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Perfect commuting graphs
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Abstract. We classify the finite quasisimple groups whose commuting graph is perfect and
we give a general structure theorem for finite groups whose commuting graph is perfect.

1 Introduction

Let � be a simple, undirected, finite graph with vertex set V . If U � V , then the
induced subgraph of � on U is the graph � with vertex set U , and with two ver-
tices connected in� if and only if they are connected in � . The chromatic number
�.�/ is the smallest integer k such that there exists a partition of V into k parts,
each with the property that it contains no two adjacent vertices. The clique number
Cl.�/ is the size of the largest complete subgraph of � . Clearly Cl.�/ � �.�/ for
any graph � . The graph � is perfect if Cl.�/ D �.�/ for every induced subgraph
� of � .

Let G be a finite group. The commuting graph G is the graph �.G/ whose
vertices are the elements of GnZ.G/, with vertices joined by an edge whenever
they commute. Some authors prefer not to exclude the central elements of G, and
nothing in this paper (barring the brief discussion of connectivity in Section 1.1)
depends significantly on which definition is used.

We are interested in classifying those finite groups G for which the commuting
graph �.G/ is perfect. In this paper we offer, in Theorem 1, a complete classifica-
tion in the case of quasisimple groups. We use this result to derive detailed struc-
tural information about a general finite group with this property, in Theorem 2.
The notation for quasisimple groups used in the statements of these theorems is
explained in Section 2.

Theorem 1. Let G be a finite quasisimple group and let �.G/ be the commuting
graph of G. Then �.G/ is perfect if and only if G is isomorphic to one of the
groups in the following list:

� SL2.q/ with q � 4,

� L3.2/,
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� L3.4/, 2:L3.4/, 3:L3.4/, .2 � 2/:L3.4/, 6:L3.4/, .6 � 2/:L3.4/, .4 � 4/:L3.4/,
.12 � 4/:L3.4/,

� A6, 3:A6, 6:A6,
� 6:A7,
� Sz.22aC1/ with a � 1,
� 2:Sz.8/, .2 � 2/:Sz.8/.

Recall that a group is quasisimple if it is a central extension of a simple group,
and equal to its derived subgroup. A component of a finite groupG is a quasisimple
subnormal subgroup of G. If G is a group such that �.G/ is perfect, then every
component of G has a perfect commuting graph, and is therefore isomorphic to
one of the groups listed in Theorem 1. In fact, we can say more.

Theorem 2. Let G be a finite group such that �.G/ is perfect. Then G has at most
two components, and one of the following statements holds.

(i) G has no component.

(ii) G has a single component, which is isomorphic to one of the groups in the
following list:

SL2.q/; 6:A6; .4 � 4/:L3.4/; .12 � 4/:L3.4/;

Sz.22aC1/; 2:Sz.8/; .2 � 2/:Sz.8/:

(iii) G has a single component N , and the centralizer CentG.N / is abelian.

(iv) G has two components N1; N2, each of which is isomorphic to one of the
groups listed in (ii), and such that CentG.N1N2/ is abelian.

We say that a group G is an AC-group if the centralizer of every non-central
element ofG is abelian. An AC-group necessarily has a perfect commuting graph.
Information about these groups emerges naturally in the course of the proof of
Theorem 1, which we summarize in the following result.

Corollary 3. The following statements hold.

(i) The finite quasisimple AC-groups are 6:A6 and SL2.q/ for q � 4.

(ii) If a finite AC-group G has a component N , then N is the unique component
of G, and the subgroup NZ.G/ has index at most 2 in G.

An equivalent formulation of Corollary 3 (i) is that a finite quasisimple groupG
is an AC-group if and only ifG has a central subgroupN such thatG=N Š SL2.q/
for some q � 4. The case G Š 6:A6 conforms to this statement, since this group
is isomorphic to 3:SL2.9/.



Perfect commuting graphs 73

1.1 Relation to the literature

There has been a great deal of recent interest in commuting graphs. One question
which has attracted attention is the connectedness of �.G/, where G is a finite
group. Recall that the prime graph of a group G is the graph whose vertices are
the primes dividing G, with an edge between distinct vertices p and q if G has
a element of order pq. It has been shown by Morgan and Parker [23] that if G is
centreless, then �.G/ is connected if and only if the prime graph ofG is connected.

It is clear that if G is quasisimple, and if �.G=Z.G// is not connected, then
neither is �.G/. The simple groups with connected prime graphs are known, from
work of Williams [27], Kondrat’ev [20], and Iiyori and Yamaki [15]. From their
results, it can be seen that all of the groups listed in Theorem 1 have disconnected
commuting graphs.

Another aspect of the commuting graph which has generated a lot of interest
is the diameter of its connected components. The construction by Hegarty and
Zhelezov [13] of a 2-group whose commuting graph has diameter 10, has recently
led Giudici and Parker [11] to a construction of a family of 2-groups with commut-
ing graphs of unbounded diameter. This has answered (negatively) an influential
conjecture of Iranmanesh and Jafarzadeh [16], that there was a universal upper
bound for the diameter of a connected commuting graph. Morgan and Parker [23]
have shown, using the classification of finite simple groups, that if Z.G/ is trivial,
then the diameter of any connected component of �.G/ is at most 10.

Our interest in proving Theorems 1 and 2 stems in part from earlier work with
Azad [3] in which we study a generalization of the commuting graph of a groupG,
namely the c-nilpotency graph, �c.G/. This is the graph whose vertices are ele-
ments ofG with two vertices g; h being connected if and only if the group hg; hi is
nilpotent of rank at most c. Ignoring central elements of G, the commuting graph
of G is the same as the 1-nilpotency graph.

In [3] we calculate the clique-cover number and independence number for the
graphs �c.G/ for various simple groups G and observe, in particular, that for
these groups the two numbers coincide (allowing the possibility that the graphs
are perfect). This observation is part of the motivation for the current paper and,
moreover, suggests an obvious direction for further research: the question of which
quasisimple groups G have perfect c-nilpotency graph, for c > 1.

The question of which groups have perfect commuting graph has recently been
asked in a blog entry by Cameron [7]. He gives an example of a finite 2-group
whose commuting graph is non-perfect. A further motivation for this paper has
been to provide at least a partial answer to his question.

The definition of an AC-group is a generalization of the better known notion of
a CA-group, a group for which the centralizer of any non-identity element is abel-



74 J. R. Britnell and N. Gill

ian. Groups with this property arose naturally in early results towards the classifi-
cation of finite simple groups, and so they have significant historical importance. It
has been shown that every finite CA-group is a Frobenius group, an abelian group,
or SL2.2a/ for some a (see [6, 24, 26]).

To a limited degree, Corollary 3 extends this classical work on CA-groups. Of
course our work, unlike the work we have cited on CA-groups, depends on the
classification of finite simple groups. A proof of Corollary 3 independent of the
classification would be of considerable interest and significance. There has been
recent interest in AC-groups, and Corollary 3 is related to results from [1] and [4]
in particular.

1.2 Structure and methods

The paper is structured as follows. In Section 2 we state basic definitions and
background results as well as proving some straightforward general lemmas. In
Section 3 we work through the different families of quasisimple groups given by
the classification, and we establish which finite quasisimple groups have perfect
commuting graph, thereby establishing Theorem 1. In Section 4 we prove Theo-
rem 2 and Corollary 3. Finally, in Section 5 we brefly discuss how Theorems 1
and 2 may be extended, and we present some preliminary results in this direction.

For the most part the presentation of our arguments does not depend on com-
puter calculation. We acknowledge, however, that the computational algebra pack-
ages GAP [29] and Magma [5] have been indispensable to us in arriving at our
results, and also that we have allowed ourselves to state many facts about the
structure of particular groups, without proof or reference, when such statements
are easily verified computationally.

The methods we have chosen for groups of Lie type are by no means the only
approach to the problem. We are grateful to an anonymous referee for pointing out
an alternative way of ruling out groups of large Lie rank. It is clear that if G is
a group of Lie rank at least 5, then its Dynkin diagram contains an independent set
of vertices of size 3. This implies the existence of three subgroups of G isomor-
phic to SL2.q/, which centralize one another. But Proposition 31 now implies that
�.G/ is not perfect.

By ‘group’ we shall always mean ‘finite group’. By ‘simple group’ we shall
always mean ‘non-abelian finite simple group’.

2 Background

In this section we gather together relevant background material, as well as proving
some basic lemmas.
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2.1 Graphs

In this paper all graphs are finite, simple and undirected. Let � D .V;E/ be such
a graph (with vertex set V and edge set E).

