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Minimal permutation representations of
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Abstract. We provide formulae for the minimal faithful permutation degree �.G/ of
a group G that is a semidirect product of an elementary abelian p-group by a group of
prime order q not equal to p. These formulae apply to the investigation of groups G with
the property that there exists a nontrivial group H such that �.G �H/ D �.G/, in par-
ticular reproducing the seminal examples of Wright (1975) and Saunders (2010). Given an
arbitrarily large groupH that is a direct product of elementary abelian groups (with mixed
primes), we construct a groupG such that �.G �H/ D �.G/, yetG does not decompose
nontrivially as a direct product.

1 Introduction

Throughout this paper all groups are assumed to be finite. The minimal faithful
permutation degree �.G/ of a group G is the smallest nonnegative integer n such
that G embeds in the symmetric group Sym.n/. Note that �.G/ D 0 if and only
if G is trivial. It is well known (and referred to as Karpilovsky’s theorem, see,
for example, [11, 12]) that if G is a nontrivial abelian group, then �.G/ is the
sum of the prime powers that occur in a direct product decomposition of G into
cyclic factors of prime power order. Johnson proved (see [11, Theorem 1]) that
the Cayley representation of a group G is minimal, that is, �.G/ D jGj, if and
only if G is cyclic of prime power order, the Klein four-group or a generalised
quaternion 2-group. A number of other explicit calculations of minimal degrees
and a variety of techniques appear in Johnson [11], Wright [21, 22], Neumann
[15], Easdown and Praeger [3], Kovacs and Praeger [13], Easdown [2], Babai,
Goodman and Pyber [1], Holt [9], Holt and Walton [10], Lemieux [14], Elias,
Silbermann and Takloo-Bighash [5], Franchi [6], Saunders [17–20] and Easdown
and Saunders [4]. This present article, building on work initiated by the second
author in [8], focuses on minimal degrees of semidirect products of groups, proves
a reduction theorem (see Theorem 2.7 below) and provides exact formulae (see
Theorems 4.5 and 4.8 below) for minimal degrees in the case when the base group
is an elementary abelian p-group and the extending group is cyclic of order q
where p and q are different primes.
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For any groupsG andH and subgroups S ofG, we always have the inequalities

�.S/ � �.G/ (1.1)

and
�.G �H/ � �.G/C �.H/: (1.2)

Many sufficient conditions are known for equality to occur in (1.2), for example,
when G and H have coprime order (Johnson [11, Theorem 1]), when G and H
are nilpotent (Wright [22]), when G and H are direct products of simple groups
(Easdown and Praeger [3]), and when G �H embeds in Sym.9/ (Easdown and
Saunders [4]). The first published example where the inequality in (1.2) is strict
appears in Wright [22], whereG �H is a subgroup of Sym.15/. Saunders [17,18]
describes an infinite class of examples, which includes the example in [22] as
a special case, where strict inequality takes place in (1.2). The smallest example
in his class occurs when G �H embeds in Sym.10/. In all of these examples of
strict inequality, the groups G andH have the properties thatH is cyclic of prime
order and

�.G �H/ D �.G/: (1.3)

As an application of our three main theorems, the article culminates (see Exam-
ple 5.8 below) in an infinite class of examples where (1.3) occurs, whereH may be
a product of elementary abelian groups with an arbitrarily large number of factors
and different prime exponents and G does not decompose as a nontrivial direct
product.

Recall that if G is nontrivial, then �.G/ is the smallest sum of indices for a col-
lection of subgroups C D ¹H1; : : : ;Hkº such that

Tk
iD1Hi is core-free. In this

case we say that C affords a minimal faithful representation of G. The subgroups
H1; : : : ;Hk become the respective point-stabilisers for the action of G on its or-
bits and letters in the i th orbit may be identified with cosets ofHi for i D 1 : : : ; k.
If k D 1, then the representation afforded by C is transitive and H1 is a core-free
subgroup.

Remark 1.1. It follows quickly that if G is a group with unique subgroups of
orders p1; : : : ; pk respectively, where p1; : : : ; pk are distinct primes, then�.G/�
jGjp1 C � � � C jGjpk , where jGjp denotes the largest power of p dividing jGj. For
example, suppose G is the generalised quaternion group of order 4n for n � 2,
given by the presentation

G D Q4n D ha; b j a
2n
D b4 D 1; an D b2; ab D a�1i:

Then hb2i is the unique subgroup of G of order 2. If n is a power of 2, then
�.G/ � jGj2 D jGj, whence �.G/ D jGj, the only nonabelian case where this is
possible (see Johnson [11, Theorem 2]). Suppose then that n is not a power of 2
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and let p1; : : : ; pk be the odd prime divisors of n. Then ha2n=pi i is the unique sub-
group of G of order pi for i D 1; : : : ; k, so �.G/ � jGj2 C jGjp1 C � � � C jGjpk .
Write jGj D 2mp˛11 : : : p

˛k
k

, where m � 2 and ˛1; : : : ; ˛k � 1, and put

H D ha2
m�1

i and Hi D ha
p
˛i
i ; bi for i D 1; : : : ; k.

Then ¹H;H1; : : : ;Hkº affords a faithful representation of G so that

�.G/ D jGj2 C jGjp1 C � � � C jGjpk :

Note that if m D 2, then ja2j D n is odd, G D ha2; bi and the presentation above
simplifies, replacing a2 by x:

G D hx; b j xn D b4 D 1; xb D x�1i;

so thatG becomes a semidirect product. If we put n D 3, then �.G/ D 3C 4 D 7
and G becomes the smallest group with the property that it does not have a nilpo-
tent subgroup with the same minimal degree. The class of groups that do have
nilpotent subgroups with the same degree was introduced by Wright [22], and its
pervasiveness within the class of permutation groups of small degree was an im-
portant tool in [4].

2 Preliminaries on semidirect products

Recall that a group G is an internal semidirect product of a normal subgroup N
by a subgroupH if G D NH and N \H is trivial, in which case the conjugation
action of N on H induces a homomorphism ' W N ! Aut.H/. Conversely, if
N and H are any groups and ' W H ! Aut.N / any homomorphism, then the
cartesian product of sets

N ÌH D N Ì' H D ¹.n; h/ j n 2 N; h 2 H º

becomes a group, called the external semidirect product, under the binary opera-
tion

.n1; h1/.n2; h2/ D .n1.n2.h
�1'//; h1h2/;

in which case N ÌH becomes an internal semidirect product of a copy of N by
a copy of H and we may write N ÌH D NH without causing confusion.

Remark 2.1. It is well known thatGÌ'H embeds in Sym.G/�H , and in Sym.G/
if ' is injective. Hence �.G ÌH/ is bounded by jGj C �.H/ always, and by jGj
if ' is injective (though see Lemma 2.2 below for an alternative proof). The bound
jGjC�.H/ can easily be achieved, for example, whenever the semidirect product
is direct (that is, ' is trivial), G any group for which the Cayley representation
is minimal and H any group of order coprime to jGj. For a class of semidirect
products that are not direct, let G D C np andH D Cq2 , where p and q are distinct
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primes and n a positive integer such that q > pn�1. Put H D hci and suppose we
have a homomorphism ' W H ! Aut.G/ such that jc'j D q, so ' is neither trivial
nor injective, and that the conjugation action induced onG is irreducible. A simple
subclass of examples would be when .p; q; n/ D .p; 2; 1/ and c' the inversion
automorphism ofG (so of order 2). (An instance of this, when .p; q; n/ D .3; 2; 1/,
features in Example 2.8 below.) It follows, by observations in Remark 1.1, that

�.G ÌH/ D jGj C �.H/ D pn C q2:

For example, if .p; q; n/ D .5; 2; 1/, then�.S/ D 5C4 D 9 and we get the intran-
sitive representation S Š C5 Ì C4 Š h.12345/; .15/.24/.6789/i.

Lemma 2.2. Let K be an internal semidirect product of G by H . Then core.H/
equals ker', where ' W H ! Aut.G/ is the homomorphism induced by conjuga-
tion. In particular, if ' is injective, thenH is core-free and ¹H º affords a transitive
representation of K of degree jGj, so that �.K/ � jGj.

Proof. Certainly ker' is a normal subgroup ofK contained inH , so we have that
ker' � core.H/. Conversely, elements of core.H/ commute with elements of G,
so core.H/ � ker'.

