Sylow permutability in generalized soluble groups

Derek J. S. Robinson

Communicated by Andrea Lucchini

Abstract. A PST-group is a group in which Sylow permutability is a transitive relation in the group. A classification is given of finitely generated hyperabelian groups all of whose finite quotients are PST-groups.

1 Introduction

In recent years there has been widespread interest in the phenomenon of subgroup permutability, especially in finite groups. Recall that a subgroup H is said to be permutable in a group G if HK = KH for every subgroup K, and Sylow permutable in G if HP = PH for every Sylow subgroup P of G. Groups in which permutability is a transitive relation have received particular attention. A group G is called a PT-group if H permutable in G always imply that G is permutable in G. Also G is called a G-group if the same holds with Sylow permutability instead of permutability. In addition recall that a G-group is a group in which normality is transitive.

By a well-known theorem of Kegel [7] a Sylow permutable subgroup of a finite group is always subnormal. From this result it follows quickly that a finite group G is a PT-group or a PST-group if and only if every subnormal subgroup is permutable or Sylow permutable in G respectively.

The structures of finite soluble PT-groups and PST-groups have been determined by Zacher [16] and Agrawal [1] respectively, their results following the pattern established by Gaschütz [5] for T-groups nearly sixty years ago. For finite insoluble PT-groups and PST-groups see [14]; infinite soluble T-groups and PT-groups are studied in [13] and [11,12] respectively. An excellent general reference for permutability in finite groups is the book by Ballester-Bolinches, Estaban Romero and Asaad [3].

Here we are concerned with the role of Sylow permutability in generalized soluble groups. It has long been known that the finite quotients of a polycyclic group G carry a large amount of information about the group structure. For example, if all the finite quotients are T-groups, then G is a T-group; this follows from the

theorem of Mal'cev ([10]; see also [8]) that every subgroup of a polycyclic group is closed in the profinite topology. In the same vein, if every finite quotient of G is a PT-group, then G is a PT-group: in this case the assertion follows from a result of Lennox and Wilson [9] which states that the product of any pair of subgroups in a polycyclic group is profinite closed. At this point it should be noted that a finitely generated soluble T-group is finite or abelian [13], while a finitely generated soluble PT-group is finite or nilpotent and modular [11,12].

The results just mentioned suggest a natural question: what is the structure of a polycyclic group whose finite quotients are PST-groups?¹ The answer cannot be just that the group is a PST-group as this would say nothing about torsion-free groups. But clearly the PST condition on finite quotients must have consequences for the group structure. A key observation is that every finite quotient of the infinite dihedral group, but not the group itself, is a PST-group.

Groups of infinite dihedral type. Let us say that a group G is of *infinite dihedral type* if the hypercenter H is a finite 2-group and G/H is isomorphic with the dihedral group Dih(B) on a finitely generated, infinite abelian group B with no involutions, i.e.,

$$Dih(B) = \langle t \rangle \ltimes B$$
, where $b^t = b^{-1}$, $(b \in B)$, and $t^2 = 1$.

An alternative description of these groups is given in Lemma 2 below.

With this terminology we can state our principal result, which is a complete description of the finitely generated hyperabelian groups whose finite quotients are PST-groups. (Recall that a group is *hyperabelian* if it has an ascending normal series with abelian factors).

Theorem. Let G be a finitely generated hyperabelian group. Then every finite quotient of G is a PST-group if and only if G is one of the following:

- (i) a finite soluble PST-group,
- (ii) a nilpotent group,
- (iii) a group of infinite dihedral type.

Here finite soluble PST-groups and nilpotent groups were to be expected; it is the groups of infinite dihedral type that are the novelty.

We record some consequences of the theorem.

Corollary 1. A finitely generated, torsion-free hyperabelian group whose finite quotients are PST-groups is nilpotent.

¹ I am grateful to Professor J.C. Beidleman for drawing my attention to this question.

This because a group of infinite dihedral type cannot be torsion-free. By Proposition 2 below a group of infinite dihedral type is not a PST-group. Therefore we have the following result.