(i) The chromatic number of � , �.�/; is the smallest number of colours re-
quired to colour every vertex of � so that neighbouring vertices have differ-
ent colours.

(ii) The order of � is jV j.

(iii) The clique number of � , Cl.�/, is the order of the largest complete subgraph
of � .

(iv) An induced subgraph of � is a graph ƒ D .V 0; E 0/ such that V 0 � V and
there is an edge between two vertices v and v0 in ƒ if and only if there is an
edge between v and v0 in � .

(v) We say that � is perfect if �.ƒ/ D Cl.ƒ/ for every induced subgraph of ƒ.

We have already noted in the introduction that every graph � satisfies

�.�/ � Cl.�/:

To state the two most important theorems concerning perfect graphs, we require
some terminology. The complement of � is the graph �c with vertex set V.�/,
in which an edge connects two vertices if and only if they are not connected by
an edge in � . A cycle is a finite connected graph � such that every vertex has
valency 2. A k-cycle is a cycle of order k.

Theorem (Weak Perfect Graph Theorem [22]). A graph � is perfect if and only if
the complement of � is perfect.

Theorem (Strong Perfect Graph Theorem [8]). A graph � is perfect if and only if
it has no induced subgraph isomorphic either to a cycle of odd order at least 5, or
to the complement of such a cycle.

We shall say that a subgraph � of � is forbidden if � is an induced subgraph
of � , and either � or �c is isomorphic to a cycle of odd order at least 5. Figure 1
shows the three smallest forbidden subgraphs. (We note that the complement of
a 5-cycle is another 5-cycle.)

The term Berge graph has also been used to mean a graph with no forbidden
subgraphs (and an alternative statement of the Strong Perfect Graph Theorem is
that the class of Berge graphs and the class of perfect graphs are the same). In
fact, the arguments presented in Section 3 directly characterize those quasisimple
groupsG for which �.G/ is a Berge graph. It is the Strong Perfect Graph Theorem
which allows us to express these results in terms of perfect graphs.
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Figure 1. The three forbidden subgraphs of smallest order.

2.2 Commuting graphs

LetG be a finite group. We defined the commuting graph �.G/ in the introduction.
It is worth justifying here the assertion that the presence or absence as vertices of
the central elements of G has no affect on whether �.G/ is perfect. Let � 0.G/ be
the graph with vertex set G and an edge ¹g; hº if and only if gh D hg. We note
that �.G/ is the induced subgraph of � 0.G/ on the vertices G nZ.G/.

Lemma 4. The graph �.G/ is perfect if and only if � 0.G/ is perfect.

Proof. Suppose that � 0.G/ is perfect andƒ is an induced subgraph of �.G/. Then
ƒ is an induced subgraph of � 0.G/ and so �.ƒ/ D Cl.ƒ/ and �.G/.

Conversely suppose that �.G/ is perfect and ƒ0 is an induced subgraph of
� 0.G/. Then V.ƒ0/ D V.ƒ/ [ VZ where ƒ is an induced subgraph of �.G/ and
VZ is a set of central elements. Now

�.ƒ0/ D �.ƒ/C jVZ j D Cl.ƒ/C jVZ j D Cl.ƒ0/

and we conclude that � 0.G/ is perfect.

It will be convenient to extend our notation in the following way: if � � G,
then we write �.�/ for the induced subgraph of �.G/whose vertices are elements
of �.

2.3 The classification of finite simple groups

Our results are all dependent on the classification of finite simple groups. The
principal sources for information on these groups and their covering groups is [9]
and [19], which we have used very extensively, without necessarily mentioning it
explicitly in every instance. We have used the notation of [9] for finite simple and
quasisimple groups, except in a few cases where we believe another usage is less
likely to cause confusion.
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Alternating groups An n � 5

Classical groups
Linear Ln.q/ n � 2; not L2.2/ or L2.3/,
Unitary Un.q/ n � 3; not U3.2/,
Symplectic PSp2m.q/ m � 2; not PSp4.2/,
Orthogonal P�2mC1.q/ m � 3; q odd,

P�C2m.q/ m � 4,
P��2m.q/ m � 4,

Exceptional groups
Chevalley G2.q/; F4.q/; E6.q/; not G2.2/,

E7.q/; E8.q/,
Steinberg 3D4.q/;

2E6.q/,
Suzuki Sz.22aC1/ a � 1,
Ree 2F4.2

2aC1/0 a � 0,
2G2.3

2aC1/ a � 1,
Sporadic groups
M11; M12; M22;M23; M24; J1; J2; J3; J4; Co3; Co2; Co1; Fi22;
Fi23; Fi024; HS; McL; He; Ru; Suz; O0N; HN; Ly; Th; B; M:

Table 1. Finite simple groups.

The non-abelian finite simple groups are listed in Table 1. In this table, and
throughout the paper, q is a power of a prime p. The parameters in this list have
been restricted in order to reduce the number of occurrences of isomorphic groups
under different names. The following isomorphisms remain:

A5 Š L2.4/ Š L2.5/; L2.7/ Š L3.2/; A6 Š L2.9/;

A8 Š L4.2/; U4.2/ Š PSp4.3/:

2.4 Quasisimple groups

Although the notation used in this paper is standard, we recall here some key
definitions. A group is perfect if it coincides with its commutator subgroup. (There
is no connection between the usages of the word ‘perfect’ as it applies to graphs
and to groups.) A quasisimple group is a perfect group G such that G=Z.G/ is
simple.



78 J. R. Britnell and N. Gill

All of the finite quasisimple groups are known, as a corollary to the Classifi-
cation of Finite Simple Groups. In most cases a quasisimple group G has cyclic
centre, and for a positive integer n and a simple group S , we write n:S for a group
G such that Z.G/ is cyclic of order n and G=Z.G/ Š S . This notation extends in
a natural way to groups with non-cyclic centres; for instance we write .2 � 2/:S
for a group with centre C2 � C2 and G=Z.G/ Š S .

In principle the notation just described does not specify a group up to isomor-
phism – for instance, there may be several isomorphism classes of groups of type
n:S – however in all instances of the notation in this paper, the isomorphism class
is in fact unique. This notation for finite quasisimple groups is consistent with, for
instance, [9] and [19].

A component of a group G is a quasisimple subgroup N which is subnormal,
i.e. there exists a finite chain of subgroups of the form

N D N0 < N1 < N2 < � � � < Nk D G;

such that Ni is normal in NiC1 for all i . The significance of the set of components
of G has been demonstrated by the seminal work of Bender, in which the notion
of the Generalized Fitting Subgroup F �.G/ is defined (see, for instance, [2]).

2.5 Basic lemmas

Lemma 5. If H � G and �.H/ is not perfect, then �.G/ is not perfect.

Proof. Any induced subgraph of �.H/ is an induced subgraph of �.G/. The result
follows immediately.

Lemma 6. Suppose that g is an element inG for which CentG.g/ is abelian. Then
g does not lie on a forbidden subgraph of �.G/.

Proof. The supposition implies that if any two elements h; k are neighbours of g
in �.G/, then there is an edge between h and k, and the result follows.

Lemma 7. Let G be a group and let g; h 2 G be vertices of a forbidden subgraph
of �.G/. Then gh�1 … Z.G/.

Proof. Suppose that gh�1 2 Z.G/. Then CentG.g/ D CentG.h/, and so g and
h have the same neighbours in �.G/. But for any two distinct vertices u; v of
a forbidden subgraph, there is a third vertex w of the subgraph which is connected
to u but not to v.

The next lemma helps us to pass between simple groups and their quasisimple
covers.
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Lemma 8. LetG be a group, letZ be a central subgroup ofG, letK D G=Z, and
let ' W G ! K be the natural projection. Let � � K and suppose that for each
! 2 �, the elements of '�1.!/ are pairwise non-conjugate. Then �.�/ is perfect
if and only if �.'�1.�// is perfect.

Proof. For each ! 2 �, let !0 be a pre-image in G of !, and let �0 be the set
¹!0 j ! 2 �º. It is clear that if two elements h; h0 2 �0 commute, then '.h/ and
'.h0/ commute. On the other hand if '.h/ and '.h0/ commute, then Œh0; h� 2 Z,
and so hh0h�1 D zh0 for some z 2 Z.G/. But now the condition on pairwise non-
conjugacy implies that z D 1, and so h and h0 commute. Hence h and h0 commute
if and only if '.h/ and '.h0/ commute, and so we conclude that �.�0/ Š �.�/.
Now �.�0/ is an induced subgraph of �.'�1.�//, from which it follows that if
�.'�1.�// is perfect then so is �.�/.

