A/W : A/W N Z(K/W)| = 4, a contradiction. This places x*
inside [A, K]. Set [A4, K] = (x*, z). Lemma 2.8 says that

|A/{z,r) : Z(K/{z,r)) N A/{z,r)| <2,
which implies [a, K] < (z) or [b, K] < (z). Thus {s,t} = {z, x*z}. However,
Lemma 2.8 also says that |[A/W : A/W N Z(K/W)| <2 for at least two of the
three maximal subgroups W of Y that do contain x#, namely (s, x*), (r, x*), and
(rs, x*). This is not the case.
8) |[A: Z(K)| =4and |[4,K]| = 2.

By (4) and (7), Y =~ E4. The fact that (a, b) =~ C4 x C4 remains unchanged, and
we arrive at a contradiction as in the preceding paragraph. The proof is done. O

Lemma3.8.k = 1.

Proof. Assume k > 1. The proof follows similar lines to those of Lemmas 3.5
and 3.7. Lemmas 2.9, 3.5, and 3.7 say that:

() k=2H <Z,G#H,|H: Al =4,and |A: Z(H)| € {2, 4}.

From G # H we deduceexp A > 4. LetG = (y)H.

If seY \ Z(G) and v € H, then either [s, y] = 0 or (v,s)g € {{v), (vs)},
the latter forcing (v) < H. Let Cq = (a) < A with (a) £ H. We have seen that
a? = [s, y]. Since k = 2 and ®(A) < Z(H), it follows that a® ¢ U, (A) and (a)
has a complement in A. Let A = (a) x D and let b be an element of maximal
orderin D. Since G # H,o(b) > 4.Let Q,((b)) = (b*), noting thatb* € Z(H).
Each of the subgroups (b), {(ab), and (ab*) is normal in H, in particular [a, H] =
[ab*, H] = (azl;). Letv e H \ Cg(a). Then [v,ab] = azls[v, b]. 1t is therefore
impossible that both [v, ] and [v, ab] are elements of € (13) Accordingly:

2) Y < Z(G).

Suppose that Y > H'. Let b be an element of A of order 8. Letting z € H' \ Y,
induction yields a normal subgroup B of G with ®(G) < B, |G : B| = 4 and
B’ < (z). Since H N B is abelian, B £ H. In conjunction with Lemma 3.1 (b),
(2) implies that, for ¢ € A, thereis z. € Y withc¢? = ¢~ !z.. In particular, we have
b?* = b2 forx € B\ H.Now b? € B implies that z = b*; yetif Y # H’, then
Y # H' U {b*}. Hence:

3)Y=H'.
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Since b2 € (\gey B and b2* = b2 whenever x ¢ H, Lemma 3.3 says that:
(4) Forevery B € #, Cg(b?) = H = Hp.

Suppose that |4 : Z(H)| =2 and |Y| = 8. By condition (3), by (h) = 2 holds
forh € H\ Z(H). Since H thus is void of elements of breadth 1, it follows that
x2 € Qy(Z(H)) whenever x € G\ H. Accordingly, ®(G) < Z(H) and Cy (h) =
(Z(H),h) € A whenever h € H \ Z(H). It now follows from (4), from (b) in
Lemma 3.1 and from the definition of k that Y = Q;(H) and that, for h € H,
there is an element z;, € Y with i = h™lz;,. Let H = (u,v)A, where o(u) =
2" =exp H > 4. Because of k > 1, v2 ¢ (u*); if u? = v2, then (uv=1)% = [u, v},
and, since the coset uv~1 ®(H ) is not permitted to contain involutions, [, v] ¢ (u).
In any case there is w € v(u) with (1, v) = (u, w) and (u) N (w) = 1. We replace
v by w if necessary.

Since k = 2, it follows that A = (a)Z(H), where o(a) = 4. If o(v) > 4, then
k > 1 forces (a) N (u){(v) = 1. Let Q = (a,u,v). By (2) and (4), we have Y =
Q' = Q1(Q), in particular Q <G.Let P = Q(y). If ®(P) £ Q,theno(y) =8
and an involution in ®(P)Q \ Q is equal to gy? isforsome g € Q.If ¢ ¢ Z(H),
then (gy?, Z(H)) € s, contradicting k > 1. Accordingly, [y2, Q] = 1.Ifo(v) >
4, then P satisfies Lemma 2.11 with x; = u, x, = v, x3 = a, if 0(v) = 4, then
P fits the criteria of Lemma 2.12. Thus G is not core-2. Consequently:

(5) |Y|<8or|A:Z(H)| > 2.

