Minimal permutation representations of semidirect products of groups

David Easdown and Michael Hendriksen

Communicated by Timothy C. Burness

Abstract. We provide formulae for the minimal faithful permutation degree $\mu(G)$ of a group G that is a semidirect product of an elementary abelian p-group by a group of prime order q not equal to p. These formulae apply to the investigation of groups G with the property that there exists a nontrivial group H such that $\mu(G \times H) = \mu(G)$, in particular reproducing the seminal examples of Wright (1975) and Saunders (2010). Given an arbitrarily large group H that is a direct product of elementary abelian groups (with mixed primes), we construct a group G such that $\mu(G \times H) = \mu(G)$, yet G does not decompose nontrivially as a direct product.

1 Introduction

Throughout this paper all groups are assumed to be finite. The minimal faithful permutation degree $\mu(G)$ of a group G is the smallest nonnegative integer n such that G embeds in the symmetric group Sym(n). Note that $\mu(G) = 0$ if and only if G is trivial. It is well known (and referred to as Karpilovsky's theorem, see, for example, [11, 12]) that if G is a nontrivial abelian group, then $\mu(G)$ is the sum of the prime powers that occur in a direct product decomposition of G into cyclic factors of prime power order. Johnson proved (see [11, Theorem 1]) that the Cayley representation of a group G is minimal, that is, $\mu(G) = |G|$, if and only if G is cyclic of prime power order, the Klein four-group or a generalised quaternion 2-group. A number of other explicit calculations of minimal degrees and a variety of techniques appear in Johnson [11], Wright [21, 22], Neumann [15], Easdown and Praeger [3], Kovacs and Praeger [13], Easdown [2], Babai, Goodman and Pyber [1], Holt [9], Holt and Walton [10], Lemieux [14], Elias, Silbermann and Takloo-Bighash [5], Franchi [6], Saunders [17–20] and Easdown and Saunders [4]. This present article, building on work initiated by the second author in [8], focuses on minimal degrees of semidirect products of groups, proves a reduction theorem (see Theorem 2.7 below) and provides exact formulae (see Theorems 4.5 and 4.8 below) for minimal degrees in the case when the base group is an elementary abelian p-group and the extending group is cyclic of order q where p and q are different primes.

For any groups G and H and subgroups S of G, we always have the inequalities

$$\mu(S) \le \mu(G) \tag{1.1}$$

and

$$\mu(G \times H) \le \mu(G) + \mu(H). \tag{1.2}$$

Many sufficient conditions are known for equality to occur in (1.2), for example, when G and H have coprime order (Johnson [11, Theorem 1]), when G and H are nilpotent (Wright [22]), when G and H are direct products of simple groups (Easdown and Praeger [3]), and when $G \times H$ embeds in Sym(9) (Easdown and Saunders [4]). The first published example where the inequality in (1.2) is strict appears in Wright [22], where $G \times H$ is a subgroup of Sym(15). Saunders [17,18] describes an infinite class of examples, which includes the example in [22] as a special case, where strict inequality takes place in (1.2). The smallest example in his class occurs when $G \times H$ embeds in Sym(10). In all of these examples of strict inequality, the groups G and H have the properties that H is cyclic of prime order and

$$\mu(G \times H) = \mu(G). \tag{1.3}$$

As an application of our three main theorems, the article culminates (see Example 5.8 below) in an infinite class of examples where (1.3) occurs, where H may be a product of elementary abelian groups with an arbitrarily large number of factors and different prime exponents and G does not decompose as a nontrivial direct product.

Recall that if G is nontrivial, then $\mu(G)$ is the smallest sum of indices for a collection of subgroups $\mathscr{C} = \{H_1, \ldots, H_k\}$ such that $\bigcap_{i=1}^k H_i$ is core-free. In this case we say that \mathscr{C} affords a minimal faithful representation of G. The subgroups H_1, \ldots, H_k become the respective point-stabilisers for the action of G on its orbits and letters in the ith orbit may be identified with cosets of H_i for $i=1\ldots,k$. If k=1, then the representation afforded by \mathscr{C} is transitive and H_1 is a core-free subgroup.

Remark 1.1. It follows quickly that if G is a group with unique subgroups of orders p_1, \ldots, p_k respectively, where p_1, \ldots, p_k are distinct primes, then $\mu(G) \ge |G|_{p_1} + \cdots + |G|_{p_k}$, where $|G|_p$ denotes the largest power of p dividing |G|. For example, suppose G is the generalised quaternion group of order 4n for $n \ge 2$, given by the presentation

$$G = Q_{4n} = \langle a, b \mid a^{2n} = b^4 = 1, a^n = b^2, a^b = a^{-1} \rangle.$$

Then $\langle b^2 \rangle$ is the unique subgroup of G of order 2. If n is a power of 2, then $\mu(G) \geq |G|_2 = |G|$, whence $\mu(G) = |G|$, the only nonabelian case where this is possible (see Johnson [11, Theorem 2]). Suppose then that n is not a power of 2

and let p_1, \ldots, p_k be the odd prime divisors of n. Then $\langle a^{2n/p_i} \rangle$ is the unique subgroup of G of order p_i for i = 1, ..., k, so $\mu(G) \ge |G|_2 + |G|_{p_1} + \cdots + |G|_{p_k}$. Write $|G| = 2^m p_1^{\alpha_1} \dots p_k^{\alpha_k}$, where $m \ge 2$ and $\alpha_1, \dots, \alpha_k \ge 1$, and put $H = \langle a^{2^{m-1}} \rangle$ and $H_i = \langle a^{p_i^{\alpha_i}}, b \rangle$ for $i = 1, \dots, k$.

$$H = \langle a^{2^{m-1}} \rangle$$
 and $H_i = \langle a^{p_i^{\alpha_i}}, b \rangle$ for $i = 1, \dots, k$.

Then $\{H, H_1, \dots, H_k\}$ affords a faithful representation of G so that

$$\mu(G) = |G|_2 + |G|_{p_1} + \dots + |G|_{p_k}.$$

Note that if m = 2, then $|a^2| = n$ is odd, $G = \langle a^2, b \rangle$ and the presentation above simplifies, replacing a^2 by x:

$$G = \langle x, b \mid x^n = b^4 = 1, x^b = x^{-1} \rangle,$$

so that G becomes a semidirect product. If we put n=3, then $\mu(G)=3+4=7$ and G becomes the smallest group with the property that it does not have a nilpotent subgroup with the same minimal degree. The class of groups that do have nilpotent subgroups with the same degree was introduced by Wright [22], and its pervasiveness within the class of permutation groups of small degree was an important tool in [4].