For the converse suppose that �.'�1.�// contains a forbidden subgraph �.
Lemma 7 tells us that the vertices of � have distinct images under '. Now � can
be extended to a set�0 as described above, and we have seen that �.�0/ Š �.�/.
It follows that �.�/ contains a forbidden subgraph, as required.

Note that if ! is an element of G with order coprime to jZ.G/j, then all ele-
ments of '�1.!/ are pairwise non-conjugate.

3 Commuting graphs of quasisimple groups

In this section we study the commuting graphs of quasisimple groups. We go
through the various families given by the classification of finite simple groups, es-
tablishing which groups have Berge graphs as their commuting graphs. These are
precisely the perfect commuting graphs, by the Strong Perfect Graph Theorem.

A technique we use frequently to show that a group G has a non-perfect com-
muting graph, is to exhibit a subgroup for which this is already known, and then
invoke Lemma 5. Both the Strong Perfect Graph Theorem and Lemma 5 will there-
fore be in constant use in this section. We shall usually suppress explicit references
to them, in order to avoid tedious repetitions.

In the cases where no subgroup ofG is known to have a non-perfect commuting
graph, it is necessary to determine whether �.G/ contains a forbidden subgraph
directly. We use a variety of techniques for exhibiting odd length cycles. In most
cases these have length 5, but we have made no particular effort to describe the
shortest cycle possible. Indeed, for the infinite families 2:An and 2G2.q/ our argu-
ments yield 7-cycles in the commuting graphs, although it is known that 5-cycles
exist in almost all of the groups in these families. In fact, we know of only three
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finite quasisimple groupsG such that �.G/ is non-perfect, but contains no induced
subgraph isomorphic to a 5-cycle; these are

2:A7; L2.13/; L2.17/;

each of which can be shown to have a 7-cycle as a forbidden subgraph. We believe
that there exist no further examples, but we have not attempted to prove this.

3.1 Alternating groups

Lemma 9. Let G D S5, the symmetric group on five letters. Then �.G/ is not
perfect.

Proof. The induced subgraph on the vertices .1 2/, .2 3/, .3 4/, .4 5/, .1 5/ is
a 5-cycle.

Lemma 10. Let G D An, the alternating group on n letters. Then �.G/ is perfect
if and only if n � 6.

Proof. The centralizer of every non-identity element of A5 is abelian, and so
�.A5/ is perfect by Lemma 6. On the other hand, if n � 7 then An has a sub-
group isomorphic to S5, and so Lemma 9 tells us that �.An/ is not perfect.

It remains to deal with the case n D 6. The only non-trivial elements of A6
with non-abelian centralizers have order 2, and so if ƒ is a forbidden subgraph
of �.G/, then every vertex of ƒ is an involution. Let g 2 G be a vertex of ƒ.
Observe that CentG.g/ Š D8, the dihedral group of order 8. Since there are only
five involutions in D8 we conclude that ƒ is either a cycle of odd order, or else
the complement of a 7-cycle. (Recall that the complement of a 5-cycle is another
5-cycle.)

Suppose that ƒ is the complement of a 7-cycle. We may assume that one of its
vertices is .1 2/.3 4/. The neighbours of this vertex inƒ can only be the other four
involutions in its centralizer, namely

.1 3/.2 4/; .1 2/.5 6/; .1 4/.2 3/; .3 4/.5 6/:

Similarly the neighbours of .1 4/.2 3/ must be

.1 2/.3 4/; .1 3/.2 4/; .1 4/.5 6/; .2 3/.5 6/:

But we have now listed seven involutions (not including repetitions), and it is easily
checked that the induced subgraph on these vertices is not the complement of
a 7-cycle; this is a contradiction.



Perfect commuting graphs 81

We have still to show that ƒ cannot be a cycle of odd order at least 5. The
group G has two conjugacy classes of subgroups isomorphic to C2 � C2. Exactly
one subgroup from each class is contained in CentG.g/; let these subgroups be
A and B . If h and h0 are the neighbours of g in ƒ, then since h and h0 do not
commute, we see that the subgroups hg; hi and hg; h0i are distinct; so one of them
is A and the other B . It follows that if we colour each edge of ƒ according to
whether the vertices it connects generate a conjugate of A or a conjugate of B ,
then we have a 2-colouring of the edges of ƒ. But this is a contradiction, since
a cycle of odd length is not 2-colourable.

Corollary 11. LetG D Sn, the symmetric group on n letters. Then �.G/ is perfect
if and only if n � 4.

Proof. Lemma 9 implies that �.G/ is not perfect if n � 5. On the other hand
A6 has a subgroup isomorphic to S4 and so Proposition 12 implies that �.S4/ is
perfect; hence the same is true of �.Sn/ with n < 4.

Now we generalize Lemma 10 to deal with quasisimple covers of alternating
groups.

Proposition 12. Let G be a quasisimple group such that G=Z.G/ Š An for some
n � 5. Then �.G/ is perfect if and only if G is equal to one of the groups in the
following list:

A5; A6; 2:A5; 2:A6; 3:A6; 6:A6; 6:A7:

Proof. If G is simple, then it is either A5 or A6 by Lemma 10, and so we may
suppose thatG is not simple. If n � 7 and jZ.G/j D 2, then the induced subgraph
in �.An/ on the vertices

.1 2 3/; .4 5 6/; .1 2 7/; .3 4 5/; .1 6 7/; .2 3 4/; .5 6 7/

is a 7-cycle. Since all of these elements have order 3, whileZ.G/ has order 2, each
element lifts to elements of order 3 and 6 in G. Now the lifts commute exactly
when their projective images commute, and so the induced subgraph of �.G/ on
the lifts of order 3 is a 7-cycle.

Since the Schur multiplier of An has order 2 for n � 8, we may now suppose
that n � 7. We deal with the remaining groups one by one.

The groups 2:A5; 2:A6 and 6:A6 are AC-groups (being isomorphic to SL2.5/,
SL2.9/ and 3:SL2.9/ respectively), and so have perfect commuting graphs by
Lemma 6.

In 3:A6, the only non-central elements with non-abelian centralizers are ele-
ments whose square is central (i.e. they are lifts of involutions in A6). No forbidden
subgraph can contain two vertices in the same coset of the centre, as these would
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have the same set of neighbours. So we may restrict our attention to the commuting
graph on the involutions of 3:A6. But this commuting graph is isomorphic to the
commuting graph on the involutions of A6 (see Lemma 8), which we have already
seen to be perfect.

To exclude 3:A7 we recall that �.A7/ contains a 5-cycle whose vertices are
involutions. Each of these involutions lifts to a unique involution in 3:A7 and the
induced subgraph of �.3:A7/ on these involutions is, again, a 5-cycle.

Finally, suppose thatG D 6:A7. There are two conjugacy classes of non-abelian
subgroups which arise as centralizers in G. Let T be the set of elements with non-
abelian centralizers and �.T / the induced subgraph of �.G/ with vertices in T .
It is a straightforward computation that if g; h 2 G are conjugate elements of T
which commute, then their centralizers are equal. Let �.T /=� be the quotient of
�.G/ obtained by identifying vertices with the same centralizer. Then this graph
is bipartite, and hence perfect. It follows easily that �.G/ is perfect.

3.2 Linear groups of dimension 2

Lemma 13. Suppose that G � GL2.q/. Then �.G/ is perfect.

Proof. If g is a non-central element ofG, then CentG.g/ is abelian. Now the result
follows from Lemma 6.

Lemma 13 implies, in particular, that the quasisimple groups SL2.q/ have per-
fect commuting graphs. The next result deals with most of the remaining 2-dimen-
sional quasisimple groups.

Lemma 14. If G D L2.q/ with q odd and q > 9, then �.G/ is not perfect.

Proof. Define � by

� D

´
1 if q � 1 mod 4,
�1 if q � 3 mod 4.

The group G has a single class T of involutions, of size q.q C �/=2. This is the
only conjugacy class ofG whose elements have non-abelian centralizers. The cen-
tralizer of each involution is a dihedral group of order q � �.

The graph �.T / is a regular graph of degree .q � �/=2. Let t 2 T , and let
�d be the set of vertices in �.T / at distance d from t . Then j�1j D .q � �/=2.
Each vertex s in �1 is connected to exactly one other vertex in �1, and so s has
.q � � � 4/=2 neighbours in �2.

We claim that �.T / contains no subgraph (induced or otherwise) isomorphic to
a 4-cycle. To prove this claim, let us suppose that T 0 D ¹t1; t2; t3; t4º is a subset
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of T such that �.T 0/ contains a 4-cycle, with vertices in the order listed. Recall
that the intersection of the centralizers of distinct involutions in L2.q/ is abelian,
being a subgroup of a Klein 4-group. Since each of t2 and t4 centralizes both t1
and t3, we see that t2 and t4 commute. So �.T 0/ is not a 4-cycle, and the claim is
proved.