Suppose that |Y | = 8. By (5), we have |4 : Z(H)| > 2. By Lemma 2.9 and since
|H' : [A,H]| = 2, [A,H] = (s,t) =~ E4,and H = (u,v,a,b)Z(H), where
(a,bYZ(H) = A, [u,a]l = s,[u,b] =1,[v,a]l =1,[v,b] =t,and Y = [A, H] x
([u,v]). Let B = (u,b)Z(H); then B is a maximal normal abelian subgroup
of H, though not necessarily an element of 4. Lemma 2.9 nevertheless yields the
existence of w € {u,ub} with by (w) = 1, i.e. [w, H] = (s). However, this im-
plies that Y = [A, H], a contradiction. Hence

6) |Y] <8.

Assume that |4 : Z(H)| = 2, and let (¢)Z(H) = A and H = A(u,v). Since
Y = ([a,u],[a,v]), either [u,v] = 1 or there is an element w € {u, v, uv} such
that [u, v] = [a, w]. In either case, H = ACyg (w) for some w € H \ A. No ele-
ment of A has breadth 1 in H, whence ®(G) < Z(H) < Cg(w). Thus we have
Cygy (w) € A, a contradiction. Hence

(7) |A:Z(H)| = 4.
Let a be some element of A of order 4 with (a) £ H. As previously noted, (a)

has a complement in A of exponent greater than 4. Let A = (a) x D. By (6) and
since d(A) = d(R21(A)), A = (a) x {(d) witho(d) =exp A.If x € G\ H, then
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x2 € Q3(A), whence ®(G) < (a,d?). According to Lemma 2.9, we may assume
bg(d) =1and A = (d, c) with by (c) = 1. Note that

O(H) < Z(H) = Z(H) N A = &(A) = (a?) x {d?).

This and o(d) > 8 entail that, for u € H, there is an element d* € (d) satisfying
(ud*)? € (a?).

We shall now show that by (@) > 1. Assuming otherwise, there is u € H \ A
with [u,a] = 1 and u? € (a?). Thus (u, a, d?) becomes an element of A that con-
tains an involution not centralised by H, contradicting k > 1 and (4). Together
with (6), Y = [A4, H] = [a, H] and the element ¢ from the last paragraph may be
taken to be ad.

Since Y = [a, H], there is u € H with u? € (a?) and [u,a] = (a®). Since
(a) 4 G, we may take [u, G] = (a?) = ([u, a]); interchanging d and ad,, if nec-
essary, there is no loss in taking [u, d] = 1. If ®(G) £ ®(A), thena(d?) = e(d?)
with by (e) < 1; yet this implies by (@) = 1 which we have seen to be false. Thus
®(G) = ®(A)and B = (u,a?,d) € A.Now k = 2 yields u?> = a?, in particular
B = (u) x (d). Let Q2(d) = (d*); then {ud™) is cyclic of order 4, of breadth 1
in H and not normal in H on account of [@, ud *] = a?. Replacing A by B in the
preceding paragraph yields a contradiction. o

3.2 Thecasek =1

This final section is devoted to deriving a contradiction from the assumption k = 1,
by now the only remaining case. We start by arranging some notation.

Let a be an involutionin A \ Z(H ). By Lemma 3.2, we have A = (a) x(b)x D,
where Q1 ((b)D) = Z, [a, H] £ D and every subgroup of D is normal in G. Let
o(b) = 2". We note that, unless n = 1, any ¢ € b{a, D) of order 2" may replace
b without harm. Let x € G \ H.

Our first goal is establishing that G = H and we assume this is not so for
the time being. Recall that G > H entails exp A > 4. Then [A, x] is of exponent
greater than two and each of its elements is inverted by x. Now ®({a,x)) =
(x2,[a.x]) < C4q(x), whence neither (x)®({a, x)) nor {ax)®({a, x)) is a normal
subgroup. It follows that (a, x2, [@, x]) < G, in other words:

(1) [a,G] < (y2.[a, y]) whenever y € G \ H.