It will be useful, in verifying the first alternative of the main formula (4.1)
below, to note that, under certain conditions, the minimal degree of the semidirect
product coincides with the minimal degree of the base group:

Lemma 2.3. Suppose that G Ì' H is a semidirect product of groups such ' is
injective. If G has a minimal faithful representation afforded by a collection of
subgroups that are invariant under the conjugation action of H , then

�.G ÌH/ D �.G/:

Proof. We may regardG ÌH D GH as an internal semidirect product. Since ' is
injective,H is core-free by Lemma 2.2. Suppose that ¹B1; : : : ; Bkº is a collection
of subgroups ofG invariant under conjugation byH and affords a minimal faithful
representation of G. For i D 1 to k, put Di D BiH , which is a subgroup of GH
of index jG W Bi j. Then ¹D1; : : : ;Dkº affords a faithful representation of GH
of degree jG W B1j C � � � C jG W Bkj D �.G/. But �.GH/ � �.G/, so we have
equality.

Example 2.4. Let p and q be primes such that the field Fp D ¹0; : : : ; p � 1º has
a primitive qth root � of 1. Let ' W Cq ! Aut.C qp / be the homomorphism induced
by the map

c' W .x1; x2; : : : ; xq/ 7! .x1; x
�
2 ; x

�2

3 ; : : : ; x
�q�1

q /;
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where c is a generator of Cq and x1; : : : ; xq 2 Cp. Put G D C qp Ì' Cq . We may
write G D KC as an internal semidirect product of K Š C qp by C Š Cq , where
K is an internal direct product H1 : : :Hq , where Hi Š Cp for i D 1; : : : ; q. Put

cHi D H1 : : :Hi�1HiC1 : : :Hq;
which is a subgroup of K of index p, for i D 1; : : : ; q. Put C D ¹cH1; : : : ;cHqº.
Then \C is trivial, so C affords a faithful representation of K of degree pq.
But each cHi is invariant under the conjugation action by C , so �.G/ D pq, by
Lemma 2.3. It is interesting that in this case we can also find a faithful transitive
representation of G by letting ai be a generator for Hi for each i and putting

H D ¹a
i1
1 : : : a

iq
q 2 H1 : : :Hq j i1 C � � � C iq D 0º:

Then H is a core-free subgroup of G (in fact, a canonical codimension 1 sub-
space of the additive vector space corresponding to the base group, in the sense of
Lemma 3.6 below) of index pq.

Consider groups H and K of coprime order and C a cyclic group such that jC j
and jH jjKj are also coprime. Let ' W C ! Aut.H �K/ be a homomorphism, so
that we may form the semidirect product

G D .H �K/ Ì C D .H �K/ Ì' C:

Let 'H W C ! Aut.H/ and 'K W C ! Aut.K/ where, for all h 2 H , k 2 K and
c 2 C ,

.h; k/.c'/ D .h.c'H /; k.c'K//; (2.1)

so that we have the related semidirect products

H Ì C D H Ì'H C and K Ì C D K Ì'K C:

If ' is trivial, then G Š H �K � C . If 'H is trivial, then G Š H � .K Ì C/. If
'K is trivial, then G Š .H Ì C/ �K. Note that always G embeds in the direct
product .H Ì C/ � .K Ì C/ under the map

..h; k/; c/ 7! ..h; c/; .k; c//

for all h 2 H , k 2 K, c 2 C , so that, by (1.1) and (1.2),

�.G/ � �..H Ì C/ � .K Ì C// � �.H Ì C/C �.K Ì C/: (2.2)

In Theorem 2.7 below, we show that equality occurs throughout (2.2) when both
'H and 'K are nontrivial and C Š Cq for some prime q. We first establish some
useful general facts.
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Lemma 2.5. LetG D HC be an internal semidirect product of a normal subgroup
H by a cyclic subgroup C Š Cq for some prime q not dividing jH j. Let K be
a subgroup of G that is not a subgroup of H .

(a) There exists g 2 G such thatK D .H \K/C g is an internal semidirect prod-
uct of H \K by C g .

(b) If H \K is normal in H , then H \K is normal in G.

(c) If K is normal in G, then K D .H \K/C .

Proof. Part (a) follows by Sylow’s theorem, and then parts (b) and (c) are imme-
diate.

Lemma 2.6. Let G D HC be an internal semidirect product that is not direct
of a normal subgroup H by a cyclic subgroup C Š Cq for some prime q not
dividing jH j. Then any collection C affording a minimal faithful representation of
G does not contain any normal subgroup of G that is a subgroup of H .

Proof. Let C D ¹K1; : : : ; Kkº afford a minimal faithful representation ofG. Sup-
pose, by way of contradiction, that C contains a subgroup of H that is normal
in G. Without loss of generality, we may assume that K1 � H and K1 is nor-
mal in G. If K1 ¤ H , then ¹K1C;H;K2; : : : ; Kkº affords a faithful representa-
tion of degree smaller than that afforded by C , contradicting minimality. Hence
K1 D H . If k D 1, thenH D core.H/ D ¹1º, which is impossible. Hence k > 1.
Put N D core.K2 \ � � � \Kk/, so H \N D ¹1º. If q does not divide jN j, then
N � H , so N D ¹1º and ¹K2; : : : ; Kkº affords a faithful representation, again
contradicting minimality. Hence q divides jN j, so, by Lemma 2.5 (c), we have
N D .H \N/C D C , yielding a final contradiction, since C is not normal.

The following theorem reduces calculations of minimal degrees of semidirect
products by a q-cycle, where q is a prime that does not divide the order of the base
group, to those cases where the base group is a p-group for p 6D q.

Theorem 2.7. Let G D .H �K/ Ì C be a semidirect product where H and K
are groups of coprime order and C Š Cq for some prime q not dividing jH jjKj.
Then

�.G/ D

8̂̂̂̂
<̂
ˆ̂̂:
�.H/C �.K/C q if ' is trivial,
�.H/C �.K Ì C/ if 'H is trivial,
�.H Ì C/C �.K/ if 'K is trivial,
�.H Ì C/C �.K Ì C/ if neither 'H nor 'K is trivial.
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Proof. Note that the first case is a special case of the second and third cases, and
the formulae for the first three cases follow by Johnson’s result [11, Theorem 1]
that � is additive with respect to taking direct products of groups of coprime order.

Suppose then that neither 'H not 'K are trivial. We may regard G D HKC
as an internal semidirect product of HK by C , where HK is an internal direct
product of H and K. By (2.2), it suffices to prove

�.G/ � �.HC/C �.KC/: (2.3)

Let C be a collection of subgroups of G that affords a minimal faithful permu-
tation representation of G. Since jH j and jKj are coprime, subgroups of HK
have the form H0K0 for some H0 � H and K0 � K. By Lemma 2.5 (a), sub-
groups of G that are not subgroups of HK have the form H0K0C

g for some
H0 � H ,K0 � K and g 2 G, such thatH0K0 is normal inH0K0C g . By a result
of Johnson [11, Lemma 1], we may assume that each element of C is meet-
irreducible, that is, does not decompose as the intersection of two larger subgroups.
Therefore, elements of C have the form

H0K;HK0;H1KC
x or HK1C y

for someH0;H1 � H ,K0; K1 � K and x; y 2 G. In these respective cases, note
that

coreG.H0K/ D coreHC .H0/K; coreG.HK0/ D H coreKC .K0/;

and, by Lemma 2.5 (c),

coreG.H1KC
x/ D

´
coreHC .H1/KC if q divides jcoreG.H1KC

x/j;

coreHC .H1/K otherwise,

and

coreG.HK1C
y/ D

´
H coreKC .K1/C if q divides jcoreG.HK1C

y/j;

H coreKC .K1/ otherwise.