Corollary 2. Let G be a finitely generated hyperabelian group. If G and all its finite quotients are PST-groups, then G is finite or nilpotent.

Notation. (i) $\gamma_{\infty}(G)$: the intersection of the finitary terms of the lower central series in a group G.

- (ii) Z(G): the centre of a group G.
- (iii) $\pi(G)$: the set of prime divisors of the orders of elements of a group G.
- (iv) G_{π} : the π -component of a nilpotent group G where π is a set of primes.
- (v) \mathbb{Q}_{π} : the additive group of π -adic rationals where π is a set of primes.
- (vi) \bar{H}, \bar{x} : the images of a subgroup H and a group element x in a specified quotient of a group.

2 Auxiliary results

A critical role in the proof of the main theorem is played by the structure theorem for finite soluble PST-groups, which is due to Agrawal [1]. We state it for future reference.

Proposition 1. A finite group G is a soluble PST-group if and only if $\gamma_{\infty}(G)$ is abelian of odd order, $|\gamma_{\infty}(G)|$ and $|G:\gamma_{\infty}(G)|$ are relatively prime and elements of G induce power automorphisms in $\gamma_{\infty}(G)$.

Notice the consequence that $\gamma_{\infty}(G) \cap Z(G) = 1$.

In the proof of our result Agrawal's theorem is applied to suitably chosen finite quotients groups. Another useful tool in the proof is the following result about finitely generated nilpotent groups: it will be familiar to many readers.

Lemma 1. Let G be a finitely generated nilpotent group.

- (i) If π is an infinite set of primes, then $\bigcap_{p \in \pi} G^p$ is finite.
- (ii) For each prime p there is an integer $k_p > 0$ such that $G^{p^{k_p}} \cap G_p = 1$.

Proof. (i) Clearly we may assume that G is torsion-free. It follows from the theory of basic commutators – see [6, Theorem 12.3.1] – that G^p consists of all pth powers of elements of G, provided that p is greater than c, the nilpotent

class of G. Thus $G^p \cap Z(G) = Z(G)^p$ since G/Z(G) is torsion-free. Writing $I = \bigcap_{p \in \pi, \ p > c} G^p$, we have

$$I \cap Z(G) = \bigcap_{p \in \pi, \ p > c} Z(G)^p = 1,$$

and consequently I = 1.

(ii) Let $1 \neq g \in G_p$. Since G is residually finite, there exists $L_g \triangleleft G$ which is maximal with respect to $g \notin L_g$ and G/L_g being finite. Now G/L_g cannot have two non-trivial primary components and gL_g is a p-element. Hence G/L_g is a p-group. Define $M(p) = \bigcap_{1 \neq g \in G_p} L_g$ and note that G/M(p) is a finite p-group. Hence there exists $k_p > 0$ such that $G^{p^{k_p}} \leq M(p)$. Finally,

$$G^{p^{kp}} \cap G_p \le M(p) \cap G_p = 1.$$

The next result provides an alternative description of the groups of infinite dihedral type: while it is more technical, this form is convenient in the proof of the main theorem.

Lemma 2. A group G is of infinite dihedral type if and only if it has a normal subgroup A such that:

- (i) A is a finitely generated, infinite abelian group containing no involutions,
- (ii) G/A is a finite 2-group and $|G:C_G(A)|=2$,
- (iii) elements in $G \setminus C_G(A)$ induce inversion in A.

Proof. Assume that G is of infinite dihedral type, so the hypercentre H of G is a finite 2-group and $G/H = \mathrm{Dih}(B)$ where B is a finitely generated, infinite abelian group without involutions. There is a nilpotent normal subgroup C such that $H \leq C < G$, where C/H = B, $G = \langle t, C \rangle$, t inverts in C/H and $t^2 \in H$. Next $C^{2^k} \cap H = 1$ for some k > 0 by Lemma 1, so we have

$$C/H \stackrel{\langle t \rangle}{\simeq} (C/H)^{2^k} \stackrel{\langle t \rangle}{\simeq} C^{2^k}.$$

Hence t inverts in $A = C^{2^k}$. Also $[A, C] \le A \cap C' \le A \cap H = 1$, so we have $|G: C_G(A)| = 2$. Thus G has the stated property.

