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Abstract. Let G be a finite solvable group and cd(G) the set of character degrees of G.
The character degree graph A(G) is the graph whose vertices are the primes dividing the
degrees in cd(G) and there is an edge between two distinct primes p and g if their product
pq divides some degree in ¢cd(G). When A(G) has diameter three, we can partition the
vertices p(G) into four non-empty disjoint subsets p; U pa U p3 U p4 where no prime in
p1 1s adjacent to any prime in p3 U p4; no prime in p4 is adjacent to any prime in p; U ps;
every prime in p, is adjacent to some prime in p3; every prime in p3 is adjacent to some
prime in py; and |p1 U p2| < |p3 U p4l.

We will show the following: If G is a solvable group where A(G) has diameter three,
then p3 has at least three vertices and G has a normal non-abelian Sylow p-subgroup
where p € ps. If p; U py has n vertices, then p3 U ps must have at least 2" vertices. The
group G has Fitting height 3.

1 Introduction

Let G be a finite solvable group, Irr(G) the set of irreducible characters and cd(G)
the set of character degrees. We study solvable groups and their character degrees
by studying A(G), the character degree graph. The set of vertices for A(G) is the
set of all primes p where p divides a character degree. There is an edge between
two distinct primes p and q if their product divides a character degree.

Many of the known results on character degree graphs can be found in the
expository paper, [11]. One of the most important properties for A(G) when G
is solvable is Palfy’s Condition.

Theorem 1.1 ([15]). A graph is said to satisfy Pdlfy’s Condition if given any three
vertices, two of them are adjacent. If G is a solvable group, then A(G) satisfies
Pdlfy’s Condition.

Two corollaries follow immediately. If A(G) is disconnected, there are at most
two components, [12] and both components are complete. If A(G) is connected,
the diameter is at most three [13].



1098 C.B. Sass

There are two main questions that arise when studying character degree graphs.
What can we say about the group or family of groups that have a particular char-
acter degree graph? Which graphs can occur as a character degree graph? The fol-
lowing three theorems answer the second question for the graphs with five vertices
or fewer, and give a partial answer for the graphs with six vertices.

Theorem 1.2 ([17]). The graph in Figure 1 is not the character degree graph of
any solvable group.

Figure 1. Graph with four vertices and diameter three.

Theorem 1.3 ([9]). The graphs in Figure 2 are not the character degree graphs of
any solvable group.

Figure 2. Graphs with five vertices and diameter three.

A consequence of Theorems 1.2 and 1.3 is that when A(G) has diameter three,
it must have at least six vertices. In fact, there is a family of solvable groups that
have a character degree graph with diameter three and six vertices. Lewis gave an
example in [8] and Dugan generalized in [2] that result to show that a family of
groups have a character degree graph with diameter three.

Theorem 1.4 ([8]). There exists a solvable group that has a character degree
graph as shown in Figure 3.

Figure 3. Graph with six vertices and diameter three.
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Figure 4. Graphs with six vertices and diameter three.

In [11], the question was posed, do the subgraphs shown in Figure 4, of the
graph in Figure 3, occur as A(G) where G is a solvable group? In this paper we
show that in fact, the graphs that are isomorphic to those in Figure 4 do not occur
as A(G) for any solvable group G.

Let G be a solvable group and A(G) the character degree graph that has diam-
eter three. To easily describe the graph A(G), we define a partition on the set of
vertices p(G) as Lewis did in [10]. Because A(G) has diameter three, we can find
two vertices distance three from each other. Label them p; and p4. Because p;
and p4 are necessarily not adjacent, if we consider any other prime ¢ € p(G), the
prime g must be adjacent to either p; or ps. We define the following four sets:

Definition 1.5. (i) Define p4(G) to be the set of all vertices that are distance
three from the vertex p;. As p4 is distance three from p1, the vertex p4 € p4.

(ii) Define p3(G) to be the set of all vertices that are distance two from the
vertex pj.

(iii) Define p>(G) to be the set of all vertices that are adjacent to p; and adjacent
to some prime in p3(G).

(iv) Define p;(G) to be the vertices consisting of p; and those that are adjacent
to p1 and not adjacent to anything in p3(G).

(v) We relabel if necessary so that |p1 U p2| < |p3 U p4]
With the above partition in mind, we state our main theorems:

Theorem 1. The graphs in Figure 4 do not occur as A(G) for any solvable
group G. In particular, if G is a solvable group where A(G) has diameter three
and |p(G)| = 6, then A(G) is isomorphic to the graph in Figure 3.

We are able to give a lower bound on the number of vertices in the subset p3.

Theorem 2. Let G be a solvable group where A(G) has diameter three. Then
lp3| = 3.
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Theorem 3. Let G be a solvable group where A(G) has diameter three. Then G
has a normal non-abelian Sylow p-subgroup for exactly one prime p and p € ps.

In order to prove Theorem 3, we use the previous results but we also need to
show more generally that G would not have a normal non-abelian Sylow p-sub-
group where p is in the subset p4. Finally, we confirm [11, Conjecture 4.8] and
give the Fitting height of all solvable groups that have a character degree graph
with diameter three.

Theorem 4. Let G be a solvable group with A(G) having diameter three. If
n = |p1 U p2l, then |p3 U ps| = 2".

Theorem 5. Let G be a solvable group with A(G) having diameter three. Then G
has Fitting height 3.

2 Background

Let M be a normal subgroup of G. The graphs A(M) and A(G/M ) must be sub-
graphs of A(G). If p(M) or p(G/M ) contains primes from both p; (G) and p4(G)
then the graph A(M) or A(G/M) must either have diameter three or be discon-
nected. Because we often know that |G| is minimal with A(G) having diameter
three, we rely heavily on the classification of disconnected character degree graphs
in [7]. We state the theorem here for convenience.

Theorem 2.1 ([7]). Let G be a solvable group where A(G) has two connected
components. Then G is one of the following examples:

(2.1) G has a normal non-abelian Sylow p-subgroup P and an abelian p-comple-
ment K for some prime p. The subgroup P’ C C p(K) and every non-linear
irreducible character of P is fully ramified with respect to P/ C p (K).

(2.2) G is the semi-direct product of a subgroup H acting on a subgroup P, where
P is elementary abelian of order 9 and cd(H) = {1,2,3}. Let Z = Cg(P).
We have Z C Z(H), and H/Z = SL,(3), where the action of H on P is
the natural action of SL,(3) on P.

(2.3) G is the semi-direct product of a subgroup H acting on a subgroup P,
where P is elementary abelian of order 9 and cd(H) = {1,2,3,4}. Let
Z =Cygx(P). We have Z C Z(H), and H/Z = Gl,(3), where the action
of H on P is the natural action of GL,(3) on P.

(2.4) G is the semi-direct product of a subgroup H acting on an elementary abel-
ian p-group V for some prime p. Let Z = Cy (V') and K the Fitting sub-
group of H. Writem = |H : K| > 1, and |V| = q™, where q is a p-power.
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We have Z C Z(H), K/Z is abelian, K acts irreducibly on V, m and
|K : Z| are relatively prime, and (g™ — 1)/(q — 1) divides |K : Z|.

(2.5) G has a normal non-abelian 2-subgroup Q, and an abelian 2-complement
K with the property that |G : KQ| = 2 and the quotient G/ Q is not abelian.
Let Z = Cg(Q), and C = Co(K). The subgroup Q' C C, and Z is cen-
tral in G. Every non-linear irreducible character of Q is fully ramified with
respect to Q /C. Furthermore, Q/C is an elementary abelian 2-group of
order 229 for some positive integer a, Q/C is irreducible under the action
of K, and K/ Z is abelian of order 2¢ + 1.

(2.6) G is the semi-direct product of an abelian group D acting coprimely on
a group T so that [T, D] is a Frobenius group. The Frobenius kernel is
A=T'=|[T,D], A is a non-abelian p-group for some prime p, and
a Frobenius complement is B with [B, D] C B. Every character inIrr(T | A")
is invariant under the action of D and A/A is irreducible under the action
of B.If m = |D : Cp(A)|, then |A : A'| = q™ where q is a p-power, and
(g™ —1)/(q — 1) divides | B|.

Two of these families never show up in our work. They are Examples (2.2)
and (2.3). They both have two connected components each with one vertex,
two and three. They have no normal non-abelian Sylow p-subgroups. When we
are considering a graph that has two connected components each with a single-
ton vertex, one of those vertices, p, corresponds to a normal non-abelian Sylow
p-subgroup.

Two of the remaining families have no normal non-abelian Sylow p-subgroups.
They are Examples (2.4) and (2.5). Example (2.5) has a character degree graph
where the smaller component is the singleton 2. Examples (2.1) and (2.6) both
have a normal non-abelian Sylow p-subgroup.

We use the Zsigmondy Prime Theorem to count primes or vertices in a discon-
nected graph. Let g and n be positive integers. A prime p is called a Zsigmondy
prime divisor for g — 1 if p divides ¢” — 1 and p does not divide g/ — 1 for
1 < j < n. The Zsigmondy Prime Theorem says there exists a Zsigmondy prime
for ¢g" — 1 unless either n =2 and g = 2k — 1 for some integer k, or n = 6 and
q = 2. Because of these exceptional cases, we use the following lemma from [7]
which takes care of the exceptional cases.

Lemma 2.2 ([7, Lemma 5.1]). Let m be a positive integer, and let g be a prime
power such that (g™ — 1)/(q — 1) is relatively prime to m. If r is the number of
distinct prime divisors of m, then the quotient (¢ — 1)/(q — 1) has at least 2" — 1
prime divisors.
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Another result by Pilfy is used to count vertices in the larger component when
the graph is disconnected. We call this result Pdlfy’s inequality.

Theorem 2.3 ([16, Theorem 3]). Let G be a solvable group with a disconnected
character degree graph A(G). If the smaller component has n vertices, then the
larger component has at least 2" — 1 vertices.

