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Abstract. LetG be a finite 2-group with the property that jH W HG j � 2 for all subgroups
H of G. Then G has an abelian normal subgroup of index at most 4 in G. This result rep-
resents an affirmative answer to Question 18.56 from the current edition of the Kourovka
Notebook.

1 Introduction

Let n be a positive integer. A group G is called core-n if jH=HG j � n for every
subgroup H of G; here, HG denotes the largest normal subgroup of G contained
in H . In [4], it was shown that a locally finite core-n group has a normal abelian
subgroup whose index in the group is bounded by a function of n. In [3] the same
authors proved that, for odd primes p, a finite core-p p-group has an abelian nor-
mal subgroup of index p2, a best possible bound. The paper ([3, Theorem 2]) also
contains a proof of the existence of a normal abelian subgroup of index at most 26

in a finite core-2 2-group. The authors mention that no examples of finite core-2
2-groups were known that did not possess an abelian subgroup of index at most 4.
Later ([5]) it was shown that finite core-2 groups of class 2 indeed must have
an abelian subgroup of index at most 4. The present paper is devoted to show-
ing that every finite core-2 2-group has an abelian subgroup of index at most 4.
This provides an affirmative answer to Question 18.56 from the 18th edition of the
Kourovka Notebook, posed by G. Cutolo.

The dihedral groups D2n are core-2, which shows that core-2-ness does not
entail bounded class or bounded subgroup breadth. This places core-2 2-groups in
contrast to odd-order core-p p-groups, those being of class at most 3 ([6]). The
group D8 �Q8 is core-2, which shows that 4 is the best possible upper bound for
the index of an abelian subgroup in a core-2 2-group. Our main result reads as
follows:

Theorem. LetG be a finite 2-group. Suppose that jH=HG j � 2 for every subgroup
H of G. Then G has an abelian subgroup that contains ˆ.G/ and has index at
most four in G.
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We note that the corresponding result for odd p is an immediate corollary of
the results of [3]. Letting p be an odd prime and G a finite core-p p-group, G has
a normal abelian subgroupA of index p2 ([3, Theorem 1]). We may obviously take
A to be a maximal abelian subgroup ofG. Then, according to [3, Lemma 1.1 (iii)],
Ã1.G/ � Z.G/ � A and G0 � A, because G=A is too small to be nonabelian.

We conclude this introduction with three very helpful observations: Subgroups
as well as quotients of a core-n group are core-n. If G is a core-p p-group, then
hxpi GG whenever x 2 G and jE W E \Z.G/j � p ifE is an elementary abelian
subgroup of G. We also note a corollary.

Corollary. Let G be a finite core-2 group. Then G has an abelian subgroup of
index at most 8, and this bound is best possible.

Proof. Let G be a finite core-2 group of composite order, and let Q D O20.G/.
ThenQ is abelian of odd order, every subgroup ofQ is normal inG andG D QS
with S 2 Syl2.G/. The group S is core-2, and, since jS W SG j � 2, CS .Q/ has
index at most 2 in S . A direct product of a core-2 2-group with an abelian group
of odd order is core-2; if ŒS;Q� 6D 1 and T D CS .Q/, then the corresponding
semidirect product SQ is core-2 if and only if S normalises every subgroup of Q,
jS W T j D 2, S is core-2 and T \U GS whenever U � S D T U . By the theorem,
T has an abelian subgroup of index at most 4 and the direct product of this withQ
has index at most 8 in G. Now let

S D hx; y; s; t j x2 D y8 D s4 D t4 D 1; Œx; y� D y2;

s2 D t2 D Œs; t � D y4i
:

Then S Š D16 �Q8 is core-2, but there is no abelian subgroup of index 4 in S
that does not contain y. Now let G D SQ, whereQ Š C3, CS .Q/ D hx; y2; s; ti
and y inverts the elements of Q. This G does not have an abelian subgroup of
index four.

The reader interested in the structure of core-p-groups of class 2 may find the
results of Lemma 2.9 somewhat relevant.

2 Preliminaries

Lemma 2.1 ([2, Lemma 3.4.1]). Let X be a finite group and let B be an abelian
normal subgroup of X . Let N be the subgroup of X consisting of elements induc-
ing power automorphisms on B . Let n D expB and let U be the unit subgroup
of Z=nZ. There is a homomorphism � W X ! U given by bx D b�.x/ whenever
b 2 B and x 2 N .
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Notation. Let X be a finite group. Following Blackburn’s notation, we let

j.X/ D j¹x 2 X j x2 D 1ºj:

Lemma 2.2 ([1, Satz 1]). Let P be a 2-group and let 1 ¤ N � �1.Z.P //. Let H

be the set of maximal subgroups of N . ThenX
U2H

j.P=U / D jH jj.P=N/C j.P /:

The fact that core-p p-groups have abelian Frattini subgroup is proved in [3, see
Lemma 1.1 (ii)–(iii) for odd p and Proposition 2.11 for p D 2]. We include a short
proof for p D 2, as this will be a vital ingredient of the forthcoming proof.

Lemma 2.3 ([3, Proposition 2.11]). A finite core-2 2-group P has abelian Frattini
subgroup.

Proof. Let P be a counterexample of minimal order. Since ˆ.P /0 � hui when-
ever 1 ¤ u 2 Z.P /, Z.P / is cyclic and ˆ.P /0 D �1.Z.P //. Let s and t be
involutions in ˆ.P /. If Œs; t � ¤ 1, then hs; ti Š D8. Now P normalises a maxi-
mal subgroup V of hs; ti, of order 4; this, however, implies that Œˆ.P /; V � D 1,
a contradiction. Let �1.ˆ.P // D Y . We have just seen that Y is elementary
abelian, whence jY W Y \Z.P /j � 2, implying jY j � 4 and Y � Z.ˆ.P //. Let
�1.Z.P // D hzi. If z 2 U � ˆ.P /, then U E ˆ.P /. Since �1.hxi/ � Z.P /
for every x in P of order greater than 2, a subgroup U of ˆ.P / not containing
z must be contained in Y , hence in Z.ˆ.P //. Thus ˆ.P / is Hamiltonian, i.e.
ˆ.P / D Q �E with E elementary abelian and Q Š Q8. At least one maximal
subgroup V of Q must be normal in P , such that Œˆ.P /; V � D 1 D Q0, a contra-
diction.

The following is a variation of [8, Lemma 8] and its proof is analogous
to [8, Lemma 2]. We provide a short proof.

Lemma 2.4. Let P be a finite p-group. Let U and V be subgroups of P satisfy-
ing ŒS; T � � �1.Z.P //. If jU W CU .v/j � p for all v in V , then jŒU; V �j � p or
jU W CU .V /j D p.

Proof. Let v 2 V n CV .U / and w 2 V . If ŒU;w� 6� ŒU; v� and CU .w/ 6� CU .v/,
then ŒU; vw� D ŒCU .v/CU .w/; vw� D ŒCU .w/; v�ŒCU .v/; w� D ŒU; v� � ŒU;w�,
of order p2. It follows that every element of V belongs to CV .CU .v// or belongs
to the subgroup ¹x 2 V j ŒU; x� � ŒU; v�º of V . The assertion follows because V
cannot be the union of two proper subgroups.
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A proof of the following lemma could be compiled from references to the avail-
able literature on metacyclic groups.

Lemma 2.5. LetU D hu; vi be a 2-group with Œu; v� 2 hu4i. Unless o.Œu; v�/ � 2,
there is x 2 U with hx2i ¶ U .

Proof. Assume that o.Œu; v�/ > 2; it will suffice to establish the corresponding
statement in the quotient U=hŒu; v�4i. Hence assume o.u/ D 2nC2 with n � 2
and hŒu; v�i D hu2

n

i. Observe that this implies 
3.U / D 1. Let jU W huij D 2m.
A generator w of hui may be chosen such that v2

m

is equal to a power w2
`

; as
Chui.v/ D hu

4i and Chvi.u/ D hv4i, we have m � 2 � `.
Assuming ` < m, let x D wv�2

m�`

. Note that the order of xhui in U=hui is
equal to 2`. Since ` � 2 and m � ` � 1,

x2
`

D w2
`

v�2
m

Œv; w�2
m�`.2`

2 / D 1:

It follows that o.x/ D o.xhui/ D 2` and hxi \ hui D 1. However,

Œx2; v� D Œw2; v� D u2
nC1

and hx2i ¶ U .
We have established that ` � m. Letting y D vw�2

`�m

, we find that

y2
m

D v2
m

w�2
`

Œw; v�2
`�m.2m

2 / 2 hu2
nC`�1

i:

So y2
m

D 1 unless ` D 2 D m. Now n � 2 implies Œu2
n�1

; v�2 D 1. Hence if
`D 2Dm, then .vw�1u2

n�1

/4 D .u2
nC1

/2 D 1. Accordingly, vhui D xhui with
o.x/D 2m and hxi \ hui D 1. However, Œv2; u� ¤ 1 yields hx2i ¶ U .

Notation. As usual, “É” denotes “maximal subgroup of” and d.P / the minimal
number of generators of the p-group P .

Observe that the core-p-ness of a p-group G is already guaranteed if jH W

HG j � p is required for all subgroups of G generated by (no more than) two ele-
ments. Indeed, suppose jhx; yi W hx; yiG j � p for all elements x; y of the p-group
G. This property carries over to subgroups and quotients. Let Q � G and let
G D G=QG . Subgroups of Q are core-free, and if jQj > p, then Q has a 2-gen-
erated subgroup of order greater than p, a contradiction. Another equivalent char-
acterisation of core-p-ness may be found in [3, Lemma 1.3]: The group G enjoys
core-p-ness if and only if every nontrivial subgroup H of G has a maximal sub-
group M with ŒM;G� � ˆ.H/.

For the remainder of this paper, p is a prime and G denotes a finite core-p
p-group of order greater than p. The equivalent formulation of core-p-ness of
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a p-group predominantly used in the proofs to come is a mixture of the two charac-
terisations given in the previous paragraph: Every nontrivial subgroup of a core-p
p-group generated by two elements has a maximal subgroup that is normal in the
group.

Observe that hxpi GG whenever x 2 G and that jE W E \Z.G/j � p for each
elementary abelian subgroup E of G.

Notation. Let p D 2. For and y 2 G n ¹1º, the involution in hyi is denoted by Oy.

Although our theorem only concerns the prime 2, a few lemmas in this section
will be stated for all primes. This was done where it would not increase the length
of the respective proof inordinately and it was felt that the information contained
in the lemma could be of some interest beyond the requirements of the present
paper.

Lemma 2.6. Let A be an abelian normal subgroup of G such that ŒA;G� �
�1.Z.G// and not every subgroup of A is normal in G. Let pk be the mini-
mal order of a cyclic subgroup of A that is not a normal subgroup of G. Then
�k�1.A/�Z.G/.

Proof. Let a be any element of A of order pk and let z 2 �k�1.A/. Let hti be
a complement of hai in ha; zi. Note that o.t/ < pk . There is a� 2 hapi satisfy-
ing o.a�/ D o.t/. Both hti and ha�ti are normal in G, while a� 2 Z.G/. Thus
t 2 Z.G/, i.e. z 2 hap; ti � Z.G/.

Lemma 2.7. Assume jG0j D p. Then jG W Z.G/j D p2 unless p D 2, expG D 4
and G D UV �E, where E is elementary abelian, ŒU; V � D 1, V Š Q8, and
U D hu; vi with hŒu; v�i D G0, v2 D 1 and hu2i ¤ G0.

Proof. The commutator map induces a symplectic form on G=ˆ.G/, whence
G=Z.G/ is elementary abelian of even degree. Let expG D pn.

Assume that p is odd. If n D 1, then G is a direct product Q �E with Q
extraspecial and E elementary abelian. Letting jQj D p2mC1, m is the degree of
a maximal elementary abelian core-free subgroup of Q, i.e. m D 1.

Now assume n > 1. Ifˆ.P / is noncyclic, then there is 1 6D s 2 �1.Z.P // such
that Z.P=hsi/ D Z.P=hsi/ and the theorem follows by induction. Hence ˆ.P /
may be supposed to be cyclic. There is x 2 G nZ.G/ of order pn. Since n > 1,
expˆ.P / D pn�1, soˆ.P / D hxpi. Since p is odd, raising elements to their pth
power is an endomorphism of G, such that G D hxi�1.G/ and exp�1.G/ D p.
Hence there is t 2 G with tp D 1 6D Œx; t �. Let Q D CG.hx; ti/, noting that
G D hx; tiQ. For u 2 �1.Q/ nZ.Q/, ht; ui is core-free elementary abelian of
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order p2. Thus vp … hxp
2

iwhenever v 2 QnZ.Q/. Yet if v 2 Q satisfies o.v/ D
o.x/, then ˆ.G/ D hvpi and Q D hviQ1 with expQ1 D p, i.e. Q1 � Z.Q/.
Since Q=Q1 is cyclic, Q is abelian after all.