2 **Preliminaries on semidirect products**

Recall that a group G is an internal semidirect product of a normal subgroup Nby a subgroup H if G = NH and $N \cap H$ is trivial, in which case the conjugation action of N on H induces a homomorphism $\varphi: N \to \operatorname{Aut}(H)$. Conversely, if N and H are any groups and $\varphi: H \to \operatorname{Aut}(N)$ any homomorphism, then the cartesian product of sets

$$N \rtimes H = N \rtimes_{\omega} H = \{(n,h) \mid n \in N, h \in H\}$$

becomes a group, called the external semidirect product, under the binary operation

$$(n_1, h_1)(n_2, h_2) = (n_1(n_2(h^{-1}\varphi)), h_1h_2),$$

in which case $N \times H$ becomes an internal semidirect product of a copy of N by a copy of H and we may write $N \times H = NH$ without causing confusion.

Remark 2.1. It is well known that $G \rtimes_{\omega} H$ embeds in $Sym(G) \times H$, and in Sym(G)if φ is injective. Hence $\mu(G \rtimes H)$ is bounded by $|G| + \mu(H)$ always, and by |G|if φ is injective (though see Lemma 2.2 below for an alternative proof). The bound $|G| + \mu(H)$ can easily be achieved, for example, whenever the semidirect product is direct (that is, φ is trivial), G any group for which the Cayley representation is minimal and H any group of order coprime to |G|. For a class of semidirect products that are not direct, let $G = C_p^n$ and $H = C_{q^2}$, where p and q are distinct primes and n a positive integer such that $q > p^{n-1}$. Put $H = \langle c \rangle$ and suppose we have a homomorphism $\varphi : H \to \operatorname{Aut}(G)$ such that $|c\varphi| = q$, so φ is neither trivial nor injective, and that the conjugation action induced on G is irreducible. A simple subclass of examples would be when (p,q,n) = (p,2,1) and $c\varphi$ the inversion automorphism of G (so of order 2). (An instance of this, when (p,q,n) = (3,2,1), features in Example 2.8 below.) It follows, by observations in Remark 1.1, that

$$\mu(G \rtimes H) = |G| + \mu(H) = p^n + q^2.$$

For example, if (p, q, n) = (5, 2, 1), then $\mu(S) = 5 + 4 = 9$ and we get the intransitive representation $S \cong C_5 \rtimes C_4 \cong \langle (12345), (15)(24)(6789) \rangle$.

Lemma 2.2. Let K be an internal semidirect product of G by H. Then core(H) equals $ker \varphi$, where $\varphi: H \to Aut(G)$ is the homomorphism induced by conjugation. In particular, if φ is injective, then H is core-free and $\{H\}$ affords a transitive representation of K of degree |G|, so that $\mu(K) \leq |G|$.

Proof. Certainly $\ker \varphi$ is a normal subgroup of K contained in H, so we have that $\ker \varphi \leq \operatorname{core}(H)$. Conversely, elements of $\operatorname{core}(H)$ commute with elements of G, so $\operatorname{core}(H) \leq \ker \varphi$.

It will be useful, in verifying the first alternative of the main formula (4.1) below, to note that, under certain conditions, the minimal degree of the semidirect product coincides with the minimal degree of the base group:

Lemma 2.3. Suppose that $G \rtimes_{\varphi} H$ is a semidirect product of groups such φ is injective. If G has a minimal faithful representation afforded by a collection of subgroups that are invariant under the conjugation action of H, then

$$\mu(G \rtimes H) = \mu(G).$$

Proof. We may regard $G \rtimes H = GH$ as an internal semidirect product. Since φ is injective, H is core-free by Lemma 2.2. Suppose that $\{B_1, \ldots, B_k\}$ is a collection of subgroups of G invariant under conjugation by H and affords a minimal faithful representation of G. For i=1 to k, put $D_i=B_iH$, which is a subgroup of GH of index $|G:B_i|$. Then $\{D_1,\ldots,D_k\}$ affords a faithful representation of GH of degree $|G:B_1|+\cdots+|G:B_k|=\mu(G)$. But $\mu(GH)\geq \mu(G)$, so we have equality.

Example 2.4. Let p and q be primes such that the field $\mathbb{F}_p = \{0, \dots, p-1\}$ has a primitive qth root ζ of 1. Let $\varphi : C_q \to \operatorname{Aut}(C_p^q)$ be the homomorphism induced by the map

$$c\varphi:(x_1,x_2,\ldots,x_q)\mapsto(x_1,x_2^{\xi},x_3^{\xi^2},\ldots,x_q^{\xi^{q-1}}),$$

where c is a generator of C_q and $x_1, \ldots, x_q \in C_p$. Put $G = C_p^q \rtimes_{\varphi} C_q$. We may write G = KC as an internal semidirect product of $K \cong C_p^q$ by $C \cong C_q$, where K is an internal direct product $H_1 \ldots H_q$, where $H_i \cong C_p$ for $i = 1, \ldots, q$. Put

$$\widehat{H_i} = H_1 \dots H_{i-1} H_{i+1} \dots H_q,$$

which is a subgroup of K of index p, for $i=1,\ldots,q$. Put $\mathscr{C}=\{\widehat{H_1},\ldots,\widehat{H_q}\}$. Then \mathscr{C} is trivial, so \mathscr{C} affords a faithful representation of K of degree pq. But each $\widehat{H_i}$ is invariant under the conjugation action by C, so $\mu(G)=pq$, by Lemma 2.3. It is interesting that in this case we can also find a faithful transitive representation of G by letting a_i be a generator for H_i for each i and putting

$$H = \{a_1^{i_1} \dots a_a^{i_q} \in H_1 \dots H_a \mid i_1 + \dots + i_a = 0\}.$$

Then H is a core-free subgroup of G (in fact, a canonical codimension 1 subspace of the additive vector space corresponding to the base group, in the sense of Lemma 3.6 below) of index pq.

Consider groups H and K of coprime order and C a cyclic group such that |C| and |H||K| are also coprime. Let $\varphi: C \to \operatorname{Aut}(H \times K)$ be a homomorphism, so that we may form the semidirect product

$$G = (H \times K) \rtimes C = (H \times K) \rtimes_{\varphi} C.$$

Let $\varphi_H: C \to \operatorname{Aut}(H)$ and $\varphi_K: C \to \operatorname{Aut}(K)$ where, for all $h \in H, k \in K$ and $c \in C$,

$$(h,k)(c\varphi) = (h(c\varphi_H), k(c\varphi_K)), \tag{2.1}$$

so that we have the related semidirect products

$$H \rtimes C = H \rtimes_{\varphi_H} C$$
 and $K \rtimes C = K \rtimes_{\varphi_K} C$.