An immediate corollary to the claim is that if �.T / contains a 5-cycle as a sub-
graph, then that subgraph is an induced subgraph. The claim implies, moreover,
that no two vertices in �1 have a common neighbour in �2, and so we have

j�2j D
1

4
.q � �/.q � � � 4/:

Each vertex r in �2 has a unique neighbour s 2 �2 such that r and s have
a common neighbour in �1. Suppose that r has another neighbour u 2 �2. If r 0

and u0 are the neighbours of r and u, respectively, in �1, then it is clear that the
induced subgraph on the vertices t , r 0, r , u, u0 is a 5-cycle.

We may suppose, then, that any two neighbours in �2 have a common neigh-
bour in �1, and hence no common neighbour in �3. Let x 2 �3, and suppose
that r and s are neighbours of x in �2. Then r and s are not adjacent, and have no
common neighbour in�1. Let r 0 and s0 be the neighbours of r and s, respectively,
in �1. If r 0 and s0 are adjacent, then the induced subgraph on ¹r 0; r; x; s; s0º is
a 5-cycle, and so again here, �.G/ is not perfect.

We may therefore assume that for any vertex x in �3, and for any pair u; v of
neighbours in �1, there exists at most one r 2 �2 such that r is joined to x and
to either of u or v. It follows that the number of neighbours for x in �2 cannot
be greater than j�1j=2 D .q � �/=4. Now each element of �2 has .q � � � 4/=2
neighbours in �3, and so we have

j�3j �
2.q � � � 4/

q � �
j�2j D

1

2
.q � � � 4/2:

Now clearly jT j � 1C j�1j C j�2j C j�3j; but asymptotically the left-hand side
of this inequality is q2=2, whereas the right-hand side is 3q2=4. We may therefore
bound q above; specifically, we obtain the inequality

q2 � .18C 8�/q C .39C 18�/ � 0:

When � D �1 this implies that q � 7, and for � D 1 that q � 17.
It remains only to check the cases q D 13 and q D 17, which require separate

treatment since �.L2.q// does not have a 5-cycle as an induced subgraph in these
cases. A straightforward computation shows that in each group there exists an
involution t , and an element g of order .q C 1/=2, such that Œt; tg � D 1. Now it
is not hard to show that the induced subgraph on the conjugates t; tg ; tg

2

; : : : is
a cycle of order .q C 1/=2.
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We see that if q is even or at most 9, then �.L2.q// is perfect. For even q
this follows immediately from Lemma 13. For L2.5/ Š A5 and L2.9/ Š A6, see
Proposition 12, and for L2.7/ Š SL3.2/ see Lemma 17 below. (The commuting
graph of the non-quasisimple group L2.3/ is easily seen to be perfect.)

The exceptional covers of L2.9/ have also been dealt with in Proposition 12
above. We thus have a complete classification of those quasisimple groups G such
that G=Z.G/ Š L2.q/ and such that �.G/ is perfect.

Remark 15. It follows from Lemmas 13 and 14 that the commuting graph of
PGL2.q/ is not perfect when q is odd and q > 9. We remark that �.PGL2.q//
is not perfect when q 2 ¹5; 7; 9º either; we omit the proof of this fact, which is
straightforward to establish computationally.

3.3 Classical groups of dimension 3

Lemma 16. Let G be isomorphic to SL3.q/ or L3.q/ with q ¤ 2; 4. Then the
commuting graph of G is not perfect.

The proof that follows shows, in addition, that the commuting graph of GL3.q/
is non-perfect for q > 2.

Proof. Let ˛ and ˇ be distinct non-zero elements of Fq . Then the five matrices0B@1 0 0

0 1 0

0 1 1

1CA ;
0B@1 1 0

0 1 0

0 0 1

1CA ;
0B@1 0 1

0 1 0

0 0 1

1CA ;
0B@1 0 0

0 1 1

0 0 1

1CA ;
0B@˛ 0 0

0 ˇ 0

0 0 ˇ

1CA
constitute a 5-cycle subgraph of the commuting graph of GL3.q/. For the last of
these matrices to lie in SL3.q/ we require that ˛ˇ2 D 1; this equation is soluble
(by distinct elements ˛; ˇ) unless q is 2 or 4.

It remains only to observe that the images of these matrices in L3.q/ induce
a 5-cycle in �.L3.q//.

Lemma 17. Let G be isomorphic to one of SL3.2/, SL3.4/ or L3.4/. Then �.G/
is perfect.

Proof. It suffices to prove the lemma for SL3.4/ and L3.4/, since SL3.2/ is con-
tained in each as a subgroup.

The only non-central elements of SL3.4/ whose centralizers are non-abelian
are the transvections. These have order 2 or 6, and fall in three conjugacy classes.
These classes merge into one class of involutions in L3.4/, and this class contains
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all of the non-trivial elements of L3.4/ with non-abelian centralizers. From these
facts, it easily follows that �.SL3.4// and �.L3.4// are perfect if and only if the
induced subgraph �.T /, common to both, on the set T of involutory transvections,
is perfect.

Let V be the natural module for SL3.4/. For a transvection t , we writeH.t/ for
the hyperplane of V fixed by t . We write L.t/ for the image of t � I (equivalently,
the unique 1-dimensional t -invariant subspace hvi of V such that t acts trivially
on V=hvi). It is easy to show that elements t and u of T commute if and only if
either H.t/ D H.u/ or L.t/ D L.u/.

Let S be a subset of T of size at least 5. Suppose that S contains distinct vertices
t and u such that H.t/ D H.u/ and L.t/ D L.u/. Then for each v 2 S distinct
from t and u, we see that v is adjacent to t if and only if it is adjacent to u. It
follows that the induced subgraph of �.SL3.4// on S cannot be a cycle or its
complement. We shall therefore suppose that S contains no such elements t and u.
Now we may colour each edge .t; u/ of the induced subgraph of �.T / on S with
colours H and L, depending on whether H.t/ D H.u/ or L.t/ D L.u/.

Suppose that the induced subgraph on S is a cycle .t1; : : : ; tk/. For ti 2 S , we
see that the colour of .ti ; ti�1/ is not the colour of .ti ; tiC1/, or else ti�1 and tiC1
would commute. It follows immediately that the cycle is 2-colourable, and hence
that it has even length.

Suppose on the other hand that the induced subgraph on S is the complement of
a k-cycle. We may assume that k > 5, since the complement of a 5-cycle is another
5-cycle. Let t1; t2 be two connected vertices in S – so either H.t1/ D H.t2/ or
else L.t1/ D L.t2/. Now ¹t1; t2º is a subset of k � 5 distinct triangles in �.S/
and so at least k � 3 vertices in �.S/ have the same colour. But this implies that S
contains a complete subgraph on k � 3 vertices, which is impossible, since k � 7
by assumption, and the complement of a k-cycle has no clique of size greater
than k=2.

By reference to [19, Table 5.1.D] we see that the results given above attend to
almost all quasisimple covers of the groups L3.q/. When q D 2 the group L3.2/
has an exceptional cover isomorphic to SL2.7/; however this has been dealt with
in the previous section and so can be excluded here. The remaining exceptions
occur when q D 4, and the next lemma deals with this situation.

Lemma 18. Suppose that G is a quasisimple group such that G=Z.G/ Š L3.4/.
Then �.G/ is perfect if and only if G is one of the groups in the following list:

L3.4/; 2:SL3.4/; 3:L3.4/; .2 � 2/:L3.4/; 6:L3.4/;

.6 � 2/:L3.4/; .4 � 4/:L3.4/; .12 � 4/:L3.4/:



86 J. R. Britnell and N. Gill

Proof. By reference to [19, Table 5.1.D], we observe that the Schur multiplier of
L3.4/ is C12 � C4. The extension 3:L3.4/ is isomorphic to SL3.4/. The elements
of L3.4/ have orders from the set ¹1; 2; 3; 4; 5; 7º; there is a unique conjugacy
class T of involutions.

LetG be a quasisimple extension of L3.4/. If g is an element ofG whose image
in L3.4/ has order 3, 4, 5 or 7, then the centralizer of g in G is abelian. For each
involution t 2 L3.4/, let tG be an element of G which projects onto t , and let
TG D ¹tG j t 2 T º. Then Lemma 7 implies that �.G/ is perfect if and only if its
induced subgraph �.TG/ on TG is perfect.