Now let p D 2, let G0 D hzi and let x 2 G nZ.G/ have order 2n.
We first prove the lemma making the additional assumption thatˆ.G/ is cyclic.

Then ˆ.G/ is a cyclic group generated by elements of order at most 2n�1, i.e.
ˆ.G/ D hx2i. Let y 2 G n CG.x/ and Q D CG.hx; yi/, observing that G D
hx; yiQ and Q � Z.G/ if and only if Q is abelian.

Assume that n � 3. For each v 2 G, there is a generator w of hxi such that
v2 D w2

`

with some ` � 1. Either .vw�2
`�1

/2 D 1, or ` D 1, Œv; x� ¤ 1 and
.vw�1x2

n�2

/2 D 1. In particular, y may be chosen of order 2. Assume that Q
is nonabelian. If expQ D 2n, then an analogous argument yields an involution s
in Q nZ.Q/. However, this would mean hs; yiG D 1. Thus expQ < 2n and, for
u 2Q, we have u2 2 hx4i and there is an involution su satisfying uhx2i D suhx2i.
If u 2 Q nZ.G/, then su … Z.Q/ and hsu; yiG D 1.

We turn to the case n D 2. Then G D D �E with D extraspecial and E abel-
ian. The group D8 �D8 is not core-2, whence either jG W Z.G/j D 4 or D Š
D8 �Q8 and E is elementary abelian, a scenario covered by the assertion.

From now on, ˆ.G/ is assumed to be noncyclic; observe this implies that
j�1.Z.G//j > 2. Let �1.Z.G// D N and s 2 N n hzi. Then Z.G=hsi/ D
Z.G/=hsi, and jG W Z.G/j 2 ¹4; 16º is immediate by induction on the group
order. Induction also yields that if jG W Z.G/j D 16, then Ã2.G/ � hsi whenever
s 2 N n hzi. Thus jG W Z.G/j D 16 implies expG D 4.

Now assume that expG D 4, jG W Z.G/j D 16 and d.ˆ.G// � 2. Let

S D ¹s 2 G j s2 2 hziº:

Then S < G, in particular G 6D S [Z.G/. Let u 2 G nZ.G/ with u2 … hzi, let
t 2 G n CG.u/ and let CG.hu; ti/ D Q.

For q 2 Q nZ.Q/ and r 2 ¹u; t; utº, hq; ri is an abelian subgroup of G with
z 2 hq2; r2i. Suppose that jhu2; t2; zij D 8. If q 2 Q n Z.Q/, then hq2i D
hq2; ti \ hq2; ui D hzi. Consequently, we have Q D hx; yi �E with E ele-
mentary abelian, hx; yi Š Q8, and x2 D y2 D z. Now let W D hux; tyi. Then
W Š C4 � C4 and W \Z.G/ D ˆ.W / D hu2z; u2t2i 63 z, so WG D ˆ.W /.

We have seen that hu2; t2i � hu2; zi whenever t 2 G n CG.u/. We shall show
that �1.G/ 6� Z.G/. Assume otherwise. Let t 2 G n CG.u/. If t2 D u2z, then
.ut/2 D 1, so t2 2 ¹u2; zº. Since hG n CG.u/i D G > S , it follows that t may
be assumed to satisfy t2 D u2. Let Q D CG.hu; ti/ and q 2 Q nZ.Q/. Then
tq … CG.u/, while .tq/2 D u2 would imply q2 D 1. Hence we have .tq/2 D z,
i.e. q2 D u2z. Now let q0 2 Q n CQ.q/. Then .q0/2 D u2z D .qq0/2 D z, a con-
tradiction.
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We have confirmed the existence of an involution v in the set G nZ.G/. Since
G 6D S [ CG.v/, the element u may be assumed to satisfy Œu; v� D z. Let
U D hu; vi and letQ D CG.U /. For w 2 Q nZ.Q/, z 2 hw; vi, soQ D V �E
with V Š Q8 and elementary abelian E. This completes the proof.

Notation. The elementary abelian group of order pm will, as usual, be denoted
by Epm .

Let U GG and x 2 G. Following [8], we define bU .x/, the breadth of x in U ,
as bU .x/ D logp jU W CU .x/j. We write b.x/ instead of bG.x/. The breadth b.A/
in G of the subgroup A is defined as max¹b.a/ja 2 Aº.

Let N D �1.Z.G//. For a subgroup U of N , let DU be the preimage of
Z.G=U / in G.

Lemma 2.8. Suppose that p D 2 and G0 � N . Then jG W DU j 2 ¹24; 22; 1º for
U ÉN . For any subgroupW ofN such that jN W W j D 4 andWG0 D N , there is
at most one maximal subgroup M of N with W �M and jG W DM j D 24.

Proof. The first assertion is a straightforward application of Lemma 2.7 applied
to G=M , where M ÉN .

For the second assertion, let jG=N j D 2n and letW � N with jN=W j D 4 and
N D WG0. Note that W is contained in exactly three maximal subgroups of N .

Let M be a maximal subgroup of N with jG W DM j D 24. Let G=M D X
and let X 0 D hzi. By Lemma 2.7, Ã2.G/ �M and jˆ.G/N=N j � 2. Assume
that ˆ.G/ 6� N . By Lemma 2.7, X D UV �E, where E Š E2n�5 , V Š Q8 and
U D hu; viwith u2 … ˆ.V / and v2 D 1. Letting u2 D s and V D hx; yi, we have
�1.UV / D hz; s; vi Š E8. Accordingly, j.X/ D 2n�2. Certainly j.G=M/ <

2nC1 for any maximal subgroupM of N not containing G0. So if jG W DM j D 16
for at least two maximal subgroups of N containing W , thenX

W<MÉN

j.G=M/ < 2n�1 C 2nC1 < 3 � 2n D 3jG=N j;

which Blackburn’s formula (Lemma 2.2) makes impossible. Thus ˆ.G/ � N .
We note: For 4 � n 2 N, j.Q8 �D8 �E2n�4/ D 3 � 2n�2, j.D8 �E2n�2/ D

3 � 2n�1, j.Q8 �E2n�2/ D 2n�1, and j.Q8 � C4 �E2n�3/ D 2n.
LetM ÉN . From Lemma 2.7 andˆ.G/ D 16, we deduce that jG W DM j D 16

if and only if G=M Š Q8 �D8 �E2n�4 . From ˆ.G/ � N it also follows that,
if M ÉN satisfies jG W DM j D 4, then G=M is isomorphic to one of the groups
D8 �E2n�2 ,Q8 �E2n�2 , orQ8 � C4 �E2n�3 . Suppose that jG W DM j D 16 for
at least two maximal subgroups M containing W . Then, as we have seen,X

W<MÉN

j.G=M/ � 3 � 2n D 3jG=N j:
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However, j.G=W / > 0, and Blackburn’s formula is good for another contradic-
tion.

The assertions of the next lemma, describing finite core-p p-groups G with
ˆ.G/ � Z.G/, are partly contained in [3, Theorem 1] and [5, Theorem]. We shall,
however, require more detail than is provided in the referenced sources.

Lemma 2.9. Suppose thatG0 � N . LetA be an abelian subgroup ofG of maximal
order. Then the following hold:

� If p is odd, then jG W Aj � p2 and if jG W Aj D p2, then jA W Z.G/j D p.

� If p D 2, then either jG W Aj � 2 or jG W Aj D 4� jA WZ.G/j. If jA WZ.G/j D 4,
then A D hc; d iZ.G/ with b.c/ D b.d/ D 1, in particular jŒA;G�j � 4.

� If p D 2 and �2.A/ � Z.G/, then jG W Aj � 2 or jA W Z.G/j � 2.

Proof. Note that Z.G/ � ˆ.G/ � A E G.
We start with the case p odd. Let ŒA;G�DW of order pn, and letA=Z.G/D V

of order pm. For any maximal subgroup U of W , there is a maximal subgroup U1
of N satisfying U1 \W D U . Applying Lemma 2.7 to the quotient G=U1, we
obtain jA=U W .A=U \Z.G=U //j D p. Note that this implies that m � n.

Let S be the set of pairs .hvi; U /, where 1 6D v 2 V , U ÉW and v D aZ.G/
with a 2 A and Œa; G� � U . Let r D pm�1

p�1
. We list the subgroups of V of order

p as hv1i; : : : hvri. For i 2 1; : : : ; r , let vi D aiZ.G/ and let p`i D jŒG; ai �j. We
assume the vi listed as to satisfy `i � `iC1 for all i . We count the elements of S

in two ways, to obtain

jS j D
1

.p � 1/2
.pn � 1/.pm�1 � 1/ D

1

p � 1

rX
iD1

.pn�`i � 1/;

i.e.
rX
iD1

.pn�`i � 1/ D
1

p � 1
.pn � 1/.pm�1 � 1/:

Observe that

1

p � 1
.pn � 1/.pm�1 � 1/ D

1

p � 1
.pn�1 � 1/.pm � 1/ � pn�1 C pm�1:

Suppose that `2 > 1. Then

rX
iD1

.pn�`i � 1/ �
1

p � 1
.pn�1 � 1/.pm � 1/ � 2pn�1 C pn�`1 C pn�`2 :
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However, pn�1 > 2pn�2 � pn�`1 C pn�`2 , whence

�2pn�1Cpn�`1Cpn�`2Cpn�1�pm�1 D �pn�1Cpn�`1Cpn�`2�pm�1 < 0;

a contradiction.
We have established that either b.A/ D 1 or there is a 2 A such that ha;Z.G/i

contains every element of A of breadth greater than 1. Assume the latter together
with m � 2. Let b 2 A n haiZ.G/. Then

b.b/ D b.ab/ D 1;

and Œa; G� D Œb; G��Œab;G�, whileCG.b/CG.ab/ D G. Let x 2 CG.b/nCG.ab/
and y 2 CG.ab/ n CG.b/. Then Œab2; x� D Œab; x� and Œab2; y� D Œb; y�, i.e.
Œa; G� D hŒab; x�i � hŒb; y�i D Œab2; G�, a contradiction. Thus jA W Z.G/j D p

or b.A/ D 1.
Now let p D 2. Suppose thatA has a subgroup ha; bi such that jha; bi W ha; bi\

Z.G/j D 4 and b.a/ � 2 � b.b/. First suppose that there are subgroups hs; ti
of ŒG; a� and hs0; t 0i of ŒG; b� such that jhs; tihs0; t 0ij D 16. Let U D hs; t; s0; t 0i
and let V be a complement of U in N . Let X1 D hss0; t t 0i, X2 D hss0; ts0t 0i, and
X3 D hst

0; s0ti. For i D 1; 2; 3, letWi D V �Xi . For each index i , we have U D
hs; ti � Xi D hs

0; t 0i � Xi , while X1 \ X2 \ X3 D 1 and W1 \W2 \W3 D V .
Let i 2 ¹1; 2; 3º. Let Wi � X ÉN ; then neither a nor b belongs to DX . Now
Lemma 2.8 may be invoked to yield that ab 2 DX for at least two out of three
different choices of X ; thus

Œab;G� � W1 \W2 \W3 D V :

The intersection over all complements of U in N being trivial, we obtain that
ab 2 Z.G/ in contrast to our assumptions on ha; bi. If Œa; G� \ Œb; G� has a sub-
group U of order 4, then, similarly, Œab;G� � V wheneverN D U � V , which re-
sults in ab 2 Z.G/. The only remaining possibility is that jŒa; G�j D jŒb; G�j D 4,
while jŒa; G� \ Œb; G�j D 2; let Œa; G� D hs; ti and Œb; G� D hs; t 0i, U D hs; t; t 0i,
N D U � V , W1 D V ht t 0i, W2 D V htst 0i. Lemma 2.8 again yields

Œab;G� � W1 \W2 D V

and a contradiction ensues as before.
Suppose that A has an element a of breadth greater than 1. As seen in the

two preceding paragraphs, this implies that A D haiB , where Z.G/ � B and
b.b/ D b.ab/ D 1 for every b inB that satisfies jhb; aiZ.G/ W Z.G/j D 4. In par-
ticular, b.B/ � 1.

Assume that B ¤ Z.G/. Applying Lemma 2.4, we obtain jŒB;G�j D 2 or
jG W CG.B/j D 2. For b in B nZ.G/, we have Œa; G� � Œb; G�Œab;G�, which im-
plies Œa; G� D Œb; G� � Œab;G� and CG.a/ D CG.b/ \ CG.ab/.
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Suppose that jŒB;G�j D 2. If jB W Z.G/j > 2, then there are b and c in B with
G D CG.b/CG.c/. Note that

G D CG.b/CG.bc/ D CG.c/CG.bc/:

For d 2 ¹b; c; bcº, we have Œad;G� D Œa; CG.d/� because of ŒCG.d/; a� ¤ 1 and
b.ad/ D 1. Furthermore, Œad;G� is a complement of ŒB;G� in Œa; G�. Since there
are only two such complements, b and c may be chosen such that Œab;G� D
Œac;G�. However, this yields Œbc; G� D ŒB;G� D Œb; G� D Œab;G�, a contradic-
tion. Consequently, jŒB;G�j D 2 entails that A D ha; bi with b.b/ D 1 D b.ab/,
while CG.a/ D CG.b/ \ CG.ab/ D CG.A/ D A, i.e. jG W Aj D 4.

