A note on Factoring groups into dense subsets

Igor Protasov and Serhii Slobodianiuk

Communicated by George Willis

Abstract. Let G be a group of cardinality $\kappa > \aleph_0$ endowed with a topology \mathcal{T} such that $|U| = \kappa$ for every non-empty $U \in \mathcal{T}$ and \mathcal{T} has a base of cardinality κ . We prove that G can be factorized G = AB (i.e. each $g \in G$ has a unique representation g = ab, $a \in A$, $b \in B$) into dense subsets A, B, $|A| = |B| = \kappa$. We do not know if this statement holds for $\kappa = \aleph_0$ even if G is a topological group.

1 Introduction

For a cardinal κ , a topological space X is called κ -resolvable if X can be partitioned into κ dense subsets [1]. In the case $\kappa = 2$, these spaces were defined by Hewitt [4] as resolvable spaces. If X is not κ -resolvable, then X is called κ -irresolvable.

In topological groups, the intensive study of resolvability was initiated by the following remarkable theorem of Comfort and van Mill [2]: every countable non-discrete Abelian topological group G with finite subgroup G of elements of order 2 is 2-resolvable. In fact [11], every infinite Abelian group G with finite G(G) can be partitioned into G0 subsets dense in every non-discrete group topology on G1. On the other hand, under Martin's Axiom, the countable Boolean group G3, G = G(G)2 admits a maximal (hence, 2-irresolvable) group topology [5]. Every non-discrete G0-irresolvable topological group G2 contains an open countable Boolean subgroup provided that G1 is Abelian [6] or countable [10], but the existence of a non-discrete G0-irresolvable group topology on the countable Boolean group implies that there is a G1-point in G2 (see [6]). Thus, in some models of ZFC (see [8]), every non-discrete Abelian or countable topological group is G3-resolvable. For a systematic exposition of resolvability in topological and left topological groups see [3, Chapter 13].

Recently, a new kind resolvability of groups was introduced in [7]. A group G provided with a topology \mathcal{T} is called $box \ \kappa$ -resolvable if there is a factorization G = AB such that $|A| = \kappa$ and each subset aB is dense in \mathcal{T} . If G is left topological (i.e. each left shift $x \mapsto gx$, $g \in G$ is continuous), then this is equivalent to B being dense in \mathcal{T} . We recall that a product AB of subsets of a group G

is a factorization if G = AB and the subsets $\{aB : a \in A\}$ are pairwise disjoint (equivalently, each $g \in G$ has a unique representation $g = ab, a \in A, b \in B$). For factorizations of groups into subsets see [9]. By [7, Theorem 1], if a topological group G contains an injective convergent sequence, then G is box ω -resolvable.

The aim of this note is to find some conditions under which an infinite group G of cardinality κ provided with a topology can be factorized into two dense subsets of cardinality κ . To this goal, we propose a new method of factorization based on filtrations of groups.

2 Theorem and question

We recall that the weight w(X) of a topological space X is the minimal cardinality of bases of the topology of X.

Theorem. Let G be an infinite group of cardinality κ , $\kappa > \aleph_0$, endowed with a topology \mathcal{T} such that $w(G,\mathcal{T}) \leq \kappa$ and $|U| = \kappa$ for each non-empty $U \in \mathcal{T}$. Then there is a factorization G = AB into dense subsets $A, B, |A| = |B| = \kappa$.

We do not know whether or not this Theorem is true for $\kappa = \aleph_0$ even if G is a topological group.

Question. Let G be a non-discrete countable Hausdorff topological group G of countable weight. Can G be factorized G = AB into two countable dense subsets?

In Section 4, we give a positive answer in the following cases: each finitely generated subgroup of G is nowhere dense, the set $\{x^2 : x \in U\}$ is infinite for each non-empty open subset of G, G is Abelian.

3 Proof

We begin with some general constructions of factorizations of a group G via filtrations of G.