Since the graphs �.TG/, for the various quasisimple extensionsG, all have ver-
tex sets in natural bijection to one another, we can represent them all using a single
ornamented graph. Let M D .12 � 4/:L3.4/ be the full covering group. Let �.T /
be the commuting graph on T . We endow �.T / with an edge-labelling, where
the label of the edge .s; t/ is determined by the commutator ŒsM ; tM �, an element
of Z.M/. In fact, only four labels are needed, since if s and t are commuting ele-
ments of L3.4/, then ŒsM ; tM � has order at most 2 (see [29]), and hence lies in the
unique subgroup V of Z.M/ isomorphic to C2 � C2.

Each quasisimple group G is a central quotient of M , and it is clear that the
commuting graph �.TG/ is determined by the image VG of V in this quotient.
If VG is trivial, then �.TG/ is isomorphic to �.T /, which by Lemma 17 is per-
fect. If VG Š C2 � C2, then TG Š TM , which consists of 105 connected compo-
nents, each isomorphic to the triangle graphK3; so clearly �.TG/ is perfect in this
case also.

For the remaining cases, recall that the elements of T correspond to transvec-
tions in SL3.4/, and that each transvection has associated with it a hyperplane
H.t/ of fixed points, and a line L.t/, which is the image of I � t . Transvections
s and t commute if and only if H.s/ D H.t/ or L.s/ D L.t/. For any hyper-
plane H in F34 there are fifteen transvections t such that H.t/ D H , and for each
lineL there are fifteen such thatL.t/ D L. Furthermore, for each pair .H;L/ such
that L < H , there are three transvections t such that H.t/ D H and L.t/ D L
(which yield the triangles in �.TM / described above). There are 21 lines and 21
hyperplanes in F34 , and so �.T / may be expressed as a union of 42 copies of the
complete graph K15.

The vertices of each of these copies of K15 generate an elementary abelian
group A of order 16. The group A is naturally endowed with the structure of
a 2-dimensional vector space over the field F4, scalar multiplication being given
by the rule .�; t/ 7! I C �.t � I / for � 2 F4.

We are now in a position to deal with groups G such that VG Š C2. Let v 2 V
be the non-identity element of the kernel of the map V ! VG . We associate the
group V with the additive group F4, with I as 0 and with v as 1. It is not hard
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to show that the map .s; t/ 7! ŒsM ; tM � defines a non-degenerate alternating form
on A. Let s and t be a hyperbolic pair with respect to this form; so .s; t/ D v D 1.
Let ˛ be a primitive element of F4, and consider the induced subgraph of �.T / on
the vertices

s; ˛s; ˛�1s C ˛�1t; ˛t; t:

We see that in the order listed above, edges between consecutive vertices receive
labels 0 or 1, whereas other edges receive labels ˛ or ˛�1. It follows that these
vertices induce a 5-cycle in �.TG/, and so �.G/ is not perfect.

Thus the commuting graph of G is perfect if and only if G ŠM=Z0 where
Z0 � Z.M/ and either V � Z0 or V \Z0 D ¹1º. It is an easy matter to ascer-
tain which groups Z0 � Z.M/ satisfy this condition and one obtains quotients as
listed. Note that for some of these quotients, 2:L3.4/ for instance, there is more
than one choice for the subgroup Z0; in such cases we can appeal to [12, Theo-
rem 6.3.2] to see that they are all isomorphic.

Lemma 19. Let G be a quotient of SU3.q/ by a central subgroup, where q > 2.
Then �.G/ is not perfect.

Proof. For details about the dilatation and transvection mappings used in this argu-
ment, we refer the reader to [10, Chapter 2].

Suppose first that G D SU3.q/. Let V be the natural module for G, and let F
be the underlying Hermitian form on V . For any 1-dimensional subspace L of V ,
there is a non-central element X of G such that L is X -invariant, and such that X
acts as a scalar on L?.

If L is non-singular with respect to F , thenX is a scalar multiple of a dilatation
in GU3.q/, with axis L and centre L?. The transformation X may be chosen to
have order 2 if q is odd, or order q C 1 if q is even. The centralizer of X in G is
equal to the stabilizer of L.

On the other hand if L is singular with respect to F , then X is a scalar multiple
of a transvection, again with axis L and centre L?. In this case X may be chosen
to have order p, where p is the characteristic. In this case the centralizer of X in
G is a proper subgroup of the stabilizer of L, of index q2 � 1.

Let � be a set of transformations X of the types described above, one for each
line in V . We write L.X/ for the axis of X . Suppose that X; Y 2 � be distinct
elements which commute. Then Y stabilizes L.X/, and since L.X/ ¤ L.Y /, it is
easy to see that L.X/ 2 L.Y /?. Conversely, suppose that L.X/ 2 L.Y /?; then
L.X/ and L.Y / cannot both be singular, since V has no totally singular 2-dimen-
sional subspace. We may suppose without loss of generality that L.X/ is non-
singular; now since Y acts as a scalar on L.Y /? we see that Y is in the stabilizer
of L.X/, which is equal to the centralizer of X .
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Let �F be the graph whose vertices are 1-dimensional subspaces of V , with
edges connecting lines which are perpendicular with respect to F . Then we have
shown that �F is isomorphic to the subgraph of �.G/ induced on the vertices �.
Let .v1; v2; v3/ be a basis for V ; we may take F to be the hermitian form given by

F.vi ; vj / D

´
1 if .i; j / D .1; 1/, .2; 3/ or .3; 2/,
0 otherwise.

Now it is clear that the set of lines containing the points

v1; v2; v1 C v2; v1 � v3; v3

induces a 5-cycle in �F and we are done.
Now suppose that G D SU3.q/=A, where A is a central subgroup of SU3.q/.

Let X and Y be in �. It is straightforward to check that the images of X and Y
in U3.q/ commute if and only if X and Y commute. It follows immediately that
�.G/ is not perfect.

3.4 Classical groups of dimension at least 4

We start with a general result for all classical groups of large enough dimension
over almost all fields.

Lemma 20. Let q be a prime power with q ¤ 2; 4. Let G be a quasisimple classi-
cal group withG=Z.G/ isomorphic to Ln.q/ or Un.q/with n� 4, or to PSp2m.q/,
P�˙2m.q/ or P�2mC1.q/ with m � 3. Then �.G/ is not perfect.

Proof. IfG=Z.G/ 6Š Un.q/, then it is a standard result thatG contains a parabolic
subgroup P for which a Levi complement L contains a normal subgroup iso-
morphic to either L3.q/ or SL3.q/. Next suppose that G=Z.G/ Š Un.q/. The
group SUn.q/ contains a subgroup H0 that stabilizes a non-degenerate subspace
of dimension 3; now let H1 be the lift of H0 in the universal version of Un.q/ (in
all cases except .n; q/ D .4; 3/, this universal version is just SUn.q/ itself and so
H1 D H0) and let H be the projective image of H1 in G. Then H contains a nor-
mal subgroup isomorphic to either U3.q/ or SU3.q/ (see, for instance, [19, Sec-
tion Section 4.1 and 4.2]).

The result now follows from Lemmas 16 and 19.

We now work through the families of classical groups one by one; the force of
Lemma 20 is that we have only to deal with the case that q is 2 or 4, and with
groups G such that G=Z.G/ Š PSp4.q/.

Proposition 21. Let G be a quasisimple group with G=Z.G/ isomorphic to
PSp2m.q/, with m � 2. Then �.G/ is not perfect.
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Proof. By Lemma 20, it will be sufficient to deal with the case that q is even, and
with the case m D 2.

Suppose that q is even. Since Sp4.2/ Š S6, we know from Corollary 11 that
the commuting graph of Sp4.2/ is not perfect. Since Sp2m.q/ has Sp4.2/ as
a subgroup for m � 2, it follows that �.Sp2m.q// is not perfect. Referring to
[19, Table 5.1.D], we see that the only quasisimple group left to consider is the
double cover of Sp6.2/. But reference to [9] shows that this group contains U3.3/
as a subgroup, and hence it has a non-perfect commuting graph by Lemma 19.

Suppose next that q is odd and thatm D 2. Referring to [9] we see that PSp4.3/
contains a subgroup isomorphic to S6. If q > 3, then [19, Proposition 4.3.10] tells
us thatG contains a field extension subgroup isomorphic to L2.q2/:2; the commut-
ing graph of this subgroup is not perfect by Lemma 14. It follows that, in either
case, G has a non-perfect commuting graph.