We turn to the case jG W CG.B/j D 2. Let b 2 B nZ.G/. We have CG.B/ D
CG.b/ and G D CG.b/CG.ab/. Letting x 2 CG.B/ n CG.a/, we find that

hŒx; a�i D hŒx; ab�i D ŒG; ab�:

Given b; c 2 B with jŒG; hb; ci�j D 4, we obtain that ŒG; ab� D ŒG; abc� D ŒG; c�,
a contradiction. Accordingly, jB W Z.G/j D 2 and if B D hbiZ.G/, then once
again CG.ab/ \ CG.b/ D CG.a/ D CG.A/ D A, i.e. jG W Aj D 4.

Letting p be any prime, assume jA WZ.G/j D p. Let AD haiZ.G/, i.e. b.a/ D
logp jG W Aj. It will suffice to derive a contradiction from jG W Aj D p3. For
x 2 G n A, the maximality of jAj implies that CG.x/ D hZ.G/; xi is a maxi-
mal abelian subgroup of G. Let x 2 G nZ.G/ and let y 2 G nZ.G/hxi. One
of the maximal subgroups of hx; yi is normal in G, say hx; yp; Œx; y�i. Since
ˆ.hx; yi/ D hxp; yp; Œx; y�i, i.e. d.ˆ.hx; yi// � 3, we must have Œx; G� D
�1.ˆ.hx; yi//. If o.x/ D p, then ˆ.hx; yi/ D hyp; Œx; y�i, so o.x/ > p and
�1.hxi/ � Œx; G�. It follows that there is v 2 G n hx;Z.G/i with hŒv; x�i D
�1.hxi/. This implies that ˆ.hv; xi/ D hvpihxpi and there is w 2 hv; xi nZ.G/
with Œw;G� � ˆ.hv; xi/, a contradiction.

The final case left for us to consider is b.A/ D 1. Then Lemma 2.4 yields
jŒG;A�j D p or jG W CG.A/j D jG W Aj D p. Only the first case needs further
consideration. Let ŒG;A� D hzi, of order p. We note that for U � A we have
z 2 U or jU W U \Z.G/j � p. Let A D ha1i � � � � � hani, where z projects non-
trivially into ha1i along the given decomposition. Let QB D ha2i : : : hani. Then
j QB W QB \Z.G/j � p; however, this implies that A D haiZ.G/ and jG W Aj D p
or A D ha; biZ.G/ with A D CG.a/ \ CG.b/, i.e. jG W Aj D p2.

At this point, only the final assertion of the lemma has not been taken care of.
By way of contradiction, assume that p D 2, �2.A/ � Z.G/ and jG W Aj D 4 D
jA W Z.G/j. Recall that jŒA;G�j � 4.

Let D be a subgroup of Z.G/ of maximal order subject to possessing a com-
plement in A and let A D D �E. SettingE D ha1i � : : : � hani, either n D 2, or
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some c of the form c D
Qn
iD1 a

"i

i with "i 2 ¹0; 1º belongs to Z.G/. For such a c,
hci has a complement in E, whence hciD has a complement in G. It follows that
n D 2 and A D D � hai � hbi with D � Z.G/. Note that o.a/ � 8 � o.b/.

The following observation is going to be quite helpful: Suppose there is
z 2 N n ŒA;G� such that �2.A=hzi/ � Z.G/=hzi. Since Z.G=hzi/ \ A=hzi D
Z.G/=hzi, induction yields that jA W Z.G/j D 2 or there is a maximal subgroup
B of G with B 0 � hzi. However, ŒB; A\B� D 1, whence BA D G and A\B D
Z.G/É A.

(�) Let z 2 N n ŒA;G�. Then �2.A=hzi/ 6� Z.G/=hzi.

Suppose that ŒA;G� � hOa; Obi. Let z 2 �1.D/. Any d 2 A satisfying d4 D z then
belongs to Dha2; b2i � Z.G/, and (�) yields D D 1.

Assume that jŒA;G�j D 2. Since there is c 2 ¹a; b; abº with Œc; G� � hOa; Obi,
this implies that ŒA;G� � hOa; Obi. As we just saw, this means A D ha; bi, in par-
ticular Z.G/ D ˆ.A/. Let w 2 G n A. There is c 2 A satisfying w2 D c2, i.e.
.wc�1/2 D Œw; c�. Since o.a/ � 8 � o.b/, Œw; c� 2 ˆ.Z.G// and the coset wA
contains an involution. Letting ŒA;G� D hsi, it follows that G D Ahx; yi with
involutions x and y satisfying Œa; x� D 1, Œb; y� D s, Œa; y� D s, and Œb; y� D 1.
Now Œx; y� ¤ 1, for none of the elements x; y; xy is in Z.G/. Accordingly, we
have hx; yi Š D8, and, since a maximal subgroup of hx; yi is normal in G, we
must have Œx; y� D s. This implies G0 D hsi and Lemma 2.7 delivers a contradic-
tion. So jŒA;G�j D 4.

Assume that G0 D ŒA;G�. For 1 ¤ v 2 G0, let Av be the preimage of
Z.G=hvi/ \ A=hvi in A. Since expG=hvi > 4, Lemma 2.7 yields jA W Avj D 2
for each v. Since jA W Z.G/j D 4, Av 6D Av0 whenever hv; v0i D G0, and it fol-
lows that each of the three maximal subgroups of A that contain Z.G/ is equal
to some Av, i.e. b.A/ D 1. Now Lemma 2.4 yields jG W CG.A/j D 2 D jG W Aj,
a contradiction.

We have found that G0 ¤ ŒA;G�. In particular, A > ha; bi, which we have
seen to imply ŒA;G� ¤ hOa; Obi. WriteD D hd i �E with ŒA;G� 6� ha; biE. If 1 6D
z 2 �1.E/, then �2.A=hzi/ � Z.G/=hzi. As previously mentioned, there is an
element c 2 ¹a; b; abºwith 1 6D ŒG; c� � hOa; Obi. Since jŒA;G�j D 4, it follows that
z … ŒA;G�, and (�) is contradicted. Thus E D 1, and since ŒA;G� < G0, we have
G0 D �1.ˆ.G// D hOa; Ob; Od i.

Suppose that o.d/ D 4. There is an element t 2 h Oa; Obi satisfying td2 … ŒA;G�.
Since td2 …Ã2.A/D hOa; Obi, condition (�) yields a contradiction. Hence o.d/ � 8
and N � Ã2.G/.

Let V ÉG0. We have seen that expG=V � 8, and Lemma 2.7 says that the
subgroup A=V \Z.G=V / is of index at most 2 in A=V . Only two of the three
elements a; b; ab have breadth 1 in G, so there is an element s 2 ŒA;G� with
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Z.G=hsi/\A=hsi D Z.G/=hsi. Letting t 2 G0 n ŒA;G� and V D hs; ti, we obtain
a final contradiction.

The following three auxiliary lemmas each dispense with some scenario that
makes repeated appearances during coming proofs.

Lemma 2.10. Let P be a finite 2-group having a maximal abelian normal sub-
group B D hai � hbi � hd i �E. If

(a) o.a/ D 2, o.b/ � 4 � o.d/, o.b/ > expE < o.d/,

(b) E � Z.P /, ˆ.P / � B , ŒP; B� � �1.Z.P //,

(c) b.a/ D 1 and hbi G P F hd i,

(d) jP W Bj D 8,

then P is not core-2.

Proof. Assume otherwise. The four conditions (a)–(d) entail Z.P / D ˆ.B/E
and P D hu; v;wiB with Œu; a� D Œu; d � D 1, Œu; b� D Ob, Œv; a� D Œv; d � D 1,
Œv; d � D Od , and Œw; b� D Œw; d � D 1 6D Œw; a�. Without loss, o.b/ � o.d/. Neither
of the subgroups hbd i and habd i being normal in P , so ha; .bd/2i is, conse-
quently,

Œa; w� D Ob if o.b/ > o.d/;

Œa; w� D Ob Od if o.w/ D o.d/, in particular ŒB; P � D h Ob; Od i. (2.1)

For z 2 �1.Z.P // n h Ob; Od i, P=hzi therefore satisfies (a)–(d) and induction yields
a contradiction. Accordingly,

�1.Z.P // D h Ob; Od i: (2.2)

Since E is a complement of ha; b; d i in B and contained in Z.P /, condition
(2.2) yields B D ha; b; d i. Note that u2 6D 1, for hu; aiP D 1 otherwise. Certainly
u2 2 CB.u/ D ha; b

2; d i. Set u2 D aib2jd `.
Assume that o.b/ > o.d/. It follows that o.b/ > 4 and there is b� 2 hbi such

that .ub�/2 D aid `. Replace u by ub�. If both i and ` are odd, then Œu2; w� D Ob
and Œu2; v� D Od , i.e. hu2i ¶ P . If i is odd and ` is not, then uhd i has an ele-
ment whose square is a, making hai normal in P , which it is not. Accordingly,
we may take u2 2 hd i. Since Œu; b� D Œua; b� D Œa; w� D Ob, none of the maximal
subgroups of hu; ai is normal in P . This proves

o.b/ D o.d/: (2.3)

If i is odd, then (2.1) yields that Œu2; w� D Ob Od , i.e. ` must be even; yet that
implies there is s 2 uhd i with s2 2 ahbi, i.e. Œs2; w� … hs2i. Hence u2 D b2jd `.
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If o.b/ > 4 or j is even, then there is s 2 uhbi satisfying s2 2 hd i, and none of
the maximal subgroups of ha; si is normal in P .

The only possibility left standing is o.b/ D o.d/ D 4 and u2 D b2d `. If ` is
odd, then, as before, hu; aiP D hu2i, so, replacing u by an appropriate element
of uhd i, we obtain u2 D b2. Since this means hu2; ai ¶ P , one of huai and hui
is normal and there is no loss in taking hui G P . By (2.3), the situation under con-
sideration is symmetric in b and d , so we may also assume v2 D d2 and hvi G P .
LetQ D hu; b; v; d i. ThenQ Š Q8 �Q8 and huv; bd iQ D hb2d2i, a final con-
tradiction.

Lemma 2.11. Let P be a finite 2-group with a normal subgroup Q such that the
following conditions are satisfied:

(a) Q0 D �1.Q/ D �1.Z.P //.

(b) Q D hx1ihx2ihx3i, where o.x1/ � o.x2/ � 8 and o.x2/ � o.x3/ � 4, while
hx1i \ hx2i D hx1ihx2i \ hx3i D 1.

(c) P D Qhxi with ux 2 u�1�1.Q/ for u 2 Q.

(d) Œ�1.Qˆ.P //;Q� D 1.

Then P is not core-2.

Proof. It will be helpful to be aware of the fact that .uv/2
`

D u2
`

v2
`

when-
ever u; v 2 Q and ` � 2. Let Y D �1.Q/. Combining conditions (a) and (b),
we see that ˆ.Q/ D hx21i � hx

2
2i � hx

2
3i, while Q0 D Y D hŒa; b�; Œa; c�; Œb; c�i

whenever Q D ha; b; ci; in particular bQ.u/ D 2 for every u 2 Q nˆ.Q/. The
condition placed on the orders of the xi in (b) entails that Y D h Ox1i�h Ox2i�h Ox3i D
¹1º [ ¹Osjs 2 Q nˆ.Q/º. Let y1; y2; y3 2 Q. Then .y1; y2; y3/ will be called an
admissible triple if, for i D 1; 2; 3, yi has each of the properties ascribed to xi in
conditions (a) and (b). Note that this implies o.yi / D o.xi / for i D 1; 2; 3. Next,
let P D Qhxi. By (c), x2 2 Z.P / and u2x D u�2 whenever u 2 Q, so x inverts
every element of the abelian groupˆ.Q/. It follows that hxi\Q�Cˆ.Q/.x/D Y .
Thus condition (a) entails that o.x/ D 2 or Ox 2 Y .

Suppose that P is a core-2-group. First assume o.x/ > 4. Let �2.hxi/ D hzi
and let a 2 Q nˆ.Q/ satisfy Oa D Ox. If o.a/ D 4, then za 2 �1.Qˆ.P //, and (d)
yields ŒQ; a� D 1, which is not compatible with (a) and (b). Thus o.a/ � 8 and
there is an involution s in zha2i. By (d), Œs;Q� D 1, whence Œs; P � D hŒs; x�i D Ox.
For t 2 Q nˆ.Q/ with Ot 6D Ox, we have hs; tiP 2 ¹hti; hstiº; either possibility
yields bQ.t/ � 1, which contradicts Y D Q0. Consequently:

(1) o.x/ � 4, in particular Q É P .