Let G be a group with the identity e. Let κ be a cardinal. A family $\{G_{\alpha} : \alpha < \kappa\}$ of subgroups of G is called a *filtration* if

- (1) $G_0 = \{e\}, G = \bigcup_{\alpha < \kappa} G_\alpha,$
- (2) $G\alpha \subset G_{\beta}$ for all $\alpha < \beta$,
- (3) $G_{\beta} = \bigcup_{\alpha < \beta} G_{\alpha}$ for every limit ordinal β .

Every ordinal $\alpha < \kappa$ has the unique representation $\alpha = \gamma(\alpha) + n(\alpha)$, where $\gamma(\alpha)$ is either a limit ordinal or 0 and $n(\alpha) \in \omega$, $\omega = \{0, 1, ...\}$. We partition κ into

two subsets

$$E(\kappa) = {\alpha < \kappa : n(\alpha) \text{ is even}}$$

and

$$O(\kappa) = {\alpha < \kappa : n(\alpha) \text{ is odd}}.$$

For each $\alpha \in E(\kappa)$, we choose some system L_{α} of representatives of left cosets of $G_{\alpha+1} \setminus G_{\alpha}$ by G_{α} so $G_{\alpha+1} \setminus G_{\alpha} = L_{\alpha}G_{\alpha}$. For each $\alpha \in O(\kappa)$, we choose some system R_{α} of representatives of right cosets of $G_{\alpha+1} \setminus G_{\alpha}$ by G_{α} so we have $G_{\alpha+1} \setminus G_{\alpha} = G_{\alpha}R_{\alpha}$.

We take an arbitrary element $g \in G \setminus \{e\}$ and choose the smallest subgroup G_{γ} such that $g \in G_{\gamma}$. By (3), $\gamma = \alpha(g) + 1$ so $g \in G_{\alpha(g)+1} \setminus G_{\alpha(g)}$. If $\alpha(g) \in E(\kappa)$, we choose $x_0(g) \in L_{\alpha}(g)$ and $g_0 \in G_{\alpha}(g)$ such that $g = x_0(g)g_0$. If $\alpha(g) \in O(\kappa)$, we choose $y_0(g) \in R_{\alpha}(g)$ and $g_0 \in G_{\alpha}(g)$ such that $g = g_0y_0(g)$. If $g_0 = e$, we stop. Otherwise we repeat the argument for g_0 and so on. Since the set of ordinals less than κ is well ordered, after a finite number of steps we get the representation

(4)
$$g = x_0(g)x_1(g) \dots x_{\lambda(g)}(g)y_{\rho(g)} \dots y_1(g)y_0(g),$$

where

$$x_i \in L_{\alpha_i(g)}, \quad \alpha_0(g) > \alpha_1(g) > \dots > \alpha_{\lambda(g)(g)},$$

$$y_i \in R_{\beta_i(g)}, \quad \beta_0(g) > \beta_1(g) > \dots > \beta_{\rho(g)(g)}.$$

If either $\{\alpha_0(g), \ldots, \alpha_{\lambda(g)}(g)\} = \emptyset$ or $\{\beta_0(g), \ldots, \beta_{\rho(g)}(g)\} = \emptyset$, then we write $g = y_{\rho(g)} \ldots y_1(g) y_0(g)$ or $g = x_0(g) x_1(g) \ldots x_{\lambda(g)}(g)$. Thus, G = AB where A is the set of all elements of the form $x_0(g) x_1(g) \ldots x_{\lambda(g)}$ and B is the set of all elements of the form $y_{\rho(g)} \ldots y_1(g) y_0(g)$. To show that the product AB is a factorization of G, we assume that, besides (4), g has a representation

$$g = z_0 z_1 \dots z_{\lambda} t_{\rho} \dots t_1 t_0.$$

If $g \in G_{\alpha+1} \setminus G_{\alpha}$ and $\alpha \in O(\kappa)$, then $z_0 z_1 \dots z_{\lambda} t_{\rho} \dots t_1 \in G_{\alpha}$ so $t_0 = y_0(g)$. If $\alpha \in E(\kappa)$, then $z_1 \dots z_{\lambda} t_{\rho} \dots t_1 t_0 \in G_{\alpha}$ so $z_0 = x_0(g)$. We replace g by gt_0^{-1} or by $z_0^{-1}g$ respectively and repeat the same arguments.