Suppose that by (a) < b(a). By (1), this entails that by (@) = 1. For u € Cg(a),
(u?,a) cannot be normal in G, whence one of (1) and (au) must be normal.
In particular, (u) < Cg(a), which makes Cg(a) a Dedekind group. But Cg(a)
cannot be Hamiltonian — that would imply exp A = 4 and G = H. So Cg(a) is
an abelian subgroup of G properly containing A.
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Accordingly, G = HCg(a) and we may assume x € Cg(a) \ H. By (1), we
have [a, H] < (X), in particular h(a) = 1. Observe that o(x) > 2 because of
(a) #4 H.We know that x ¢ H implies that exp C4(x) < 4 and o(x) < 8. By (1),
bD = £D. Note that [x,Y] =1, whence part (b) of Lemma 3.1 yields that x
inverts the elements of A. Assume that o(x) = 8. Then n > 2 and there is a gen-
erator b* of (h2"7*) such that x2 = a®h* (mod D) for some & € {0, 1}. Thus
b* is not inverted by x and n = 2, whence there is no loss in taking b = x2.
Since exp A > 4, we must have exp D > 4. Pick d € 81(D) of order 4. Then
[x2d,x] = d? = [ax?d, x], and (1) yields (a, x?d)G = 1, a contradiction. It fol-
lows that every element of x Cgy (a) has order four, while (1) yields that ((ux)?) =
[a,G] = (x?) whenever u € Cg (a). This implies that Cg (a), whose every ele-
ment is now inverted by x, is an abelian maximal subgroup of H properly con-
taining A. Accordingly:

2) G=H.

If b(a) > 1, then (a,c?) 4 G for c € A, and, since (c) or (ac) is therefore normal
in G, Cg(a) is a Dedekind group. It will become evident that this fact provides
a quick finish to the proof, but we need to dispense with the case b(a) = 1 first.
Hence we assume b(a) = 1 for now.

Assume that exp D > 2. Pick d € D with o(d) = exp D and let d* € (d?)
be of order 2". Replacing b by ab, bd™ or abd™ if necessary, we may assume
that [a, G] £ (b) < G. Observe that (a, (bd)?) 4 G. If (abd) < G, then, since
[a,G] £ (c?), Cg(b) N Cg(d) < Cg(a). Since every subgroup of D is normal
in G, Lemma 2.1 says Cg(d) = Cg(D); thus Cg(d) N Cg(b) = Cg(A) = A,
i.e. |G : A| < 4. This leaves (bd) the only candidate for a maximal subgroup of
(a,bd) to be normal in G. However, (b) < G 1> (d), so (bd) < G means b € Z(G)
and A = Cg(a) N Cg(d) has index at most 4 in G. Therefore:

(3) If b(a) = 1, thenexp A = 2".

Assume that exp D = 2" and let d € D be of order 2". At least one of the
subgroups (a, (bd)?) and (a,b?) is not normal in G, which makes one of the
subgroups (b), (ab), (bd), (abd) normal. Replacing b accordingly, we may once
again assume (b) < G. If Cg(a) < Ng({(bd)), then every subgroup of A is nor-
malised by Cg(a). Lemma 2.1 then says |Cg(a) : A] = 2, a contradiction. Thus
neither (bd) nor (abd) is a normal subgroup, whence (a, (bd)?) must be one.
Thus [a, G] = (bd), in particular G,—;(D) = (d). Hence D = (d)Q2,—1(D),
while Lemma 2.1 says 2,—1(D) < Z(G). Furthermore,

Cola) N Ca(b)NCq(d) = Cs(A4) = 4,

whence G fits the hypothesis of Lemma 2.10 and a contradiction ensues. We note:
4) If b(a) = 1, thenexp D < 2".
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We discard the possibility that n = 2. By (4), n = 2 implies that D < Q;(Z(G)).
Either at least one of (b) and (ab) is therefore normal in G, or ®(G) < Y. Since
aZ N Z(G) = 0, it follows that ®(G) < Y would entail ®(G) < Z, to which
Lemma 2.9 provides a contradiction. It follows that we may take (b) < G. But
then A = Cg(a) N Cg(b) has index at most four in G.

(5) If b(a) = 1, thenn > 2.