It remains to deal with the groups Sp4.q/ for odd q. Our argument is similar to
that for the unitary groups U3.q/ in Lemma 19 above, and we again refer the reader
to [10, Chapter 2] for facts about transvections. Let G D Sp4.q/, and let V be the
natural module for G, with F the underlying alternating form on V . For any non-
zero v 2 V , the transvection map Tv W x 7! x C F.x; v/v lies in G. The maps Tv
and Tw commute if and only if F.v;w/ D 0. Let ¹e1; f1; e2; f2º be a hyperbolic
basis for V ; so F.e1; f1/ D F.e2; f2/ D 1, and he2; f2i D he1; f1i?. Define

v D e1; w D e2; x D f1; y D f1 C f2; z D e1 � e2 C f2:

Then the induced subgraph of �.G/ on the vertices Tv; Tw ; Tx; Ty ; Tz is a 5-cycle,
and so �.G/ is not perfect.

Proposition 22. Let G be a quasisimple group with G=Z.G/ isomorphic to
P�2mC1.q/ with m � 3 or to P�˙2m.q/ with m � 4. Then �.G/ is not perfect.

Proof. By Lemma 20, it is sufficient to deal with the case that q is even. Further-
more, we may suppose that G=Z.G/ Š P�˙2m.q/, because of the isomorphism
P�.2mC 1; 2k/ Š PSp.2m; 2k/. Now [19, Proposition 4.1.7] implies thatG con-
tains a subgroup isomorphic to a quasisimple cover of Spn�2.q/, and the result
follows from Proposition 21.

Proposition 23. Let n � 4 and let G be a quasisimple group with G=Z.G/ iso-
morphic to Ln.q/ or Un.q/. Then �.G/ is not perfect.

Proof. We suppose that q is even, since otherwise Lemma 20 gives the result.
Suppose that n is even. Then [19, Propositions 4.5.6 and 4.8.3] imply that

Spn.q/ is a subgroup of both Ln.q/ and Un.q/. If .n; q/ ¤ .4; 2/, then Spn.q/
is simple and so some quasisimple cover of Spn.q/ is a subgroup of G. The result
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now follows from Proposition 21. If G=Z.G/ Š L4.2/, then the result follows
from Proposition 12 since L4.2/ Š A8. If G=Z.G/ Š U4.2/, then the result fol-
lows from Proposition 21, since U4.2/ Š PSp4.3/.

Suppose, on the other hand, that n is odd. IfG D Ln.q/, thenG contains a sub-
group H such that H=Z.H/ Š Ln�1.q/. Similarly, if G D Un.q/, then G con-
tains a subgroupH such thatH=Z.H/ Š Un�1.q/. Since n � 1 is even, the result
in each case follows from above.

3.5 Ree and Suzuki groups

Proposition 24. If G D Sz.q/ with q > 2, then �.G/ is perfect.

The result is also true for q D 2, but we omit it from the statement since Sz.2/
is not simple.

Proof. We refer to [25] and observe that the only non-trivial elements in G which
have non-abelian centralizer are the involutions (and there is a single conjugacy
class of these). Let ƒ be a forbidden subgraph of �.G/ and observe that all of its
vertices correspond to involutions in G. Let g be one such. Then the set of invo-
lutions which commute with g lie in an elementary abelian subgroup of CentG.g/
and hence any two neighbours of g inƒmust themselves be neighbours, a contra-
diction.

Proposition 25. If G D 2F4.q/
0 with q � 2, then �.G/ is not perfect.

Proof. We consult [9] to see that 2F4.2/0 contains S6 and hence, by Lemma 9,
2F4.2/

0 is not perfect. Since G contains 2F4.2/0 as a subgroup, the proposition
follows.

Proposition 26. If G D 2G2.q/, then �.G/ is not perfect.

Proof. We first deal with the case q D 3, when G is not quasisimple, but isomor-
phic to the automorphism group of SL2.8/. Let F be the automorphism of SL2.8/
induced by the field automorphism x 7! x2. Let ˛ be an element of F8 such that
˛3 C ˛ D 1. We define the following elements of SL2.8/:

J D

 
1 0

1 1

!
; K D

 
1 1

0 1

!
; X D

 
˛ 0

˛6 ˛6

!
; Y D

 
˛4 ˛

0 ˛3

!
:

Now it is a straightforward computation to verify that the induced subgraph of
�.G/ on the vertices FX , JX , J , F , K, KY , F Y is isomorphic to a 7-cycle, and
so �.G/ is not perfect. (The point of this construction is that the matrices X and
Y lie in opposite Borel subgroups in SL2.8/, and that the commutator ŒXY �1; F �
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is fixed by F . It is perhaps worth noting that there is no induced subgraph of �.G/
isomorphic to a 5-cycle in this case.)

We now observe that if q > 3 thenG contains a subgroup isomorphic to 2G2.3/,
and so the result follows.

There are two non-simple quasisimple groups whose quotients are Ree or
Suzuki groups and we deal with these in the final result of this section.

Lemma 27. If G D 2:Sz.8/ or .2 � 2/:Sz.8/, then �.G/ is perfect.

Proof. Using Magma [5] we establish that G has precisely one non-central conju-
gacy class C of involutions. What is more C is the only non-central conjugacy
class whose members have non-abelian centralizers. Thus, by Lemma 6, it is
enough to show that �.C / is perfect.

Let g 2 C and suppose thatƒ is a forbidden subgraph of �.C /. The set of invo-
lutions which commute with g lie in an elementary abelian subgroup of CentG.g/
and hence any two neighbours of g inƒmust themselves be neighbours, a contra-
diction.

3.6 The remaining exceptional groups

Proposition 28. If G is a quasisimple group with G=Z.G/ isomorphic to G2.q/
or to 3D4.q/, then �.G/ is not perfect.

Proof. Suppose first that G is simple. Referring to [18] we see that for all q,
G2.q/ <

3D4.q/. Furthermore, [9] and [17] imply that U3.3/ D G2.2/0 < G2.q/
for all q, and the result follows from Lemmas 5 and 19.

If G is not simple, then G D 2:G2.4/ or 3:G2.3/. In both cases G contains
a subgroup isomorphic to U3.3/ and the result follows as before.

Proposition 29. Let G be a quasisimple group with G=Z.G/ isomorphic to one
of F4.q/, 2E6.q/, E6.q/, E7.q/ or E8.q/. Then �.G/ is not perfect.

Proof. Referring to [21] we see that

3D4.q/ < F4.q/ < E6.q/;
2E6.q/:

Furthermore, the universal version of E6.q/ is a subgroup of the adjoint version
of E7.q/, and likewise the universal version of E7.q/ is a subgroup of the adjoint
version of E8.q/. Since the Schur multiplier of 3D4.q/ is trivial we conclude that
all quasisimple covers of the (simple) adjoint versions of F4.q/, 2E6.q/, E6.q/,
E7.q/ andE8.q/ contain a subgroup isomorphic to 3D4.q/, and the result follows
from Proposition 28.
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3.7 Sporadic groups

Proposition 30. If G is a quasisimple group with G=Z.G/ isomorphic to a spo-
radic simple group, then �.G/ is not perfect.

Proof. Our strategy here is to find, for each sporadic simple group, a subgroup
which has already been shown to have non-perfect commuting graph. The result
will then follow from Lemma 5. Our essential reference is [9], which provides lists
of maximal subgroups of these groups. For reasons of transparency, we use only
subgroup inclusions which are immediately visible from the structural information
these lists provide (though the subgroups need not themselves be maximal).

We deal first with the simple groups. We have the following subgroup inclu-
sions:

S5 < M11; M12; Th; B; M;

A7 < M22; M23; M24; HS; McL; Co1; Fi23; Fi024; O0N;

A8 < Ru;

M12 < Suz; Fi22; HN;

M23 < Co3; Co2;

M24 < J4;

L2.11/ < J1;

L2.19/ < J3;

U3.3/ < J2;

Sp4.4/ < He;

G2.5/ < Ly:

We deal now with the case that G is non-simple, the following subgroup inclu-
sions cover most possibilities:

M11 < 2:M12; 2:HS; 3:McL; 3:O0N;

U3.3/ < 2:J2;

L2.19/ < 3:J3;
2F4.2/

0 < 2:Ru; 2:Fi22; 3:Fi22; 6:Fi22; 2:B;

Co2 < 2:Co1;

Fi23 < 3:Fi024:

In addition all quasisimple covers of Suz contain a quasisimple cover of G2.4/.
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We are left with the possibility thatG=Z.G/ Š M22. Note that the simple group
M22 contains a subgroup isomorphic to A7 and all quasisimple covers of A7 have
non-perfect commuting graph, except 6:A7. Thus, for �.G/ to be perfect, the sub-
group A7 in M22 must lift to a subgroup 6:A7 in G. This implies immediately that
jZ.G/j D 6 or 12. Now we consult [9] to see that elements of order 4 in M22 do
not lift to elements of order 24 when jZ.G/j D 6. Since elements of order 4 in A7
lift to elements of order 24 in 6:A7, we conclude that 6:M22 does not contain 6:A7.
Thus we must have G D 12:M22.