For u 2 Q, let zu D u2Œu; x�, in other words .ux/2 D x2zu. By condition (c),
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�1.ˆ.hu; xi//D hx
2; zu; Oui, whileˆ.hu; xi/Y=Y D hu2iY=Y . Let y …Q. Then

it follows from (b) and (c) that ŒQ; y�Y=Y is abelian of degree at least 2 and neither
of the groups hy; u2; Œu; y�i and hyu; u2; Œu; y�i can be normal in P . Thus:

(2) If u 2 Q 63 y, then hu; y2; u2Œu; y�i G P .

We intend to show that o.x/ D 2. Since x is an arbitrary element of P nQ, that
will, Q being nonabelian, suffice to establish a contradiction. So let us assume
o.x/ D 4. Let a 2 Q nˆ.Q/ satisfy Oa D x2; by condition (2), ŒQ; a� D hOa; zai.
Let ŒQ; a� D W . Since bQ.a/ D 2, we have Q D ha; u1; u2i with Œu1; a� D za
and Œu2; a� D Oaza. For i 2 ¹1; 2º, xui 2 NP .hai/, and condition (2) implies that
hxui ; aiP D ha; x

2zui
i D ha; zui

i, while W D hOa; zui
i. Let u 2 u1ha;ˆ.Q/i [

u2ha;ˆ.Q/i. Since Y \hx; ui � h Oa; zu; Oui and Œu;Q� 6� W , condition (2) yields:

(3) Let u 2Qnˆ.Q/. Unless u 2NQ.hai/, Ou … Œa;Q�D hx2; zai D hx2; zui.

Every element of Q of order less than o.x3/ belongs to ˆ.Q/, so we know
o.a/ � o.x3/. Suppose that o.a/ D o.x3/. Then Q D haihv1ihv2i, where v1 …
NQ.hai/ and .v1; v2; a/ is an admissible triple. Suppose that v2 … NQ.hai/. By
condition (3) this means that Ov … W whenever v 2 v2ˆ.Q/ [ v1ˆ.Q/. Accord-
ingly, o.v1/ D o.v2/, since otherwise some w in v2hv21i would satisfy Ow D Ov1 Ov2.
So v2 2 NQ.hai/ or o.v2/ D o.v1/. If o.v2/ < o.v1/, then there is an element
w 2 v2hv

2
1i with Ow 2 W , while of course .v1; w; a/ is admissible. If o.v2/ D

o.v1/, then .v1; v1v2; a/ is admissible, while, by (3) and because of bv1v2 D Ov1 Ov2,
v2 … NQ.hai/ if and only if Ov2 … W if and only if v1v2 2 NQ.hai/ if and only if
bv1v2 2 W .

We have found an admissible triple .v1; w; a/ with Ow 2 W and Œw; a� D Oa.
Since Œa; v1w� D OaŒa; v1� and .v1w;w; a/ is admissible, we may even take
Œv1; a� D za. Recall that o.w/ � 8. From ha;wiP D ha;w2i we get Ow ¤ Oa. Since
Oa 2 Œw;Q� 6D W , it follows that Ow … Œw;Q�. Suppose that Ow D Oaza. Applying
condition (2) with u D w and y D xa, we obtain Œw;Q� D hOazw ; Oazai, in par-
ticular Ow 2 Œw;Q�. Thus the only remaining option is Ow D za. If .xv1/2 D Ow or
.xv1w/

2 D Ow, then (2) (with u D w and y D xv1 or xv1w, respectively)
again yields Ow 2 Œw;Q� D W . Since ¹zv1

; zv1wº � ¹za; Oazaº, we are forced to
conclude that .xv1/2 D Oazv1

D Oaza D .xv1w/
2 D Oazv1w . It follows that zv1

D

zv1w D za. Since zv1w D zv1
zw Œv1; w�, this yields Œv1; w� D zw . Yet now we

have wxv1 D w�1 and (2) says that hxv1; wiP D hw; .xv1/2i D hw; Oazai. This
also implies Œw;Q� D W .

Thus:

(4) If a 2 Q nˆ.Q/ and Oa D x2, then o.a/ > o.x3/.

Note that (4) entails o.x1/ > o.x3/. From now on, we take a to be of maximal
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order subject to a 2 Qnˆ.Q/ and Oa D x2. Let o.a/ D 2` and write a D xi1x
j
2x

k
3 .

It follows from (4) that ` > 2 and

Oa D x2
`�1i
1 x

2`�1j
2 x2

`�1k
3 2 h Ox1 Ox2i:

Hence there is s 2 hx1ihx2i with o.a/ � o.s/ and Os D Oa. There is thus no loss of
generality in assuming a 2 hx1ihx2i.

Now o.a/ � 8 and car D Oa for all r 2 Q of order less than 2`. This combines
with (3) to yield:

(5) If v 2 Q nNQ.hai/, then o.v/ � o.a/.

Since o.x3/ < o.a/ and CQ.a/ D haiˆ.Q/ � hx1; x2iˆ.Q/, condition (5) im-
plies that Œx3; a� D Oa and NQ.hai/ D ha; x3iˆ.Q/.

Suppose that o.x2/ < o.x1/. Then the current restrictions on a entail Oa D Ox1
only if a 2 hx1iˆ.Q/, in particular o.a/ > o.x2/. But x2 … NQ.hai/, so this
is made impossible by (5). Accordingly, Oa 2 ¹ Ox2; Ox1 Ox2º; since .x1; y; x3/ is ad-
missible whenever y 2 x2hx21 ; x

2
2i satisfies o.y/ D o.x2/, we may fix notation

such that a D x2. If o.x1/ D o.x2/, then every triple .y1; y2; x3/ that satisfies
hy1; y2iˆ.Q/ D hx1; x2iˆ.Q/ is admissible and notation may again be arranged
such that a D x2.

Let W D Œa;Q� as before. By (3), we have Ox1 … W . If y 2 x3hx1i satisfies
o.y/ D o.x3/, then .x1; x2; y/ is admissible. Thus Ox3 may be assumed to be inW ,
whence W D hOa; Ox3i results. By (3), this implies that Ox3 2 ¹zx1

; Oazx1
º. Since

o.a/ > o.x3/, there isw 2 x3ha2iwith Ow D Oazx1
: Since this means .xx1/2 D Ow,

(1) says that hxx1; wiP D hw; zw Œx1; w�i and Œw;Q� D h Ow; zw Œx1; w�i. However,
Œa; w� D Oa 6D Ow and it follows that Œw;Q� D h Ow; Oai D W , a contradiction that
ends this proof.

Lemma 2.12. Let P be a finite 2-group possessing a normal subgroupQ such that
the following conditions are satisfied:

(a) Q0 D �1.Q/ D �1.Z.P //.

(b) jQ0j D 8.

(c) Q D hx1; x2; x3i, where o.x1/ � 8 and o.x2/ D o.x3/ D 4.

(d) P D Qhxi, where ux 2 u�1�1.Q/ for u 2 Q.

(e) ŒQ;�1.Qˆ.P //� D 1.

Then P is not core-2.

Proof. Let Y D �1.Q/, let o.x1/ D 2n and let x2
n�2

1 D z. Like in the previous
proof, a triple .y1; y2; y3/ of elements ofQ will be called admissible whenever (c)
continues to be true after replacing xi by yi for i D 1; 2; 3. Observe that (b)
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implies Q0 D Œu;Q�Œv;Q� whenever u 2 Q nˆ.Q/ and v 2 Q n huiˆ.Q/, in
particular bQ.u/ D 2 whenever u 2 Q nˆ.Q/. Let y 2 P nQ. Combining con-
ditions (a) and (d), we obtain uy 2 u�1Y , in particular uy

2

D u whenever u 2 Q.
Thus y2 2 Z.P / and (a) implies that Oy 2 Y or o.y/ D 2. Since Y � Z.P /, we
have hx1i \ hx2i D hx1i \ hx3i D 1.

Assume that P is core-2. Our first goal is showing that some admissible triple
.y1; y2; y3/ satisfies hy3i \ .hy1ihy2i/ D 1. Assuming that such a triple does not
exist, we have x23 2 hx1ihx2i. Upon replacing x3 by x3z if necessary, we may
take x23 D x

2
2 . If Œx2; x3� D x22 , then there is w 2 ¹x2; x3; x2x3º with bQ.w/ � 1.

If Œx2; x3� … h Ox1; x22i, then .x1; x2; x2x3/ is an admissible triple endowed with the
extra feature we are currently seeking. If Œx2; x3� D Ox1, then x2x3z is an involu-
tion in Q nˆ.Q/, which leaves Œx2; x3� D x22 Ox1 the only undiscarded option. Yet
that yields .x2x3/2 D x22 Ox1 D .x2z/

2 D Œx2x3; x2z�; lettingR D hx2z; x2x3i, we
have R Š Q8 with R \ˆ.Q/ D ˆ.R/. One of the three cyclic four-subgroups
of R must be normal in P , giving Q an element of breadth 1 and thus clashing
with (a). Hence:

(1) Without loss of generality, hx3i \ hx1ihx2i D 1.

Observe that (1) entails hxki \ .hxi ihxj i/ D 1 for ¹i; j; kº D ¹1; 2; 3º, while Y D
Q0 D h Ox1; x

2
2 ; x

2
3i and Q D hx1ihx2ihx3i.

Since ˆ.Q/ D hx21 ; x
2
2 ; x

2
3iQ

0 D hx21iY , either every element of Y is a square
in Q, or x22x

2
3 is not. Assume the latter. If Œx2; x3� D Ox1, then x22x

2
3 D .x2x3z/

2

and if Œx2; x3� 2 x22x
2
3h Ox1i, then there is an involution in x2x3hsi and condition (a)

is contradicted. Accordingly, Œx2; x3� 2 x22h Ox1i [ x
2
3h Ox1i. Interchanging x2 and

x3 and replacing x2 by x2z if necessary, we may assume Œx2; x3� D x22 . Since
.x1; x2; x2x3/ is admissible and .x2x3/2 D x23 , one of the subgroups hx3; x22i and
hx2; x

2
3i may be taken to be normal. Let ¹i; j º D ¹2; 3º with hxi ; x2j i G P .

Assume that o.x/ > 4. By the previous paragraph’s results, Ox is a square in Q
or P D Qhyi with Œy; xi � D 1 and hxi ; y2i G P . Since bQ.xi / D 2, this implies
that Oy 2 ¹x2j ; x

2
i x
2
j º. Suppose that Oy D x22x

2
3 . Setting hsi D �2.hyi/, there is an

element v 2 hx2; x3si with Œv; P � D hx22i. Since s 2 Z.P / and Q does not have
elements of breadth 1, this is not possible.

We have found jP W Qj > 2 to imply that Ox is a square inQ. Let�2.hxi/ D hsi
and s2 D q2 with q 2 Q. Then (e) says that ŒQ; sq� D 1 and q 2 Z.Q/ D ˆ.Q/,
which means that Œx; sq� D q2 D Ox1. Letting sq D t , we have ht; x2iP D hx22i,
a contradiction. Accordingly:

(2) jP W Qj D 2.

By (1), Z.Q/ D ˆ.Q/ D hx21 ; x
2
2 ; x

2
3i and (2) implies that x2 2 Cˆ.Q/.x/ D Y .

Let V D hx2; x3; x2
n�2

1 ; xi; observe that expV D 4.
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Assume that V 0 D Y . Let U1; U2; U3, and U4 be the distinct complements
of h Ox1i in Y . For 1 � i � 4, let Di denote the preimage of Z.V=Ui / in V . Let
1 � i � 4. If jV W Di j D 4, then x2

n�2

1 … Di � Q because of x2
n�2

1 2 Z.Q/ and
Œx2

n�2

1 ; x�D Ox1. ThusQD hx1iDi andDi D hbi ; ci iY , where bi 2 ¹x2; x2
n�2

1 x2º

and ci 2 ¹x3; x2
n�2

1 x3º. On the other hand, Lemma 2.8 says that jV W Di j D 16
implies jV W Dj j D 4 whenever j 6D i . It follows that the commutator Œx2; x3� lies
in the intersection of at least three complements of h Ox1i in Y , i.e. Œx2; x3� D 1,
contradicting (b).

We have seen that jV 0j < 8. Assume jV 0j D 4. Let V 0 D h Ox1; si and Y D
V 0�hti. By Lemma 2.8, s may be assumed to satisfy jV=hs; ti W Z.V=hs; ti/j D 4.
It follows thatQ D hx1iD withD \ hx1i D h Ox1i and ŒV;D� � hsi. Perhaps upon
replacing x2 and x3 by other elements of x2hx2

n�2

1 i and x3hx2
n�2

1 i, respectively,
we may take D D hx2; x3iY ; bearing in mind that Œx2; x3� ¤ 1, we obtain that
Œx2; x3� D s, which implies V D hx2; x3iCV .hx2; x3i/.