Now we are ready to prove the Theorem. Let $\{U_{\alpha}: \alpha < \kappa\}$ be a κ -sequence of non-empty open sets such that each non-empty $U \in \mathcal{T}$ contains some U_{α} . Since $|U_{\alpha}| = \kappa$ for every $\alpha < \kappa$, we can construct inductively a filtration $\{G_{\alpha}: \alpha < \kappa\}$, $|G_{\alpha}| = \max\{\aleph_0, |\alpha|\}$ such that for each $\alpha \in E(\kappa)$ (resp. $\alpha \in O(\kappa)$) there is a system L_{α} (resp. R_{α}) of representatives of left (resp. right) cosets of $G_{\alpha+1} \setminus G_{\alpha}$ by G_{α} such that $L_{\alpha} \cap U_{\gamma} \neq \emptyset$ (resp. $R_{\alpha} \cap U_{\gamma} \neq \emptyset$) for each $\gamma \leq \alpha$. Then the subsets A, B of the above factorization of G are dense in \mathcal{T} because $L_{\alpha} \subset A$, $R_{\beta} \subset B$ for each $\alpha \in E(\kappa)$, $\beta \in O(\kappa)$.

4 Comments

1. Analyzing the proof, we see that the Theorem holds under the weaker condition: G has a family \mathcal{F} of subsets such that $|\mathcal{F}| = \kappa$, $|F| = \kappa$ for each $F \in \mathcal{F}$ and, for every non-empty $U \in \mathcal{T}$, there is $F \in \mathcal{F}$ such that $F \subseteq U$.

If $\kappa = \aleph_0$ but each finitely generating subgroup of G is nowhere dense, we can choose a family $\{G_n : n \in \omega\}$ such that the corresponding A, B are dense. Thus, we get a positive answer to the Question if each finitely generated subgroup H of G is nowhere dense (equivalently the closure of H is not open).

2. Let G be a group and let A, B be subsets of G. We say that the product AB is a *partial factorization* if the subsets $\{aB : a \in A\}$ are pairwise disjoint (equivalently, $\{Ab : b \in B\}$ are pairwise disjoint).

We assume that AB is a partial factorization of G into finite subsets and that X is an infinite subset of G. Then the following statements are easily verified

- (5) there is $x \in X$ such that $x \notin B$ and $A(B \cup \{x\})$ is a partial factorization;
- (6) if the set $\{x^2 : x \in X\}$ is infinite, then there is an element $x \in X$ such that $(A \cup \{x, x^{-1}\})B$ is a partial factorization.
- 3. Let G be a non-discrete Hausdorff topological group, let AB be a partial factorization of G into finite subsets, $A = A^{-1}$, $e \in A \cap B$ and $g \notin AB$. Then
- (7) there is a neighbourhood V of e such that, for $U = V \setminus \{e\}$ and for any $x \in U$, the product $(A \cup \{x, x^{-1}\})(B \cup \{x^{-1}g\})$ is a partial factorization (so $g \in (A \cup \{x, x^{-1}\})(B \cup \{x^{-1}g\})$).

It suffices to choose V so that $V = V^{-1}$ and

$$AUg \cap AB = \varnothing$$
, $UB \cap (AB \cup AUg) = \varnothing$, $U^2g \cap AB = \varnothing$, $U \cap A = \varnothing$.

We use $A = A^{-1}$ only in $UB \cap AUg = \emptyset$.