In Examples (2.4) and (2.6) from Theorem 2.1,let F = F(G), E/F =F(G/F)
and m = |G : E|. The prime divisors of m are precisely the primes in the smaller
component of the character degree graph. Let r be the number of distinct primes
that divide m. We know from Palfy’s inequality that we must have at least 2" — 1
primes in the larger component. By [7, Theorem 5.4], we know that if the larger
component has exactly 2" — 1 primes, then F is abelian and in particular, we are
in Example (2.4). When there are more than 2" — 1 primes in the larger compo-
nent, we may have to distinguish between Examples (2.4) and (2.6). Of course, if
the group has a normal non-abelian Sylow p-subgroup P, then we are in Exam-
ple (2.6). In this case, G/ P’ will satisfy Example (2.4) by [7, Lemma 3], and so
the larger component in A(G) must have at least 2" primes including p.

We know from Ito’s Theorem [3, Corollary 12.34] that G has a normal abelian
Sylow p-subgroup if and only if p ¢ p(G). If the prime or vertex p isin p(G), we
know that if the Sylow subgroup is normal, it must be non-abelian. It is redundant
to keep saying that the Sylow subgroup is non-abelian, but we do so anyway to
avoid confusion. With that in mind, this lemma from [9] is used frequently.

Lemma 2.4 ([9, Lemma 3]). Suppose that G has a non-abelian normal Sylow
p-subgroup P for a prime p. Then p(G/P') = p(G)\{p}.

One of our goals is to show that if G is a solvable group with a character degree
graph having diameter three, then G has exactly one normal non-abelian Sylow
p-subgroup and p € p3. This result from [18] tells us that we can have at most
one normal non-abelian Sylow p-subgroup when A(G) has diameter three.

Theorem 2.5 ([18]). If G is a solvable group and A(G) has diameter three, then G
has at most one normal non-abelian Sylow p-subgroup for some prime p € p(G).

Finally, this theorem from [9] gives us our strategy for proving that the graphs
we are considering are not character degree graphs for any solvable group G.

Theorem 2.6 ([9, Theorem 2]). Suppose G is a solvable group with ®(G) = 1.
Assume that for all nontrivial normal subgroups M, A(G/ M) has two connected
components or the diameter of A(G/M) is at most 2. Then either A(G) has two
connected components or the diameter of A(G) is at most 2.



Character degree graphs of solvable groups with diameter three 1103

3 Observations of the partition in Definition 1.5

Let G be a solvable group and A(G) the character degree graph with diameter
three such that the vertices p(G) = p; U p2 U p3 U p4.

(1) Every prime in p(G) is in exactly one of the four sets.

(2) The sets pp and p3 are non-empty.

Proof. Because there is a shortest path between p; and p4, there exists primes p»
and p3 such that the path py, pa, p3, pa is a shortest path between p; and p4. The
prime p3 is necessarily in p3 as p3 is distance 2 from p; otherwise it contradicts
that p1, p2, p3, p4 is a shortest path. The prime p, is necessarily in py as p; is
adjacent to something in p3 and also adjacent to p;. o

(3) Because no prime in p3 U p4 is adjacent to the prime p;, the subset p3 U p4
determines a complete subgraph of A(G).

(4) Because no prime in p; U p; is adjacent to the prime p4, the subset p; U pa
determines a complete subgraph of A(G).

(5) Every prime in p; is adjacent to some prime in p3 and every prime in p3 is
adjacent to some prime in p;.

(6) Every prime in p3 is distance 2 from any prime in pg.
(7) The subset p; is the set of vertices that are distance 2 from any prime in p4.

(8) The subset p; is the set of all vertices that are distance 3 from any prime
in pg.

Proof. Letr be aprime in p; and s be a prime in p4. Because p; U p, determines
a complete subgraph of A(G) and p; is non-empty, there is a prime p, € p, that
is adjacent to the prime r. Because p, is adjacent to some prime in p3 and p3
is non-empty, there exists a prime p3 € p3 where py and p3 are adjacent. If p;
were adjacent to the prime s, then in particular, s would be distance two from pj
and s would be in p3. This contradicts the fact that s € ps4. As p3 U ps determines
a complete subgraph of A(G), the prime ps3 is adjacent to s and we have found
a shortest path r, p», ps3,s. o

(9) If r and s are primes in p(G) that are distance three from each other, than
one must be in p; and the other must be in pg4.

Proof. Suppose that r is a prime that is not in p; or p4. Without loss, we can
assume that r is in pp. Because p; U p, determines a complete subgraph, we see
that s cannot be in p;. Thus s must be in either p3 U ps. Because r is adjacent
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to some prime in p3, there exists a p3 € p3 and r and p3 are adjacent. Because
p3 U pg determines a complete subgraph, we see that p3 is adjacent to s and the
distance between r and s must be less than or equal to two. o

(10) If the partition is defined using r and s instead of p; and p4, where the
distance between r and s is three, the partition will be the same.

(11) Further, the partition is unique up to symmetry in the case where |p; U p2| =
|p3 U p4|. We will show that it is the case that |p; U p2| < |p3 U p4], and the
partition for character degree graphs will be unique.

The following theorem shows that the only possible graphs with six vertices that
satisfy Palfy’s condition that can be character degree graphs are those in Figure 3
and Figure 4 and in particular, the partition defined in Definition 1.5 is unique
when |p(G)| = 6.

Theorem 3.1 ([9, Theorem 4]). If |p(G)| = 6, then
lprUp2|l =2 and |[p3U pa| = 4.

4 Preliminary results

In this section, we prove many of the lemmas necessary to show that the graphs in
Figure 4 do not occur as character degree graphs for any solvable group G. The
proof that the graphs in Figure 4 do not occur follows in the next section.

The following lemma shows that if A(O”2(G)) is a disconnected graph, then
0P2(G) cannot be Example (2.4) or Example (2.5) from Theorem 2.1.

Lemma 4.1. Let G be a solvable group with A(G) having diameter three. Assume
that OP2(G) < G and that the graph A(OP2(G)) does not have diameter three.
Then, OP2(G) must have a normal non-abelian Sylow p-subgroup and the graph
A(OP2(G)) is disconnected. In particular, the group OP2(G) is not Example (2.4)
or Example (2.5) from Theorem 2.1.

Proof. Suppose that G is a solvable group and A(G) has diameter three. Let
K = 0P2(G) and suppose K < G and so A(K) is not diameter three. We assume
that K has no normal non-abelian Sylow p-subgroups and derive a contradiction.

Claim. The subgroup K is Example (2.4) or Example (2.5) from Theorem 2.1.

Proof. Because G/K is a pp-group, all primes in p(G)\ p2 are contained in p(K).
Because the primes in p; and p4 are contained in p(K) and A(K) is a subgraph
of A(G), we have A(K) is either disconnected or has diameter three. By the
hypothesis, A(K) does not have diameter three, and so it must be disconnected.
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If p € p(K) for p € po, then since |p1| > 1, the smaller component has at least
two primes. By [7, Theorem 5.3], OP(K) < K. This contradicts the definition
of K, and so p; intersects p(K) trivially. Thus, the two components of A(K) are
p1 and p3 U pg.

If K has a normal Sylow p-subgroup for some prime p € p(K), so does G as
p2 intersects p(K) trivially. As G has no normal non-abelian Sylow p-subgroups,
K also has no normal Sylow p-subgroups. Because A(K) is disconnected, the
subgroup K is either Example (2.4) or Example (2.5) from Theorem 2.1. |

Thus K is Example (2.4) or Example (2.5) from Theorem 2.1 with the larger
component being p3 U ps. By [7, Theorem 5.2], cd(K) contains only one degree
that is divisible by primes in p3 U p4. Pick primes p, € p3, p3 € p3, and ps € pg
such that p, and p3 are adjacent in A(G). Then there exists a character y € Irr(G)
such that p; p3 divides y(1). Let 6 be an irreducible constituent of yg in Irr(K).
By [3, Corollary 11.29], we know x(1)/6(1) divides |G : K|, and hence, p3
divides 6(1). Because K has only one degree divisible by primes in p3 U ps and
that degree is divisible by p3 and p4, we conclude that p4 also divides 6(1). Thus,
p2 and p4 are adjacent in A(G), which is a contradiction. |

The next two lemmas follow from the same arguments given in Claim 3 and
Claim 5 in the proof of Theorem 1.3 in [9].

Lemma 4.2. Let G be a solvable group with a normal Sylow p-subgroup P for
some prime p € p(G). Suppose p(G/M) = p(G) implies that M = 1 whenever
M is a normal subgroup of G. Then P’ is a minimal normal subgroup in G and
in particular, P’ is a central subgroup in P.

Proof. Let G be a solvable group with a normal Sylow p-subgroup P for some
prime p € p(G). Assume p(G/M) = p(G) implies M = 1. By Lemma 2.4, we
have p(G/P’) = p(G)\{p}. Let X be a normal subgroup of G that is contained
in P’ so that P//X is a chief factor for G. Because p(G/X) contains p and
p(G/P"), we see that p(G/X) = p(G). Thus X = 1 by our hypothesis and P’
is a minimal normal subgroup of G. Because Z(P) is a characteristic subgroup
of P, it is normal in G. It follows that P’ N Z(P) is a normal subgroup of G.
Because P is a nilpotent subgroup of G, P’ N Z(P) is not a trivial subgroup, and
so P! C Z(P). O

Lemma 4.3. Let G be a solvable group and suppose G has a normal Sylow p-sub-
group for some prime p € p(G). Suppose there is a normal subgroup N in G such
that p does not divide |N|. Then p(G/N) contains every prime in p(G) that is not
adjacent to p in A(G).
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Proof. Let G be a solvable group with a normal Sylow p-subgroup P for some
prime p € p(G). Let N be a normal subgroup of G such that p does not
divide |N|. The subgroup PN/N is a normal non-abelian Sylow p-subgroup of
G/N and so p € p(G/N). Let g be a prime in p(G)\p(G/N), and let QO be
a Sylow g-subgroup of G. Since ¢ divides no degree in cd(G/N), we use Itd’s
Theorem [3, Corollary 12.34] to see that QN/N is abelian and QN is normal
in G. Thus, the direct product P x QN is normal in G. Let y € Irr(G) with ¢
dividing x(1) and let 6 € Irr(QN) be an irreducible constituent of y g . We know
that y(1)/6(1) divides |G : QN | by [3, Corollary 11.29]. Since ¢ does not divide
|G : ON|, we see ¢ must divide 0(1). Thus, g € p(QON), and so p and ¢ will be
adjacentin A(P x QN). Because A(P x QN) is a subgraph of A(G), the primes
p and g are adjacent in A(G). In particular, p(G/N) contains every prime in p(G)
that is not adjacent to p in A(G). |

Because we know that a solvable group G has at most one normal non-abelian
Sylow p-subgroup, if A(G) has diameter three, then all factor groups G/ M have
restrictions on the possible normal Sylow p-subgroups. This is the case even if
A(G/M) does not have diameter three.