Let z 2 CV .hx2; x3i/nQ. Forw 2 ¹x2; x3; x2x3º, we have hw; ziP D hw; z2i,
and Œw;Q� D hw2; z2i, in particular hŒx2; x3�i D Œx2;Q�\ Œx3;Q� D hz2i D hsi.
For each u 2 ¹x1x2; x1x3; x1x2x3º, .u; x2; x3/ is an admissible triple satisfying
huihx2i \ hx3i D 1. We are hence free to assume Œx1; xi � D x2i for i D 2; 3. Let
V1 D hx2; x3; x

2n�2

1 ; x1zi. Then V 01 � h Ox1; x
2
2 ; x

2
3i D Y . Replacing V by V1 in

the preceding paragraph yields the desired contradiction.
Since Ox1 2 V 0, only the case jV 0j D h Ox1i is left. Then Œx2; x3� D Ox1 and there

is z 2 CV .hx2; x3i/ nQ. The argument is continued exactly as in the previous
paragraph.

3 Proof of the theorem

For the remainder of the paper, G denotes a minimal counterexample to the
theorem. In particular, p D 2. In view of Lemma 2.3, the following definition
makes sense:

Definition. Let A be the set of abelian subgroups of G of maximal order sub-
ject to containing ˆ.G/. Let A 2 A. The map x 7! x2 induces a G-isomorphism
A=�1.A/! ˆ.A/, i.e. every subgroup of A=�1.A/ is normal in G=�1.A/. Let
M D Ã2.A/�1.A/ and let HA be the preimage of CG=M .A=M/ in G.

Note that HA D ¹h 2 G j Œb2; h� 2 hb8i for b 2 Aº. Also observe that HA �
A � Z.HA/, while Lemma 2.1 entails jG W HAj � 2.

Notation. We fix an element A of A and let H D HA. Let Y D �1.A/ and let
Z D �1.Z.H//. The characteristic epimorphism G ! G=Y will be denoted by
a bar. Reviving earlier notation, we let N D �1.Z.G//.
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Since every subgroup ofG of order 4 intersectsZ.G/ nontrivially, jY W N j � 2.
In particular, Z D Y or Z D N . We start off the proof by stating two slight, but
useful, observations.

Lemma 3.1. Let c 2 A. Then the following hold:

(a) Œc; NH .hci/� � �1.hc2i/.

(b) Let x 2 G nH . If Œx; Y � D 1, then Nc Nx D Nc�1.

Proof. Let h 2 NH .hci/. The assertion being certainly true if o.c/ � 4, we take
o.c/ > 4. Now hŒc; h�i D hc2iwould imply hŒc2; h�i D hc4i, yet c4 … hc8i because
of o.c/ > 4. Thus Œc; h� 2 hc4i and Lemma 2.5 yields (a).

Let x 2 CG.Y / nH . LetW be a complement of h Oci in Y . Since x centralises Y ,
W is normalised by x. Since x2 2 A, conjugation by x induces an automorphism
of hciW=W of order 2. Since x … H , o.c/ � 4 or conjugation by x is nontrivial
on h Nci. This proves (b).

Lemma 3.2. Suppose that Y 6D Z. Let Y D Z � hsi. Then A D hsi � hbi �D,
where hbiD � Œs;H � 6� D, while every subgroup of D is normal in G.

Proof. Since �1.ˆ.A// � Z.G/, the subgroup hsi has a complement C in A.
Let C D hc1i � � � � � hcri. Select b 2 ¹c1; : : : ; crº with the property that Œs;H �
projects onto h Obi along the decomposition. Let E D

Q
cj 6Db
hcj i. For e 2 E, we

have he; siG 2 ¹hei; hesiº, and hs; bi therefore possesses a complement D in A
that is the direct product of cyclic factors that are normal subgroups of G. In
particular, D GG. Given d1; d2 in D such that hdi i GG for i D 1; 2, we have
hs; d1d2iG 2 ¹hsd1d2i; hd1d2iº. Now ˆ.hsd1d2i/ � D, while, for x 2 H , we
have Œsd1d2; x� � Œs; x� .modD/, which shows that hsd1d2i cannot be normal
in G. Hence hd1d2i is. Induction on the length of d as a product of powers of the
cj establishes the assertion.

Lemma 3.3. ŒH;A� � Z.

Proof. We start by establishing ŒA;H� � Y . By way of contradiction, assume
there is y 2 H such that ŒA; Ny� ¤ 1. Lemma 2.1 yields the existence of n 2 N
satisfying hŒ Nb; Ny�i D h Nb2

n

i whenever b 2 A. Note that the definition of H implies
n > 1. Applying Lemma 2.5 to the groups h Nb; Nyi, b 2 A, we obtain expA D 2nC2.

Let e 2 A n�nC1.A/. By Lemma 3.1, y … NG.hei/, so there is a 2 Y n hei
with hŒe; y�i D he2

n

ai. If Œa; y� D 1, then hai G he; yi and Lemma 2.5, applied to
he; y; ai=hai, provides a contradiction. It follows that a … Z.H/. Applying Lem-
ma 3.2 yields a direct decompositionA D hai � hbi � C with hb; C i 3 Œa; y� … C
and all subgroups of C normal in G. Lemma 3.1 then yields ŒC ;H� D 1, and,
according to Lemma 2.1, expC < 2nC2 and H D h NyiCH .A/.
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If ha; bi D ha; d i with hd i GG, then Lemma 3.1 implies Œb; y� 2 Y � ŒA;H�;
hence the only maximal subgroup of ha; bi possibly normal in G is ha; b2i. Thus
Œa; G� D �1.hbi/. Since A D hbi�nC1.A/ and ŒA; y; y� ¤ 1 D Œ�nC1.A/; y; y�
we may, perhaps upon replacing a by a different element of aN , assume that
Œb; y� D b2

n

a.
Let x 2 CH .a/nA. Then ŒY; x� D 1, and, as seen above, this implies Œ Nb; x� D 1.

If Œx; b� … Z, then hŒxy; b�iZ D hb2
n

iZ and Lemma 2.5 provides a contradic-
tion when applied to the section hxy; bi�1.C /=�1.C /. HenceCH .a/ � CH .b2/.
ThusCH .a/,CH .b2/ and the preimage ofCH=Z.bZ/ inH are one and the same –
maximal – subgroup.

Let 1 ¤ c 2 C and let b� 2 hb2i with o.b�/ D o.c/. Since ha; .b�c/2i ¶ G,
there is " 2 ¹0; 1º such that ha"b�ci GG. Since Œa"b�; CH .a/� D 1, we obtain
ŒC; CH .a/� D 1, in particular ŒA; x� D hŒb; x�i � Z. Since x2 2 CA.x/, it follows
that x2 is of the form a˛b2ˇc for suitable integers ˛ and ˇ and c 2 C . Thus we
have .xb�ˇ /2 D a˛cŒx; b�ˇ . Since 2nC2 > 8, there is Qb 2 hb2i � CA.x/ satis-
fying Œx; b� � Qb2 .modhai�1.C //. It follows that xhbi D uhbi with u2 2 haiC .
Since haci ¶ G whenever c 2 C , u2 2 C . Next we show u2 … ˆ.C/. Suppose
otherwise; then, since Œu; C � D 1, there is c 2 C with .uc/2 D 1. Lettingw D uc,
we obtain that ha;wi Š E4 with ha;wiG D 1.

Thus u2 2 Cnˆ.C/, in particular o.u/ > 2. Since o.b/ > expC , 2nC2 � o.u/.
As ha; u2i ¶ G, ha; uiG D ha"ui with " 2 ¹0; 1º. It follows that hŒb; u�i D
ŒA; u� D h Oui. Pick b� 2 hbi with o.b�/ D o.u/. If o.u/ D 2nC2, then, since
n > 1, .ub/2

nC1

D Ou ObŒu; b�.
2n

2 / D Ou Ob, if o.u/ < 2nC2, then ub� D b�u anyway.
Letw D b�u and " 2 ¹0; 1º. We have just seen that Ow D Ou Ob, whence neither Œa; G�
nor Ou D Œu; b� D Œa"w; b� is contained in hw2i. It follows that none of the maximal
subgroups of ha;wi is normal in G.

We are done proving ŒA;H� � Y . Assume there is x 2 H with ŒA; x� 6� Z.
Then Y D ha;Ziwith a 2 ŒA; x�. We apply Lemma 3.2 to obtain a decomposition
A D hai � hbi � C , where Œa;H� 6� C and every subgroup of C is normal in G.
Note that Œha; C i; x� � Z, and Œb; x� D az with z 2 Z. Since both CH .a/ and
the preimage of CH=Z.bZ/ in H are proper subgroups of H , we may addition-
ally assume Œa; x� ¤ 1. This yields Œb; x2� D Œb; x; x� D Œa; x� ¤ 1, contradicting
ˆ.G/ � A.

If every subgroup of A were normal in H , then jH W Aj D 2 by Lemmas 2.1
and 3.3. This justifies the following:

Definition. Let k 2 N be minimal with the property that there is B 2 A in which
not every subgroup of �k.B/ is normal in HB .
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We shall always assume A to be chosen to actually possess a cyclic subgroup
of order 2k that is not normal in H (D HA). It may be useful to keep in mind that
�k�1.A/ � Z.H/ (see Lemma 2.6).

Lemma 3.4. expH 0 � 4 and expH 0 � 2 unless k � 2.

Proof. Let u; v 2 H . According to Lemma 3.3, Œ Nu; Nv2� D 1 D Œ Nu; Nv�2Œ Nu; Nv; Nv�. It
follows that Œ Nu; Nv� is an element of NA inverted by Nv, which is possible only if
o.Œu; v�/ � 4.

Suppose that k � 3. Together with Lemma 2.6, the above implies that Œu; v� 2
�2.A/ � Z.H/, i.e. Œu; v�2 D Œu2; v� D Œv2; u� 2 h Oui \ h Ovi. Thus o.Œu; v�/ > 2
necessitates OuD Ov. Suppose that o.Œu; v�/D 4. We have seen that u2 …Z.hu; vi/ 63
v2. Lemma 2.6 consequently yields o.w/ � 2kC1 � 24 for w D u; v. Without
loss, there are positive integers m and ` satisfying ` � m � 2, u2

`

D v2
m

and
hui \ hvi D hu2

`

i. It follows that

.vu�2
`�m

/2
m

D v2
m

u�2
`

Œu; v�2
`�m.2m

2 /:

Thus .vu�2
`�m

/2
m

D 1 unless ` D m D 2. Assume the latter. Let o.u/ D 2n.
Then .vu�1/4 D Œu; v�2 D u2

n�1

. Since n � 4,

.vu�1u2
n�3

/4 D u2
n

Œu2
n�3

; v�2 D 1:

Thus hu; vi D hu; yi with hui \ hyi D 1 and Œu; y� D Œu; v�. We have seen this to
be incompatible with o.Œu; y�/ D o.Œu; v�/ D 4.

The cases k � 2 and k D 1 have been allocated their own subsection each.
It will soon turn out to be the case that k D 2 is the most difficult case by far.

3.1 The case k > 1

Lemma 3.5. k � 2.

Proof. Assume k � 3. By Lemmas 2.6, 2.9, and 3.4, H 0 � Z, jH W Aj � 4, and
jA W Z.H/j D 2. It follows thatG ¤ H . SinceH 0 � Z, we haveˆ.H/ � Z.H/,
while Lemma 2.1 says that y2 2 CA.y/ � �2.A/ � Z.H/ whenever y 2 G nH .
Accordingly, ˆ.G/ � Z.H/. Let G D H hxi and let A D haiZ.H/. Note that
o.a/ � 8 because of Lemma 2.6 and that Œa;H� D ŒA;H� is a normal elementary
abelian 4-subgroup of G.

Assume there is s 2 Y nZ.G/. Since Œa;H� D Œas;H�, either Œa;H� D hs; Oai,
or hs; aiG D hs; a2i. In either case Œx; s� D Oa. Since Œx; s� is independent of a, it
follows that o.a/ D 2k D expA and �k�1.A/ D Z.H/, i.e. A D hai �D with
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D ��k�1.Z.H//DZ.H/. Let h 2H nA. Since h2 2 CA.h/DZ.H/, we have
o.h/ � 2k and since k � 3, there is an element a� 2 hai satisfying .ha�/2 2 D.
Yet if h2 2D, then hs; h2i¶G, whence hs; hiG 2 ¹hhi; hshiº. It follows thatH D
Ahg; hiwith g2 2 D 3 h2 and hgi GG F hhi. Since b.a/ D 2, this forces the con-
clusion Œa; g� D Og, Œa; h� D Oh and hgi \ hhi D 1, from which Œg; h� D 1 results.
However, we have seen that ˆ.G/ � Z.H/, which, since jZ.H/hh; gij > jAj,
contradicts the fact that A 2 A. Accordingly,

Y � Z.G/: (3.1)

By (3.1) and part (b) of Lemma 3.1, Nb Nx D Nb�1 whenever b 2 A. Since expA �
2k > 4, it follows that CG.�2.ˆ.G/// D H , in particular H D HB whenever
B 2A. SinceZ.H/hhi 2A whenever h 2 H nZ.H/, this implies in conjunction
with (3.1) that �2.H/ � Z.H/, Y D �1.H/ D �1.Z.G// and hx 2 h�1Y for
all h 2H . Note that x2 2 CA.x/��2.A/�Z.H/, so o.x/� 8 and x2 2Z.G/.