Put
DH D ¹H0 j H0 � H and H0K 2 C º;

EH D ¹H1C j H1 � H and H1KC x 2 C for some x 2 Gº;

DK D ¹K0 j K0 � K and HK0 2 C º;

EK D ¹K1C j K1 � K and HK1C y 2 C for some y 2 Gº:

By inspection, the index sum of elements of C in G is equal to the index sum of
elements of DH [ EH in HC added to the index sum of elements of DK [ EK
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inKC . Hence, to complete the proof of (2.3), it suffices to show that DH [ EH and
DK [ EK afford faithful representations of HC and KC respectively. Observe
that

coreHC

� \
H02DH

H0\
\

H1C2EH

H1

�
K\H coreKC

� \
K02DK

K0\
\

K1C2EK

K1

�
� coreG

�\
C
�
D ¹1º:

In particular,

coreHC

� \
H02DH

H0 \
\

H1C2EH

H1

�
D ¹1º:

If DH 6D ; then, since
T

DH � H , we have

coreHC
�\

.DH [ EH /
�
� coreHC

� \
H02DH

H0 \
\

H1C2EH

H1

�
D ¹1º:

Suppose that DH D ;. If EH D ;, then DK [ EK 6D ; so that

H � coreG
�\

C
�
D ¹1º;

which is impossible. Hence EH 6D ; and

coreHC

� \
H1C2EH

H1

�
D ¹1º:

If coreHC .H1C/ contains an element of order q for all H1C 2 EH then, in each
case, coreHC .H1C/ D coreHC .H1/C , so that

C D coreHC

� \
H1C2EH

H1

�
C D

\
H1C2EH

coreHC .H1C/

is a normal subgroup of HC , contradicting that 'H is nontrivial. Hence, for at
least one H1C 2 EH , we have coreHC .H1C/ D coreHC .H1/, so that

coreHC
�\

EH
�
D coreHC

� \
H1C2EH

H1C

�

D coreHC

� \
H1C2EH

H1

�
D ¹1º:

This proves that DH [ EH affords a faithful representation of HC . Similarly
DK [ EK affords a faithful representation of KC , and this completes the proof
of (2.3).
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Example 2.8. Let G be the holomorph of C3 � C5, that is,

G D .C3 � C5/ Ìid Aut.C3 � C5/ Š .C3 � C5/ Ì .C2 � C4/:

We may regard G D HKCD as an internal semidirect product of a direct prod-
uct HK by another direct product CD, where H D hhi Š C3, K D hki Š C5,
C D hci Š C2 Š Aut.C3/ and D D hd i Š C4 Š Aut.C5/. Then

�.G/ � �.C3 � C5/ D 8

and
G Š h.123/; .45678/; .12/; .4576/i;

which verifies that �.G/ D 8. Put C1 D hcd2i, C2 D hcd i, G1 D HKC1 and
G2 D HKC2. Then

G1 Š .C3 � C5/ Ì' C2 Š h.123/; .45678/; .12/.47/.56/i;

where ' induces conjugation action that is inversion, and both C3 Ì'1 C2 and
C5 Ì'2 C2 are dihedral, where '1 D 'C3 and '2 D 'C5 are defined by (2.1), and
both nontrivial. As predicted by Theorem 2.7,

�.G1/ D 8 D 3C 5 D �.C3 Ì'1 C2/C �.C5 Ì'2 C2/:

However,

G2 Š .C3 � C5/ Ì C4 Š h.123/; .45678/; .12/.4576/i;

where C3 Ì 1 C4 is generalised quaternion of degree 7 (see Remark 1.1) and
C5Ì 2C4 has degree�.C5/ D 5, by Lemma 2.3, where 1 D  C3 and 2 D  C5
are defined by (2.1). Here

�.G2/ D 8 < 12 D 7C 5 D �.C3 Ì 1 C4/C �.C5 Ì 2 C4/:

This is the smallest example where we do not get equality throughout in (2.2), yet
all of the homomorphisms defining the semidirect products are nontrivial.

3 Preliminaries on group actions on a vector space

The aim in this section is to develop machinery to calculate, in the next section,
minimal degrees of all semidirect products of elementary abelian p-groups by
cyclic groups of order q where p and q are different primes, exploiting the fact that
group actions may be analysed using standard methods from linear algebra. Let V
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be an n-dimensional vector space over Fp, written additively, and T W V ! V an
invertible linear transformation. Define the semidirect product of V by hT i (or
more simply the semidirect product of V by T ) to be

V Ì T D V Ì hT i D ¹.v; T i / j v 2 V; i 2 Zº; (3.1)

with binary operation

.v; T i /.w; T j / D .v C T i .w/; T iCj /; (3.2)

for v;w 2 V and i 2 Z. Then V Ì T becomes a group. A subspace of V that is
T -invariant is referred to simply as invariant. Thus invariant subspaces of V be-
come normal subgroups of V Ì T . We define the core of any subspace W of V ,
denoted by core.W /, to be the largest invariant subspace of V contained in W .
Thus core.W / D coreG.W /, in the usual sense, that is, the largest normal sub-
group of G contained in W , where G D V Ì T .

We suppose throughout, unless stated otherwise, that T ¤ id and T q D id,
where id is the identity linear transformation and q is a prime different to p. The
characteristic and minimal polynomials of T are referred to as �T D �T .x/ and
'T D 'T .x/ respectively. By choosing a basis for V we may identify V with the
vector space Fnp of column vectors of length n with entries from Fp and T with the
n � n matrix of the linear transformation with respect to the basis, and so regard
T .v/ D T v as a matrix product. Under these identifications V Ì T Š C np Ì' Cq
under the map 0BB@

2664
�1
:::

�n

3775 ; T i
1CCA 7! ..a�1 ; : : : ; a�n/; b�i /;

where we write Cp D hai, Cq D hbi, and ' W Cq ! Aut.C np / is the homomor-
phism induced by

b' W .a�1 ; : : : ; a�n/ 7! .a�
0
1 ; : : : ; a�

0
n/;

where

T

2664
�1
:::

�n

3775 D
2664
�01
:::

�0n

3775 :
Lemma 3.1. Let T1 and T2 be n � n matrices over Fp of multiplicative order q
and put V D Fnp for some positive integer n. Then V Ì T1 Š V Ì T2 if and only
if T1 and some power of T2 are similar. In particular, if T1 and T2 are similar,
then V Ì T1 Š V Ì T2.
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Proof. If T1 and T k2 are similar, for some k 2 Z, then k 6D 0 modulo q, T1 equals
P�1T k2 P for some invertible matrix P , and the mapping .v; T i1 / 7! .P v; T ki2 /,
for v 2 V and i 2 Z, is an isomorphism. Conversely, if � W V Ì T1 ! V Ì T2 is
an isomorphism, then .0; T1/� D .w; T k2 / for some w 2 V and integer k, and one
may check that T1 and T k2 are similar.

Thus, in calculating minimal degrees later, we may assume T is in primary rati-
onal canonical form. By Maschke’s theorem, since p does not divide q D jhT ij, all
invariant subspaces of V have invariant complements, so that the minimal polyno-
mial 'T is square-free with regard to irreducible factors. All blocks in the primary
rational canonical form of T become companion matrices of monic irreducible
polynomials, and the restriction of T to an indecomposable subspace of V will
always have an irreducible minimal polynomial. The canonical form is thus char-
acterised uniquely, up to the order of blocks, by �T . The number of blocks corre-
sponding to one particular irreducible factor is just the multiplicity of that factor
in �T . An irreducible factor of 'T D 'T .x/ divides xq � 1, so is either x � 1 or
a polynomial of the form

�˛.x/ D .x � ˛/.x � ˛
p/ : : : .x � ˛p

s�1

/; (3.3)

where s is the multiplicative order of p modulo q and ˛ is a primitive qth root of 1
in an extension field F D Fp.˛/ of Fp (where F D Fp if s D 1).

Remark 3.2. The previous lemma in principle allows for nontrivial determina-
tion of isomorphism between semidirect products in our class. For example, take
n D 6, p D 13 and q D 7, so that s D 2. Consider the following irreducible poly-
nomials over F13:

r1 D x
2
C 3x C 1;

r2 D x
2
C 6x C 1;

r3 D x
2
C 5x C 1:

Put �1 D r21 r2, �2 D r22 r3 and �3 D r21 r3. Let Ti be the companion matrix for
�i and Gi D F613 Ì Ti , for i D 1; 2; 3. There exists a primitive 7th root ˛ in an
extension F of F13 such that

r1 D .x � ˛/.x � ˛
6/;

r2 D .x � ˛
2/.x � ˛5/;

r3 D r3.x/ D .x � ˛
3/.x � ˛4/:

It follows that T2 and T 21 are similar, but T3 is not similar to any power of T1.
Hence, G1 Š G2, but G1 6Š G3, by Lemma 3.1.
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The following two lemmas are probably well known.

Lemma 3.3. Let W be a subspace of a vector space V . Suppose V D K ˚K 0 for
some subspacesK andK 0 such thatK is also a subspace ofW . PutL D W \K 0.
Then

W D K ˚ L:

The codimension of L in K 0 is the same as the codimension of W in V . If, further,
T W V ! V is a linear transformation and K is the core of W with respect to T ,
then L is core-free.

Proof. All of the claims follow quickly from the definitions.

Lemma 3.4. Let T W V ! V be an invertible linear transformation such that 'T
has degree d . Let W be a subspace of V of codimension k. Then core.W / has
codimension at most kd . In particular, ifW has codimension 1, then core.W / has
codimension at most d .

Proof. The claim follows from the fact that

core.W / D W \ T .W / \ � � � \ T d�1.W /

and W;T .W /; : : : ; T d�1.W / all have the same codimension in V , since T is
invertible.