If φ is trivial, then $G \cong H \times K \times C$. If φ_H is trivial, then $G \cong H \times (K \rtimes C)$. If φ_K is trivial, then $G \cong (H \rtimes C) \times K$. Note that always G embeds in the direct product $(H \rtimes C) \times (K \rtimes C)$ under the map

$$((h,k),c) \mapsto ((h,c),(k,c))$$

for all $h \in H$, $k \in K$, $c \in C$, so that, by (1.1) and (1.2),

$$\mu(G) \le \mu((H \rtimes C) \times (K \rtimes C)) \le \mu(H \rtimes C) + \mu(K \rtimes C). \tag{2.2}$$

In Theorem 2.7 below, we show that equality occurs throughout (2.2) when both φ_H and φ_K are nontrivial and $C \cong C_q$ for some prime q. We first establish some useful general facts.

Lemma 2.5. Let G = HC be an internal semidirect product of a normal subgroup H by a cyclic subgroup $C \cong C_q$ for some prime q not dividing |H|. Let K be a subgroup of G that is not a subgroup of H.

- (a) There exists $g \in G$ such that $K = (H \cap K)C^g$ is an internal semidirect product of $H \cap K$ by C^g .
- (b) If $H \cap K$ is normal in H, then $H \cap K$ is normal in G.
- (c) If K is normal in G, then $K = (H \cap K)C$.

Proof. Part (a) follows by Sylow's theorem, and then parts (b) and (c) are immediate.

Lemma 2.6. Let G = HC be an internal semidirect product that is not direct of a normal subgroup H by a cyclic subgroup $C \cong C_q$ for some prime q not dividing |H|. Then any collection C affording a minimal faithful representation of G does not contain any normal subgroup of G that is a subgroup of G.

Proof. Let $\mathscr{C} = \{K_1, \ldots, K_k\}$ afford a minimal faithful representation of G. Suppose, by way of contradiction, that \mathscr{C} contains a subgroup of H that is normal in G. Without loss of generality, we may assume that $K_1 \leq H$ and K_1 is normal in G. If $K_1 \neq H$, then $\{K_1C, H, K_2, \ldots, K_k\}$ affords a faithful representation of degree smaller than that afforded by \mathscr{C} , contradicting minimality. Hence $K_1 = H$. If $K_1 = 1$, then $K_1 = 1$, then $K_1 = 1$, which is impossible. Hence $K_1 = 1$ and $K_2 = 1$ and $K_3 = 1$ and $K_4 = 1$ and $K_5 = 1$ and $K_5 = 1$ and $K_6 = 1$ a

The following theorem reduces calculations of minimal degrees of semidirect products by a q-cycle, where q is a prime that does not divide the order of the base group, to those cases where the base group is a p-group for $p \neq q$.

Theorem 2.7. Let $G = (H \times K) \rtimes C$ be a semidirect product where H and K are groups of coprime order and $C \cong C_q$ for some prime q not dividing |H||K|. Then

$$\mu(G) = \begin{cases} \mu(H) + \mu(K) + q & \text{if } \varphi \text{ is trivial,} \\ \mu(H) + \mu(K \rtimes C) & \text{if } \varphi_H \text{ is trivial,} \\ \mu(H \rtimes C) + \mu(K) & \text{if } \varphi_K \text{ is trivial,} \\ \mu(H \rtimes C) + \mu(K \rtimes C) & \text{if neither } \varphi_H \text{ nor } \varphi_K \text{ is trivial.} \end{cases}$$

Proof. Note that the first case is a special case of the second and third cases, and the formulae for the first three cases follow by Johnson's result [11, Theorem 1] that μ is additive with respect to taking direct products of groups of coprime order.

Suppose then that neither φ_H not φ_K are trivial. We may regard G = HKC as an internal semidirect product of HK by C, where HK is an internal direct product of H and K. By (2.2), it suffices to prove

$$\mu(G) \ge \mu(HC) + \mu(KC). \tag{2.3}$$

Let $\mathscr C$ be a collection of subgroups of G that affords a minimal faithful permutation representation of G. Since |H| and |K| are coprime, subgroups of HK have the form H_0K_0 for some $H_0 \leq H$ and $K_0 \leq K$. By Lemma 2.5 (a), subgroups of G that are not subgroups of HK have the form $H_0K_0C^g$ for some $H_0 \leq H$, $K_0 \leq K$ and $g \in G$, such that H_0K_0 is normal in $H_0K_0C^g$. By a result of Johnson [11, Lemma 1], we may assume that each element of $\mathscr C$ is meetirreducible, that is, does not decompose as the intersection of two larger subgroups. Therefore, elements of $\mathscr C$ have the form

$$H_0K$$
, HK_0 , H_1KC^x or HK_1C^y

for some $H_0, H_1 \leq H, K_0, K_1 \leq K$ and $x, y \in G$. In these respective cases, note that

$$\operatorname{core}_{G}(H_{0}K) = \operatorname{core}_{HC}(H_{0})K, \quad \operatorname{core}_{G}(HK_{0}) = H \operatorname{core}_{KC}(K_{0}),$$

and, by Lemma 2.5 (c),

$$\operatorname{core}_{G}(H_{1}KC^{x}) = \begin{cases} \operatorname{core}_{HC}(H_{1})KC & \text{if } q \text{ divides } |\operatorname{core}_{G}(H_{1}KC^{x})|, \\ \operatorname{core}_{HC}(H_{1})K & \text{ otherwise,} \end{cases}$$

and

$$\operatorname{core}_{G}(HK_{1}C^{y}) = \begin{cases} H \operatorname{core}_{KC}(K_{1})C & \text{if } q \text{ divides } |\operatorname{core}_{G}(HK_{1}C^{y})|, \\ H \operatorname{core}_{KC}(K_{1}) & \text{otherwise.} \end{cases}$$

Put

$$\mathcal{D}_{H} = \{H_{0} \mid H_{0} \leq H \text{ and } H_{0}K \in \mathscr{C}\},$$

$$\mathscr{E}_{H} = \{H_{1}C \mid H_{1} \leq H \text{ and } H_{1}KC^{x} \in \mathscr{C} \text{ for some } x \in G\},$$

$$\mathcal{D}_{K} = \{K_{0} \mid K_{0} \leq K \text{ and } HK_{0} \in \mathscr{C}\},$$

$$\mathscr{E}_{K} = \{K_{1}C \mid K_{1} \leq K \text{ and } HK_{1}C^{y} \in \mathscr{C} \text{ for some } y \in G\}.$$