Lemma 4.4. Let G be a solvable group where A(G) has diameter three. Let M
be a minimal normal subgroup of G such that A(G/ M) has diameter three. If G
has a normal Sylow p-subgroup for p € p(G), then G/ M does not have a normal

Sylow q-subgroup for g € p(G)\{p}.

Proof. Let G be a solvable group with A(G) having diameter three. Suppose G
has a normal Sylow p-subgroup P for p € p(G), and let M be a minimal nor-
mal subgroup of G and suppose A(G/M) has diameter three. Suppose that the
subgroup G/M has a normal non-abelian Sylow g-subgroup Q /M for a prime
q € p(G)\{p}. Because the subgroup PM/M is a normal Sylow p-subgroup
of G/M, the Sylow subgroup PM/M must be abelian or we have a contradic-
tion as G/ M can have at most one normal non-abelian Sylow p-subgroup. Thus,
P’ C M. Let R be a Sylow g-subgroup of G. We see that RM is normal in G and
so R P is anormal subgroup in G. Further, [R, P] € M and so R centralizes P/ P’
by [5, Corollary 3.28]. Hence, P = Cp(R)P’ = Cp(R)P(P). As P/ C ®(P),
by the Frattini Argument [4], P = Cp(R) and so RP is a direct product. Thus R
is normal in R P, so it is characteristic, and R is normal in G. This contradicts the
fact that G can have at most one normal non-abelian Sylow p-subgroup. |

We will eventually show that if A(G) has diameter three, then G has a normal
Sylow p-subgroup for some prime p € p3. However, if p3 is not large enough, the
solvable group G cannot have a normal Sylow p3-subgroup and a diameter three
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character degree graph. This is necessary to show that the graphs in Figure 4 do
not exist as character degree graphs.

Lemma 4.5. Let G be a solvable group with A(G) having diameter three. Assume
for all proper nontrivial normal subgroups M that A(G/M) and A(M) do not
have diameter three, and assume |p3| < 2" — 1 wheren = |p1 U p2|. Then G does
not have a normal Sylow ps-subgroup for any prime p3 € ps.

Proof. Suppose G has a normal non-abelian Sylow p3-subgroup P for a prime
p3 € p3. Then, since p(G/P') = p(G) \ {p3} by Lemma 2.4 and the group G/ P’
is a nontrivial proper factor group of G, the graph A(G/P’) cannot have diameter
three by the hypothesis. Because p(G/P’) contains primes from p; and pg, we
have that the graph A(G/P’) must be disconnected with components p; U pa
and (p3 U p4) \ {p3}. Further, G/ P’ cannot have any normal non-abelian Sylow
subgroups or G would have more than one normal non-abelian Sylow subgroup,
and that violates Theorem 2.5. So G/ P’ is Example (2.4) from Theorem 2.1 as
p1 U p2 € p(G/P’) and [p1 U po| > 2.

Theorem 5.3 in [7] gives us that OP2(G/P’) < G/P’, and so OP2(G) < G
for every prime p, € p,. Fix the prime p; € p; and let K = OP2(G). Because
p(K) contains p; and p4, and K is a proper subgroup of G, the graph A(K) is
a subgraph of A(G). By the hypothesis, the graph A(K) must be disconnected.
As K contains the subgroup P, the subgroup K has a normal non-abelian Sylow
p3-subgroup and p3 is in the larger component. So K must satisfy the hypotheses
of Example (2.6) from Theorem 2.1.

By [7, Lemma 3.6], K/ P’ satisfies the hypotheses of Example (2.4). Let

S/P'=F(K/P'), R/S=TF(K/S),
F/P' =F(G/P'), E/F =TF(G/F).

Because S is a characteristic subgroup of K and K is normal in G, S is nor-
mal in G, and § € F N K. Because F N K is a normal subgroup of K, we have
F N K = S. Further, R is characteristic in K and so R is normal in G. By the
Diamond Lemma in [5], we obtain R/S =~ RF/F is a normal subgroup of G/ F.
Because RF/F is normal in G/ F, we have RF/F C E/F and RF C E. Since
E/F isaHall (p3 U pg) \ {p}-subgroup, and R/S is a Hall (p3 U ps) \ {p3}-sub-
group by [7, Lemma 3.4], RF = E.

Because G/ P’ satisfies the hypotheses of Example (2.4), G/ P’ is the semi-
direct product of a subgroup HP’/P’ acting on an elementary abelian p3-group
P/ P’, the positive integer m is defined to be the index |H : F(H)|, the order of
P/P’ is ¢ where q is a p3-power, and the quotient (¢™ — 1)/(q — 1) divides
|E : F|. Since there are |p1 U p| = n primes that divide m, there must be 2" — 1
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distinct primes that divide the quotient (¢ — 1)/(¢ — 1) by Lemma 2.2. Because
p3 does not divide | E : F|, and there are less than 2”* — 1 primes in p3, there must
be at least one prime p4 € p4 that divides (¢ — 1)/(q — 1).

As the graph A(G) is connected, there exist primes p, € pp and p3 € p3
where p, and p3 are adjacent. Then there is a character y € Irr(G) such that p; p3
divides y(1). Let 8 be an irreducible constituent of yx. By [3, Corollary 11.29],
p3 divides 6(1) and so P’ is not contained in ker 6. The size of the smaller com-
ponent of A(K) is either [p; U pa| =nor|(p1 U p2)\{p2}| =n—-1=a.

Because K is Example (2.6), K contains a Frobenius group where P is the
Frobenius kernel and we let B be a Frobenius complement. The positive inte-
ger mj is defined to be the index |K : R|. There is a p3-power ¢; such that
|P: P'| =¢q7" and (¢]"" —1)/(q1 — 1) divides | B|. By [7, Lemma 3.6], the char-
acter degrees cd(K | P’) are all divisible by p|B|. Because 6 € Irr(K | P’), the
quotient (¢7"" — 1)/(q1 — 1) divides 6(1).

If the smaller component of A(K) is p; U pp, then

m=m; and (¢"' —1)/(q1—1)=@@"-1/(@g-1).

Since the prime p4 divides (¢ — 1)/(g — 1), the prime p4 divides 6(1). If the
smaller component of A(K) is p; U p2\{p2}, then let mp = |G : K|. Then

my =m/my and q{"' =¢™ =|P:P|

so g1 = q"™2. Let r be a Zsigmondy prime divisor of ¢”*. Then r divides ¢ — 1
and r does not divide ¢* — 1 for any s < m. Because q'I"‘ —1=¢g™—1, and
my < m, the prime r divides the quotient (¢]"' —1)/(q1 — 1). Thus, as py4 is
a Zsigmondy prime divisor of g™ — 1, the prime p4 divides (¢"' — 1)/(q1 — 1)
and so divides 6(1).

As pq4 divides 6(1), the prime p4 also divides y(1). Then the primes p, and
P4 are adjacent, but this is impossible as p, € p2 and ps4 € p4. Thus, G has no
normal Sylow ps3-subgroup. o

The following lemma shows that under suitable hypotheses, if we have a non-
trivial factor group G/ M, then |p(G/M)| < |p(G)].

Lemma 4.6. Let G be a solvable group such that A(G) has diameter three.
Assume for all proper nontrivial normal subgroups N that A(G/N) and A(N) do
not have diameter three. Further, assume G has no normal Sylow pa-subgroup for
p4 € pa, 0P4(G) = G, |p1Up2| = n, and |p3| < 2" — 1. Then p(G/M) = p(G)
implies M = 1, whenever M is a normal subgroup of G.

Proof. Suppose G is a solvable group where A(G) has diameter three, G has no
normal Sylow p4-subgroups for any prime p4 € p4, the subgroup OP*(G) = G,
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|p1 U pz| = n,and |p3 U pg| < 2" — 1. Assume that if N is a proper nontrivial nor-
mal subgroup of G that the graphs A(N) and A(G/N) do not have diameter three.
Let M be a nontrivial normal subgroup of G, and suppose that p(G/ M) = p(G).
Then A(G/M) does not have diameter three, and since A(G/M) is a subgraph
of A(G), the graph A(G/M) must be disconnected with components p; U pa
and p3 U p4. The group G/ M must be one of the examples from Theorem 2.1.
Because both components have more than one vertex, we must be in Example (2.4)
or Example (2.6). If G/M is Example (2.4), then it has no normal Sylow p-sub-
groups for any prime p € p(G/M) and in particular, G has no normal non-abelian
Sylow p-subgroups either as p(G/M) = p(G). By [7, Theorem 5.3], we have
OP2(G/M) < G/M. Let H/M = OP2(G/M). Then since |G/M : H/M| is
a nontrivial power of p,, the index |G : H| is a nontrivial power of the prime
p2.So OP2(G) < G. This contradicts Lemma 4.1, hence G/ M is Example (2.6).
By [7, Lemma 3.6], the group G/M has a normal Sylow p-subgroup for some
prime p € p3 U ps. Let Q/M be that Sylow p-subgroup of G/M and P a Sylow
p-subgroup of G that is contained in Q.