Conversely, assume that there is a finitely generated, infinite abelian normal subgroup A without involutions such that the quotient G/A is a finite 2-group, $|G:C=C_G(A)|=2$, and $t\in G\backslash C$ induces inversion in A. We can write A in the form $F\times D$, where F is free abelian and D has odd order. Then $A\leq Z(C)$, so C/Z(C) is a finite 2-group, as is C'. Therefore $C'\leq C_2=H$, say. By Lemma 1 there is a k>0 such that $C^{2^k}\cap H=1$ and also $C^{2^k}\leq A$. Hence we have

$$C/H \stackrel{\langle t \rangle}{\simeq} (C/H)^{2^k} \stackrel{\langle t \rangle}{\simeq} C^{2^k} \leq A.$$

Therefore t inverts in B = C/H. Observe that t is a 2-element and $t^2 \in C$, so $t^2 \in H$. This shows that $G/H \simeq \text{Dih}(B)$. Notice that $[H,_r G] \leq A \cap H = 1$ for some t > 0, so t = 0 is contained in the hypercentre of t = 0; indeed t = 0 in the hypercentre since t = 0. Therefore t = 0 is of infinite dihedral type. t = 0

Next it is shown that groups of infinite dihedral type have the property stated in the theorem.

Lemma 3. If G is a group of infinite dihedral type, then all its finite quotients are PST-groups.

Proof. By Lemma 2 there is a finitely generated, infinite abelian normal subgroup $A \triangleleft G$, without involutions, such that G/A is a finite 2-group, $|G:C_G(A)|=2$ and $t \in G \backslash C_G(A)$ induces inversion in A. Let G/M be a finite quotient; then $A^m \leq M$ for some m>0 and $\bar{G}=G/A^m$ is finite. By Proposition 1 it is enough to prove that \bar{G} is a PST-group. Let $B/A^m=O_{2'}(A/A^m)$. Then G/B is a finite 2-group and $\gamma_{\infty}(\bar{G}) \leq \bar{B}$. Since t inverts in A and $|\bar{B}|$ is odd, $[\bar{B},\bar{t}]=\bar{B}$, so $\bar{B}=\gamma_{\infty}(\bar{G})$ and by Proposition 1 we conclude that \bar{G} is a PST-group.

The next result stands in contrast to Lemma 3.

Proposition 2. *If G is a group of infinite dihedral type, then G is not a PST-group.*

Proof. There is a finitely generated, infinite abelian normal subgroup A without involutions such that G/A is a finite 2-group, $|G:C_G(A)|=2$ and $t\in G\backslash C_G(A)$ induces inversion in A. Write $A=F\times D$, where F is free abelian of positive rank and D has odd order. Let $a\in F\backslash F^2$; then $(ta)^2=t^2$, so t and ta are 2-elements of equal order. Let P be a Sylow 2-subgroup containing ta and put $|P|=2^k$. Set $H=\langle t,A^{2^{k+1}}\rangle$, noting that H is subnormal in $\langle t,A\rangle$ and hence in G.

Now assume that G is a PST-group; then, since H is subnormal in G, it is Sylow-permutable and HP = PH = J, say. Notice that $a \in J$ since $t \in H$ and $ta \in P$. Hence $J = HP = \langle t \rangle \langle a \rangle A^{2^{k+1}} P$. Now

$$|J:H| = |P:H \cap P| \le |P| = 2^k$$
,

while on the other hand

$$|J:H| = |\langle t \rangle \langle a \rangle A^{2^{k+1}} P : \langle t \rangle A^{2^{k+1}}|$$

$$\geq |\langle t \rangle \langle a \rangle A^{2^{k+1}} : \langle t \rangle A^{2^{k+1}}| = |\langle a \rangle : \langle a \rangle \cap \langle t \rangle A^{2^{k+1}}|.$$

Now $\langle t \rangle \cap A = 1$ since t is a 2-element. Hence

$$\langle a \rangle \cap (\langle t \rangle A^{2^{k+1}}) = \langle a \rangle \cap A^{2^{k+1}} = \langle a^{2^{k+1}} \rangle$$

since $a \in F \setminus F^2$. Therefore $|J:H| \ge |\langle a \rangle : \langle a^{2^{k+1}} \rangle| = 2^{k+1}$, a contradiction which shows that G is not a PST-group.