By inspection, the index sum of elements of $\mathscr C$ in G is equal to the index sum of elements of $\mathscr D_H \cup \mathscr E_H$ in HC added to the index sum of elements of $\mathscr D_K \cup \mathscr E_K$

in KC. Hence, to complete the proof of (2.3), it suffices to show that $\mathscr{D}_H \cup \mathscr{E}_H$ and $\mathscr{D}_K \cup \mathscr{E}_K$ afford faithful representations of HC and KC respectively. Observe that

$$\operatorname{core}_{HC} \left(\bigcap_{H_0 \in \mathscr{D}_H} H_0 \cap \bigcap_{H_1C \in \mathscr{E}_H} H_1 \right) K \cap H \operatorname{core}_{KC} \left(\bigcap_{K_0 \in \mathscr{D}_K} K_0 \cap \bigcap_{K_1C \in \mathscr{E}_K} K_1 \right)$$

$$\subseteq \operatorname{core}_G \left(\bigcap \mathscr{C} \right) = \{1\}.$$

In particular,

$$\operatorname{core}_{HC}\left(\bigcap_{H_0\in\mathscr{D}_H}H_0\cap\bigcap_{H_1C\in\mathscr{E}_H}H_1\right)=\{1\}.$$

If $\mathcal{D}_H \neq \emptyset$ then, since $\bigcap \mathcal{D}_H \subseteq H$, we have

$$\mathrm{core}_{HC}\Big(\bigcap(\mathscr{D}_H\cup\mathscr{E}_H)\Big)\subseteq\mathrm{core}_{HC}\left(\bigcap_{H_0\in\mathscr{D}_H}H_0\cap\bigcap_{H_1C\in\mathscr{E}_H}H_1\right)=\{1\}.$$

Suppose that $\mathscr{D}_H = \emptyset$. If $\mathscr{E}_H = \emptyset$, then $\mathscr{D}_K \cup \mathscr{E}_K \neq \emptyset$ so that

$$H \subseteq \operatorname{core}_G \left(\bigcap \mathscr{C} \right) = \{1\},\$$

which is impossible. Hence $\mathcal{E}_H \neq \emptyset$ and

$$\operatorname{core}_{HC}\left(\bigcap_{H_1C\in\mathscr{E}_H}H_1\right)=\{1\}.$$

If $\operatorname{core}_{HC}(H_1C)$ contains an element of order q for all $H_1C \in \mathcal{E}_H$ then, in each case, $\operatorname{core}_{HC}(H_1C) = \operatorname{core}_{HC}(H_1)C$, so that

$$C = \operatorname{core}_{HC} \left(\bigcap_{H_1C \in \mathscr{E}_H} H_1 \right) C = \bigcap_{H_1C \in \mathscr{E}_H} \operatorname{core}_{HC} (H_1C)$$

is a normal subgroup of HC, contradicting that φ_H is nontrivial. Hence, for at least one $H_1C \in \mathscr{E}_H$, we have $\operatorname{core}_{HC}(H_1C) = \operatorname{core}_{HC}(H_1)$, so that

$$\begin{aligned} \operatorname{core}_{HC} \left(\bigcap \mathscr{E}_{H} \right) &= \operatorname{core}_{HC} \left(\bigcap_{H_{1}C \in \mathscr{E}_{H}} H_{1}C \right) \\ &= \operatorname{core}_{HC} \left(\bigcap_{H_{1}C \in \mathscr{E}_{H}} H_{1} \right) = \{1\}. \end{aligned}$$

This proves that $\mathscr{D}_H \cup \mathscr{E}_H$ affords a faithful representation of HC. Similarly $\mathscr{D}_K \cup \mathscr{E}_K$ affords a faithful representation of KC, and this completes the proof of (2.3).

Example 2.8. Let G be the holomorph of $C_3 \times C_5$, that is,

$$G = (C_3 \times C_5) \rtimes_{\mathrm{id}} \mathrm{Aut}(C_3 \times C_5) \cong (C_3 \times C_5) \rtimes (C_2 \times C_4).$$

We may regard G = HKCD as an internal semidirect product of a direct product HK by another direct product CD, where $H = \langle h \rangle \cong C_3$, $K = \langle k \rangle \cong C_5$, $C = \langle c \rangle \cong C_2 \cong \operatorname{Aut}(C_3)$ and $D = \langle d \rangle \cong C_4 \cong \operatorname{Aut}(C_5)$. Then

$$\mu(G) \ge \mu(C_3 \times C_5) = 8$$

and

$$G \cong \langle (123), (45678), (12), (4576) \rangle$$

which verifies that $\mu(G) = 8$. Put $C_1 = \langle cd^2 \rangle$, $C_2 = \langle cd \rangle$, $G_1 = HKC_1$ and $G_2 = HKC_2$. Then

$$G_1 \cong (C_3 \times C_5) \rtimes_{\varphi} C_2 \cong \langle (123), (45678), (12)(47)(56) \rangle,$$

where φ induces conjugation action that is inversion, and both $C_3 \rtimes_{\varphi_1} C_2$ and $C_5 \rtimes_{\varphi_2} C_2$ are dihedral, where $\varphi_1 = \varphi_{C_3}$ and $\varphi_2 = \varphi_{C_5}$ are defined by (2.1), and both nontrivial. As predicted by Theorem 2.7,

$$\mu(G_1) = 8 = 3 + 5 = \mu(C_3 \rtimes_{\varphi_1} C_2) + \mu(C_5 \rtimes_{\varphi_2} C_2).$$

However,

$$G_2 \cong (C_3 \times C_5) \rtimes_{\psi} C_4 \cong \langle (123), (45678), (12)(4576) \rangle,$$

where $C_3 \rtimes_{\psi_1} C_4$ is generalised quaternion of degree 7 (see Remark 1.1) and $C_5 \rtimes_{\psi_2} C_4$ has degree $\mu(C_5) = 5$, by Lemma 2.3, where $\psi_1 = \psi_{C_3}$ and $\psi_2 = \psi_{C_5}$ are defined by (2.1). Here

$$\mu(G_2) = 8 < 12 = 7 + 5 = \mu(C_3 \rtimes_{\psi_1} C_4) + \mu(C_5 \rtimes_{\psi_2} C_4).$$

This is the smallest example where we do not get equality throughout in (2.2), yet all of the homomorphisms defining the semidirect products are nontrivial.