Consider K = OP2(G) for a fixed prime p, € py. Because OP2(G/M) < G/ M
by [7, Theorem 5.3], we have K is a proper subgroup of G, and so A(K) must be
disconnected. Also, notice P is contained in K.

Claim. The group K is Example (2.6) from Theorem 2.1.

Proof. Because the only prime that could be missing from p(K) is the prime ps,
at least one of the components is larger than one as p(G)\{p2} € p(K). If K
is Example (2.1) or Example (2.5), then |p1| = |p2| = 1, the prime p, ¢ p(K),
and K has an abelian p;-complement. However, this implies O?4(K) is a proper
subgroup of K. Then O%4(G) is a proper subgroup in G and this is a contradiction.

Suppose K is Example (2.4). There exists a prime p3 € p3 that is adjacent to
p2 and a character y € Irr(G) such that p; p3 divides y(1). Let 6 be an irreducible
constituent of y g . Then by [3, Corollary 11.29], the quotient y(1)/6(1) divides the
index |G : K|. Because the index |G : K| is a py-power, p3 divides 6(1). Because
K is Example (2.4), there is only one character degree that is divisible by the
primes in the larger component, p3 U p4, and so 6(1) must be that character de-
gree. Hence, every prime p4 € py4 divides 6(1). Thus, p4 divides y(1) and p, and
p4 are adjacent, which is a contradiction. Thus, K must be Example (2.6) from
Theorem 2.1. |

Since K is Example (2.6), K has a normal non-abelian Sylow r-subgroup R
for some prime r € p3 U ps. Because R is a characteristic subgroup of K, R
is normal in G. Further, as |G : K| is a power of p;, R is a Sylow subgroup
of G. Because G/ M has a normal non-abelian Sylow p-subgroup, and RM/M is
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a normal non-abelian Sylow r-subgroup of G/M, p =r and R = P. As G has
no normal non-abelian Sylow p-subgroups for p € p4, the prime p must be in p3.
But this contradicts Lemma 4.5. Thus p(G/M) does not equal p(G). ]

5 Graphs with six vertices

In this section we show that if G is a solvable group then A(G) is not one of
the two graphs from Figure 4. We start by showing that under suitable conditions,
if A(G) has diameter three, then G does not have a normal non-abelian Sylow
p-subgroup for any prime p € p; U ps.

Lemma 5.1. Let G be a solvable group with A(G) having diameter three. Assume
for all proper nontrivial normal subgroups M that A(G/M) and A(M) do not
have diameter three. Further, assume p(G/M) = p(G) implies M = 1. Then G
does not have a normal Sylow p,-subgroup for any prime py € p».

Proof. Suppose G has a normal Sylow p,-subgroup P for a fixed prime p, € pa
and let H be a py-complement of G. By [9, Lemma 3], p(G/P’) = p(G)\{p2}.
Because p(G/P’) contains the primes in p; and p4, and A(G/P’) is a subgraph
of A(G), the graph A(G/P’) is disconnected. Because P is not central in G and
H acts on P nontrivially, we see that P/ P’ is not central in G/ P’. From [7, The-
orem 5.5], the Fitting subgroup of G/P’ has at most one non-central Sylow sub-
group, whichis P/P’. Let F = IF(G). Since all of the other Sylow subgroups of
F(G/P’') = F/P’ are central, F/P’ is abelian, and thus G/ P’ is as described in
Example (2.4) from Theorem 2.1. This is because any solvable group having an
abelian Fitting subgroup whose graph has two connected components, where at
least one connected component has size larger than one, must satisfy the hypothe-
ses of Example (2.4). Further, G/ P’ has Fitting height 3.

Let E/F =F(G/F)and Z = Cy(P/P’). Then the quotient G/ E is a cyclic
(p1 U p2)\{p2}-group, E/F is a cyclic p3 U ps-group and £ N H is abelian.
Because H/(E N H) is isomorphic to G/ E, the subgroup £ N H contains every
Sylow p4 subgroups of G as G/ E is a p; U pa-subgroup. So, the subgroup H has
a normal Sylow p4-subgroup Q for some p4 € ps. By [7, Lemma 3.4] we have
that £ N H acts irreducibly on [E, F]/P’. Also, p(PQ) = {p2, p4} and A(PQ)
has two connected components. Because the Fitting height of PQ is 2, by [7, Lem-
ma 4.1] we know that PQ is Example (2.1) of Theorem 2.1. Let C = Cp(Q).
Because PQ is Example (2.1) from Theorem 2.1, P’ C C, every non-linear irre-
ducible character is fully ramified with respect to P/C, and Q acts nontrivially
on P fixing every non-linear irreducible character of P. By [14, Theorem 19.3],
we have P’ =[P, Q], and so P’ <[P, Q]. Because P C F and Q C E, we
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have [P, Q] C [E, F]. Since [E, F]/ P’ is irreducible under the action of £ N H,
we have [E, F] = [P, O].

Fix a prime p; € p1. As p; and p, are adjacent in A(G), there exists a charac-
ter y € Irr(G) such that pj p, divides y(1). Let 6 € Irr(P) be an irreducible con-
stituent of y p. Notice that 6 is invariant in F as F is nilpotent, and in £ because no
prime in p3 U p4 divides y(1). By Glauberman’s Lemma [3, Lemma 13.8], there
exists an £ N H -invariant irreducible constituent of 8p/. Thus, Cp/(E N H) > 1.
By Lemma 4.2, P’ is central in P and so Cp/(E N H) is normal in P. Also, H
normalizes P’ and E N H. So, H and G = PH normalize Cp/(E N H). Fur-
thermore, P’ is minimal normal in G by Lemma 4.2, thus, P’ € Cp(E N H). By
Fitting’s Lemma,

P/P' =[P,Q]/P'xC/P' =[E.F]/P' xCp(ENH)/P'.

Because Cp(ENH) € C,wehave Cp(ENH) = C and so E satisfies the hypo-
theses of Example (2.1) and has components { p,} and p3 U p4 by [7, Lemma 3.1].
There exists a character ¥ € Irr(G) such that p, p3 divides ¥ (1) for some p3 € p3.
Let y € Irr(E) such that y is an irreducible constituent of {g. By [3, Corol-
lary 11.29], the quotient ¥ (1)/y(1) divides |G : E|, and since neither p, nor p3
divides |G : E|, we have that p, and p3 divide y(1). This is a contradiction to the
fact that A(E) is disconnected. Thus, G has no normal Sylow p-subgroup. O

The hypotheses for the following lemma have the additional condition that
OP(G) = G for all primes p € p3 U pg4.

Lemma 5.2. Let G be a solvable group with A(G) having diameter three. Assume
for all proper nontrivial normal subgroups M that A(G/M) and A(M) do not
have diameter three. Further, suppose that p(G/ M) = p(G) implies M = 1 and
0P3(G) = G or OP4(G) = G. Then G does not have a normal Sylow p1-sub-
group for any prime py € py.

Proof. Suppose G has a normal Sylow p;-subgroup P for some p; € pj, and let
N = 017'1 (G). By Lemma 4.3, we have {p1} U p3 U pa € p(G/N). By the hypo-
theses, if N > 1, then |p(G/N)| < |p(G)|, and so, by Lemma 4.3, there exists
aprime pa € (p; U p2)\{p1} thatis notin p(G/N). Since p(G/N) contains {p; }
and py4, it follows that A(G/N) has two connected components. By our assump-
tion, G/ N has a normal Sylow pi-subgroup, and so G/N is either Example (2.1)
or Example (2.6) from Theorem 2.1. Because p is in the smaller component, the
group G/N must be Example (2.1), and the components of A(G/N) are {p1}
and p3 U pg. In Example (2.1), G has an abelian Hall p;-complement. Thus for
P € p3 U pg, the subgroup O?(G) is a proper subgroup of G that contains P,



1112 C.B. Sass

which is a contradiction to the hypothesis that either O?3(G) = G or OP4(G) =G.
Thus, N = 1.

Because O,/ (G) = 1, the Fitting subgroup of G is P. Let H be a pj-comple-
ment for G; H acts faithfully on P, and by [14, Lemma 18.1 and the discussion
on p.254], every prime divisor of | H| occurs in p(G). Pick a character y € Irr(P)
with (1) > 1 and a character y € Irr(G | y). Then p; divides y(1) and no prime
in p3 U pg divides y(1). Thus, G/P =~ H has an abelian Hall p3 U p4-subgroup
by [14, Theorem 12.9]. Let L = O(,,ups)\{p;}(H) and E/L = F(H/L). Then
H/L has an abelian Hall p3 U ps-subgroup, which must be £/L by the Hall-
Higman Theorem [5, Theorem 3.21]. If £ = H, then we have O?3(H) < H for
p3 € p3 U psa, and so OP3(G) < G. This is a contradiction to the hypothesis that
either OP3*(G) = G or OP4(G) = G, thus, E < H.

Consider the normal subgroup PE. We know {p;} U p3 U pg € p(PE). Since
PE < G, we have that A(PE) must be disconnected and the components are
(p1Up2)Np(PE) and p3Ups. If p3 € p(PE) for any prime p> € (p1Up2)\{p1},
then because PE has a normal Sylow pj-subgroup and both components would
have size larger than one, we must be in Example (2.6) of Theorem 2.1. However,
p1 must be in the larger component, which it is not, and so PE satisfies Exam-
ple (2.1) of Theorem 2.1. Because PE is Example (2.1) from Theorem 2.1, the
components of A(PE) are {p;} and p3 U p4, the subgroup E is an abelian Hall
03 U pg-subgroup, L = 1, and P’ C Z(PE).