3 Proof of the main theorem

The main part of the proof consists in establishing the result for polycyclic groups.

Proposition 3. Let G be a polycyclic group. If every finite quotient of G is a PST-group, then G is finite soluble PST or nilpotent or a group of infinite dihedral type.

Proof. Since finite soluble PST-groups are supersoluble by Agrawal's theorem (see Proposition 1), every finite quotient of G is supersoluble, and hence G is supersoluble by a theorem of Baer [2]. We assume that G is infinite and argue by induction on the Hirsch number. Thus G has an infinite cyclic normal subgroup $N = \langle z \rangle$ and by induction hypothesis G/N is finite or nilpotent or a group of infinite dihedral type. Each of the three possibilities will be handled separately.

(i) Case: G/N is finite. We show that G is either nilpotent or of infinite dihedral type. Suppose first that $N \leq Z(G)$. If G is not nilpotent, $\gamma_{\infty}(G/N) \neq 1$; let p be a prime dividing $|\gamma_{\infty}(G/N)|$. Now $\bar{G} = G/N^p$ is a finite PST-group and p divides $|\gamma_{\infty}(\bar{G})|$, so it cannot divide $|\bar{G}:\gamma_{\infty}(\bar{G})|$ by Proposition 1. Therefore $\bar{N} \leq \gamma_{\infty}(\bar{G})$. However, $\bar{N} \leq Z(\bar{G})$ and $\gamma_{\infty}(\bar{G}) \cap Z(\bar{G}) = 1$ by Proposition 1, so we have a contradiction. Hence G is nilpotent in this case. Therefore we may assume that $N \not\leq Z(G)$.

Set $C = C_G(N)$, so that |G:C| = 2 and $G = \langle t,C \rangle$, where t induces inversion in N. Let p be an odd prime and consider $\bar{G} = G/N^p$, which is a finite soluble PST-group. Since t inverts in \bar{N} , we have $1 \neq \bar{N} \leq \gamma_{\infty}(\bar{G})$. Therefore $\overline{G(p)} \leq \gamma_{\infty}(\bar{G})$, where G(p)/N is a Sylow p-subgroup of G/N. By Proposition 1, $G(p) \triangleleft G$ and $\overline{G(p)}$ is abelian. Therefore $A/N = O_{2'}(G/N)$ is abelian and G/A is a finite 2-group. Clearly $A \leq C$. Next C/A induces a 2-group of power automorphisms in each $\overline{G(p)}$, but it also centralizes \bar{N} . Therefore C centralizes $\overline{G(p)}$ and hence A/N. Thus $[A,C] \leq N$. But C' is finite since $N \leq Z(C)$, so [A,C]=1. It follows that $C_G(A)=C$. Thus A is abelian and clearly it does not contain involutions. Also t induces a power automorphism of order 1 or 2 in each $\overline{G(p)}$, since t inverts in \bar{N} . Therefore it must invert in A/N, as well as in N. A simple argument now shows that t inverts in A. By Lemma 2 the group G is of infinite dihedral type.

(ii) Case: G/N is nilpotent. Here we may assume that $N \not\leq Z(G)$ since otherwise G is nilpotent. Put $C = C_G(N)$, so that |G:C| = 2 and C is nilpotent. Also $G = \langle t, C \rangle$ where t inverts in N.