3 Preliminaries on group actions on a vector space

The aim in this section is to develop machinery to calculate, in the next section, minimal degrees of all semidirect products of elementary abelian p-groups by cyclic groups of order q where p and q are different primes, exploiting the fact that group actions may be analysed using standard methods from linear algebra. Let V

be an *n*-dimensional vector space over \mathbb{F}_p , written additively, and $T:V\to V$ an invertible linear transformation. Define the *semidirect product of* V *by* $\langle T \rangle$ (or more simply the *semidirect product of* V *by* T) to be

$$V \rtimes T = V \rtimes \langle T \rangle = \{ (v, T^i) \mid v \in V, i \in \mathbb{Z} \}, \tag{3.1}$$

with binary operation

$$(v, T^{i})(w, T^{j}) = (v + T^{i}(w), T^{i+j}), \tag{3.2}$$

for $v, w \in V$ and $i \in \mathbb{Z}$. Then $V \rtimes T$ becomes a group. A subspace of V that is T-invariant is referred to simply as *invariant*. Thus invariant subspaces of V become normal subgroups of $V \rtimes T$. We define the *core* of any subspace W of V, denoted by $\operatorname{core}(W)$, to be the largest invariant subspace of V contained in W. Thus $\operatorname{core}(W) = \operatorname{core}_G(W)$, in the usual sense, that is, the largest normal subgroup of G contained in W, where $G = V \rtimes T$.

We suppose throughout, unless stated otherwise, that $T \neq \operatorname{id}$ and $T^q = \operatorname{id}$, where id is the identity linear transformation and q is a prime different to p. The characteristic and minimal polynomials of T are referred to as $\chi_T = \chi_T(x)$ and $\varphi_T = \varphi_T(x)$ respectively. By choosing a basis for V we may identify V with the vector space \mathbb{F}_p^n of column vectors of length n with entries from \mathbb{F}_p and T with the $n \times n$ matrix of the linear transformation with respect to the basis, and so regard T(v) = Tv as a matrix product. Under these identifications $V \rtimes T \cong C_p^n \rtimes_\varphi C_q$ under the map

$$\left(\begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}, T^i \right) \mapsto ((a^{\lambda_1}, \dots, a^{\lambda_n}), b^{-i}),$$

where we write $C_p = \langle a \rangle$, $C_q = \langle b \rangle$, and $\varphi : C_q \to \operatorname{Aut}(C_p^n)$ is the homomorphism induced by

$$b\varphi:(a^{\lambda_1},\ldots,a^{\lambda_n})\mapsto(a^{\lambda'_1},\ldots,a^{\lambda'_n}),$$

where

$$T\begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda'_1 \\ \vdots \\ \lambda'_n \end{bmatrix}.$$

Lemma 3.1. Let T_1 and T_2 be $n \times n$ matrices over \mathbb{F}_p of multiplicative order q and put $V = \mathbb{F}_p^n$ for some positive integer n. Then $V \rtimes T_1 \cong V \rtimes T_2$ if and only if T_1 and some power of T_2 are similar. In particular, if T_1 and T_2 are similar, then $V \rtimes T_1 \cong V \rtimes T_2$.

Proof. If T_1 and T_2^k are similar, for some $k \in \mathbb{Z}$, then $k \neq 0$ modulo q, T_1 equals $P^{-1}T_2^kP$ for some invertible matrix P, and the mapping $(v,T_1^i) \mapsto (Pv,T_2^{ki})$, for $v \in V$ and $i \in \mathbb{Z}$, is an isomorphism. Conversely, if $\theta: V \rtimes T_1 \to V \rtimes T_2$ is an isomorphism, then $(0,T_1)\theta=(w,T_2^k)$ for some $w \in V$ and integer k, and one may check that T_1 and T_2^k are similar.

Thus, in calculating minimal degrees later, we may assume T is in primary rational canonical form. By Maschke's theorem, since p does not divide $q = |\langle T \rangle|$, all invariant subspaces of V have invariant complements, so that the minimal polynomial φ_T is square-free with regard to irreducible factors. All blocks in the primary rational canonical form of T become companion matrices of monic irreducible polynomials, and the restriction of T to an indecomposable subspace of V will always have an irreducible minimal polynomial. The canonical form is thus characterised uniquely, up to the order of blocks, by χ_T . The number of blocks corresponding to one particular irreducible factor is just the multiplicity of that factor in χ_T . An irreducible factor of $\varphi_T = \varphi_T(x)$ divides $x^q - 1$, so is either x - 1 or a polynomial of the form

$$\pi_{\alpha}(x) = (x - \alpha)(x - \alpha^p) \dots (x - \alpha^{p^{s-1}}), \tag{3.3}$$

where *s* is the multiplicative order of *p* modulo *q* and α is a primitive *q*th root of 1 in an extension field $\mathbb{F} = \mathbb{F}_p(\alpha)$ of \mathbb{F}_p (where $\mathbb{F} = \mathbb{F}_p$ if s = 1).

Remark 3.2. The previous lemma in principle allows for nontrivial determination of isomorphism between semidirect products in our class. For example, take n = 6, p = 13 and q = 7, so that s = 2. Consider the following irreducible polynomials over \mathbb{F}_{13} :

$$r_1 = x^2 + 3x + 1,$$

 $r_2 = x^2 + 6x + 1,$
 $r_3 = x^2 + 5x + 1.$

Put $\pi_1 = r_1^2 r_2$, $\pi_2 = r_2^2 r_3$ and $\pi_3 = r_1^2 r_3$. Let T_i be the companion matrix for π_i and $G_i = \mathbb{F}_{13}^6 \rtimes T_i$, for i = 1, 2, 3. There exists a primitive 7th root α in an extension \mathbb{F} of \mathbb{F}_{13} such that

$$r_1 = (x - \alpha)(x - \alpha^6),$$

$$r_2 = (x - \alpha^2)(x - \alpha^5),$$

$$r_3 = r_3(x) = (x - \alpha^3)(x - \alpha^4).$$

It follows that T_2 and T_1^2 are similar, but T_3 is not similar to any power of T_1 . Hence, $G_1 \cong G_2$, but $G_1 \ncong G_3$, by Lemma 3.1.

The following two lemmas are probably well known.

Lemma 3.3. Let W be a subspace of a vector space V. Suppose $V = K \oplus K'$ for some subspaces K and K' such that K is also a subspace of W. Put $L = W \cap K'$. Then

$$W = K \oplus L$$
.

The codimension of L in K' is the same as the codimension of W in V. If, further, $T:V\to V$ is a linear transformation and K is the core of W with respect to T, then L is core-free.

Proof. All of the claims follow quickly from the definitions.

Lemma 3.4. Let $T: V \to V$ be an invertible linear transformation such that φ_T has degree d. Let W be a subspace of V of codimension k. Then core(W) has codimension at most kd. In particular, if W has codimension 1, then core(W) has codimension at most d.

Proof. The claim follows from the fact that

$$core(W) = W \cap T(W) \cap \cdots \cap T^{d-1}(W)$$

and $W, T(W), \dots, T^{d-1}(W)$ all have the same codimension in V, since T is invertible.

Proposition 3.5. Let $T: V \to V$ be an invertible linear transformation of a finite-dimensional vector space V such that φ_T is a product of distinct irreducible factors. Let W be a codimension 1 subspace of V. Then any invariant complement of $\operatorname{core}(W)$ in V is a sum of indecomposable subspaces with distinct minimal polynomials.