Now we refer to [14, Table 1], to see that a maximal subgroup of M22 which
is isomorphic to L3.4/ lifts in 12:M22 to a cover whose centre is cyclic and has
order divisible by 4. All such covers of L3.4/ have non-perfect commuting graph
and the result follows by Lemma 18.

4 Components in finite groups

In this section we prove Theorem 2 and Corollary 3. The next result is required
for the proof of Theorem 2, and also illustrates a diagrammatic method we have
found helpful.

Proposition 31. The following statements hold.

(i) Let K, L and M be finite non-abelian groups. Then �.K � L �M/ is not
perfect.

(ii) Let K, L, M be three distinct finite non-abelian subgroups of a group G,
each of which centralizes the other two. Then �.G/ is not perfect.

Proof. (i) Define .k; k0/, .`; `0/ and .m;m0/ to be pairs of non-commuting ele-
ments from K, L and M respectively. Now the five elements

.1; l;m/; .k0; 1; 1/; .1; l 0; 1/; .k; 1;m0/; .k; l; 1/; (4.1)

induce a 5-cycle in �.K � L �M/ and we are done.
(ii) If K, L and M are subgroups of G which centralize one another, then there

is a natural homomorphismK � L �M ! G given by .x; y; z/ 7! xyz. It is easy
to check that the images under this map of the five elements constructed in part (i),
induce a 5-cycle in �.G/.

Before we proceed, let us take a moment to understand more clearly why the
elements listed at (4.1) induce a 5-cycle. To do this we refer to Figure 2 in which we
draw the commuting graphs of the three projections of the listed tuples. Note that
we maintain the same orientation for each graph, so that the vertex corresponding
to the entry from the first tuple is at the ‘east’ of the graph, and entries from the



94 J. R. Britnell and N. Gill

following tuples are written anticlockwise around the graph. Now it is clear that
the commuting graph of the three 5-tuples listed at (4.1) has edges between two
vertices precisely when all three projections have edges between the corresponding
vertices. This observation immediately implies that the tuples listed at (4.1) form
a 5-cycle, as required. In the arguments below we shall use the same convention
for representing projections.

1

k0

1

k

k

`

1

`0

1

`

m

1

1

m0

1

Figure 2. Three projections needed for Proposition 31 (i).

Our next result is in similar vein and to state it we need some terminology:
We say that �.G/ contains a 4-chain if there is an induced subgraph of �.G/
isomorphic to a path graph on four vertices.

Proposition 32. LetK and L be subgroups of a group G such that �.K/ contains
a 4-chain, L is non-abelian, and K and L centralize one another. Then �.G/ is
not perfect.

Proof. Let k1; k2; k3; k4 be the vertices of a 4-chain in K, and let `; `0 be non-
commuting elements in L. Then the projection graphs in Figure 3 illustrate that
the five elements

k1; k2`; k3`; k4; `
0

in KL induce a 5-cycle in �.G/.

k4

1

k1

k2

k3

1

`0

1

`

`

Figure 3. Two projections needed for Proposition 32.
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Lemma 33. The following statements hold.

(i) If G is isomorphic to one of the groups in the following list, then G contains
a 4-chain:

A6; 3:A6; 6:A7; L3.2/; L3.4/; 2:L3.4/; 3:L3.4/;

.2 � 2/:L3.4/; 6:L3.4/; .6 � 2/:L3.4/:

(ii) IfG is a quasisimple group such that �.G/ is perfect and contains a 4-chain,
then G is one of the groups listed in (i).

Proof. (i) If G Š A6, we can take

g1 D .1 5/.3 4/; g2 D .1 5/.2 6/; g3 D .1 2/.5 6/; g4 D .1 2/.3 4/:

If G Š 3:A6, then we can take pre-images of these four elements. If G D 6:A7,
then we can take pre-images in G of

g1 D .1 2 3 4/.5 6/; g2 D .1 3/.2 4/; g3 D .5 6 7/; g4 D .1 2/.3 4/.5 6 7/:

If G D SL3.2/, then we can take

g1 D

0B@1 0 1

0 1 1

0 0 1

1CA ; g2 D

0B@1 0 1

0 1 0

0 0 1

1CA ;

g3 D

0B@1 1 1

0 1 0

0 0 1

1CA ; g4 D

0B@1 0 0

0 0 1

0 1 0

1CA :
For the remaining cases we refer back to the proof of Lemma 18. It is clearly

sufficient to consider the induced subgraph �.TG/ introduced there. In fact, this
graph is the same for any of the extensions of L3.4/ listed here (since the central
elementary abelian 2-subgroup A of the full covering group M of L3.4/ is con-
tained in the kernel of the quotient homomorphism M ! G in each case.) It is
sufficient, therefore, to find a 4-chain in any one of these groups. Since 3:L3.4/ is
isomorphic to SL3.4/, it contains SL3.2/ as a subgroup, and so the four elements
given above for SL3.2/ can be used in this case also.

(ii) For this part we must show that every group listed in Theorem 1 but not
in Lemma 33 does not contain a 4-chain. This is obviously the case for all of the
AC-groups, which are listed in Corollary 3.

If G is .4 � 4/:L3.4/ or .12 � 4/:L3.4/, and if a 4-chain existed in �.G/, then
there would be a 4-chain in the graph �.TG/ constructed in the proof of Lemma 18.
But it was seen in that proof that �.TG/ is a union of pairwise disconnected trian-
gles, and so clearly no 4-chain exists there.
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Finally, suppose that G is equal either Sz.q/ for some q D 22nC1, or else to
2:Sz.8/ or .2 � 2/:Sz.8/. In any of these cases G has a single class of non-central
elements with non-abelian centralizers, consisting of involutions. Furthermore, for
each involution g in this class, the involutions commuting with g generate an
elementary abelian subgroup of G. From these facts it is clear that �.G/ can have
no 4-chain.

Proof of Theorem 2. Proposition 31 tells us that G has at most two components,
and Lemma 5 implies that the commuting graphs of the components are perfect,
and so each component of G is isomorphic to one of the quasisimple groups listed
in Theorem 1.

Suppose first thatG has a unique componentN and that case (ii) of the theorem
does not hold. Then G appears in the list of Lemma 33, and so �.G/ contains
a 4-chain. It follows from Proposition 32 that no non-abelian subgroup of G can
centralize N , and so CentG.N / is abelian and (iii) holds.

Next suppose thatG has two componentsN1 andN2. SinceN1 andN2 central-
ize one another, and since they are both non-abelian, it follows from Proposition 32
that neither contains a 4-chain. and that �.N1/ contains a 4-chain. Therefore each
is isomorphic to one of the groups listed in case (ii) of the theorem.

Let C D CentG.N1N2/. Then N1, N2 and C are three subgroups of G which
centralize one another, and it follows from Proposition 31 that one of them is
abelian. Since N1 and N2 are quasisimple, we see that C is abelian and (iv)
holds.

Proof of Corollary 3. Lemma 6 implies that any finite AC-group G has a perfect
commuting graph. If G is quasisimple, then G is one of the groups listed in Theo-
rem 1. It is easy to check that SL2.q/ and 6:A6 are AC-groups.

We observe that a centreless AC-group has abelian Sylow p-subgroups for all p.
Now Sz.22aC1/, A6, SL3.2/ and L3.4/ have non-abelian Sylow 2-subgroups, and
hence they are not AC-groups. It is not hard to check that if G is isomorphic
to 3:A6, to a quasisimple cover of L3.4/, or to a quasisimple cover of Sz.q/, then
the centralizer of a non-central involution is non-abelian. In 6:A7 the centralizer
of an element of order 4 is non-abelian. This is sufficient to prove (i).

To establish (ii), let G be an arbitrary finite AC-group. Since components are
non-abelian, and since any two distinct components centralize one another, it is
clear thatG must have a unique componentN . It is also clear thatN must itself be
an AC-group, and so N is one of the groups listed in part (i). Let C D CentG.N /,
and let Z D Z.G/. Suppose that g 2 CnZ. Then N � CentG.g/, and since N
is non-abelian, we have a contradiction. Hence CentG.N / D Z, and so G=Z is
isomorphic to a subgroup of Aut.N /.
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Suppose first that N D SL2.q/, and that G contains an element g whose ac-
tion on N=Z.N/ induces a field automorphism. Then CentN=Z.N/.g/ Š L2.q0/,
where q D qa0 for some a > 1. If q is even, then Z.N/ is trivial and, since L2.q0/
is non-abelian, we immediately obtain a contradiction. If q is odd, then jZ.N/j D 2
and hence CentN .g/ contains a subgroup isomorphic to a subgroup of L2.q0/ of
index at most 2. Once again we conclude that CentN .g/ is non-abelian, which is
a contradiction. So G=Z.G/ contains no element acting as a field automorphism,
and we conclude that G=Z.G/ is isomorphic either to L2.q/, or to an extension of
L2.q/ of degree 2. So we see that jG W NZ.G/j � 2 in this case.