Proposition 3.5. Let T W V ! V be an invertible linear transformation of a finite-
dimensional vector space V such that 'T is a product of distinct irreducible
factors. Let W be a codimension 1 subspace of V . Then any invariant comple-
ment of core.W / in V is a sum of indecomposable subspaces with distinct minimal
polynomials.

Proof. Let 'T .x/ D r1.x/ : : : rm.x/, where r1; : : : ; rm are the distinct irreducible
factors. Put Vi D ker.ri .T // and Wi D core.W / \ Vi for i D 1; : : : ; m. Then we
have core.W / D W1 ˚ � � � ˚Wm. Let i 2 ¹1; : : : ; mº. Let ki be the number of
indecomposable components of V having minimal polynomial ri , which is just the
number of indecomposable components of Vi . To complete the proof, therefore,
by the Krull–Schmidt theorem, it suffices to show that the number of indecompos-
able components of Wi is ki or ki � 1. Let di be the degree of ri . Observe that
Wi D coreVi .W \ Vi /. But W \ Vi has codimension at most 1 in Vi . Thus Wi
has codimension at most di in Vi , by Lemma 3.4. But di is the dimension of any
indecomposable component of Vi , so Wi contains at least ki � 1 indecomposable
components.
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Lemma 3.6. Let T W V ! V be a linear transformation such that 'T D r1 : : : rm
for distinct irreducible polynomials r1; : : : ; rm. Suppose that V D V1 ˚ � � � ˚ Vm,
where Vi D ker.ri .T // is indecomposable for i D 1; : : : ; m. Let Bi be a basis
for Vi for i D 1; : : : ; m and put B D B1 [ � � � [ Bm, which is a basis for V . Put

V D

²X
b2B

�bb 2 V

ˇ̌̌̌ X
b2B

�b D 0

³
:

Then V is a core-free subspace of codimension 1. Conversely, if W is a core-free
subspace of codimension 1, then we can choose a basis Bi for Vi for i D 1; : : : ; m
such that W D V .

Proof. Put n D dim.V /. If n D 1, then the claims hold trivially, so we may sup-
pose n � 2. If B D ¹v1; : : : ; vnº, then ¹v1 � v2; : : : ; v1 � vnº is a basis for V , so
dim.V / D n � 1. Because r1 : : : ; rm are distinct, V1; : : : ; Vm are the unique inde-
composable subspaces, and none of these is contained in V , so core.V / D ¹0º.

Conversely, letW be a codimension 1 subspace of V such that core.W / D ¹0º.
Choose any basis B 01 for W \ V1. Certainly, W \ V1 has codimension 1 in V1,
since core.W / D ¹0º. Hence B 01 [ ¹v1º is a basis for V1 for some v1 2 V1. Put

B1 D ¹b C v1 j b 2 B
0
1º [ ¹v1º:

Then B1 is also a basis for V1. If m D 1, then V D V1 and V D W , starting
an induction. Suppose m > 1 and put bV D V2 ˚ � � � ˚ Vm, so that V D V1 ˚ bV .
Certainly, W \ bV has codimension 1 in bV , since core.W / D ¹0º. Suppose, as
an inductive hypothesis, that we have bases B2; : : : ; Bm for V2; : : : ; Vm respec-
tively, such that

W \ bV D ²X
c2C

�cc 2 bV ˇ̌̌̌ X
c2C

�c D 0

³
;

where C D B2 [ � � � [ Bm. Observe that .W \V1/˚ .W \bV / has codimension 1
in W , so we may choose some

w 2 W n
�
.W \ V1/˚ .W \ bV /�:

But w D v Cbv for some unique w 2 V1 andbv 2 bV . If one of v orbv is in W , then
both are, contradicting the choice of w. Hence v;bv 62 W . Butbv DPc2C �cc for
some scalars �c . Put

� D
X
c2C

�c :

By the inductive hypothesis, � 6D 0. Now put

B1 D

²
b �

1

�
v

ˇ̌̌̌
b 2 B 01

³
[

²
�
1

�
v

³
;
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so that B1 is a basis for V1. Finally, put B D B1 [ � � � [ Bm and form bV with
respect to B . But,

w D v Cbv D ���� 1
�
v

�
C

X
c2C

�cc

and ��C
P
c2C �c D ��C � D 0, so that w 2 V , by definition. Noting that

W D hwi ˚ .W \ V1/˚ .W \ bV /;
it is straightforward, using the inductive hypothesis, to verify that W � V . Be-
cause dim.W / D n � 1 D dim.V /, we have W D V , establishing the inductive
step.

We call the subspace V defined in the statement of the previous lemma, the
canonical core-free subspace associated with V (depending of course on the
choice of basis).

Proposition 3.7. LetW be a subspace of a finite-dimensional vector space V over
Fp acted on by an invertible linear transformation T W V ! V of order q, where
p and q are distinct primes. Then W has codimension 1 if and only if some (and
hence every) invariant complement core.W /0 of core.W / in V is a sum of inde-
composable components with distinct minimal polynomials such that

W D core.W /˚ core.W /0

for some canonical core-free subspace core.W /0 of core.W /0.

Proof. Note first that the hypotheses guarantee that T is invertible and 'T is
a product of distinct irreducible polynomials. The “if” direction is immediate by
Lemma 3.6. Suppose then that W has codimension 1, and choose some invari-
ant complement core.W /0 of core.W / in V . By Proposition 3.5, the indecompos-
able components of core.W /0 have distinct minimal polynomials. By Lemma 3.3,
W D core.W /˚ .W \ core.W /0/, and W \ core.W /0 is core-free of codimen-
sion 1 in core.W /0. By Lemma 3.6, there is a choice of basis for core.W /0 such
that W \ core.W /0 D core.W /0.

4 Minimal degrees when the base group is elementary abelian

Throughout this section p and q are distinct primes. Let V D Fnp Š C
n
p be an

n-dimensional vector space over the field Fp of p elements, for some fixed positive
integer n, and T an n � n matrix with entries from Fp of multiplicative order q.
Recall that, if W is a subspace of V that is invariant under this action, then W has
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an invariant complement W 0 in V . The minimal polynomial 'T is a product of
distinct irreducible polynomials, all of degree s where s is the multiplicative order
of p modulo q, with the possible exception (when s � 2) of a factor x � 1. Note
that s D 1 if and only if Fp has a primitive qth root of unity, in which case all the
irreducible factors of 'T are linear.

Proposition 4.1. Let G D V Ì T . There exist nonnegative integers ` and t and
a collection C D D [ E affording a minimal faithful representation of G such
that

D D ¹D1; : : : ;D`º and E D ¹E1hT i; : : : ; Et hT iº

for some codimension 1 subspaces D1; : : : ;D` of V , and invariant subspaces
E1; : : : ; Et of V , such that each of E1; : : : ; Et complements an indecompos-
able subspace (where we interpret ` D 0 and t D 0 to mean D D ; and E D ;

respectively).

Note that it is possible to have t D 1 andE1 D ¹0º, the complement of V in the
case that V is indecomposable.

Proof. We may regard G D VC as an internal semidirect product of V by C Š
hT i Š Cq , but still retaining vector space terminology and additive notation for
the group operation restricted to V . By [11, Lemma 1] there exists a collection
C of meet-irreducible subgroups affording a minimal faithful representation of G.
Then C D D [ E , where D , possibly empty, comprises all subgroups in C of
index divisible by q, and E , possibly empty, consists of all subgroups in C of order
divisible by q. In particular, elements of D are subgroups of V . By Lemma 2.6,
these must all be proper subgroups of V , since V is normal in G, so, being meet-
irreducible, must have codimension 1 as subspaces of V .

Let K 2 E , so q divides jKj. Put W D K \ V . Note that V is elementary
abelian, so all of its subgroups are normal in V . By (a) and (b) of Lemma 2.5,
K D W hT ig for some g 2 G and W is an invariant subspace of V (being normal
in G). Certainly W ¤ V (for otherwise G D K 2 C , contradicting minimality),
so V D W ˚W 0 for some nontrivial invariant subspace W 0 of V . If W 0 is not
indecomposable, thenW 0 D W 01 ˚W

0
2 for some nontrivial invariant subspacesW 01

and W 02 of V , so W D .W ˚W 01/ \ .W ˚W
0
2/ and K D K1 \K2, where K is

a proper subgroup of Ki D .W ˚W 0i /hT
gi for i D 1 and 2, contradicting that K

is meet-irreducible. HenceW 0 is indecomposable. Note thatK andW hT i have the
same core and index in G, so we may, if necessary, replace K by W hT i in E .