Let p be an odd prime and set $\bar{G} = G/C^p$, which is a finite PST-group. Since G/N is nilpotent, $\gamma_{\infty}(\bar{G}) \leq \bar{N} \leq \bar{C}$. Suppose that $\gamma_{\infty}(\bar{G}) \neq 1$; then p divides $|\gamma_{\infty}(\bar{G})|$, so it does not divide $|\bar{G}/\gamma_{\infty}(\bar{G})|$, which implies that $\gamma_{\infty}(\bar{G}) = \bar{N} = \bar{C}$, i.e., $C = NC^p$. Since C/N is finitely generated and nilpotent, it follows that C/N, and hence G/N, is finite. By case (i) either G is nilpotent or it is a group of infinite dihedral type. Thus we may assume that $\gamma_{\infty}(\bar{G}) = 1$, i.e., G/C^p is nilpotent for all p > 2. Since t inverts in N, it follows that $\bar{N} = 1$ and hence $N \leq \bigcap_{p>2} C^p$. Lemma 1 gives the contradiction that N is finite.

(iii) Case: G/N is a group of infinite dihedral type. In the first place G is not nilpotent, as a group of infinite dihedral type cannot be nilpotent. By Lemma 2 there exists $L \triangleleft G$ such that G/L is a finite 2-group, L/N is finitely generated, infinite abelian without involutions, $|G:C_G(L/N)|=2$ and $G=\langle t,C_G(L/N)\rangle$ where t induces inversion in L/N. Write $K=C_L(N)$; then we have $|L:K|\leq 2$ and K/N has the same structure as L/N. Note also that G/K is a 2-group and $C_G(L/N)=C_G(K/N)$. Thus we can replace L by K without loss: from this point on we assume that $N\leq Z(L)$; thus L is nilpotent of class ≤ 2 .

Suppose that L is non-abelian. If $\ell_1, \ell_2 \in L$, then $\ell_i^t = \ell_i^{-1} a_i$ for some $a_i \in N$ and

$$[\ell_1,\ell_2]^t = [\ell_1^{-1}a_1,\ell_2^{-1}a_2] = [\ell_1^{-1},\ell_2^{-1}] = [\ell_1,\ell_2].$$

Thus [L',t]=1 and, since $1\neq L'\leq N$, it follows that [N,t]=1. Let p be an odd prime and put $\bar{G}=G/L^p$; then $\gamma_\infty(\bar{G})\leq \bar{L}$ since G/L is a 2-group. Now $\gamma_\infty(\bar{G})$ cannot be trivial: for if it were, since \bar{t} inverts in \bar{L}/\bar{N} , we would have $\bar{L}=\bar{N}$, i.e., $L=L^pN$. But this implies that L/N is finite. Therefore $\gamma_\infty(\bar{G})\neq 1$ and p divides $|\gamma_\infty(\bar{G})|$, so it cannot divide $|\bar{G}:\gamma_\infty(\bar{G})|$. It follows that $\gamma_\infty(\bar{G})=\bar{L}$, so \bar{L} is abelian by Proposition 1. Thus $L'\leq \bigcap_{p>2} L^p$, which is finite. But $L'\leq N$, so it follows that L'=1 and L is abelian.

Clearly L contains no involutions. The next step is to prove that $C_G(L/N)$ is equal to $C_G(L)$; let $x \in C_G(L/N)$ and let p be an odd prime. Consider the finite PST-group $\bar{G} = G/L^p$. Now \bar{G} cannot be nilpotent since t inverts in L/N, and we have seen that $\bar{L} = \bar{N}$ is impossible. Hence $\gamma_{\infty}(\bar{G}) \neq 1$ and p divides $|\gamma_{\infty}(\bar{G})|$, so it does not divide $|\bar{G}:\gamma_{\infty}(\bar{G})|$. As $\gamma_{\infty}(\bar{G}) \leq \bar{L}$, we obtain $\gamma_{\infty}(\bar{G}) = \bar{L}$ and consequently \bar{x} induces a power automorphism of p'-order in \bar{L} . Commuting with \bar{x} yields an endomorphism θ of \bar{L} with the property $\mathrm{Im}(\theta) \leq \bar{N} < \bar{L}$. Hence we have $1 \neq \mathrm{Ker}(\theta) = C_{\bar{L}}(\bar{x})$. Therefore $[\bar{L},\bar{x}] = 1$ and $[L,x] \leq L^p$ for all p > 2, showing that $[L,x] \leq \bigcap_{p>2} L^p$, which is finite. But $[L,x] \leq N$, so [L,x] = 1 and $x \in C_G(L)$. It follows that $C_G(L) = C_G(L/N)$ and $G = \langle t, C_G(L) \rangle$.