Suppose next that N D 6:A6. We refer to [12, Table 6.3.1], which asserts that
the action of Out.A6/ on Z.N/ is non-trivial. So if G=Z Š Aut.A6/, then G con-
tains an element g which acts non-trivially on Z.N/. Thus not all non-trivial
elements of Z.N/ are central in G. But since all non-trivial elements of Z.N/
have non-abelian centralizer, this is a contradiction. So G=Z.G/ is a proper sub-
group of Aut.A6/, and since jOut.A6/j D 4, we have jG W NZ.G/j � 2 in this
case too.

5 Improvements

Improvements on Theorems 1 and 2 are certainly possible, and in this final section
we discuss some possibilities.

5.1 Almost quasisimple groups

An obvious first step would be to extend Theorem 1 to classify almost quasisimple
groups with perfect commuting graphs. We recall that an almost quasisimple group
is a group with a single component N and, furthermore, this component N is
quasisimple.

It is an easy matter to use Theorem 1 to write down the almost quasisimple
groups that are candidates for having a perfect commuting graph. To do this effi-
ciently we need the notion of isoclinism. Recall, first, the definition of the commu-
tator map:

Œ�;�� W G �G ! G; .x; y/ 7! x�1y�1xy:

Clearly, we can think of the commutator map as being a function of form

G=Z.G/ �G=Z.G/! G0:

Two groups G and H are said to be isoclinic if there are two isomorphisms

' W G=Z.G/! H=Z.H/ and � W G0 ! H 0
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that commute with the two commutator maps, i.e. the following diagram com-
mutes:

G=Z.G/ �G=Z.G/ G0

H=Z.H/ �H=Z.H/ H 0.

Œ�;��

'�' �

Œ�;��

If a group G is perfect, then G has a unique central extension M:G realizing
any quotient M of its Schur multiplier. Thus for example there is a unique proper
cover 2:An of the alternating group An, for n � 5. For more general groups G,
the appropriate groups M:G are only unique up to isoclinism. Thus, for example,
in our discussion below there may be several almost quasisimple groups 3:S6 that
we should consider. The next lemma asserts that considering one is enough.

Lemma 34. If G and H are isoclinic, then �.G/ is perfect if and only if �.H/
is perfect.

Proof. Let ' W G=Z.G/! H=Z.H/ and � W G0 ! H 0 be the relevant isomor-
phisms. Suppose that �.G/ is not perfect, and let ƒ D ¹g1; : : : ; gkº be a subset
of G such that the induced subgraph on ƒ is an odd cycle. Now, for i D 1; : : : ; k,
let hi 2 H be such that hiZ.H/ D '.giZ.G//.

Now observe that, since ��1.1H / D 1G , we conclude that Œgi ; gj � D 1 if and
only if Œhi ; hj � D 1. Thus ¹h1; : : : ; hkº is an odd cycle and �.H/ is not perfect.

The same argument with G and H swapped, and ' and � replaced by '�1

and ��1, proves the converse.

We are now in a position to list those almost quasisimple groups that may have
a perfect commuting graph, and we do this in Table 2. Clearly, if an almost qua-
sisimple group is to have perfect commuting graph, then its quasisimple normal
subgroup must also have perfect commuting graph, hence the table is broken down
into rows according to Theorem 1. Groups in the central column are prescribed up
to isoclinism.

Some comments about Table 2 are in order. Note, first, that in the case where
an almost quasisimple group G exists, and we have already listed a subgroup of
G with non-perfect commuting graph, then G does not appear in the Table 1. So,
for instance, P�L2.9/ is an almost quasisimple group with unique component A6.
Since A6 appears in Theorem 1, we should study P�L2.9/. However, P�L2.9/
contains a subgroup isomorphic to S6 which, as we see in the table, has a non-
perfect commuting graph. Hence we may omit P�L2.9/ from the list.

Note, second, that the row starting X:L3.4/ references all almost quasisimple
groups whose unique component is a quasisimple cover of L3.4/ that occurs in
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Component Group Comments

L3.2/ PGL2.7/ Non-perfect by Remark 15.

A6 S6 Non-perfect by Corollary 11.
PGL2.9/ Non-perfect by Remark 15.
M10 Perfect; see comments below.

3:A6 3:S6 Non-perfect by [29].
3:PGL2.9/ Non-perfect by [29].
3:M10 Perfect; see comments below.

6:A6. 6:S6 Non-perfect by [29].
6:PGL2.9/ Perfect; see comments below.
12:M10 Perfect; see comments below.

6:A7 6:S7 Non-perfect by [29].

2:Sz.8/ None

.2 � 2/:Sz.8/ .2 � 2/:Sz.8/:3 Non-perfect by [29].

X:L3.4/ Various Inconclusive.
SL2.q/ Various Inconclusive.
Sz.q/ Various Inconclusive.

Table 2. Almost quasisimple groups whose commuting graph may be perfect.

Theorem 1. Full facts in this situation are unknown, although we remark that
�.PGL3.4// is non-perfect by (an adaptation of) Lemma 16. We also remark that
the final two rows of Table 2 refer to infinite families of groups.

Finally, we should justify the assertions in the final column: In the cases where
we have written “Non-perfect by [29]”, we mean that we have run computations
in GAP and found cycles of odd order in the commuting graph of the given group.1

The cases where the commuting graph is perfect require more explanation: Let
X 2 ¹1; 3º; then �.X:M10/ is perfect because �.X:A6/ is perfect and all elements
in M10 n A6 have abelian centralizers. Similarly, �.12:M10/ is perfect because it
contains a subgroup K Š C2 � 6:A6 which is isoclinic to 6:A6; now �.6:A6/ is
perfect and all elements in 12:M10 nK have abelian centralizers, and we are done.

1 To do this we have made use of presentations found in the online ATLAS of Finite Group
Representations [28]; where presentations have not been available in [28], we have received
assistance from Professor Jürgen Müller for which we would like to record our very sincere
thanks.
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The graph �.6:PGL2.9// is perfect because, as computations in [29] confirm, the
graph contains neither 5-cycles nor 5-chains.

5.2 Extending Theorem 2

In the absence of a full classification of those almost quasisimple groups that have
perfect commuting graph, we will not write down a theorem extending Theo-
rem 2. Instead, we offer the following result which pertains to a specific situation,
and which illustrates the leverage that extra information about almost quasisimple
groups can bring.

Proposition 35. Let G be a finite group such that �.G/ is perfect, and suppose
that G has a component N isomorphic to A6. Let C D CentG.N /. Then C is
abelian, and the quotient group G=C is isomorphic either to A6 or to the Mathieu
group M10.

Proof. We observe first that G must fall under case (iii) of Theorem 2, and so N
is the unique component of G, and C is abelian. Since G=NC is isomorphic to
a subgroup of Out.N /, we see that G=C is an almost simple group with socle N .
Reference to [9] tells us thatG=C is isomorphic to one of A6, S6, M10 or PGL2.9/,
or to the projective semilinear group P�L2.9/ which contains all of the others as
subgroups.

If G D NC , then G=C Š A6. So we suppose that G ¤ NC . Then there exists
g 2 G is such that gNC has order 2 in the quotient G=NC . Let H D hN; gi,
and observe that HC=C is an almost simple group of order 2jN j. Since H=N is
cyclic, we have Œh1; h2� 2 N for all h1; h2 2 H , and now since N \ C is trivial,
it follows that any two conjugate elements of H lie in distinct cosets of H \ C .
Therefore the conjugacy action ofH on its normal subgroupH \ C is trivial, and
so H \ C is central in H .

Now H is a subgroup of G, and so �.H/ is perfect; so Lemma 8 tells us that
�.H=H \ C/ is perfect. ButH=H \ C Š HC=C , and soHC=C cannot be iso-
morphic to S6 or to PGL2.9/, since we know that neither of these has a perfect
commuting graph (by Table 2). We therefore see that HC=C Š M10.

It is now also clear thatG=C cannot be isomorphic to P�L2.9/, since otherwise
there would be a subgroup H < G such that H=C Š S6. So we have shown that
G=C is isomorphic either to A6 or to M10, as claimed.
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