In what follows we develop a complete catalogue, namely, (4.1) and (4.8) be-
low, of formulae for �.V Ì T /. Note, throughout, that T 6D I , so 'T .x/ 6D x � 1.
The next two theorems cover all possibilities, where s is the order of p modulo q.
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In the first case (Theorem 4.5), we investigate what happens when all of the fac-
tors of the minimal polynomial have the same degree s � 1. In the second case
(Theorem 4.8), we investigate the remaining possibilities, namely, when x � 1 is
a factor and all other factors have the same degree s � 2.

Lemma 4.2. If G D V Ì T , where all irreducible factors of 'T are linear, then
�.G/ D np.

Proof. Suppose that all irreducible factors of 'T are linear. Without loss of gen-
erality, we may suppose T is diagonal and V D hv1; : : : ; vni, where v1; : : : ; vn
are eigenvectors for T . For i D 1; : : : ; n, put Hi D hv1; : : : ; vi�1; viC1; : : : ; vni.
Then ¹H1; : : : ;Hnº affords a minimal faithful representation of V by T -invariant
subspaces of degree np. By Lemma 2.3, �.G/ D �.V / D np.

An illustration of the phenomenon of Lemma 4.2 appears above in Example 2.4.

Lemma 4.3. Let p and q be distinct primes and s the multiplicative order of p
modulo q. Suppose that s � 2. Let a be the smallest integer such that q < aps�1.
Then a D 1, or a D 2 and q D 1C p C � � � C ps�1. If s D a D 2, then p D 2
and q D 3.

Proof. Suppose a > 1, so ps�1 < q. Note that q divides ps � 1 D .p � 1/.1C

pC� � �Cps�1/. If q divides p � 1, then q < p � ps�1, a contradiction. Hence q
divides 1C p C � � � C ps�1 and ps�1 < q < 1C p C � � � C ps�1. It follows that
q D 1C p C � � � C ps�1 < 2ps�1 and a D 2.

Remark 4.4. A generalised Mersenne prime q has the form q D 1CpC� � �Cpk�1

for some prime p and integer k (which includes the usual Mersenne primes of the
form 2k � 1). The previous lemma asserts that, in our context, if a D 2 and s � 2,
then q must be a generalised Mersenne prime. It is not known if there are infinitely
many such primes.

Theorem 4.5. Suppose that r1; : : : ; rm are distinct irreducible polynomials over
Fp of degree s, where s is the order of p modulo q, such that

'T D r1 : : : rm and �T D r
k1
1 : : : rkmm :

We may suppose k1 � k2 � � � � � km. Then

�.V Ì T / D

8̂̂̂̂
<̂
ˆ̂̂:
np if s D 1;
k1pq if s > 1 and q < ps�1;
k1p

s if s > 1;m D 1 and q > ps�1;
k2pq C .k1 � k2/p

s if s > 1; m > 1 and q > ps�1:

(4.1)
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Proof. The first alternative in (4.1) is given by Lemma 4.2, so we may suppose
s > 1. Let a denote the smallest integer such that q < aps�1. By Lemma 4.3,
a D 1 or 2. It is convenient, throughout, to put kmC1 D 0. In particular, if m D 1
and a D 2, then ka D k2 D 0. Put G D V Ì T D V hT i (regarded as an internal
semidirect product, mixing addition and multiplication, without ever causing con-
fusion). We have a direct sum decomposition

V D

mM
iD1

kiM
iD1

Vij D
M
.i;j /2I

Vij ;

where Vij is an indecomposable subspace of V such that T jVij has minimal poly-
nomial ri for each .i; j / 2 I , where I D ¹.i; j / j 1 � i � m; 1 � j � kiº. For
J � I , put

VJ D
M
.i;j /2J

Vij ;

so that V D VI D VJ ˚ VInJ . IfW D VJ for some J � I , then putW 0 D VInJ ,
so that V D W ˚W 0.

Note that if ka D 0, then m D 1 and a D 2. Suppose for the time being that
ka � 1, so either a D 1, or a D 2 and m � 2. Because ka � kaC1 � � � � �

km > kmC1 D 0, we have that, for each j D 1 to ka, there exists some largest
j̀ 2 ¹a; : : : ; mº such that

k
j̀
� j � k

j̀C1;

and we put

Wj D

j̀M
iD1

Vij ;

so that T jWj has minimal polynomial r1 : : : r j̀ . In particular, we have `1 D m,
since km � 1 > 0 D kmC1, and T jW1 has minimal polynomial r1 : : : rm. Thus

V D VX ˚

kaM
jD1

Wj ; (4.2)

where X D ¹.1; j / j k2 < j � k1º if a D 2 and k1 > k2, and X D ; otherwise,
in which case we interpret VX D ¹0º. For j D 1 to ka, put

Hj D Wj ˚W
0
j ;

whereWj is a canonical codimension 1 subspace ofWj as described in Lemma 3.6,
so that core.Wj / D ¹0º, core.Hj / D W 0j and jG W Hj j D pq. For .1; j / 2 X , put

Kj D V
0
1j hT i;
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so that core.Kj / D V 01j and jG W Kj j D ps . Now put

C D ¹H1; : : : ;Hkaº [ ¹Kj j .1; j / 2 Xº: (4.3)

Then

core
�\

C
�
D

ka\
jD1

W 0j \
\

.1;j /2X

V 01j D VX \ V
0
X D ¹0º;

so that C affords a faithful representation of G of degree

kaX
jD1

jG W Hj j C
X

.1;j /2X

jG W Kj j D kapq C .k1 � ka/p
s:

Note that if ka D 0, so that m D 1 and a D 2, then (4.2) may be interpreted as
V D VI (since X D I ) and (4.3) may be interpreted as C D ¹Kj j .1; j / 2 I º,
and the conclusion about the faithfulness and degree of the representation afforded
by C still holds. This proves that, in all cases,

�.G/ � kapq C .k1 � ka/p
s:

We now prove that this formula is also a lower bound for �.G/. By Proposi-
tion 4.1, there exists a collection C D D [ E affording a minimal faithful repre-
sentation of G such that

D D ¹D1; : : : ;D`º and E D ¹E1hT i; : : : ; Et hT iº

for some codimension 1 subspaces D1; : : : ;D` of V , and invariant subspaces
E1; : : : ; Et of V , each of which complements an indecomposable subspace. We
interpret ` D 0 and t D 0 to mean D D ; and E D ; respectively. By Proposition
3.7, for i D 1; : : : ; `, we may write

Di D core.Di /˚ core.Di /0 D Si ˚ S 0i ;

where we put Si D core.Di /0. The degree of the representation afforded by C
is `pq C tps , so to complete the proof of the theorem it suffices to show

`pq C tps � kapq C .k1 � ka/p
s: (4.4)

As a stepping stone towards doing this, we will first prove ` � ka. We use the
following claim, which we will prove later:

Claim. We have a decomposition

V D S1 ˚ � � � ˚ S` ˚ T1 ˚ � � � ˚ Tt
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for some invariant subspaces S1; : : : ; S`; T1; : : : ; Tt of V such that, after possible
replacement of D (without changing `),

Di D Si ˚ S
0
i and Ej D T

0
j ;

where Si is a sum of indecomposable subspaces with distinct minimal polynomials
for i D 1; : : : ; `, and Tj is indecomposable for j D 1; : : : ; t .

Suppose by way of contradiction that ` < ka. Certainly, then, either a D 1 and
` < k1, or m > 1, a D 2 and ` < k2 � k1. Hence, using the decomposition of V
in the Claim, at most k1 � 1 indecomposables with minimal polynomial r1 appear
in S1 ˚ � � � ˚ S`, and, when a D 2, at most k2 � 1 indecomposables with min-
imal polynomial r2 also appear. But k1 and k2 copies of indecomposables with
minimal polynomial r1 and r2, respectively, appear in the decomposition of V .
Hence t � a and, without loss of generality, T1 is indecomposable with minimal
polynomial r1, and, in the case a D 2, we may suppose T2 is indecomposable with
minimal polynomial r2. Put

S D

´
T1 ˚ T

0
1 if a D 1;

T1 ˚ T2 ˚ .T1 ˚ T2/
0 if a D 2;

where, in the second case, .T1 ˚ T2/0 D T 01 \ T
0
2 D E1 \E2, which is indeed

a complement for T1 ˚ T2. But core.S/ D E1, if a D 1, and core.S/ D E1 \E2,
if a D 2, so that the collection

C 0 D

´
D [ ¹Sº [ E n¹E1hT iº if a D 1;
D [ ¹Sº [ E n¹E1hT i; E2hT iº if a D 2;

affords a faithful representation of G, but with degree less than the degree of the
representation afforded by C , since

jG W S j D pq < aps D

´
jG W E1hT ij if a D 1;
jG W E1hT ij C jG W E2hT ij if a D 2:

This contradicts that C is minimal. Hence ` � ka.
There are at most ` occurrences of indecomposables with minimal polynomial

r1 appearing in S1 ˚ � � � ˚ S`, so at least k1 � ` such indecomposables must occur
amongst T1; : : : ; Tt , so that t � k1 � `. Thus

`pq C tps D kapq C .` � ka/pq C tp
s

� kapq C .` � ka/.a � 1/p
s
C ps

´
0 if a D 1;
k1 � ` if a D 2;

D kapq C .k1 � ka/p
s
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and (4.4) is proven. The statement of the theorem for s > 1 is therefore captured
succinctly by the formula

�.G/ D kapq C .k1 � ka/p
s: (4.5)

To complete the proof of the theorem, it therefore remains to verify the Claim.
As a first step we prove

V D T1 ˚ � � � ˚ Tt ˚ .E1 \ � � � \Et / (4.6)

for some indecomposables Ti such that Ei D T 0i for i D 1; : : : ; t . Note that we
have V D E1 ˚ T1 for some indecomposable T1, so E1 D T 01, which starts an
induction. Suppose, as inductive hypothesis, that for k � t ,

V D T1 ˚ � � � ˚ Tk�1 ˚ .E1 \ � � � \Ek�1/;

for some indecomposables T1; : : : ; Tk�1 such that Ei D T 0i for i D 1; : : : ; k � 1.
By the minimality of C , E1 \ � � � \Ek is a proper subspace of E1 \ � � � \Ek�1.
Further,

E1 \ � � � \Ek�1

E1 \ � � � \Ek
Š
.E1 \ � � � \Ek�1/CEk

Ek
D

V

Ek
;

which is indecomposable, so we may choose an indecomposable Tk such that

E1 \ � � � \Ek�1 D .E1 \ � � � \Ek/˚ Tk :

Certainly Tk is not a subspace of Ek (for otherwise E1 \ � � � \Ek \ Tk ¤ ¹0º),
so it follows that V D Ek ˚ Tk , so we may write Ek D T 0k . Then

V D .T1 ˚ � � � ˚ Tk�1/˚ .E1 \ � � � \Ek�1/

D T1 ˚ � � � ˚ Tk ˚ .E1 \ � � � \Ek/;

which completes the inductive step and the proof of (4.6). Note that if ` D 0 (so
that D D ;), then (4.6) proves the Claim (for then C D E andE1\� � �\Et D ¹0º
so that V D T1 ˚ � � � ˚ Tt ).

We may suppose in what follows that ` > 0. Put E D E1 \ � � � \Et . We next
prove, by induction, that we can replace D (if necessary) so that the following
holds for k D 0; : : : ; `:

V D S1 ˚ � � � ˚ Sk ˚ T1 ˚ � � � ˚ Tt ˚ .S
0
1 \ � � � \ S

0
k \E/; (4.7)

where Di D Si ˚ S 0i and Si is a sum of indecomposables with distinct minimal
polynomials, for i D 1; : : : ; k. This suffices to prove the Claim, because when
k D ` we have

S 01 \ � � � \ S
0
k \E D S

0
1 \ � � � \ S

0
` \E D

\
C D ¹0º:
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Note that (4.6) now becomes the initial case k D 0 in a proof by induction of (4.7).
Suppose, as inductive hypothesis, that 0 < k � ` and we can replace D (if neces-
sary) so that

V D S1 ˚ � � � ˚ Sk�1 ˚ T1 ˚ � � � ˚ Tt ˚ .S
0
1 \ � � � \ S

0
k�1 \E/;

where Di D Si ˚ S 0i and Si is a sum of indecomposables with distinct minimal
polynomials for i D 1 : : : ; k � 1. By the minimality of C ,

core.D1 \ � � � \Dk�1 \E/ ¤ core.D1 \ � � � \Dk \E/;

that is,

S 01 \ � � � \ S
0
k�1 \E ¤ S

0
1 \ � � � \ S

0
k�1 \E \ core.Dk/:

But

S 01 \ � � � \ S
0
k�1
\E

S 01 \ � � � \ S
0
k�1
\E \ core.Dk/

Š
.S 01 \ � � � \ S

0
k�1
\E/C core.Dk/

core.Dk/

�
V

coreDk
Š core.Dk/

0;

which is a sum of indecomposables with distinct minimal polynomials. Hence�
S 01 \ � � � \ S

0
k�1 \E \ core.Dk/

�
˚ Sk D S

0
1 \ � � � \ S

0
k�1 \E

for some invariant subspace Sk contained inE, which is a sum of indecomposables
with distinct minimal polynomials. Choose any complement .S 01\� � �\S

0
k�1
\E/0

and put

S 0k D
�
S 01 \ � � � \ S

0
k�1 \E \ core.Dk/

�
˚
�
S 01 \ � � � \ S

0
k�1 \E

�0
;

which is indeed a complement of Sk . PutfDk D Sk ˚ S 0k :
Observe that core.fDk/ D S 0k and

S 01 \ � � � \ S
0
k�1 \E \ core.fDk/

D S 01 \ � � � \ S
0
k�1 \E \ S

0
k

D .S 01 \ � � � \ S
0
k�1 \E/ \

h�
S 01 \ � � � \ S

0
k�1 \E \ core.Dk/

�
˚
�
S 01 \ � � � \ S

0
k�1 \E

�0i
D S 01 \ � � � \ S

0
k�1 \E \ core.Dk/;
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so we may replace Dk by fDk in D without disturbing faithfulness or the degree
of the representation afforded by C . Renaming fDk by Dk , we get

V D S1 ˚ � � � ˚ Sk�1 ˚ T1 ˚ � � � ˚ Tt ˚ .S
0
1 \ � � � \ S

0
k�1 \E/

D S1 ˚ � � � ˚ Sk�1 ˚ T1 ˚ � � � ˚ Tt

˚
��
S 01 \ � � � \ S

0
k�1 \E \ core.Dk/

�
˚ Sk

�
D S1 ˚ � � � ˚ Sk�1 ˚ T1 ˚ � � � ˚ Tt ˚

�
Sk ˚ .S

0
1 \ � � � \ S

0
k�1 \E \ S

0
k/
�

D S1 ˚ � � � ˚ Sk ˚ T1 ˚ � � � ˚ Tt ˚ .S
0
1 \ � � � \ S

0
k \E/;

completing the inductive step, and (4.7) is proved. This completes the proof of the
Claim and therefore also the proof of the theorem.

Formula (4.5) captures the three alternatives in the previous theorem when
s > 1. However, by Remark 4.4 and Theorem 4.5, we have the following further
simplification (eventually) if there turn out to be only finitely many generalised
Mersenne primes:

Corollary 4.6. With the hypotheses of Theorem 4.5, if s > 1 and there are only
finitely many generalised Mersenne primes, then there is an integer N such that
for all q � N , �.V Ì T / D k1pq.

Example 4.7. The smallest instance when q > ps�1, so that the third alterna-
tive of (4.1) is able to kick in, occurs when p D 2 and q D 3, so that s D 2. Let
T D Œ 0 11 1 �, so that 'T D x2 C x C 1, and putG D F22 Ì T Š C 22 Ì C3 Š Alt.4/.
As expected, (4.1) predicts correctly that �.G/ D ps D 4.

Theorem 4.8. Suppose that r1; : : : ; rm are distinct irreducible polynomials over
Fp of degree s � 2, where s is the order of p modulo q, such that

'T D .x � 1/r1 : : : rm and �T D .x � 1/
kr
k1
1 : : : rkmm :

We may suppose k1 � k2 � � � � � km. Then

�.V Ì T / D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

k1pq if k � k1; q < ps�1;
k1pq C .k � k1/p if k > k1; q < ps�1;
k1p

s C kp if m D 1; q > ps�1;
k2pq C .k1 � k2/p

s if m > 1; k � k2; q > p
s�1;

k2pq C .k1 � k2/p
s

C.k � k2/p if m > 1; k > k2; q > p
s�1:

(4.8)
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Proof. As before, let a be the smallest integer such that q < aps�1. By Lemma 4.3,
aD 1 or 2. We again put ka D 0 whenmD 1 and aD 2. PutG D V ÌT D V hT i.
We have a decomposition V D eV ˚Z, where

eV D M
.i;j /2I

Vij and Z D

kM
˛D1

Z˛;

where the Vij are indecomposable subspaces of V with minimal polynomials from
amongst r1; : : : ; rm, adopting the notation of the proof of the previous theorem,
and the Z˛ are one-dimensional indecomposable subspaces of V on which the
action of T is trivial (so Z˛hT i Š Cp � Cq). By Theorem 4.5 and (4.5),

�.eV hT i/ D kapq C ps.k1 � ka/: (4.9)

Certainly, by (1.1), we have �.G/ � �.eV hT i/. There are two cases.