Let Q be the Sylow p4-subgroup of E for some prime p4 € ps. Because PE
is Example (2.1) from Theorem 2.1, every non-linear irreducible character of P
is fully ramified with respect to P/ Cp(E), the subgroup Q acts faithfully on P,
fixing every non-linear irreducible character of P. By [14, Theorem 19.3], we have
P’ =[P, Q] .LetA € Irr([P, Q]/P’) be non-principal. Because P’ is central in P
by Lemma 4.2, the stabilizer of A in G is P Cg (A).

Because Q acts faithfully, C o (A1) < Q, which implies p4 divides |Q : C o (1)].
Thus p4 divides |H : Cg(4)]. Since p, and p4 are not adjacent in A(G) for
p2 € (p1 U p2)\{p1}, we have Cg (1) contains a Hall (p; U p2)\{p1}-subgroup
of H. Further, A extends to P Cg (A1) and

cd(P Cg (1) [ A) = cd(CH ().

So by Clifford’s theory, no degree in cd(Cg(A)) is divisible by any prime in
(p1 U p2)\{p1}. By Itd’s Theorem [3, Theorem 12.34], C gz (1) contains a unique
Hall (p1 U p2)\{p1}-subgroup of H, which is abelian. Recall, £ = [F(H) is abel-
ian and the index |H : E| is only divisible by the primes in (p1 U p2)\{p1}. By
[3, Theorem 6.15], cd(H) contains only products of primes in (p1 U p2)\{p1}
and so p(H) = (p1 U p2)\{p1}. Thus, Cg (1) is abelian. The stabilizer of A in
[P.Q]H is [P, Q] Cgx(A) and A extends to this stabilizer.
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Consider the group [P, Q]H . We have

cd([P,Q]H) = cd(%) Ucd([P, Q1H | P')

=cd(%) qu([P OlH ' LP. Q]) Ucd([P, Q)H | P).

Observe that
cd([P. QJH [ A) ={|H : Cg(Ma | a € cd(Cx (1))} ={|H : Cx(A)[}.
Thus the primes in p3 U p4 are the only possible prime divisors of degrees in

([P, OlH | [P, Q])
cd .
P’ P’

By [6, Lemma 1], [P, Q]/ P’ is irreducible under the action of Q and so
P = Crp,01(E).

Since A(P Q) has two connected components, every non-linear irreducible charac-
ter of [P, Q] is fully ramified with respect to [P, Q]/P’. Then [P, Q]E is
Example (2.1) from Theorem 2.1 and the two connected components are {pj}
and p3 U pg4.

By [7, Lemma 3.1], cd([P, Q] E | P’) consists of powers of the prime p;. Since
|[P,Q]H : [P, QlE| = |H : E| is only divisible by primes in (p; U p2)\{p1},
the only primes that divide degrees in cd([P, Q]H | P’) are the primes in p; U p5.
Because Q acts faithfully on [P, Q], the prime p4 € p([P, Q]H). As p4 was cho-
sen arbitrarily from p3 U p4, the graph A([P, Q]H) has two connected compo-
nents: p; U p2 and p3 U ps. Because [P, Q]H has a normal non-abelian Sylow
p1-subgroup and both components have more than one vertex, [P, Q] H must sat-
isfy Example (2.6) from Theorem 2.1. However, p; is in the component p; U p»
and |p; U p2| < |p3 U p4]|. This is a contradiction to [7, Lemma 3.6] and Palfy’s
inequality, Theorem 2.3, and so, G has no normal Sylow p;-subgroups. o

As the following argument is used frequently, we have made a lemma. This
lemma shows how Theorem 2.6 can be applied once the group G has been shown
to have no normal non-abelian Sylow p-subgroups and satisfies the condition that
lp(G/M)| < |p(G)] for all proper nontrivial normal subgroups M .

Lemma 5.3. Let G be a solvable group and suppose G has no normal Sylow
p-subgroups for p € p(G). Suppose for all minimal normal subgroups M that
o(G/M) < p(G) and A(G/M) does not have diameter three. Then A(G) does
not have diameter three.
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Proof. We write F for the Fitting subgroup of G and ®(G) for the Frattini sub-
group of G. By [14, Lemma 18.1 and the discussion on p.254] we know that
p(G) = (|G : F|). Because F(G)/®(G) = F(G/®(G)), we see that

p(G/®(G)) = p(G)

and so ®(G) = 1. Let M be a proper nontrivial normal subgroup of G and con-
sider A(G/M). Since A(G/M) is a subgraph of A(G), we see that it cannot have
diameter three by hypothesis. Thus, A(G/M) must either have two connected
components or have diameter two. By Theorem 2.6, we see that A(G) must also
have two connected components or diameter two. o

We now have all the tools to show that the graphs in Figure 4 are not the char-
acter degree graphs for any solvable group G.

Proof of Theorem 1. Let ¥ be the family of graphs that are isomorphic to the
graphs in Figure 4. In particular, the graphs satisfy Palfy’s Condition, have six ver-
tices, and have diameter three. Let G be a minimal counter-example with respect
to |G|, such that A(G) € ¥ . The partition of vertices is as follows: |p; U p2| = 2,
lp3| =T or2, |p4| = 2.

Working by induction, if M is a proper normal subgroup of G, then A(M)
is a subgraph of A(G). If A(M) has diameter three, then either A(M) € ¥, or
A(M) is a graph that does not exist as a character degree graph by Theorem 1.2,
Theorem 1.3, or by Palfy’s Condition. As G is minimal, A(M) cannot have diam-
eter three and so is either disconnected or has diameter at most two.

If G has a normal Sylow p4-subgroup P for some prime p4 € p4, then

p(G/P') = p(G)\{pa}

by Lemma 2.4. The graph A(G/P’) has five vertices. Because p4 has more than
one vertex, A(G/P’) either has diameter three or is disconnected. Let py € p2
and p3 € p3 be adjacent in A(G) such that the product p, p3 divides y(1) for
a character y € Irr(G). Because p, and p4 are not adjacent, we have P’ < ker y.
Thus, y € Irr(G/ P’) and so p; and p3 are adjacent in A(G/P’). Because a graph
with five vertices and diameter three does not occur as a character degree graph by
Theorem 1.3, G does not have a normal Sylow p4-subgroup. Notice that deleting
one or more edges incident to the vertex p4 produces a graph that does not satisfy
Palfy’s Condition, and so O?4(G) = G by [10, Lemma 3.1].

By Lemma 4.5, G does not have a normal Sylow p3-subgroup for any prime
p3 € p3. Because |p; U pa| = 2 and |p3| < 3, Lemma 4.6 says that

lp(G/M)| < |p(G)]

for all proper nontrivial normal subgroups M. We see by Lemmas 5.1 and 5.2
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that G does not have a normal Sylow p-subgroup for any prime p € p; U ps.
Thus G has no normal non-abelian Sylow subgroups and so by Lemma 5.3, the
graph A(G) does not have diameter three, a contradiction. |

An immediate corollary is the following:

Corollary 5.4. Let G be a solvable group where A(G) has diameter three and
|p(G)| = 6. Then |ps| = 3.

Proof. We know from Theorem 3.1 that if G is a solvable group where |p(G)| = 6,
then A(G) is either the graph from Figure 3 or the graphs from Figure 4. From
Theorem 1 we see that A(G) must be the graph in Figure 3. We observe that p3
must have three vertices. |

Using similar methods to show that the two graphs with six vertices do not
occur as diameter three character degree graphs of solvable groups, we can also
show that p3 must have at least three vertices.

Proof of Theorem 2. We prove this using induction on the size of p(G). Let G
be a minimal counter-example such that |p(G)| > 6, the graph A(G) has diame-
ter three, and |p3| = 1 or 2. Because |p1 U p2| < |p3 U p4/, the subset p4 has at
least two vertices. Suppose G has a normal Sylow p4-subgroup P for some prime
P4 € pa. Then by Lemma 2.4, the set of vertices for p(G/P’) is p(G)\{pa}. The
graph A(G/P’) is not disconnected. Let p» € pp and p3 € p3 be adjacent in A(G)
such that the product p; p3 divides y(1) for a character y € Irr(G). Because p,
and p4 are not adjacent, we have P’ < ker y. Thus, y € Irr(G/P’) and so p, and
p3 are adjacent in A(G/ P’). Thus, the graph A(G/P’) is connected and has diam-
eter three. This contradicts the induction hypothesis and so G has no normal Sylow
pa-subgroups for any prime p4 € p4. Furthermore, deleting one or more edges
incident to the vertex p4 produces a graph that does not satisfy Palfy’s Condition,
and so, O?4(G) = G by [10, Lemma 3.1].

Let M be a proper, nontrivial, normal subgroup of G. The graphs A(M) and
A(G/M) are subgraphs of A(G). In particular, p(G/M) N p3 and p(M) N p3
have at most two vertices. Therefore, the graphs A(M) and A(G/M) cannot have
diameter three.

Since |p3| < 2and |p1Upz| = aisatleast2, |p3] < 24—1. Thus by Lemma 4.5,
G does not have any normal Sylow ps-subgroups for any prime p3 € p3. By
Lemma 4.6, if M is a normal subgroup of G and p(G/M) = p(G), then M = 1.
We see by Lemmas 5.1 and 5.2 that G does not have a normal Sylow p-subgroup
for any prime in p; U p2. Hence, G has no normal non-abelian Sylow subgroups.
Thus, by Lemma 5.3, A(G) does not have diameter three and |p3| > 3. ]



1116 C.B. Sass

6 No normal non-abelian Sylow p4-subgroup

When showing that the graphs in Figure 4 were not the character degree graphs
for any solvable group G, we were able to use the fact that the graphs in Figure 2
are not character degree graphs for any solvable group G. Is it possible that there
is a group G that has a character degree graph A(G) as in Figure 3 and a nor-
mal Sylow p4-subgroup P for the prime p4 € p4? The graph A(G/P’) will have
diameter two in this case, and so none of our current tools answer this question.
The following lemma shows that it is not possible for a solvable group G to have
a character degree graph with diameter three and a normal Sylow p4-subgroup for
prime p4 € pa.