We know that t inverts in L/N; it will be shown next that it also inverts in N. Suppose this is false, so that $z^t = z$. Let p be an odd prime not in $\pi(L/N)$ and consider the group $\bar{G} = G/L^p$. Now $z \notin L^p$ since $p \notin \pi(L/N)$. Hence we have

 $1 \neq \bar{N} \leq Z(\bar{G})$. Next, if $\gamma_{\infty}(\bar{G}) = 1$, then G/L^p is nilpotent and thus $L = L^p N$ since t inverts in L/N. This is impossible, so $\gamma_{\infty}(\bar{G}) \neq 1$. Hence $\gamma_{\infty}(\bar{G}) = \bar{L}$ and $1 \neq \bar{N} \leq \gamma_{\infty}(\bar{G}) \cap Z(\bar{G}) = 1$, a contradiction. Therefore t must invert in N and consequently $L^{(t+1)^2} = 1$.

To complete the proof observe that some power t^{2^k} with k > 0 belongs to L, and hence to N, from which it follows that $t^{2^k} = 1$. Also t^2 centralizes L/N and N. Hence

$$[L, t^2]^{2^{k-1}} = [L, t^{2^k}] = 1,$$

and since $[L, t^2] \le N$, it follows that $[L, t^2] = 1$. Since $L^{(t+1)^2} = 1 = L^{t^2-1}$, we conclude that $L^{2(t+1)} = 1$ and $L^{t+1} = 1$, i.e., t inverts in L. It follows via Lemma 2 that G is a group of infinite dihedral type.

Proof of the theorem. Let G be a finitely generated, hyperabelian group whose finite quotients are PST-groups. By Proposition 3 it is enough to prove that G is polycyclic, so assume this is false. Then, since polycyclic groups are finitely presented, there is a largest $M \triangleleft G$ such that G/M is not polycyclic, and we can assume that M=1, so that G is *just non-polycyclic*, i.e., G is not polycyclic, but every proper quotient of G is polycyclic. By Baer's theorem G is even just non-supersoluble. Since G is hyperabelian, there is an infinite abelian normal subgroup G and G/G is supersoluble; hence G is soluble.

At this point we invoke the theory of soluble just non-supersoluble groups given in [15, Sections 3.4, 2.4]. According to this there is a normal subgroup $A \simeq \mathbb{Q}_{\pi}$, the additive group of π -adic rationals with π a finite set of primes, and a free abelian subgroup X of finite rank such that |G:XA| finite and $X \cap A = 1$. Without loss we may assume that G = XA, so G is metabelian. Let $\{x_1, x_2, \ldots, x_r\}$ be a basis of X and, with P be an odd prime not in π , define

$$Y = \langle x_1^{p(p-1)}, x_2^{p-1}, \dots, x_r^{p-1} \rangle.$$

Since $A/A^p \simeq \mathbb{Z}_p$, we have $[A,Y] \leq A^p$ and $YA^p \triangleleft G$. Consider $\bar{G} = G/YA^p$, which is a finite PST-group, and note that $\gamma_{\infty}(\bar{G}) \leq \bar{A}$. Suppose that $\gamma_{\infty}(\bar{G}) \neq 1$; then p divides $|\gamma_{\infty}(\bar{G})|$, so it cannot divide $|\bar{G}:\gamma_{\infty}(\bar{G})|$. However, $\bar{G}/\gamma_{\infty}(\bar{G})$ maps homomorphically onto X/Y, and hence onto \mathbb{Z}_p . By this contradiction $\gamma_{\infty}(\bar{G}) = 1$ and, since $|\bar{A}| = p$, it follows that $[\bar{A}, \bar{G}] = 1$. Hence

$$[A,G] \le \bigcap_{p>2, p \notin \pi} A^p = 1$$

and G is nilpotent. But then A is finitely generated, which is a contradiction.