Assuming that Y 6D H 0, we can find z 2 Y n .H 0[¹Oaº/. Induction yields a nor-
mal subgroup B of G with jG W Bj � 4, ˆ.G/ � B , and B 0 D hzi. If B � H ,
then B 2 A, a contradiction. Hence G D HB . However, a2 2 ˆ.G/ � B and if
y 2 B n A, then a2y D a�2, leaving o.a/ D 8 and z D a4 the only possibility.
Yet z 6D Oa. Accordingly,

Y D H 0: (3.2)

For a supplementQ ofZ.H/ inH , (3.2) yieldsH 0 D �1.H/ D Q0, in particular
Q GG. We let H D Z.H/ha; b; ci and Q D ha; b; ci. Note that ˆ.H/ \Q D
ˆ.Q/ D Z.Q/ D Z.H/ \Q. Let expQ D 2m and let u 2 Q be of order 2m.
As a cyclic subgroup of maximal order in ˆ.Q/, hu2i has a complement D
in ˆ.Q/. Note that huiˆ.Q/ D hui �D. Since Q0 � Y , every coset whuiˆ.Q/
withw 2 Q n huiˆ.Q/ contains an element y with y2 2 DY . Since we know that
�2.H/ � Z.H/, it follows that expD > 2.

Let d be an element of D of maximal order and let D D hd i �E. Then

Q0 � hu2i � hd2iE 6� ˆ.Q/;

and there is v 2 Q with v2 … hu2; d2iE, in particular v … huiˆ.Q/. Assume that
hvi \ hui ¤ 1. Let 2n D jhvi W hui \ hvij. Note that n � 2. Without loss v2

n

is
a power u2

`

; note that ` � n. It follows that .vu�.2
`�n//2

n

D 1. There is hence no
loss in presuming hvi \ hui D 1. It follows that hu2; d i �E D .hu2i � hv2i/E,
in particular jˆ.Q/j D jhu2ijjhd ijjEj � jhu2ijjhv2ijjEj. If o.v2/ > o.d/, then
o.u2/ > o.d/ and Ov D Ou. Accordingly, ˆ.Q/ D hu2i � hv2i �E.

Finally, let w 2 Q n hu; viˆ.Q/. SinceQ0 � Y , there is an element y 2 hu; vi
satisfying .wy/2 2 h Ou; Ovi � E. Since o.u/ � 8 � o.v/ and �2.H/ � Z.H/,
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there is an element z 2 �2.hu2; v2i/ such that .wyz/2 2 E. Hence we may take
w2 2 E and it follows that hwi \ huihvi D hw2i \ hu2; v2i D 1. Accordingly,
H 0 D Q0 D h Ou; Ov; Owi andQ D huihvihwi. Each of the elements u; v;w has order
at least 8, in particular �2.Q/ � ˆ.Q/. Let P D Qhxi. We have established that
P satisfies conditions (a), (b), and (c) of Lemma 2.11. Moreover, we know that
o.x/ � 8 and x2 2 Z.G/. Thus either jP W Qj D 2 or o.x/ D 8, hxi \Q D hx4i
and any element s of �1.ˆ.P /Q/ nQ satisfies s D x2y with y 2 �2.Q/. Any
such s has to centralise Q, which shows that condition (d) in the premise of
Lemma 2.11 applies as well. So Lemma 2.11 yields a contradiction.

Lemma 3.6. If k > 1, then hŒu; v�i GH whenever u; v 2 H .

Proof. Suppose otherwise. Due to Lemmas 2.6 and 3.4, k D 2 and expH 0 D 4.
Let u; v 2 H be such that hŒu; v�i ¶ H and let hu; vi D V . Since k > 1,
o.Œu; v�/ D 4. Let ¹x; yº be a generating set of V . Then hŒx; y�iY D hŒu; v�iY , in
particular hŒx; y�i ¶ H . Since Œx; y; x� D Œx2; y�Œx; y�2 2 h OxiŒx; y�2, the product
U D hxihŒx; y�i is a subgroup of H . Note that

H FÃ1.U / D ˆ.U / D hx2ihŒx; y�2i and Œx; y�2 D Œu; v�2:

Next, y … NG.hxiˆ.U // – otherwise Œx; y� 2 hx2; Œx; y�2i, i.e. Œx; y� 2 hx2i and
hŒx; y�i GH . Since hxŒx; y�iˆ.U / D .hxiˆ.U //y ; the only maximal subgroup
of U available for normality in G is hŒx; y�; x2i. Note that this is possible only if
o.x/ > 2.

If Œx; y�2 2 hx2i, then a power x� of x2 satisfies .Œx; y�x�/2 D 1. Letting
Œx; y�x� D w, k > 1 implies w 2 Z.H/ and Œx; y;H� D Œx�;H � � h Oxi �

hŒx; y�2i, a contradiction. We summarise:

(1) Let x 2 V nˆ.V /. Then

o.x/ > 2; hxi \ hŒu; v�i D 1; Œu; v;H� � hŒu; v�2; Oxi:

If Œu; v; x� D 1, then Œx2; y� D Œu; v�2 D Ox, contradicting (1). Thus:

(2) CV .Œu; v�/ D ˆ.V / and Œu; v;H� D Œu; v; V � D h Ox; Œu; v�2i holds for every
x 2 V nˆ.V /.

By (2), V 6� NG.hŒu; v�i/. We choose notation such that u … NG.hŒu; v�i/ 3 v.
Let o.u/ D 2n, noting that (1) implies n > 1. From Œu; v�2Œu; v; u� D Œu2; v� ¤ 1

and Lemma 2.6, we deduce

(3) n � 3 and Œu2; v� D Œu; v�2Œu; v; u� D Ou.

Furthermore, (1) implies that Œv2; u� D Œu; v�2Œu; v; v� 2 h Ovi \ hŒu; v�i D 1, i.e.

(4) Œu; v2� D 1 and Œu; v; v� D Œu; v�2.
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Suppose that o.v/ > o.u/. Let s 2 hv2i be of order 2n. Then (4) implies that
Œu; s� D 1. In particular, (1) may be used to exclude the possibility that Ou D Ov,
for this would yield the existence of in uhsi. Next, (3) implies that

Œu2s2; v� D Œ.us/2; v� D Ou 2 husi:

But n > 1 and, as we have seen, bus D Ou Ov 6D Ou. It follows that 2n � o.v/. Since
.uv/2 D u2v2Œv; u�v D u2v2Œu; v�, hu2v2Œu; v�i G G. By (3), Œu2v2Œu; v�; u� D
Œu; v; u� D OuŒu; v�2. By (1), OuŒu; v�2 … h Oui, and we obtain that if o.v/ < 2n, then
n D 3.

Assume that o.v/ D 2n. If Ou 6D Ov, then (2) implies Œu; v�2 D Ou Ov, while (3) says
Œu; v; u� D Ov. Thus Œu2v2Œu; v�; u� D Ov 2 hu4v4Œu; v�2i. Thus n > 3 – otherwise
o.u2v2Œu; v�/ � 2 – and Ov D Ou Ov, impossible. Accordingly, Ou D Ov. Let jhvi W hui\
hvij D 2`, observing that ` � 2. Suppose that ` D 2. Then, without loss, u4 D v4,
and .uv�1/4 D Œu; v�2, contradicting (1). If ` > 3, then there is a generator v1 of
hvi with the property that

�1.hu
2v2Œu; v�i/ D hu2

`�1

v2
`�1

1 i:

Combined with (3) and (4), this yields

Œu2v2Œu; v�; v� D OuŒu; v�2 D u2
`�1

v2
`�1

1 :

Hence there also is a generator u1 of hui satisfying

u2
`�1

1 v2
`�1

1 D Œu; v�2:

Since ` > 3, it follows that s D u2
`�2

1 v2
`�2

1 Œu; v� is now an involution contained
in Œu; v�Z.H/, contradicting k > 1. Now ` D 3 is the only option left: then there
is a generator v1 of hvi satisfying

�1.hu
2v2Œu; v�i/ D hu4v41 Œu; v�

2
i;

i.e. OuŒu; v�2 D u4v41 Œu; v�
2, i.e. Ou D u4v41 . Yet this implies v4 2 hui and clashes

with ` D 3.
The outcome of the preceding two paragraphs is that o.u/ D 8 and o.v/ D 4.

If u4 D v2, then o.uv/ D 8, while .uv/4 D u4Œu; v�2 6D u4 and the pair .uv; v/
satisfies every constraint previously placed on .u; v/. We summarise:

(5) o.u/ D 8, o.v/ D 4, and u and v may be chosen to satisfy hui \ hvi D 1.

We shall assume hui \ hvi D 1 from now on. By (2),

Œu; v;H� D hŒu; v�2; Oui D hŒu; v�2; Ovi D hu4; v2i:

Thus, (1) yields Œu; v�2 D u4v2.
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Suppose that A has an element b of order 8. Then .vb/4 D b4 ¤ 1, while
Œu; vb� 2 Œu; v�Z. Every assertion so far made about .u; v/ equally applies to
.u; vb/, whence (5) delivers a contradiction. It follows that

(6) expA D 4, in particular G D H .

Together with k > 1, (6) implies that Y � Z.G/. Let B D hu2; Œu; v�i. By (1)
and (5), B Š C4 � C4, and (6) yields the existence of a complement of B in A,
to be called D. For d 2 D, hd; Œu; v�iG 2 ¹hd; Œu; v�2i; hdŒu; v�; Œu; v�2iº; thus D
may be taken to be a direct product of subgroups hd i with hd; Œu; v�2i GG. Let
d; d 0 2 D be such that hd; Œu; v�2i GG F hd 0; Œu; v�2i. Then hdd 0; Œu; v�2i GG,
because Œdd 0Œu; v�; u� 2 u4hˆ.D/; Œu; v�2i. Thus hE; Œu; v�2i G G for all sub-
groups E of D. Let d 2 D. We have seen that some element w of ¹u; v; uvº is
inNG.hd i/. Nowˆ.hw; d i/D hw2; d2i 2 ¹hu2; d2i; hv2; d2i; hu2v2Œu; v�; d2iº,
i.e. ˆ.hw; d i/Y 63 Œu; v� 2 ŒG;w�Y D ŒG;wd�Y . This forces the conclusion
hd; Owi GG. Now Ow 2 ¹u4; v2º and Œd;H� 2 hd2; Œu; v�2i \ hd2; Owi, i.e. hd i GG.

(7) A D hu2, Œu; v�i �D with every subgroup of D normal in G.

Assuming expD D 4, let d 2 D n�1.D/. Due to Œu; vd � 2 hŒu; v�iZ, we may
replace v by vd in (1)–(4), to obtain Œu; v;G� � h.vd/2; Œu; v�2i \ hv2; Œu; v�2i.
If Œv; d � D 1, this yields d2 2 hv2; u4i, a contradiction. By (7), this means that
v inverts each element of D. It follows that ˆ.hv; Œu; v�d i/ D hv2; u4d2i, and,
since Œu2; v� D Œu2; vŒu; v�d � D u4, we obtain ŒŒu; v�d;G� � hv2; u4d2i. Now
Œd; uv� D 1 is impossible, as it would imply

ŒŒu; v�d; uv� D Œu; v; u�Œu; v; v� D u4:

Thus ŒD; u� D 1 – according to (7), CG.D/ÉG. Let hu2d; Œu; v�i D W . From
Œu2dŒu; v�; u�D Œu; v; u�D v2 … hu4d2; u4v2i Dˆ.W /, we infer that Œu2d;G��
ˆ.W /. Since both hu2i and hd i are normal in G, this yields

Œu2d;G� � hu4d2; u4v2i \ hu4; d2i D hu4d2i;

i.e. hu2d i GG. Lemma 2.1 yields CG.u2/ D CG.D/. By (1)–(4),

G D huiNG.hŒu; v�i/ D hu; viCG.Œu; v�/:

Since o.v/ D 4 and G D H , we have

.uv/2 Š u2Œu; v� .modZ.G//;

i.e. hu2Œu; v�i GG. Thus we obtain that CG.Œu; v�/ � CG.u2/, and

CG.Œu; v�/ D CG.hŒu; v�; u
2;Di/ D CG.A/ D A:

Accordingly, jG W Aj D 4.
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We have seen that expD D 2, i.e. A D BZ. By (1), B GG, according to (3),
hŒu2; G�i D hu4i D hŒu2; v�i and according to (3) and (4), Œu; v;G� D hu4; v2i D
Œu; v; hu; vi�. If s 2 G satisfies Œu; v; s� D 1 6D Œu2; s�, then Œu2Œu; v�; s� D u4 6D

u4Œu; v�2; however, hu2Œu; v�i G G. Consequently, G D hu; viCG.hu2; Œu; v�i/ D
hu; viA, a contradiction that finishes this proof.