Lemma 6.1. Let G be a solvable group with A(G) having diameter three. Then G
does not have a normal Sylow p4-subgroup for any prime ps € p4.

Proof. Let G be a minimal counter-example where A(G) has diameter three and
G has a normal Sylow p4-subgroup P for a prime p4 € ps. We know that |p3| > 3
by Theorem 2.

Claim 1. We have OP3(G) = G for all primes p3 € p3 U pa\{pa}.

Proof. Suppose OP3(G) < G. Since A(OP3(G)) contains all edges not incident
to { p3} and the primes except possibly the prime p3, we can find a prime g € p3
other than p3 that is adjacent to some prime p, € p2. Thus A(O?3(G)) is con-
nected and has diameter three. This contradicts our assumption that G is a minimal
counter-example, as P € OP3(G). O

Claim 2. The subgroup Opﬁt (G) = 1 and the Fitting subgroup of G is P.

Proof. Suppose that M is a minimal normal subgroup contained in OPZ (G). Then
p(G/M) contains p; U pp U {ps} by Lemma 4.3, and A(G/M) is disconnected
or has diameter three. Since G/ M has a normal Sylow p4-subgroup PM /M, we
know that A(G/M) must be disconnected by our assumption, and further G/ M
is either Example (2.6) or Example (2.1) from Theorem 2.1. The components are
either p1 U p2 and {p4}, or p1 U p2 and (p3 U ps) N p(G/ M), where |[p1 U p2| = n
and |(p3 U ps) N p(G/M)| > 2" — 1, by Palfy’s inequality.

We assume first that both of the connected components of A(G/M ) have size
larger than one and so the group G/M is Example (2.6) in Theorem 2.1. Let
F/M =F(G/M) and

(E/M)/(F/M) =F(G/M)/(F/M)) = E/F =F(G/F).
Then by [7, Lemma 3.6], F/M = PM/M x Z/M where Z /M is a central sub-
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group of G/ M. Let ¢ be a nonlinear irreducible character of the subgroup P so
that p4 divides ¢(1). Then ¢p x 1ps € Irr(P x M) and M is contained in the ker-
nel of ¢ x 1p7,ie (¢ x 1p7)(a) = 1 foralla € M. By [7, Lemma 3.6], there exists
a subgroup B of G such that PM/M - B/ M is a Frobenius group, PM/M is the
Frobenius kernel and B/M is a Frobenius complement. By [3, Theorem 6.34],
(¢ x 137)PB/M 5 an irreducible character of PB/M, and so (¢ x 1p7)F® is an
irreducible character of PB.

Let y € Irr(G) with y(1) divisible by p, p3 for primes p, € p and p3 € p3.
Lety € Irr(PZ) and y € Irr(Z) where v is an irreducible constituent of y pz and
y is an irreducible constituent of 1z. Notice that if y = 1, then Z C ker(y) and
so M is also in ker(y). But then p, and p3 are adjacent in A(G/M ), which is not
the case, and so y is not the principal character.

Consider ¢ x y, an irreducible character of PZ, and its stabilizer Ggx,, which
is the intersection of the stabilizers, G and G, . Notice, that by [3, Corollary 6.28],
¢ extends to Gg. If 6 € Irr(G) lies over ¢, then since p4 divides 6(1), we know
that no prime in p; Up, divides 8(1). By [14, Theorem 12.9], we see that G/ P con-
tains an abelian Hall p U p2-subgroup of G/ P. As ¢ extends to G, we can apply
Gallagher’s Theorem [3, Corollary 6.17]. Any character degree a € cd(Ggy/P)
can be multiplied by ¢ (1) to get a character degree in cd(G), and so no prime in
p1 U p2 divides any character degree of G/ P. Thus, by 1td’s Theorem [3, Corol-
lary 12.34], G/ P contains a unique Hall p; U p>-subgroup AP/ P. By Clifford’s
theory, we get that no prime in p; U p; divides |G : Gg|.

Further, no prime in p1 U py divides |G : Gyxg|. If a prime p; € p1 U p; did
divide |G : Gyxg|, then p; would divide |G : Gg| and p; and p4 would be adja-
cent, which is not possible. So. since Ggxy /P also contains a Hall p; U pa-sub-
group of G, it must contain AP /P. Thus, G, contains A.

Consider the character ¢& and its stabilizer Gg¢ for some g € G. The character
@8 also extends to its stabilizer by [3, Corollary 6.28]. By Gallagher’s theorem
[3, Corollary 6.17], any character degree in cd(Ggz/P) is a multiple of ¢& (1),
and so no prime in p1 U pz divides any character degree of G4/ P. So, this fac-
tor group contains a unique Hall p; U p2-subgroup A% P/P. Because Ggzxy /P
contains A% /P, G, also contains A, and so G, contains all conjugates of A.
Hence, G, contains 0192 (G). However, Gy contains P and O?3(G) =G
for all p3 € p3 U p4\{pa}, and so G, = G.

Because 1p x y € Irr(P x Z), and E/F is cyclic, we get that 1p x y extends
to E by [3, Corollary 11.22]. Then, as G/ E is cyclic, 1 p x y extends to all of the
Sylow subgroups of G/E. By [3, Corollary 11.31], we get that 1p x y extends
to G, and hence y extends to G. Call the extension of y to G 7. By Gallagher’s
Theorem, 5y are all of the irreducible constituents of y &, where € Irr(G/Z). In
particular, y = ny for some n € Irr(G/Z). Since M is contained in Z, we know
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that A(G/Z) is disconnected and any p, € p, and p3 € p3 are not adjacent. Since
p2 p3 divides y(1) and p, does not divide y (1), we know that p, must divide n(1).
Thus, p3 cannot divide 1(1) as p, and p3 are not adjacent in A(G/Z), and so p3
divides y(1). However, there exists an « € Irr(G/Z) such that p; divides «(1) for
some prime p; € pj and ay € Irr(G). This contradicts the fact that p; and p3 are
not adjacent in A(G).

Thus, (p3 U p4) N p(G/M) = {p4} and so G/ M is Example (2.1) from Theo-
rem 2.1. Then, G/ M has an abelian Hall p4-complement, and hence O?3(G) < G
for some prime p3 € p3 U pa\{p4}, which we showed cannot happen. Thus we
have OpQ(G) =land F(G) = P. o

Claim 3. The subgroup P’ is a minimal normal subgroup of G and P’ is central
in P.

Proof. Suppose there exists 1 # X C P’ where P’/ X is a chief factor. Then since
p(G/P") = p(G)\{pa} and A(G/P’) is connected, we have that p(G/X) = p(G)
and in particular A(G/X) has diameter three. However, this contradicts our
assumption, and P’ is minimal normal. Because Z(P) is characteristic in P and
so normal in G, it follows that P’ N Z(P) is normal in G. Because P is nilpotent,
1 < P'NZ(P),andso P’ C Z(P)as P’ is aminimal normal subgroup of G. O

Let 6 € Irr(P) be nonlinear and H a p4-complement in G. Notice that H acts
faithfully on P and every prime divisor of | H | occurs in p(G). Let y € Irr(G) be
an irreducible constituent of #¢. Then, since no prime in p; U ps divides x(1),
by [14, Theorem 12.9], G/P =~ H has an abelian Hall p; U p,-subgroup. Let
L = Opyups\{psy(H)and E/L = F(H/L).Note that £/ L is a p; Upz-subgroup.
Since H/L has an abelian Hall p; U pz-subgroup, it follows that £/ L is the Hall
p1 U pa-subgroup by the Hall-Higman Theorem in [5, Theorem 3.21] and since
0r3YUPa\Pal(G) = G, E = H. In particular, L is a Hall p3 U p4\{ p4}-subgroup
of H.

Let K be a pp-complement in H for a fixed prime p» € p». Note that L C K.
Since E/L = H/L is abelian, K is normal in H . Because G is a minimal counter-
example and PK has a normal non-abelian Sylow p4-subgroup, the graph A(PK)
is disconnected. The subgroup PK is a Hall py-complement of G and so we
have p(PK) = p(G) \ {p2}. Also, the only edges in A(PK) that are not retained
from A(G) are those that are incident to the prime p,. The subsets p; U p2\{p2}
and p3 U p4 induce complete subgraphs of A(PK) and so the two connected
components of A(PK) are (p1 U p2)\{p2} and p3 U psg. As the prime p4 is in
a component with size larger than one, the group PK must be Example (2.6) in
Theorem 2.1. Thus, PK = T'D where D is an abelian group acting coprimely on
the group 7. By [7, Lemma 3.6], we have that P C 7', and 7" has a p4-comple-
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ment Q. So, PK = PQD and the primes that divide Q are precisely the primes
in p3 U pg\{p4}. Thus, Q = L and, as Q is abelian, L is abelian.

Because the group PK = PLD is Example (2.6), the subgroup [PL, D] is
a Frobenius group where [P, L] is the Frobenius kernel by [7, Lemma 3.6].
A pg-complement in [PL, D] is [L, D] and so we call a Frobenius complement
B = [L, D], which is contained in L. From [7, Lemma 3.6], we have

P’ =[P, L] C[P.L].

We see that [P, L] K satisfies the hypotheses of Example (2.6) of Theorem 2.1. So
A([P, L]K) is disconnected with components (p; U p2)\{p2} and p3 U ps4. The
action of B on P’ is a Frobenius action, so Cp/(B) = 1 and Cp(L) € Cp(B).
Also, Cp(L) € Cp(L)N P’ = 1. Thus, Cp (L) is abelian.

Let the character A € Irr(P’) be non-principal. Because P’ is central in P, the
stabilizer of A is P C g (4). By [3, Theorem 13.28], we can find a C g7 (A)-invariant
irreducible constituent 6 of A . Note that the stabilizer of 6 in G is P C g (#) and
Cg (L) C Cy(0). Because P’ is central and 6p/ has a unique constituent A, we
have that C g7 (1) = Cg(0).