Case 1: Suppose that ka � k. Let C be the collection of subgroups described
in the first part of the proof of Theorem 4.5 that affords a faithful representation ofeV hT i of degree �.eV hT i/, replacing V by eV throughout. For ˛ D 1; : : : ; k, put

U˛ D W˛ ˚Z˛ and cH˛ D U˛ ˚W 0˛ ˚M
ˇ¤˛

Zˇ ;

where U˛ is a canonical codimension 1 subspace of U˛ with trivial core (see
Lemma 3.6), and here W 0˛ denotes a complement of W˛ in eV , so that

core.cH˛/ D W 0˛ ˚M
ˇ¤˛

Zˇ :

Now putbC D ¹cH1; : : : ;cHk;HkC1 ˚Z; : : : ;Hka ˚Zº [ ¹Kj ˚Z j .1; j / 2 Xº;
where the notation Kj ˚Z represents the internal semidirect product resulting
from joining Kj with Z (since the action of T on Z is trivial). Then

core
�\bC � D core

�\
C
�
˚

k\
˛D1

M
ˇ¤˛

Zˇ D ¹0º;

so bC affords a faithful representation of G. Its degree is the same as the degree of
the representation of eV hT i afforded by C , which is �.eV hT i/, so

�.G/ � �.eV hT i/ � �.G/;
whence we have equality. Formula (4.9) captures the first and fourth alternatives
in (4.8).
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Case 2: Suppose that k > ka. We make the same definitions as in the previous
case, except that we putbC D ¹cH1; : : : ; bHkaº [ ¹Kj ˚Z j .1; j / 2 Xº

[

²�eV ˚M
ˇ¤˛

Zˇ

�
hT i

ˇ̌̌̌
˛ D ka C 1; : : : ; k

³
:

Again the representation of G afforded by bC is faithful. Its degree is

kapq C .k � ka/p C p
s.k1 � ka/;

which therefore serves as a lower bound for �.G/.
By Proposition 4.1, there exists a collection C D D [ E of subgroups affording

a minimal representation of G such that

D D ¹D1; : : : ;D`º and E D ¹E1hT i; : : : ; Et hT iº;

where D1; : : : ;Dk are codimension 1 subspaces of V and, after reordering (if
necessary), E1; : : : ; Et0 are complements of indecomposables with minimal poly-
nomials from amongst r1; : : : ; rm and Et0C1; : : : ; Et are complements of one-
dimensional indecomposables. As before, ` � ka and, by the same reasoning as
before, t0 � k1 � ` and t � t0 � k � `. By the definition of a, and since p 6D q,
we have .a � 1/ps�1 < q, so

pq � .a � 1/ps C p:

Hence

�.G/ D `pqC .t � t0/pC t0p
s

D kapqC .`� ka/pqC .t � t0/pC t0p
s

� kapqC .`� ka/
�
.a� 1/psCp

�
C .k � `/pCps

´
0 if a D 1;
k1� ` if a D 2;

D kapqC .k � ka/pCp
s.k1� ka/;

whence we have

�.G/ D kapq C .k � ka/p C p
s.k1 � ka/: (4.10)

Formula (4.10) captures the second, third and fifth alternatives in (4.8), and the
proof is complete.

Illustrations of formula (4.8) are implicit in applications in the next section.
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5 Adding direct factors without increasing the degree

Results of the preceding section are applied now to investigate possible ways in
which�may fail to be additive with respect to taking direct products. The question
of when additivity occurs is an important theme in the work of Johnson [11] and
Wright [22]. The failure of additivity in general was demonstrated by a seminal
example in [22] and explored further by Saunders [17–19]. In all their cases, non-
trivial groups G and H are exhibited in which G does not decompose nontrivially
as a direct product, H is a cyclic group of prime order and

�.G �H/ D �.G/: (5.1)

We reproduce these examples below as special cases of applications of the formu-
lae in Theorems 4.5 and 4.8. By combining these formulae with Theorem 2.7, we
finish by exhibiting examples of groups G that do not decompose nontrivially as
direct products, but such that (5.1) holds for arbitrarily large direct products H of
elementary abelian groups (with mixed primes).

Example 5.1. Consider the groups

G1 D F25 Ì T1; G2 D F35 Ì T2; G3 D F45 Ì T3;

where

T1 D

"
0 4

1 4

#
; T2 D

2640 4 0

1 4 0

0 0 1

375 ; T3 D

266664
0 4 0 0

1 4 0 0

0 0 1 0

0 0 0 1

377775 :
Then

jT1j D jT2j D jT3j D 3;

'T1 D �T1 D x
2
C x C 1;

'T2 D �T2 D 'T3 D .x � 1/.x
2
C x C 1/;

�T3 D .x � 1/
2.x2 C x C 1/:

Then G1 Š C 25 Ì C3 and �.G1/ D 15, by the second alternative of (4.1). A min-
imal faithful representation is afforded by a canonical core-free subspace of F25
(see Lemma 3.6), yielding

G1 Š ha1; a2; b j a
5
1 D a

5
2 D b

3
D 1 D Œa1; a2�; a

b
1 D a2; a

b
2 D a

�1
1 a�12 i

Š h˛1; ˛2; ˇi;
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where
˛1 D .1 2 3 4 5/.6 7 8 9 10/.11 14 12 15 13/;

˛2 D .1 2 3 4 5/.6 9 7 10 8/.11 12 13 14 15/;

ˇ D .1 11 6/.2 12 7/.3 13 8/.4 14 9/.5 15 10/:

By the first alternative of (4.8), we have �.G2/ D 15. A minimal faithful repre-
sentation is afforded by a canonical core-free subspace of F35 , yielding

G2 Š G1 � C5 Š h˛1; ˛2; ˛3; ˇi;

where ˛1, ˛2 and ˇ are as above, and

˛3 D .1 2 3 4 5/.6 7 8 9 10/.11 12 13 14 15/:

In fact,G1 andG2 are isomorphic to subgroups of the transitive permutation group
introduced at the end of Wright’s paper [22], which was the first published counter-
example to additivity of � with respect to direct product. By contrast, now using
the second alternative of (4.8), �.G3/ D 15C 5 D 20. A faithful intransitive rep-
resentation of G3 is given by the previous canonical core-free subspace of F35 ,
augmented in an obvious way in F45 , and a subgroup of index 3, yielding

G3 Š G2 � C5 Š G1 � C
2
5 Š h˛1; ˛2; ˛3; ˛4; ˇi;

where ˛1, ˛2, ˛3 and ˇ are as above, but fixing five new letters, and

˛4 D .16 17 18 19 20/:

Observe that �.C5/2 D 10, so that

max¹�.G1/; �.C 25 /º D 15 < �.G1�C
2
5 / D 20 < 25 D �.G1/C�.C

2
5 /: (5.2)

This answers affirmatively a question of Saunders [17], whether there exist groups
K and L such that

max¹�.K/; �.L/º < �.K � L/ < �.K/C �.L/: (5.3)

Note that if G and H are groups such that

�.H/ < �.G/ and �.G �H/ D �.G/ < �.G/C �.H/

(such as the example in [22]), then (5.3) holds easily by taking any group M of
order coprime to jG�H j, puttingK DG andLDM�H , and invoking Johnson’s
result that � is additive with respect to taking direct products of groups of coprime
order. However, the solution (5.2) given here appears to be novel in that only
two primes, namely 3 and 5, divide jK � Lj, taking K D G1 and L D C 25 . This
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example clearly generalises, by (4.8), to an infinite class of examples, where (5.3)
holds and only two distinct primes p and q divide jK � Lj. Note that (5.3) fails,
if K � L is a p-group, since � is additive with respect to taking direct products of
nilpotent groups by a theorem of Wright [22].