Proof. Let $\varphi_T(x) = r_1(x) \dots r_m(x)$, where r_1, \dots, r_m are the distinct irreducible factors. Put $V_i = \ker(r_i(T))$ and $W_i = \operatorname{core}(W) \cap V_i$ for $i = 1, \dots, m$. Then we have $\operatorname{core}(W) = W_1 \oplus \dots \oplus W_m$. Let $i \in \{1, \dots, m\}$. Let k_i be the number of indecomposable components of V having minimal polynomial r_i , which is just the number of indecomposable components of V_i . To complete the proof, therefore, by the Krull–Schmidt theorem, it suffices to show that the number of indecomposable components of W_i is k_i or $k_i - 1$. Let d_i be the degree of r_i . Observe that $W_i = \operatorname{core}_{V_i}(W \cap V_i)$. But $W \cap V_i$ has codimension at most 1 in V_i . Thus W_i has codimension at most d_i in V_i , by Lemma 3.4. But d_i is the dimension of any indecomposable component of V_i , so W_i contains at least $k_i - 1$ indecomposable components.

Lemma 3.6. Let $T: V \to V$ be a linear transformation such that $\varphi_T = r_1 \dots r_m$ for distinct irreducible polynomials r_1, \dots, r_m . Suppose that $V = V_1 \oplus \dots \oplus V_m$, where $V_i = \ker(r_i(T))$ is indecomposable for $i = 1, \dots, m$. Let B_i be a basis for V_i for $i = 1, \dots, m$ and put $B = B_1 \cup \dots \cup B_m$, which is a basis for V. Put

$$\overline{V} = \left\{ \sum_{b \in B} \lambda_b b \in V \; \middle| \; \sum_{b \in B} \lambda_b = 0 \right\}.$$

Then \overline{V} is a core-free subspace of codimension 1. Conversely, if W is a core-free subspace of codimension 1, then we can choose a basis B_i for V_i for $i=1,\ldots,m$ such that $W=\overline{V}$.

Proof. Put $n = \dim(V)$. If n = 1, then the claims hold trivially, so we may suppose $n \ge 2$. If $B = \{v_1, \ldots, v_n\}$, then $\{v_1 - v_2, \ldots, v_1 - v_n\}$ is a basis for \overline{V} , so $\dim(\overline{V}) = n - 1$. Because v_1, \ldots, v_m are distinct, v_1, \ldots, v_m are the unique indecomposable subspaces, and none of these is contained in \overline{V} , so $\operatorname{core}(\overline{V}) = \{0\}$.

Conversely, let W be a codimension 1 subspace of V such that $core(W) = \{0\}$. Choose any basis B_1' for $W \cap V_1$. Certainly, $W \cap V_1$ has codimension 1 in V_1 , since $core(W) = \{0\}$. Hence $B_1' \cup \{v_1\}$ is a basis for V_1 for some $v_1 \in V_1$. Put

$$B_1 = \{b + v_1 \mid b \in B_1'\} \cup \{v_1\}.$$

Then B_1 is also a basis for V_1 . If m=1, then $V=V_1$ and $\overline{V}=W$, starting an induction. Suppose m>1 and put $\widehat{V}=V_2\oplus\cdots\oplus V_m$, so that $V=V_1\oplus\widehat{V}$. Certainly, $W\cap\widehat{V}$ has codimension 1 in \widehat{V} , since $\mathrm{core}(W)=\{0\}$. Suppose, as an inductive hypothesis, that we have bases B_2,\ldots,B_m for V_2,\ldots,V_m respectively, such that

$$W \cap \widehat{V} = \left\{ \sum_{c \in C} \lambda_c c \in \widehat{V} \mid \sum_{c \in C} \lambda_c = 0 \right\},$$

where $C = B_2 \cup \cdots \cup B_m$. Observe that $(W \cap V_1) \oplus (W \cap \widehat{V})$ has codimension 1 in W, so we may choose some

$$w \in W \setminus ((W \cap V_1) \oplus (W \cap \widehat{V})).$$

But $w=v+\widehat{v}$ for some unique $w\in V_1$ and $\widehat{v}\in\widehat{V}$. If one of v or \widehat{v} is in W, then both are, contradicting the choice of w. Hence $v,\widehat{v}\not\in W$. But $\widehat{v}=\sum_{c\in C}\lambda_c c$ for some scalars λ_c . Put

$$\lambda = \sum_{c \in C} \lambda_c.$$

By the inductive hypothesis, $\lambda \neq 0$. Now put

$$B_1 = \left\{ b - \frac{1}{\lambda} v \mid b \in B_1' \right\} \cup \left\{ -\frac{1}{\lambda} v \right\},\,$$

so that B_1 is a basis for V_1 . Finally, put $B = B_1 \cup \cdots \cup B_m$ and form \widehat{V} with respect to B. But,

$$w = v + \widehat{v} = -\lambda \left(-\frac{1}{\lambda} v \right) + \sum_{c \in C} \lambda_c c$$

and $-\lambda + \sum_{c \in C} \lambda_c = -\lambda + \lambda = 0$, so that $w \in \overline{V}$, by definition. Noting that

$$W = \langle w \rangle \oplus (W \cap V_1) \oplus (W \cap \widehat{V}),$$

it is straightforward, using the inductive hypothesis, to verify that $W \subseteq \overline{V}$. Because $\dim(W) = n - 1 = \dim(\overline{V})$, we have $W = \overline{V}$, establishing the inductive step.

We call the subspace \overline{V} defined in the statement of the previous lemma, the canonical core-free subspace associated with V (depending of course on the choice of basis).

Proposition 3.7. Let W be a subspace of a finite-dimensional vector space V over \mathbb{F}_p acted on by an invertible linear transformation $T:V\to V$ of order q, where p and q are distinct primes. Then W has codimension 1 if and only if some (and hence every) invariant complement $\operatorname{core}(W)'$ of $\operatorname{core}(W)$ in V is a sum of indecomposable components with distinct minimal polynomials such that

$$W = \operatorname{core}(W) \oplus \overline{\operatorname{core}(W)'}$$

for some canonical core-free subspace $\overline{\operatorname{core}(W)'}$ of $\operatorname{core}(W)'$.