As py4 divides every degree in cd(G | A), we have that C g (1) contains an abel-
ian Hall p; U p,-subgroup of H. Further, # must extend to P C g (1) by [3, Corol-
lary 6.28] and so, by Gallagher’s Theorem, no prime in p; U p5 is in p(Cg(1)).
Since A extends to P’ Cg (M), and p4 divides every degree in c¢d(G | 1), we
see that no prime in p; U pp divides any degree in cd(P'H | P’). On the other
hand, H has a normal abelian Hall p3 U p4\{p4}-subgroup L, and so no prime
in p3 U pg divides a degree in cd(H). If H is nilpotent, then by [14, discussion
on p.254], there would be a character degree that equals |H|. Since all of the
primes in p(G)\{pa} divide |H |, this is not the case. Because L C F(H), we
deduce that p; € p(H) for some p; € p1 U p2\{p2}. Recall that L contains B, so
that P’ B is a Frobenius group. It follows that at least one prime in p3 U p4\{p4} is
in p(P’H) and A(P’H) is disconnected. The components are a nonempty subset
of p1 U p2 and a nonempty subset of p3 U p4\{p4}. Because P’ H has no normal
non-abelian Sylow subgroups, P’ H is Example (2.4) from Theorem 2.1.

First, we suppose that p; U po € p(P’H). Recall that PK is Example (2.6)
from Theorem 2.1 and so by [7, Lemma 3.6], PK /P’ is Example (2.4). Because
L is a normal Hall subgroup of H, we know L C [F(K). By [7, Lemma 3.6], only
the primes in p3 U p4 can divide F (K). Thus, F(K) € L and L = F(K). Further,
both L and K/ L are cyclic groups.

Consider the subgroup HP’/P’ acting coprimely on the group [P, L]/P’.
Define E/P' =F(HP'/P') = F(H). Certainly, L C F(H). Because p, divides
|H| and K is a normal p,-complement of H, the Fitting subgroup of K is con-
tained in the Fitting subgroup of H. Hence, F(H) = L x Op,(H). Because the
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Sylow p>-subgroup of H is not a normal subgroup of H, the subgroup O, (H)
is a proper subgroup of H. Further, the subgroup PKOp,(H) is a proper nor-
mal subgroup of G and p(PKO,,(H)) = p(G). As the subgroup PKO,, (H ) has
anormal Sylow p4-subgroup, and by the minimality of G, it follows that the graph
A(PKOp,(H)) must be disconnected. Both components have size larger than one
and so PKO,,(H) is Example (2.6) from Theorem 2.1. By [7, Lemma 3.6], the
primes that divide | F(H) : F(PKO,,(H))| are precisely the primes in p3 U p4,
and so p> cannot divide that index, which is a contradiction. Hence, O,,(H) =1
and F(H) = Land E/P' = LP’'/P’.

Recall that the group [P, L]K is Example (2.6) from Theorem 2.1. By [7, Lem-
ma 3.6], the factor group [P, L]K/P’ is Example (2.4) from Theorem 2.1. First,
we define

Zl/P/ = (CKP//P/([P» L]/P/) and Zz/P/ = CHP//p/([P, L]/P/)
AsF(G/P') = P/P"and Cg/p/(P/P’') € P/P’, we see that
Z1/P' =Z,/P' = P'/P.

The Fitting subgroup of K is L and so the Fitting subgroup of KP’/P’is LP'/P’
and it is abelian. As [P, L]K is Example (2.6) from Theorem 2.1, L acts irre-
ducibly on [P, L], we have LP’/ P’ acts irreducibly on [P, L]/ P’. Define

m =|HP'/P': LP'/P'|,

which is equal to |H : L[, and so (m,|L|) = 1. Let my = |H : K| be the power
of p, that divides |H |.

Let g1 be a power of p4 such that qm/m2 = |P/P’'|. Because [P, L]K/P’ is
Example (2.4), there is a ps-power ¢ such that ¢”/™2 = |[P, L] : P’|. Clearly,
we have g < ¢g;. Let s be a Zsigmondy prime divisor of q;" "2 _ 1. We recall
that Zsigmondy prime divisors exist except if m = 2 and pg =2 or m = 6 and
q = 2. These exceptions do no occur as [P L]K/P’ is Example (2.4). Then s
divides q;"/ —1 and does not divide ¢} — 1 for any z < m/my. Further, as
g1 — 1 is a factor of ‘11 m/may _ 1, the prime s divides (qm "2 _1)/(g1 — 1), and
as the quotient (qm/m2 —1)/(g1 — 1) divides |L|, so does s. Now the subgroup
L acts Frobeniusly on [P, L]/P’. So L divides |[P,L]/P'|—1=g™/™2 —1.
Hence, s divides q’"/ ™2 — 1, and since s is a Zsigmondy prime divisor, we have

m/mz > qm/ 2 .Thus ¢ = q.

Because P’ H is also Example (2.4), we know that there is a p4-power ¢» such
that ¢' = |P’|. Because L acts Frobeniusly on P’, we know that |L| divides
q%' —1. Because s divides | L|, we know that s divides ¢5' —1 and so gmim2 < q5.
Let r be a Zsigmondy prime divisor of g5’ — 1. The prime r exists because the
exceptions do not occur as P'H is Example (2.4). Then r divides ¢g5' — 1 and r
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also divides (¢5'—1)/(q2—1). Hence, r divides |L|. But as |L| divides gmimz —1q,
so does r. But then g' < g™/™2 and so qy = g™/™2 Hence, g, = q'/™2. Since
(¢ —1)/(q2—1) divides | L |, we know that (¢"/™2 —1)/(¢q"/™> —1) divides |L|.
Thus [P, L]H/ P’ satisfies Example (2.4) and so the graph A([P, L]H/P’) is dis-
connected.

By Fitting’s Lemma, P /P’ = Cp,p/(L) x [P,L]/P’. So

PH/P' = P/P'-HP'/P' = (Cpp/(L)x [P,L]/P')- HP'/P'.

If Cp(L)/P’ is not central in HP'/P’, then there is a character degree divisible
by |H : Cg(1)|6(1). Because K is a pp-complement, p, divides |H : Cg(1)|,
and so p; and p4 are adjacent. This is a contradiction, and so p, is not contained
in p(P'H). In particular, the prime p; is notin p(H). So H has an abelian Sylow
p2-subgroup Q by [3, Corollary 12.34]. Further, PQ is a normal subgroup of G.

Now, the graph A(P Q) has two connected components, {p,} and {p4}. Ob-
serve that Q acts coprimely on P, fixing all non-linear characters. From [14, The-
orem 19.3], we have [P, Q] = P’ and [P, Q] is not abelian. Consider A([P, L]1H)
determined by

cd([P,LIH) = cd(w) Ucd([P, L]H | [P, L]).
[P.L]

Because p(H) = (p1 U p2)\{p2}, the prime p; does not divide a character degree
in cd(H) = cd([P, L]H/[P, L]). Recall that [P, L]K is Example (2.6) from
Theorem 2.1 and B is a Frobenius complement. Thus by [7, Lemma 3.6], every de-
greein cd([P, L1K | [P, L)) is divisible by p4|B| and so p» does not divide any of
those character degrees. We see that p; is not in cd([ P, L] H), and so the subgroup
[P, L]1H is proper in G. The graph A([P, L]H) must be disconnected. Thus, Q is
a normal subgroup of [P, L]H. In particular, Q centralizes [P, L] as Q is nor-
mal in H. Because [[P,L], Q] =1 and [L, Q] =1, we have [[L, Q], P] = 1.
Thus [[Q, P], L] = 1 by the Three Subgroup Lemma [5, Lemma 4.9], and so
[P, Q] € Cp(L). This is a contradiction because Cp (L) is abelian and [P, O]
is not. o

7 Main theorems

We now prove that when G is a solvable group with A(G) having diameter three,
then G must have exactly one normal non-abelian Sylow p-subgroup and p € p3.
Because Theorem 2.5 tells us that G has at most one normal non-abelian Sylow
p-subgroup when G is solvable and A(G) has diameter three, it is possible that a
solvable group G could have no normal non-abelian Sylow p-subgroups and have
a character degree graph A(G) that has diameter three.
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In our proof, we assume that G has no normal non-abelian Sylow p-subgroups
for p € p3 and our goal is to use Lemma 5.3 to show that A(G) could not have had
diameter three. To do this, we must show that G has no normal non-abelian Sylow
p-subgroups for any prime p. We will apply Lemma 6.1 to show that G has no
normal non-abelian Sylow p-subgroups for any prime p € p4. To show that there
are no normal non-abelian Sylow p-subgroups for any prime p € p; U p, we must
apply Lemma 5.2 and Lemma 5.1. Most of the work of this proof is to show that
the hypotheses of these lemmas are met.

Theorem 3. Let G be a solvable group with character degree graph A(G) with
diameter three. Then G has a normal Sylow p-subgroup for exactly one prime p
and p € ps.

Proof. Let G be a counter-example with |G | minimal such that A(G) has diameter
three and G has no normal Sylow p3-subgroups for p3 € p3. Because A(G) has
diameter three, we know |p3| > 3 by Theorem 2. By Lemma 6.1, we see that G
does not have a normal Sylow p4-subgroup for any prime p4 € p4.

Claim 1. Let py be a prime in py. If OP2(G) is a proper subgroup of G, then
A(OP2(G)) is disconnected.