Lemma 3.7. If k D 2, then H 0 � Z.

Proof. Assume otherwise. Pick x 2 H with x2 … Z.H/ and let y 2 H n CH .x2/.
By Lemma 2.6, �1.ˆ.G// � Z and hŒx; y�i GH by Lemma 3.6, so Œx2; y� D
Ox D Œx; y�2Œx; y; x�D Œx; y�2. In particular, Œx; y; x�D 1 and Lemmas 2.1 and 3.6
yield ŒH; x; x� D 1. The assumption Œx; y; y� D 1, however, implies that Ox D
Œx; y2� D Oy. If this is true, we may assume x2

m

D y2
`

, where m � ` � 2 and
2` D jhyi=.hxi\hyi/j. Eitherm D ` D 2, orw D yx�2

m�`

satisfies hwi\hxi D
1, hŒx; w�i D hŒx; y�i, and Œx; w;w� D 1, a contradiction. If m D ` D 2, we have
o.x2y�2/ D 2; yet Œy; x2y�2� 6D 1 and k > 1 is contradicted.

Accordingly, Œx; y; y� 6D 1; by Lemma 3.6, this means Œx; y�y D Œx; y��1. If
o.x/ > 8, then there is x� 2 hx4i < Z.H/ such that o.Œx; y�x�/ D 2, and k > 1
forces the conclusion Œx; y; y� D 1. Thus o.x/ D 8. Suppose there is u 2 H such
that Œu2; x� 6D 1. Then, as we have seen, o.u/ D 8 and u4 D x4 D Œx; u�2. It fol-
lows that z D u2x2 is an involution with Œz; x� ¤ 1. Finally, Lemmas 2.1 and
3.6 say that Œv; y�y D Œv; y��1 whenever v 2 H , implying y2 2 Z.H/. We sum-
marise:

(1) If y 2HnCH .ˆ.H//, then y2 2Z.H/. Any element v ofH with v2 …Z.H/
has order 8 and centralises ˆ.H/.

Let ˆ.H/ \Z.H/ D T and let K D CH .ˆ.H//. For all g; h 2 K we have
1 D Œg2; h� D Œg; h�2, i.e. K 0 � Z. By (1), the Hughes subgroup of H=T is con-
tained inK=T , whenceK ÉH and every element ofK is inverted by y modulo T .
Suppose there is u 2 K with o.u/ > 8. By (1), u2 2 Z.H/, whence Œw; u2� D
Œw; u�2 D 1wheneverw 2H , in particular .xu/2 D x2u2Œx; u� 2 x2Z.H/. How-
ever, .xu/8 D u8 ¤ 1, contradicting (1). Hence expK D 8. Let L D �2.K/,
noting that, sinceK 0 � Z, we have expL � 4. If v 2 K n hxiL, then v4 6D x4 and
.vx/2 � v2x2 .modZ/. It follows that y normalises every subgroup of hv2; x2i D
hv2i � hx2i. Accordingly, Œv; y�2 D Œv2; y� D v4 6D 1 andZ.H=Z/ D L=Z. Ap-
plying Lemma 3.3, we obtain A � L. We summarise:

(2) L=Z D Z.H=Z/, in particular expA D 4 and G D H .

From K ÉH D G and Lemma 2.9, we further infer:

(3) jK W Aj D 4 and either jA W Z.K/j D 2, or A D hc; d iZ.K/ with bK.c/ D
bK.d/ D 1. In particular, jŒA;K�j � 4 and jK 0j � 8.
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Suppose there is an element z 2 Y nK 0. Via induction, G has a normal sub-
group B of index 4 satisfying B 0 D hzi. Unless B is abelian, B 6� K. Given
t 2 B nK, we have NB 3 ŒNt ; Nx� D Œ Ny; Nx�, and z D Œx; t; t � D Œx; y; y� D x4. It is,
however, possible to choose z distinct from x4. Thus:

(4) Y D K 0.

We consider the possibility that jA W Z.K/j D 2 and jY j D 8. First suppose that
jK W Lj D 4, i.e. L D A. Letting A D hviZ.K/, we obtain K D hv;w; xiZ.K/
with o.w/ D o.x/ D 8 and hwi \ hxi D 1. Since o.v/ D 4 and “v2 2 hw4; x4i”
would necessitate the existence of involutions in A nZ, .hvihwi/ \ hxi D 1 and
K D hwihxihviZ.K/. Let Q D hx;w; vi. By (4), Y D hx4; w4; v2i D �1.Q/.
As y inverts the elements of hw2i � hx2i, Z.G/ \Q D Y . Since expA D 4,
o.y/ � 8. Let P D Qhyi. We have already noted that P satisfies (a)–(c) in the
premise of Lemma 2.11. Suppose that ˆ.P /Q > Q. It follows that o.y/ D 8 and
any t 2 �1.ˆ.P /Q/ nQ must be of the form t D y2q with q 2 �2.Q/. Now
�2.Q/ � L \Q D A \Q so that t 2 A and k D 2 implies ŒQ; t � D 1. Hence P
satisfies the hypothesis of Lemma 2.11 and is not core-2. Thus:

(5) If Z.K/j D 2 and jY j D 8, then jK W Lj D 2.

We continue to work from the assumptions jA W Z.K/j D 2 and jY j D 8. By (5),
we may writeL D ha; viZ.K/. LettingQ D ha; v; xi, we haveK D Z.K/Q and
Y D Q0. LetG D Khyi. Since Nxy D Nx�1 and ŒL; y� � Y , y 2 NG.Q/. From (1)
and (2) we know that ˆ.G/ � Z.K/, so if w 2 L nZ.K/, then hw;Z.K/i 2 A

and k > 1 implies �1.hw;Z.K/i/ � Z.G/. Suppose that o.y/ D 8. Then we
have y2 2 Z.G/ � L. Any involution in Qhy2i nQ is equal to a product y2q
with q 2 �2.Q/, in particular q 2 L 3 y2 and y2q 2 �1.L/ � Z.G/. Letting
P D Qhyi, P therefore satisfies the hypothesis of Lemma 2.12 and is not core-2.
Consequently:

(6) If jA W Z.K/j D 2, then jY j � 4.

We stick to the hypothesis jA W Z.K/j D 2. As jK W Z.K/j D 23, it follows that
Z.K=W / 6� Z.K/=W whenever W É Y . By (6), jK 0j � 4, and there is v 2 K
with bK.v/ D 1. For such a v, though, CK.v/ is an abelian subgroup of K con-
taining ˆ.G/ and of greater order than A. So:

(7) jA W Z.K/j D 4.

By (3), jŒA;K�j � 4. Whenever K D hx; uiA, we have Y D ŒA;K�hŒx; u�i. Let
W be a maximal subgroup of Y not containing x4. By Lemma 2.7, we have that
jK=W W Z.K=W /j � 4 and A=W \Z.K=W / has index at most 2 in A=W .

Assume that jŒA;K�j D 4. From (2) and k D 2,AD ha; biZ.K/, where b.a/D
b.b/ D 1 and b.ab/ D 2. By Lemma 2.6, k > 1 implies ha; bi Š C4 � C4. Note
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that this excludes K 0 D ŒA;K�. Indeed, if that was the case, then (4) would imply
Y D ha2i � hb2i and there would be c 2 A nZ.K/ satisfying c2 D x4. However,
this would make cx2 an involution outside Z.G/.

Let Œa;K� D hsi and Œb;K� D hti. We have seen jY j D 8. So set Y D hs; t; ri.
If x4 … hs; ti, then W D hx4s; sti is a maximal subgroup of Y not containing x4

and satisfying jA=W W A=W \Z.K=W /j D 4, a contradiction. This places x4

inside ŒA;K�. Set ŒA;K� D hx4; zi. Lemma 2.8 says that

jA=hz; ri W Z.K=hz; ri/ \ A=hz; rij � 2;

which implies Œa;K� � hzi or Œb;K� � hzi. Thus ¹s; tº D ¹z; x4zº. However,
Lemma 2.8 also says that jA=W W A=W \Z.K=W /j � 2 for at least two of the
three maximal subgroups W of Y that do contain x4, namely hs; x4i, hr; x4i, and
hrs; x4i. This is not the case.

(8) jA W Z.K/j D 4 and jŒA;K�j D 2.

By (4) and (7), Y Š E4. The fact that ha; bi Š C4 � C4 remains unchanged, and
we arrive at a contradiction as in the preceding paragraph. The proof is done.

Lemma 3.8. k D 1.

Proof. Assume k > 1. The proof follows similar lines to those of Lemmas 3.5
and 3.7. Lemmas 2.9, 3.5, and 3.7 say that:

(1) k D 2, H 0 � Z, G ¤ H , jH W Aj D 4, and jA W Z.H/j 2 ¹2; 4º.

From G ¤ H we deduce expA > 4. Let G D hyiH .
If s 2 Y nZ.G/ and v 2 H , then either Œs; y� D Ov or hv; siG 2 ¹hvi; hvsiº,

the latter forcing hvi GH . Let C4 Š hai � A with hai ¶ H . We have seen that
a2 D Œs; y�. Since k D 2 and ˆ.A/ � Z.H/, it follows that a2 … Ã2.A/ and hai
has a complement in A. Let A D hai �D and let b be an element of maximal
order inD. SinceG 6D H , o.b/ > 4. Let�2.hbi/ D hb�i, noting that b� 2 Z.H/.
Each of the subgroups hbi; habi, and hab�i is normal inH , in particular Œa;H� D
Œab�;H � D ha2 Obi. Let v 2 H n CH .a/. Then Œv; ab� D a2 ObŒv; b�. It is therefore
impossible that both Œv; b� and Œv; ab� are elements of 2 h Obi. Accordingly:

(2) Y � Z.G/.

Suppose that Y > H 0. Let b be an element of A of order 8. Letting z 2 H 0 n Y ,
induction yields a normal subgroup B of G with ˆ.G/ � B , jG W Bj D 4 and
B 0 � hzi. Since H \ B is abelian, B 6� H . In conjunction with Lemma 3.1 (b),
(2) implies that, for c 2 A, there is zc 2 Y with cy D c�1zc . In particular, we have
b2x D b�2 for x 2 B nH . Now b2 2 B implies that z D b4; yet if Y ¤ H 0, then
Y ¤ H 0 [ ¹b4º. Hence:

(3) Y D H 0.
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Since b2 2
T
B2AB and b2x D b�2 whenever x … H , Lemma 3.3 says that:

(4) For every B 2 A, CG.b2/ D H D HB .

Suppose that jA W Z.H/j D 2 and jY j D 8. By condition (3), bH .h/ D 2 holds
for h 2 H nZ.H/. Since H thus is void of elements of breadth 1, it follows that
x2 2�2.Z.H//whenever x 2GnH . Accordingly,ˆ.G/�Z.H/ and CH .h/D
hZ.H/; hi 2 A whenever h 2 H nZ.H/. It now follows from (4), from (b) in
Lemma 3.1 and from the definition of k that Y D �1.H/ and that, for h 2 H ,
there is an element zh 2 Y with hy D h�1zh. Let H D hu; viA, where o.u/ D
2n D expH > 4. Because of k > 1, v2 … hu4i; if u2 D v2, then .uv�1/2 D Œu; v�,
and, since the coset uv�1ˆ.H/ is not permitted to contain involutions, Œu; v�… hui.
In any case there isw 2 vhuiwith hu; vi D hu;wi and hui \ hwi D 1. We replace
v by w if necessary.

Since k D 2, it follows that A D haiZ.H/, where o.a/ D 4. If o.v/ > 4, then
k > 1 forces hai \ huihvi D 1. Let Q D ha; u; vi. By (2) and (4), we have Y D
Q0 D �1.Q/, in particular Q GG. Let P D Qhyi. If ˆ.P / 6� Q, then o.y/ D 8
and an involution inˆ.P /Q nQ is equal to qy2 is for some q 2 Q. If q … Z.H/,
then hqy2; Z.H/i 2A, contradicting k > 1. Accordingly, Œqy2;Q�D 1. If o.v/ >
4, then P satisfies Lemma 2.11 with x1 D u, x2 D v, x3 D a, if o.v/ D 4, then
P fits the criteria of Lemma 2.12. Thus G is not core-2. Consequently:

(5) jY j < 8 or jA W Z.H/j > 2.