Proof. Note first that the hypotheses guarantee that T is invertible and φ_T is a product of distinct irreducible polynomials. The "if" direction is immediate by Lemma 3.6. Suppose then that W has codimension 1, and choose some invariant complement $\operatorname{core}(W)'$ of $\operatorname{core}(W)$ in V. By Proposition 3.5, the indecomposable components of $\operatorname{core}(W)'$ have distinct minimal polynomials. By Lemma 3.3, $W = \operatorname{core}(W) \oplus (W \cap \operatorname{core}(W)')$, and $W \cap \operatorname{core}(W)'$ is $\operatorname{core-free}$ of codimension 1 in $\operatorname{core}(W)'$. By Lemma 3.6, there is a choice of basis for $\operatorname{core}(W)'$ such that $W \cap \operatorname{core}(W)' = \overline{\operatorname{core}(W)'}$.

4 Minimal degrees when the base group is elementary abelian

Throughout this section p and q are distinct primes. Let $V = \mathbb{F}_p^n \cong C_p^n$ be an n-dimensional vector space over the field \mathbb{F}_p of p elements, for some fixed positive integer n, and T an $n \times n$ matrix with entries from \mathbb{F}_p of multiplicative order q. Recall that, if W is a subspace of V that is invariant under this action, then W has

an invariant complement W' in V. The minimal polynomial φ_T is a product of distinct irreducible polynomials, all of degree s where s is the multiplicative order of p modulo q, with the possible exception (when $s \geq 2$) of a factor x-1. Note that s=1 if and only if \mathbb{F}_p has a primitive qth root of unity, in which case all the irreducible factors of φ_T are linear.

Proposition 4.1. Let $G = V \rtimes T$. There exist nonnegative integers ℓ and t and a collection $\mathscr{C} = \mathscr{D} \cup \mathscr{E}$ affording a minimal faithful representation of G such that

$$\mathscr{D} = \{D_1, \dots, D_\ell\} \quad and \quad \mathscr{E} = \{E_1\langle T \rangle, \dots, E_t\langle T \rangle\}$$

for some codimension 1 subspaces D_1, \ldots, D_ℓ of V, and invariant subspaces E_1, \ldots, E_t of V, such that each of E_1, \ldots, E_t complements an indecomposable subspace (where we interpret $\ell = 0$ and t = 0 to mean $\mathfrak{D} = \emptyset$ and $\mathfrak{E} = \emptyset$ respectively).

Note that it is possible to have t = 1 and $E_1 = \{0\}$, the complement of V in the case that V is indecomposable.

Proof. We may regard G = VC as an internal semidirect product of V by $C \cong \langle T \rangle \cong C_q$, but still retaining vector space terminology and additive notation for the group operation restricted to V. By [11, Lemma 1] there exists a collection $\mathscr C$ of meet-irreducible subgroups affording a minimal faithful representation of G. Then $\mathscr C = \mathscr D \cup \mathscr C$, where $\mathscr D$, possibly empty, comprises all subgroups in $\mathscr C$ of index divisible by q, and $\mathscr C$, possibly empty, consists of all subgroups in $\mathscr C$ of order divisible by q. In particular, elements of $\mathscr D$ are subgroups of V. By Lemma 2.6, these must all be proper subgroups of V, since V is normal in G, so, being meetirreducible, must have codimension 1 as subspaces of V.

Let $K \in \mathscr{E}$, so q divides |K|. Put $W = K \cap V$. Note that V is elementary abelian, so all of its subgroups are normal in V. By (a) and (b) of Lemma 2.5, $K = W \langle T \rangle^g$ for some $g \in G$ and W is an invariant subspace of V (being normal in G). Certainly $W \neq V$ (for otherwise $G = K \in \mathscr{E}$, contradicting minimality), so $V = W \oplus W'$ for some nontrivial invariant subspace W' of V. If W' is not indecomposable, then $W' = W_1' \oplus W_2'$ for some nontrivial invariant subspaces W_1' and W_2' of V, so $W = (W \oplus W_1') \cap (W \oplus W_2')$ and $K = K_1 \cap K_2$, where K is a proper subgroup of $K_i = (W \oplus W_i') \langle T^g \rangle$ for i = 1 and 2, contradicting that K is meet-irreducible. Hence W' is indecomposable. Note that K and $W \langle T \rangle$ have the same core and index in G, so we may, if necessary, replace K by $W \langle T \rangle$ in \mathscr{E} . \square

In what follows we develop a complete catalogue, namely, (4.1) and (4.8) below, of formulae for $\mu(V \rtimes T)$. Note, throughout, that $T \neq I$, so $\varphi_T(x) \neq x - 1$. The next two theorems cover all possibilities, where s is the order of p modulo q.

In the first case (Theorem 4.5), we investigate what happens when all of the factors of the minimal polynomial have the same degree $s \ge 1$. In the second case (Theorem 4.8), we investigate the remaining possibilities, namely, when x-1 is a factor and all other factors have the same degree $s \ge 2$.

Lemma 4.2. If $G = V \rtimes T$, where all irreducible factors of φ_T are linear, then $\mu(G) = np$.

Proof. Suppose that all irreducible factors of φ_T are linear. Without loss of generality, we may suppose T is diagonal and $V = \langle v_1, \ldots, v_n \rangle$, where v_1, \ldots, v_n are eigenvectors for T. For $i = 1, \ldots, n$, put $H_i = \langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \rangle$. Then $\{H_1, \ldots, H_n\}$ affords a minimal faithful representation of V by T-invariant subspaces of degree np. By Lemma 2.3, $\mu(G) = \mu(V) = np$.

An illustration of the phenomenon of Lemma 4.2 appears above in Example 2.4.

Lemma 4.3. Let p and q be distinct primes and s the multiplicative order of p modulo q. Suppose that $s \ge 2$. Let a be the smallest integer such that $q < ap^{s-1}$. Then a = 1, or a = 2 and $q = 1 + p + \cdots + p^{s-1}$. If s = a = 2, then p = 2 and q = 3.

Proof. Suppose a>1, so $p^{s-1}< q$. Note that q divides $p^s-1=(p-1)(1+p+\cdots+p^{s-1})$. If q divides p-1, then $q< p\leq p^{s-1}$, a contradiction. Hence q divides $1+p+\cdots+p^{s-1}$ and $p^{s-1}< q< 1+p+\cdots+p^{s-1}$. It follows that $q=1+p+\cdots+p^{s-1}< 2p^{s-1}$ and a=2.

Remark 4.4. A generalised Mersenne prime q has the form $q = 1 + p + \cdots + p^{k-1}$ for some prime p and integer k (which includes the usual Mersenne primes of the form $2^k - 1$). The previous lemma asserts that, in our context, if a = 2 and $s \ge 2$, then q must be a generalised Mersenne prime. It is not known if there are infinitely many such primes.

Theorem 4.5. Suppose that r_1, \ldots, r_m are distinct irreducible polynomials over \mathbb{F}_p of degree s, where s is the order of p modulo q, such that

$$\varphi_T = r_1 \dots r_m$$
 and $\chi_T = r_1^{k_1} \dots r_m^{k_m}$.