Proof. Let K = OP2(G) for some prime p, € py. Since p(K) contains p; U pa4,
the graph A(K) either has diameter three or is disconnected. Suppose A(O?2(G))
has diameter three. Then by the hypothesis, O?2(G) has a normal Sylow p3-sub-
group P for some prime p3 € p3. The subgroup P is characteristic in O”2(G) and
so is normal in G, which is a contradiction. Hence, A(O?2(G)) cannot have diam-
eter three. Because p(OP2(G)) contains all the primes of p(G) with the possible
exception of the prime p,, we see A(OP2(G)) must be disconnected. |

Claim 2. The graph A(G/N) cannot have diameter three for any proper, nontriv-
ial, normal subgroup N .

Proof. Suppose there exists a normal subgroup N of G such that A(G/N) has
diameter three. Then we can find a minimal normal subgroup M contained in N,
where A(G/M) has diameter three. By the minimality of G, G/M has a nor-
mal Sylow p3-subgroup P/M for p3 € p3. Because M is an elementary abelian
p-group for some prime p, if p = p3, then G has a normal Sylow p3-subgroup
and so, p # p3.

Because P’ # 1, either M € P’ or M N P’ = 1. Suppose that M N P/ = 1.
Then because [P, M] € P’ and [P, M] € M, we see [P, M] =1 and so M is
central in P. Let P3 be a Sylow p3-subgroup of G such that P3 € P. Since M
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normalizes P3, P3 is characteristic in P and so is normal in G. This is a contra-
diction, and so M € P’. Hence G/M/(P/M) = G/M/P'/M =~ G/P’.

Suppose that G has a normal Sylow g-subgroup Q for g € p; U p2 U p4. Then
we have a contradiction of Lemma 4.4 because G/ M has a normal Sylow p3-sub-
group. Hence, G has no normal non-abelian Sylow subgroups.

Consider the graph A(G/M/(P/M)") = A(G/P’). By our hypothesis, if the
graph A(G/P’) has diameter three, then it has a normal Sylow g-subgroup for
q € p3. Since g # ps3, this contradicts the fact that G/M can have at most one
normal non-abelian Sylow p-subgroup. Hence, G/ P’ does not have diameter three
and further, does not have any normal Sylow p-subgroups for p € p(G/P’).
Because p(G/P') contains primes from p; and p4, we know that A(G/P’) must
be disconnected and is Example (2.4) from Theorem 2.1.

Let p, be a prime in py. By [7, Theorem 5.3], OP2(G/P’) < G/P' and so
OP2(G) < G. Recall that G has no normal non-abelian Sylow p-subgroups for
p € p(G). Suppose OP2(G) has a normal non-abelian Sylow ¢-subgroup 7'. Then
because 7" is normal in OP2(G) and OP2(G) is characteristic in G, the subgroup
T is normal in G. This is a contradiction, and so O?2(G) has no normal non-
abelian Sylow p-subgroups. However, A(O?2(G)) is disconnected and so is either
Example (2.4) or Example (2.5) from Theorem 2.1 which contradicts Lemma 4.1.
Thus, A(G/N) cannot have diameter three for any proper, nontrivial, normal sub-
group N. o

Claim 3. The graph A(M) does not have diameter three for any proper normal
subgroup M of G.

Proof. Suppose that M is a proper normal subgroup of G such that A(M) has
diameter three. Then M has a normal Sylow p3-subgroup P for a prime p3 € p3.
Since P is characteristic in M, and M is normal in G, we see P is normal
in G. Further, P’ is normal in G, and P’ # 1. Recall that A(G/P’) cannot have
diameter three. Because p(G/ P’) contains p(G)\{p3}, the graph has components
p1 U p2 and p3 U pg\{p3}, with the possibility of containing p3 as well. It must
be disconnected with both components at least size 2. By [7, Theorem 5.3], we
have OP2(G/P’) < G/P' for some prime ps € py, and OP2(G) < G. Further,
P C OP2(G). We have shown that A(OP2(G)) is disconnected and Lemma 4.1
tells us that OP2(G) cannot be Example (2.4) or Example (2.5) from Theorem 2.1.

Suppose |p1 U p2| = 2 and pr ¢ p(OP2(G)). Then it is possible that OP2(G)
is Example (2.1) from Theorem 2.1 and O?2(G) has a normal Sylow pj-subgroup
R for p; € p;. Since A(M) has diameter three, p; € p(M) and so M has a nor-
mal Sylow pi-subgroup, which contradicts the fact that M can have at most one
normal non-abelian Sylow p-subgroup. Thus O?2(G) cannot be Example (2.1)
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from Theorem 2.1. Since at least one component, if not both, has size at least 2,
0P2(G) is Example (2.6) from Theorem 2.1. Hence O%2(G) has a normal Sylow
p-subgroup Q for a prime p € p3 U p4. But this is a contradiction because Q is
characteristic in OP2(G) and so Q is a normal Sylow p-subgroup of G and G
does not have a normal Sylow p-subgroup for any prime in p3 U p4. Thus, A(M)
cannot have diameter three whenever M is a proper normal subgroup of G. o

Claim 4. The subgroup OP3(G) = G for all primes p3 € ps3.

Proof. Suppose there exists a prime p3 € p3 such that OP3(G) is proper in G.
Since OP3(G) is proper in G we know that A(OP3(G)) cannot have diameter
three. Because p(OP3(G)) contains all of p(G) except perhaps the prime p3, we
know that A(OP3(G)) is disconnected. Because |p3| > 3, there is a prime g € p3,
not equal to p3, and a prime p, € pa, such that g and p, are adjacent in A(G).
However, as A(O?3(G)) contains all edges not incident to the prime p3, we see
that p, and ¢ are adjacent in A(O?3(G)) and A(OP3(G)) must have diameter
three. This is a contradiction. o

Claim 5. If M is a normal subgroup of G, then p(G/M) = p(G) implies that
M =1

Proof. Suppose there exists a nontrivial normal subgroup M of G such that
o(G/M) = p(G). Without loss of generality, M is a minimal normal subgroup
of G. We know that the graph A(G/M ) cannot have diameter three, and because
p(G/M) contains primes from p; and pg4, the graph A(G/M) must be discon-
nected. The components are p; U p2 and p3 U ps. Because p; U p3 is the smaller
component and has size at least 2, G/ M is either Example (2.4) or Example (2.6)
from Theorem 2.1. Suppose G/M is Example (2.6). Then G/M has a normal
Sylow p-subgroup P/M for a prime p € p3 U ps. Let Q be a Sylow p-subgroup
of G such that Q is contained in P. If M is not contained in P’, then since
[P,M] C P’ and [P, M] € M, wehave [P, M] = 1. Thus M is central in P and,
as M normalizes Q, we have Q is characteristic in P and so Q is normal in G,
which is a contradiction and so M C P’. Since p(G/M)/(P/M)") = p(G)\{p}
and G/M/(P/M) = G/P’, the graph A(G/P’) is disconnected. The factor group
G/P’ is Example (2.4) from Theorem 2.1. By [7, Lemma 5.3], O?2(G/P’) is
proper in G/ P’ and so O?2(G) < G. But this contradicts Lemma 4.1, thus, G/ M
is not Example (2.6), and so is Example (2.4). If G has a normal non-abelian Sylow
subgroup, then so does G/ M . Therefore, G has no normal non-abelian Sylow sub-
groups. By [7, Theorem 5.3], OP2(G/M) < G/ M .Butthen OP2(G) < G, which
contradicts Lemma 4.1. Thus, p(G/M) = p(G) implies that M = 1. |
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By Claim 2, Claim 3, Claim 4, and Claim 5, the hypotheses for Lemma 5.1
and Lemma 5.2 are satisfied. Thus, G does not have a normal non-abelian Sylow
p-subgroup for any prime p € p; U p2. Recall that G has no normal non-abelian
Sylow p-subgroup for p € p4 and so G has no normal non-abelian Sylow p-sub-
groups. Thus, by Lemma 5.3, G does not have diameter three, which is our final
contradiction. O

Finally, because G has a normal Sylow p3-subgroup P when A(G) has diame-
ter three, we can observe that A(G/P’) must be disconnected, and so, G/ P’ is in
one of the families of groups from Theorem 2.1.

Theorem 4. Let G be a solvable group with A(G) having diameter three. If
lp1 U p2| = n, then |p3 U ps| = 2"

Proof. By Theorem 3, G has a normal non-abelian Sylow ps-subgroup P for
some prime p3 € p3. By Lemma 2.4, p(G/P’) = p(G)\{p3}. Because p3 has
more than three vertices by Theorem 2, either A(G/P’) is disconnected or it has
diameter three. If A(G/P’) has diameter three, then by Theorem 3, A(G/P’) has
a normal non-abelian Sylow g-subgroup Q/P’ for some prime g € p(G)\{p3}.
Let R be a Sylow g-subgroup of G contained in Q. As RP’/P’ is a normal sub-
group of G/ P’, the Sylow subgroup R is a normal subgroup of G, which contra-
dicts the fact that G can have at most one normal non-abelian Sylow p-subgroup.
Hence, A(G/P’) is disconnected. By Palfy’s inequality, if |p; U p2| = n, then
lp3 U pa\{p3}| = 2" — 1. Hence, [p3 U p3| = 2". =

Theorem 5. Let G be a solvable group with A(G) having diameter three. Then G
has Fitting height 3.

Proof. By Theorem 3, G has a normal Sylow p3-subgroup P for p3 € p3. So
G/ P’ has a normal abelian Sylow p3-subgroup. Notice that A(G/P’) is discon-
nected, both components have size larger than 2, and G/ P’ has no normal Sylow
p-subgroups for p € p(G/P’). So G/ P’ is Example (2.4) from Theorem 2.1 and
so has Fitting height 3. Let H be a p3-complement of G. Anything in H that
centralizes P/ P’ also centralizes P. Let F = F(G) and E/P’ = F(G/P’). We
have F/P’ is a nilpotent normal subgroup of G/P’ and F C E. Conversely,
E = P(ENH),and E N H is a nilpotent subgroup that centralizes P/P’. So
E = P x(EN H) is nilpotent and £ C F. Thus the Fitting height of G is the
same as G/ P’, and so G has Fitting height three. o
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