Suppose that jY j D 8. By (5), we have jA W Z.H/j > 2. By Lemma 2.9 and since
jH 0 W ŒA;H�j D 2, ŒA;H� D hs; ti Š E4, and H D hu; v; a; biZ.H/, where
ha; biZ.H/ D A, Œu; a� D s, Œu; b� D 1, Œv; a� D 1, Œv; b� D t , and Y D ŒA;H��
hŒu; v�i. Let B D hu; biZ.H/; then B is a maximal normal abelian subgroup
of H , though not necessarily an element of A. Lemma 2.9 nevertheless yields the
existence of w 2 ¹u; ubº with bH .w/ D 1, i.e. Œw;H� D hsi. However, this im-
plies that Y D ŒA;H�, a contradiction. Hence

(6) jY j < 8.

Assume that jA W Z.H/j D 2, and let haiZ.H/ D A and H D Ahu; vi. Since
Y D hŒa; u�; Œa; v�i, either Œu; v� D 1 or there is an element w 2 ¹u; v; uvº such
that Œu; v� D Œa; w�. In either case, H D ACH .w/ for some w 2 H n A. No ele-
ment of A has breadth 1 in H , whence ˆ.G/ � Z.H/ � CH .w/. Thus we have
CH .w/ 2 A, a contradiction. Hence

(7) jA W Z.H/j D 4.

Let a be some element of A of order 4 with hai ¶ H . As previously noted, hai
has a complement in A of exponent greater than 4. Let A D hai �D. By (6) and
since d.A/ D d.�1.A//, A D hai � hd i with o.d/ D expA. If x 2 G nH , then
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x2 2 �2.A/, whence ˆ.G/ � ha; d2i. According to Lemma 2.9, we may assume
bH .d/ D 1 and A D hd; ci with bH .c/ D 1. Note that

ˆ.H/ � Z.H/ D Z.H/ \ A D ˆ.A/ D ha2i � hd2i:

This and o.d/ � 8 entail that, for u 2 H , there is an element d� 2 hd i satisfying
.ud�/2 2 ha2i.

We shall now show that bH .a/ > 1. Assuming otherwise, there is u 2 H n A
with Œu; a� D 1 and u2 2 ha2i. Thus hu; a; d2i becomes an element of A that con-
tains an involution not centralised by H , contradicting k > 1 and (4). Together
with (6), Y D ŒA;H� D Œa;H� and the element c from the last paragraph may be
taken to be ad .

Since Y D Œa;H�, there is u 2 H with u2 2 ha2i and Œu; a� D ha2i. Since
hai ¶ G, we may take Œu;G� D ha2i D hŒu; a�i; interchanging d and ad , if nec-
essary, there is no loss in taking Œu; d � D 1. Ifˆ.G/ 6� ˆ.A/, then ahd2i D ehd2i
with bH .e/ � 1; yet this implies bH .a/ D 1 which we have seen to be false. Thus
ˆ.G/ D ˆ.A/ and B D hu; a2; d i 2 A. Now k D 2 yields u2 D a2, in particular
B D hui � hd i. Let �2.d/ D hd�i; then hud�i is cyclic of order 4, of breadth 1
in H and not normal in H on account of Œa; ud�� D a2. Replacing A by B in the
preceding paragraph yields a contradiction.

3.2 The case k D 1

This final section is devoted to deriving a contradiction from the assumption k D 1,
by now the only remaining case. We start by arranging some notation.

Let a be an involution inA nZ.H/. By Lemma 3.2, we haveA D hai�hbi�D,
where �1.hbiD/ D Z, Œa;H� 6� D and every subgroup of D is normal in G. Let
o.b/ D 2n. We note that, unless n D 1, any c 2 bha;Di of order 2n may replace
b without harm. Let x 2 G nH .

Our first goal is establishing that G D H and we assume this is not so for
the time being. Recall that G > H entails expA > 4. Then ŒA; x� is of exponent
greater than two and each of its elements is inverted by x. Now ˆ.ha; xi/ D

hx2; Œa; x�i � CA.x/, whence neither hxiˆ.ha; xi/ nor haxiˆ.ha; xi/ is a normal
subgroup. It follows that ha; x2; Œa; x�i GG, in other words:

(1) Œa; G� � hy2; Œa; y�i whenever y 2 G nH .

Suppose that bH .a/ < b.a/. By (1), this entails that bH .a/ D 1. For u 2 CH .a/,
hu2; ai cannot be normal in G, whence one of hui and haui must be normal.
In particular, hui G CH .a/, which makes CH .a/ a Dedekind group. But CH .a/
cannot be Hamiltonian – that would imply expA D 4 and G D H . So CH .a/ is
an abelian subgroup of G properly containing A.
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Accordingly, G D HCG.a/ and we may assume x 2 CG.a/ nH . By (1), we
have Œa;H� � h Oxi, in particular b.a/ D 1. Observe that o.x/ > 2 because of
hai ¶ H . We know that x … H implies that expCA.x/ � 4 and o.x/ � 8. By (1),
ObD D OxD. Note that Œx; Y � D 1, whence part (b) of Lemma 3.1 yields that Nx
inverts the elements of A. Assume that o.x/ D 8. Then n � 2 and there is a gen-
erator b� of hb2

n�2

i such that x2 � a"b� .modD/ for some " 2 ¹0; 1º. Thus
b� is not inverted by x and n D 2, whence there is no loss in taking b D x2.
Since expA > 4, we must have expD > 4. Pick d 2 Ã1.D/ of order 4. Then
Œx2d; x� D d2 D Œax2d; x�, and (1) yields ha; x2d iG D 1, a contradiction. It fol-
lows that every element of xCH .a/ has order four, while (1) yields that h.ux/2i D
Œa; G� D hx2i whenever u 2 CH .a/. This implies that CH .a/, whose every ele-
ment is now inverted by x, is an abelian maximal subgroup of H properly con-
taining A. Accordingly:
(2) G D H .
If b.a/ > 1, then ha; c2i ¶ G for c 2 A, and, since hci or haci is therefore normal
in G, CG.a/ is a Dedekind group. It will become evident that this fact provides
a quick finish to the proof, but we need to dispense with the case b.a/ D 1 first.
Hence we assume b.a/ D 1 for now.

Assume that expD > 2n. Pick d 2 D with o.d/ D expD and let d� 2 hd2i
be of order 2n. Replacing b by ab, bd� or abd� if necessary, we may assume
that Œa; G� 6� hbi GG. Observe that ha; .bd/2i ¶ G. If habd i GG, then, since
Œa; G� 6� h Od i, CG.b/ \ CG.d/ � CG.a/. Since every subgroup of D is normal
in G, Lemma 2.1 says CG.d/ D CG.D/; thus CG.d/ \ CG.b/ D CG.A/ D A,
i.e. jG W Aj � 4. This leaves hbd i the only candidate for a maximal subgroup of
ha; bd i to be normal inG. However, hbi GG F hd i, so hbd i GG means b 2 Z.G/
and A D CG.a/ \ CG.d/ has index at most 4 in G. Therefore:

(3) If b.a/ D 1, then expA D 2n.

Assume that expD D 2n and let d 2 D be of order 2n. At least one of the
subgroups ha; .bd/2i and ha; b2i is not normal in G, which makes one of the
subgroups hbi; habi; hbd i; habd i normal. Replacing b accordingly, we may once
again assume hbi GG. If CG.a/ � NG.hbd i/, then every subgroup of A is nor-
malised by CG.a/. Lemma 2.1 then says jCG.a/ W Aj D 2, a contradiction. Thus
neither hbd i nor habd i is a normal subgroup, whence ha; .bd/2i must be one.
Thus Œa; G� D h Ob Od i, in particular Ãn�1.D/ D h Od i. Hence D D hd i�n�1.D/,
while Lemma 2.1 says �n�1.D/ � Z.G/. Furthermore,

CG.a/ \ CG.b/ \ CG.d/ D CG.A/ D A;

whence G fits the hypothesis of Lemma 2.10 and a contradiction ensues. We note:

(4) If b.a/ D 1, then expD < 2n.
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We discard the possibility that n D 2. By (4), n D 2 implies thatD � �1.Z.G//.
Either at least one of hbi and habi is therefore normal in G, or ˆ.G/ � Y . Since
aZ \Z.G/ D ;, it follows that ˆ.G/ � Y would entail ˆ.G/ � Z, to which
Lemma 2.9 provides a contradiction. It follows that we may take hbi GG. But
then A D CG.a/ \ CG.b/ has index at most four in G.

(5) If b.a/ D 1, then n > 2.

Suppose that neither of the subgroups hbi and habi is normal inG. Let expDD 2m

and let hb1i D �m.hbi/. Our most recent assumption entails that ha; b2i GG,
i.e. Œa; G� D h Obi. Since ha; .b1d/2i cannot be normal in G, either hb1d i GG, i.e.
D � Z.G/, or hab1d i GG and CG.a/ D CG.D/. Thus CG.a/ � CG.D/ in ei-
ther case. Let u 2 CG.a/ n A. Then u2 2 CA.u/ D ha; b2iD and (5) yields the
existence of b� 2 hbi satisfying .ub�/2 2 haiD. Let d 2 D and x 2 G n CG.a/;
then Œad; x� 2 Obh Od i, and had i ¶ G. Consequently, every element of CG.a/ is in
a coset uhbi, where u2 2D. Take u 2CG.a/with u2 2D. Certainly, ha; u2i¶G,
so that one of hui, huai is a normal subgroup ofG, in particular hui G CG.a/. Let-
ting L D ¹u 2 CG.a/ju2 2 Dº, L has emerged to be a subgroup of G that is even
a Dedekind group. Note thatL \ A D ha; ObiD and jG W Lhb2ij D 4. SupposeL is
Hamiltonian. ThenL D Q �E, whereQ D Q8 andE is elementary abelian with
a 2 E. Let v 2 Q be of order 4. Since v 2 L, hv2i D Q0 6D h Obi. Since n > 2, we
have Œvb2

n�2

;Q� D Q0 D Œavb2
n�2

;Q�, whence none of the three maximal sub-
groups of ha; vb2

n�2

i is normal in G. Accordingly:

(6) If b.a/ D 1, then hbi GG or habi GG.

By (6), we are free to assume that hbi GG. ThusD 6� Z.G/ – otherwise CG.a/\
CG.b/D A and jG W Aj D 4. As before, we consider d 2D of order 2m D expD.
By Lemma 2.1, the fact that D 6� Z.G/ is equivalent to d … Z.G/. Now (4)
yields the existence of an element b� of hb2i with o.b�/ D 2m and hb�d i ¶ G.
If hab�d i GG, then

CG.a/ D CG.d/ D CG.D/;

and
A D CG.a/ \ CG.b/;

of index at most 4. Accordingly, ha; .b�d/2i GG, i.e. Œa; G�D h Ob Od i. It follows that
D D hd i�m�1.D/ andD is a direct product hd i �E, whereE � �m�1.Z.G//.
But now G satisfies the hypothesis of Lemma 2.10, and we finally obtain:

(7) b.a/ > 1.

Let L D CG.a/. As has been pointed out, (7) implies that L is a Dedekind group.
Assume that L is Hamiltonian, i.e. L D Q �E, where Q Š Q8 and E is ele-
mentary abelian. Considering the subgroups ha;wiG with w 2 Q, we see that Q
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can be chosen to satisfy ŒQ;G� D Q0. This in turn entails G D QCG.Q/. So A,
being a maximal abelian normal subgroup of L, is of the form A D hu;Ei for
some u 2 Q nZ.Q/. Let CG.Q/ D K. For x 2 K, we have x2 2 CA.Q/ D Y ,
so ˆ.K/ � Z, since no element of aZ is a square in G. However, this yields that
ˆ.G/ D ˆ.K/ˆ.Q/ � Z, and Lemma 2.9 says jG W Aj � 4. Accordingly:

(8) CG.a/ D A.

By (8), b.a/ � 3. At the possible expense of interchanging b and ab, we may
assume hbi GG. Let d 2 D. If habd i GG, then

Œa; G� � Œbd;G�Œabd;G� � h Ob; Od i;

a contradiction. This yields ha; bd iG D hbd i. It follows that:

(9) Every subgroup of hbiD is normal in G.

Now (9) and b.a/ � 3 combine to yield haci ¶ G whenever c 2 hbiD, in partic-
ular:

(10) ˆ.G/ � hbiD.

Let K D CG.hbiD/. By (9), jG W Kj � 2 and (10) says that ŒK;ˆ.G/� D 1. Let
v 2 G nK and u 2 K. Then Œu; v2� D 1, (10) and Lemma 3.4 together imply that
either Œu; v� 2 �1.hbiD/ D Z or Œu; v� has order four and is inverted by v. How-
ever, ha; v2; Œa; v�i ¶ G, whence Œv; G� � hv2iZ � CA.v/, so the latter cannot
happen. It follows that G0 � Z, and Lemma 2.9 completes the proof.
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