4. Let G be countable non-discrete Hausdorff topological group such that the set $\{x^2:x\in U\}$ is infinite for every non-empty open subset U of G. We enumerate $G=\{g_n:n\in\omega\},\,g_0=e$ and choose a countable base $\{U_n:n\in\omega\}$ for non-empty open sets. We put $A_0=\{e\},\,B_0=\{e\}$ and use $(5),\,(6),\,(7)$ to choose inductively two sequences $(A_n)_{n\in\omega}$ and $(B_n)_{n\in\omega}$ of finite subsets of G such that for every $n\in\omega$, $A_n\subset A_{n+1},\,B_n\subseteq B_{n+1},\,A_n=A_n^{-1},\,A_nB_n$ is a partial factorization, $g_n\in A_nB_n,\,A_n\cap U_n\neq\varnothing$, $B_n\cap U_n\neq\varnothing$. We put

$$A = \bigcup_{n \in \omega} A_n, \quad B = \bigcup_{n \in \omega} B_n$$

and note that AB is a factorization of G into dense subsets.

- 5. Let G be a countable Abelian non-discrete Hausdorff topological group of countable weight. We suppose that G contains a non-discrete finitely generated subgroup H. Given any non-empty open subset U of G, we choose a neighborhood X of e in H and $g \in S$ such that $Xg \subset U$. Since H is finitely generated, the set $\{x^2 : x \in X\}$ is infinite so we can apply comment 4. If each finitely generated subgroup of G is discrete then, to answer the Question, we use comment 1.
- 6. Let G be a countable group endowed with a topology \mathcal{T} of countable weight such that U is infinite for every $U \in \mathcal{T}$. Applying the inductive construction from comment 5 to $A_n B_n$ and $B_{n+1}^{-1} A_n^{-1}$, we get a partial factorization of G into two dense subsets.
- 7. Let G be a group satisfying the assumption of the Theorem and let γ be an infinite cardinal, $\gamma < \kappa$. We take a subgroup A of cardinality γ and choose inductively a dense set B of representatives of right cosets of G by A. Then we get a factorization G = AB. In particular, if G is left topological, then G is box γ -resolvable.

Bibliography

- [1] J. Ceder, On maximally resolvable spaces, Fund. Math. 55 (1964), 87–93.
- [2] W. Comfort and J. van Mill, Group with only resolvable group topologies, *Proc. Amer. Math. Soc.* **120** (1993), 687–696.
- [3] M. Filali and I. Protasov, *Ultrafilters and Topologies on Groups*, Math. Stud. Monogr. Ser. 13, VNTL, Lviv, 2010.
- [4] E. Hewitt, A problem of set-theoretic topology, *Duke Math. J.* **10** (1943), 309–333.
- [5] V. Malykhin, Extremally disconnected and similar groups, *Soviet Math. Dokl.* **16** (1975), 21–25. .
- [6] I. Protasov, Irresolvable topologies on groups, Ukr. Math. J. 50 (1998), 1879–1887.
- [7] I. Protasov, Box resolvability, preprint (2015), http://arxiv.org/abs/1511.01046; to appear in *Topology Appl.*
- [8] S. Shelah, *Proper Forcing*, Lecture Notes in Math. 940, Springer, Berlin, 1982.
- [9] S. Szabó and A. Sands, Factoring Groups into Subsets, CRC Press, Boca Raton, 2009.
- [10] E. Zelenyuk, On partitions of groups into dense subsets, *Topology Appl.* 126 (2002), 327–339.
- [11] E. Zelenyuk, Partitions and sums with inverse in Abelian groups, *J. Combin. Theory Ser. A* **115** (2008), 331–339.

Received February 14, 2016; revised April 29, 2016.

Author information

Igor Protasov, Department of Cybernetics, Kyiv University, Volodymyrska 64, 01033, Kyiv, Ukraine.

E-mail: i.v.protasov@gmail.com

Serhii Slobodianiuk, Department of Mechanics and Mathematics, Kyiv University,

Volodymyrska 64, 01033, Kyiv, Ukraine.

E-mail: slobodianiuk@yandex.ru