The converse statement follows from Lemma 3.

For a final application we return to polycyclic groups. Many algorithms have been found which are able to perform standard operations in polycyclic groups: we refer to [4] for details. Here we record a new algorithm.

Corollary 3. There is an algorithm which, when a finite presentation of a polycyclic group G is given, decides if all the finite quotients of G are PST-groups.

Proof. By the theorem it is enough to decide if G is finite or nilpotent or a group of infinite dihedral type. Algorithms to decide finiteness and nilpotence were given in [4]. Thus it remains to decide if G is of infinite dihedral type and for this purpose the original definition of these groups is convenient. Using other algorithms in [4], we can find the hypercentre F of G and check to see if it is a 2-group. If this is the case, pass to the group $\bar{G} = G/F$ and compute its Fitting subgroup \bar{F} . Next determine whether \bar{F} is an infinite abelian group without involutions. If this is the case, check to see if $|\bar{G}:\bar{F}|=2$. If so, choose an element t in $\bar{G}\setminus\bar{F}$ and determine whether t inverts each generator of \bar{F} . If this happens, then G is a group of infinite dihedral type.

Bibliography

- [1] R. K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, *Proc. Amer. Math. Soc.* **47** (1975), 77–83.
- [2] R. Baer, Überauflösbare Gruppen, *Abh. Math. Semin. Univ. Hambg.* **23** (1959), 11–28.
- [3] A Ballester-Bolinches, R. Estaban Romero and M. Asaad, *Products of Finite Groups*, De Gruyter, Berlin, 2010.
- [4] G. Baumslag, F. B. Cannonito, D. J. S. Robinson and D. Segal, The algorithmic theory of polycyclic-by-finite groups, *J. Algebra* **142** (1991), 118–149.
- [5] W. Gaschütz, Gruppen, in denen das Normalteilersein transitiv ist, *J. Reine Angew. Math.* **198** (1957), 87–92.
- [6] M. Hall, *The Theory of Groups*, Macmillan, New York, 1958.
- [7] O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, *Math. Z.* **78** (1962), 205–221.
- [8] J. C. Lennox and D. J. S. Robinson, The Theory of Infinite Soluble Groups, Clarendon Press, Oxford, 2004.
- [9] J. C. Lennox and J. S. Wilson, On products of subgroups in polycyclic groups, *Arch. Math. (Basel)* 33 (1979), 305–309.
- [10] A. I. Mal'cev, On certain classes of infinite soluble groups (in Russian), *Mat. Sb.* **28** (1951), 567–588; translation in *Amer. Math. Soc. Transl. Ser.* **2 2** (1956), 1–21.

- [11] F. Menegazzo, Gruppi nei quali la relazione di quasi-normalità è transitiva, *Rend. Semin. Mat. Univ. Padova* **40** (1968), 347–361.
- [12] F. Menegazzo, Gruppi nei quali la relazione di quasi-normalità è transitiva, *Rend. Semin. Mat. Univ. Padova* **42** (1969), 389–399.
- [13] D.J.S. Robinson, Groups in which normality is a transitive relation, *Proc. Cambridge Philos. Soc.* **60** (1964), 21–38.
- [14] D. J. S. Robinson, The structure of finite groups in which permutability a transitive relation, *J. Aust. Math. Soc.* **70** (2001), 143–159.
- [15] D.J.S. Robinson and J.S. Wilson, Soluble groups with many polycyclic images, *Proc. Lond. Math. Soc.* (3) **48** (1984), 193–229.
- [16] G. Zacher, I gruppi risolubili in cui sottogruppi di composizione coincidono con i sottogruppi quasi-normali, *Atti Accad Naz. Lincei Rend. Cl. Fis. Mat. Natur.* **37** (1964), 150–154.

Received March 30, 2016.

Author information

Derek J. S. Robinson, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

E-mail: dsrobins@illinois.edu