Suppose that neither of the subgroups (b) and (ab) is normal in G. Letexp D = 2™
and let (b1) = Q,({b)). Our most recent assumption entails that (a,b?) < G,
ie. [a,G] = (I;) Since (a, (h1d)?) cannot be normal in G, either (b1d) < G, i.e.
D < Z(G), or {(abi1d) < G and Cg(a) = Cg(D). Thus Cg(a) < Cg(D) in ei-
ther case. Let u € Cg(a) \ A. Then u? € C4(u) = (a,b?)D and (5) yields the
existence of b* € (b) satisfying (ub*)? € (a)D.Letd € D and x € G \ Cg(a);
then [ad, x] € l;(c? ), and (ad) £ G. Consequently, every element of Cg(a) is in
acoset u(b), where u? € D. Take u € Cg(a) withu? € D. Certainly, (a,u?) 4 G,
so that one of (u), (ua) is a normal subgroup of G, in particular (u) < Cg(a). Let-
ting L = {u € Cg(a)|u? € D}, L has emerged to be a subgroup of G that is even
a Dedekind group. Note that L N A = (a, lS)D and |G : L(b?)| = 4. Suppose L is
Hamiltonian. Then L = Q x E, where Q = Qg and E is elementary abelian with
a e E.Letv e Q be of order 4. Since v € L, (v?) = Q' # (b). Since n > 2, we
have [vbznfz, 0]l=0"=|a vbznfz, 0], whence none of the three maximal sub-

groups of (a, vbzn_z) is normal in G. Accordingly:

(6) If b(a) = 1, then (b) < G or (ab) <« G.

By (6), we are free to assume that (b) < G. Thus D £ Z(G) — otherwise Cg(a) N
Cg(b) = Aand |G : A| = 4. As before, we consider d € D of order 2" = exp D.
By Lemma 2.1, the fact that D £ Z(G) is equivalent to d ¢ Z(G). Now (4)
yields the existence of an element b* of (b?) with o(h*) = 2 and (b*d) £ G.
If (ab*d) < G, then

Cg(a) = Cg(d) = Cg(D),
and

A= Cg(a) NCg(b),

of index at most 4. Accordingly, (a, (b*d)?) < G,ie.[a,G] = (bAC?). It follows that
D = (d)Q;—1(D) and D is a direct product (d) x E, where E < Q,,,—1(Z(G)).
But now G satisfies the hypothesis of Lemma 2.10, and we finally obtain:

(7) b(a) > 1.
Let L = Cg(a). As has been pointed out, (7) implies that L is a Dedekind group.

Assume that L is Hamiltonian, i.e. L = Q x E, where Q =~ Qg and FE is ele-
mentary abelian. Considering the subgroups (a, w)g with w € Q, we see that Q
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can be chosen to satisfy [Q, G] = Q’. This in turn entails G = QCg(Q). So A4,
being a maximal abelian normal subgroup of L, is of the form A = (u, E) for
some u € O\ Z(Q). Let CG(Q) = K. For x € K, we have x2 € C4(Q) =7,
so ®(K) < Z, since no element of aZ is a square in G. However, this yields that
P(G) = ¢(K)P(Q) < Z, and Lemma 2.9 says |G : A| < 4. Accordingly:

(8) Cg(a) = A.

By (8), b(a) > 3. At the possible expense of interchanging » and ab, we may
assume (b) <« G.Letd € D.If (abd) < G, then

la. G] < [bd, Glabd,G] < (b,d),
a contradiction. This yields {(a, bd)g = (bd). It follows that:
(9) Every subgroup of (b)D is normal in G.
Now (9) and b(a) > 3 combine to yield (ac) 4 G whenever ¢ € (b) D, in partic-
ular:
(10) ®(G) < (b)D.

Let K = Cg((b)D). By (9), |G : K| <2 and (10) says that [K, ®(G)] = 1. Let
ve G\ Kandu € K. Then [u, v?] = 1, (10) and Lemma 3.4 together imply that
either [u,v] € Q1({(b)D) = Z or [u, v] has order four and is inverted by v. How-
ever, (a,v?,[a,v]) 4 G, whence [v, G] < (v2)Z < C4(v), so the latter cannot
happen. It follows that G’ < Z, and Lemma 2.9 completes the proof.
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