Example 5.2. Let p and q be primes such that p has order s D q � 1modulo q, so
that � D 1C x C � � � C xq�1 is irreducible over Fp. Suppose also .p; q/ 6D .2; 3/,
as this guarantees that q < pq�2 D ps�1, so that the second alternative of (4.1)
will apply. (The case .p; q/ D .2; 3/ is explored above in Example 4.7 when illus-
trating the third alternative of (4.1).) The smallest case satisfying our conditions
is .p; q/ D .2; 5/. Consider the groups

H1 D Fq�1p Ì T1 Š C q�1p ÌCq and H2 D Fqp Ì T2 Š C qp ÌCq Š H1 �Cp;

where T1 and T2 are matrices over Fp in rational canonical form having charac-
teristic polynomials � and .1C x/� respectively. Then

�.H1/ D pq D �.H2/ D �.H1 � Cp/;

by the second alternative of (4.1) and the first alternative of (4.8). Observe thatH1
is a subgroup of the complex reflection group C.p; p; q/, a member of the infinite
class of counterexamples studied by Saunders in [18]. In the smallest case, when
p D 2 and q D 5, the groups become

H1 Š C
4
2 sdC5 and H2 Š C

5
2 sdC5 Š H1 � C2;

and
�.H1/ D �.H1 � C2/ D 10 < 12 D �.H1/C �.C2/:

The group H1 and these properties appear for the first time in [17]. It is gratifying
that the smallest example that comes from Saunders’ investigations, where he was
motivated by questions about complex reflection groups, also coincides with the
smallest example that arises as an application of Theorems 4.5 and 4.8. By results
in [4], it is impossible to create a smaller example by any method, in the sense that
G �H cannot embed in Sym.9/ and have H nontrivial and �.G/ D �.G �H/.

We say that an integer m � 3 is Mersenne with respect to an integer n � 2 if
m D 1C nC � � � C n˛ for some integer ˛. Note that this implies

m D
n˛C1 � 1

n � 1
< n˛C1:

Lemma 5.3. If m is Mersenne with respect to n, then k is not Mersenne with
respect to n for m < k � 2m.
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Proof. Ifm and k are Mersenne with respect to n andm< k � 2m, then there exist
˛ and ˇ such thatm D 1CnC� � �Cn˛ and k D mCn˛C1C� � �Cn˛Cˇ , whence
n˛C1 � n˛C1 C � � � C n˛Cˇ D k �m � m < n˛C1, which is impossible.

The following corollary is of independent interest and probably well known.

Corollary 5.4. Given a positive integer n, there exists infinitely many primes that
are not Mersenne with respect to n.

Proof. This follows quickly from Lemma 5.3 and Bertrand’s postulate.

Lemma 5.5. Let n � 2, k � 3 and N any positive integer. Then any strictly in-
creasing sequence of k integers strictly betweenN and 2N contains a consecutive
subsequence of bk=2c elements, none of which are Mersenne with respect to n.

Proof. Let t1; : : : ; tk be a strictly increasing sequence of integers strictly between
N and 2N . If ti is not Mersenne with respect to n for all i , then we are done using
the entire sequence. Suppose then that some element in the sequence is Mersenne
with respect to n, and let tj be the least such element. Then, for all ` such that
j < ` � k, we have N < tj < t` < 2N < 2tj , so that t` is not Mersenne with
respect to n, by Lemma 5.3. If j > bk=2c, then t1; : : : ; tbk=2c is a consecutive
subsequence of bk=2c elements, none of which are Mersenne with respect to n,
and we are done. Otherwise j � bk=2c and tjC1; : : : ; tk is a consecutive subse-
quence with k � j � k � bk=2c � bk=2c elements, none of which are Mersenne
with respect to n, and again we are done.

Proposition 5.6. If p1; : : : ; pk are prime numbers, then there exist infinitely many
primes that are not Mersenne with respect to pi for each i .

Proof. Let p1; : : : ; pk be primes and N any positive integer. By the Green–Tao
theorem [7] there exists an arithmetic progression of primes

q�M ; q�MC1; : : : ; q0 D q; q1; : : : ; qM

for some M � max¹N; 2kº. We may suppose the common difference is s so that
q D q�M CMs � 2ks and qi D q C is for each i D 1; : : : ;M . In particular,

q < q1 < � � � < qM < 2q: (5.4)

By Lemma 5.5, there exists a consecutive subsequence of q1; : : : ; qM , starting at
qi1 for some i1 � 1, of length M1 D bM=2c � 2

k�1 consisting of elements none
of which are Mersenne with respect to p1, which starts an induction. Suppose
j � k and, as inductive hypothesis, that we have a consecutive subsequence start-
ing at qij�1 of length Mj�1 � 2k�jC1 consisting of elements none of which are
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Mersenne with respect to p1; : : : ; pj�1. By Lemma 5.5, this contains a consecutive
subsequence starting at qij for some ij � ij�1 of lengthMj � bMj�1=2c � 2k�j

consisting of elements none of which are Mersenne with respect to p1; : : : ; pj ,
establishing the inductive step. The lemma now follows by induction by observing
thatMk � 2

k�k D 1, so that we have found at least one prime qik � N that is not
Mersenne with respect to p1; : : : ; pk .

Remark 5.7. Ramanujan [16] showed that �.n/ � �.n=2/ tends to infinity as n
does, where �.n/ denotes the number of primes less than or equal to n, general-
ising Bertrand’s postulate. This also guarantees the existence of an integer q and
primes q1; : : : ; qM such that (5.4) holds, and the proof of Proposition 5.6 proceeds
as above, but avoiding use of the Green–Tao theorem.

In the following example, given an arbitrarily large direct product H of ele-
mentary abelian groups built from any collection of primes and positive integer
exponents, we construct a group G such that �.G �H/ D �.G/, yet G does not
decompose nontrivially as a direct product.

Example 5.8. Let P D ¹p1; : : : ; pkº be a finite collection of distinct primes and
N D ¹n1; : : : ; nkº a collection of positive integers. Choose a prime q � 5 that is
not Mersenne with respect to each prime in P , and larger than all of the primes
in P , the existence of which is guaranteed by Proposition 5.6. Consider an integer
i 2 ¹1; : : : ; kº. Let si be the multiplicative order of pi modulo q and putmi D sini.
Then si > 1 and we can find a monic irreducible polynomial �i 2 Fpi of degree
si such that its roots in an extension of Fpi are primitive qth roots of 1. We have
q < p

si�1
i , by Lemma 4.3, since q is not Mersenne with respect to pi . Denote the

companion matrix over a field F of a monic polynomial � 2 F Œx� by M� . Define
Ti to be the mi �mi matrix over Fpi that is the matrix direct sum of ni copies
of M�i . Now put bTi D Ti ˚ Ini ;
where Ini is an identity matrix (over Fpi ). Then jTi j D jbTi j D q,

'Ti D �i ; �Ti D �
ni
i ; 'bTi D .x � 1/�i and �bTi D .x � 1/ni�nii :

Now let Gi D Vi Ì Ti and cGi D bVi Ì bTi , where

Vi D Fmipi and bVi D FmiCnipi
:

Then
�.Gi / D �.cGi / D nipiqi ; (5.5)
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by Theorems 4.5 and 4.8. Observe that, because Ini acts trivially on Fnipi ,

cGi Š Gi � C nipi : (5.6)

Now put

T D

kM
iD1

Ti ; bT D kM
iD1

bTi ; V D

kM
iD1

Vi ; bV D kM
iD1

bVi ;
where the zeros outside the matrix blocks down the diagonals act as formal zeros
(not in any particular field) for the purpose of matrix multiplication, and the ele-
ments of V and bV may be regarded as column vectors over Fp1 [ � � � [ Fpk . Thus,
because the construction respects direct sum decompositions, T and bT may be re-
garded as acting on V and bV (on the left) by usual matrix multiplication. Hence,
as in (3.1) and (3.2), we may define

G D V Ì T and bG D bV Ì bT :
The actions of T and bT on the respective i th direct summands is nontrivial, for
each i , and the orders of these direct summands are pairwise coprime and also
coprime to q, so, by repeated application of the last alternative in the formula
given in Theorem 2.7 and by (5.5), we have

�.G/ D

kX
iD1

�.Gi / D

kX
iD1

nipiqi D

kX
iD1

�.cGi / D �.bG/:
Also, by (5.6), bG Š G � C n1p1 � � � � � C nkpk :
Finally, put H D C n1p1 � � � � � C

nk
pk , which is our arbitrarily large direct product

of elementary abelian groups, using all of the primes p1; : : : ; pk . Then �.G �H/
equals�.G/. By construction, the irreducible action on each direct summand guar-
antees that G does not decompose nontrivially as a direct product. Note that when
H D Cp1 � � � � � Cpk , the action of G on each Sylow pi -subgroup is irreducible.
The authors are not aware of any simpler method for achieving this last property,
which appears to be inextricably linked to number-theoretic properties of the par-
ticular primes involved.

Remark 5.9. It is an open problem whether there are finitely many generalised
Mersenne primes. If there are only finitely many, then we can avoid the use of
Proposition 5.6 in the previous example, simply by choosing q to be larger also
than the largest generalised Mersenne prime (for that would guarantee q < psi�1i

for each i , by Remark 4.4).
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