We may suppose $k_1 \ge k_2 \ge \cdots \ge k_m$. Then

$$\mu(V \rtimes T) = \begin{cases} np & \text{if } s = 1, \\ k_1 pq & \text{if } s > 1 \text{ and } q < p^{s-1}, \\ k_1 p^s & \text{if } s > 1, m = 1 \text{ and } q > p^{s-1}, \\ k_2 pq + (k_1 - k_2) p^s & \text{if } s > 1, m > 1 \text{ and } q > p^{s-1}. \end{cases}$$
(4.1)

Proof. The first alternative in (4.1) is given by Lemma 4.2, so we may suppose s > 1. Let a denote the smallest integer such that $q < ap^{s-1}$. By Lemma 4.3, a = 1 or 2. It is convenient, throughout, to put $k_{m+1} = 0$. In particular, if m = 1 and a = 2, then $k_a = k_2 = 0$. Put $G = V \times T = V \langle T \rangle$ (regarded as an internal semidirect product, mixing addition and multiplication, without ever causing confusion). We have a direct sum decomposition

$$V = \bigoplus_{i=1}^{m} \bigoplus_{i=1}^{k_i} V_{ij} = \bigoplus_{(i,j) \in I} V_{ij},$$

where V_{ij} is an indecomposable subspace of V such that $T|_{V_{ij}}$ has minimal polynomial r_i for each $(i, j) \in I$, where $I = \{(i, j) \mid 1 \le i \le m, 1 \le j \le k_i\}$. For $J \subseteq I$, put

$$V_J = \bigoplus_{(i,j)\in J} V_{ij},$$

so that $V = V_I = V_J \oplus V_{I \setminus J}$. If $W = V_J$ for some $J \subseteq I$, then put $W' = V_{I \setminus J}$, so that $V = W \oplus W'$.

Note that if $k_a=0$, then m=1 and a=2. Suppose for the time being that $k_a\geq 1$, so either a=1, or a=2 and $m\geq 2$. Because $k_a\geq k_{a+1}\geq \cdots \geq k_m>k_{m+1}=0$, we have that, for each j=1 to k_a , there exists some largest $\ell_j\in\{a,\ldots,m\}$ such that

$$k_{\ell_j} \ge j \ge k_{\ell_j+1}$$

and we put

$$W_j = \bigoplus_{i=1}^{\ell_j} V_{ij},$$

so that $T|_{W_j}$ has minimal polynomial $r_1 \dots r_{\ell_j}$. In particular, we have $\ell_1 = m$, since $k_m \ge 1 > 0 = k_{m+1}$, and $T|_{W_1}$ has minimal polynomial $r_1 \dots r_m$. Thus

$$V = V_X \oplus \bigoplus_{j=1}^{k_a} W_j, \tag{4.2}$$

where $X = \{(1, j) \mid k_2 < j \le k_1\}$ if a = 2 and $k_1 > k_2$, and $X = \emptyset$ otherwise, in which case we interpret $V_X = \{0\}$. For j = 1 to k_a , put

$$H_j = \overline{W_j} \oplus W'_j$$
,

where $\overline{W_j}$ is a canonical codimension 1 subspace of W_j as described in Lemma 3.6, so that $\operatorname{core}(\overline{W_j}) = \{0\}$, $\operatorname{core}(H_j) = W_j'$ and $|G: H_j| = pq$. For $(1, j) \in X$, put

$$K_j = V'_{1j} \langle T \rangle,$$

so that $core(K_j) = V'_{1j}$ and $|G: K_j| = p^s$. Now put

$$\mathscr{C} = \{H_1, \dots, H_{k_a}\} \cup \{K_j \mid (1, j) \in X\}. \tag{4.3}$$

Then

$$\operatorname{core}\left(\bigcap \mathscr{C}\right) = \bigcap_{j=1}^{k_a} W_j' \cap \bigcap_{(1,j) \in X} V_{1j}' = V_X \cap V_X' = \{0\},\$$

so that \mathscr{C} affords a faithful representation of G of degree

$$\sum_{j=1}^{k_a} |G: H_j| + \sum_{(1,j)\in X} |G: K_j| = k_a pq + (k_1 - k_a) p^s.$$

Note that if $k_a = 0$, so that m = 1 and a = 2, then (4.2) may be interpreted as $V = V_I$ (since X = I) and (4.3) may be interpreted as $\mathscr{C} = \{K_j \mid (1, j) \in I\}$, and the conclusion about the faithfulness and degree of the representation afforded by \mathscr{C} still holds. This proves that, in all cases,

$$\mu(G) \le k_a pq + (k_1 - k_a) p^s.$$

We now prove that this formula is also a lower bound for $\mu(G)$. By Proposition 4.1, there exists a collection $\mathscr{C} = \mathscr{D} \cup \mathscr{E}$ affording a minimal faithful representation of G such that

$$\mathscr{D} = \{D_1, \dots, D_\ell\}$$
 and $\mathscr{E} = \{E_1\langle T \rangle, \dots, E_t\langle T \rangle\}$

for some codimension 1 subspaces D_1, \ldots, D_ℓ of V, and invariant subspaces E_1, \ldots, E_t of V, each of which complements an indecomposable subspace. We interpret $\ell = 0$ and t = 0 to mean $\mathfrak{D} = \emptyset$ and $\mathfrak{E} = \emptyset$ respectively. By Proposition 3.7, for $i = 1, \ldots, \ell$, we may write

$$D_i = \operatorname{core}(D_i) \oplus \overline{\operatorname{core}(D_i)'} = \overline{S_i} \oplus S_i',$$

where we put $S_i = \text{core}(D_i)'$. The degree of the representation afforded by \mathscr{C} is $\ell pq + tp^s$, so to complete the proof of the theorem it suffices to show

$$\ell pq + tp^s \ge k_a pq + (k_1 - k_a)p^s.$$
 (4.4)

As a stepping stone towards doing this, we will first prove $\ell \ge k_a$. We use the following claim, which we will prove later:

Claim. We have a decomposition

$$V = S_1 \oplus \cdots \oplus S_\ell \oplus T_1 \oplus \cdots \oplus T_\ell$$

for some invariant subspaces $S_1, \ldots, S_\ell, T_1, \ldots, T_t$ of V such that, after possible replacement of \mathcal{D} (without changing ℓ),

$$D_i = \overline{S_i} \oplus S'_i$$
 and $E_j = T'_i$,

where S_i is a sum of indecomposable subspaces with distinct minimal polynomials for $i = 1, ..., \ell$, and T_i is indecomposable for j = 1, ..., t.

Suppose by way of contradiction that $\ell < k_a$. Certainly, then, either a=1 and $\ell < k_1$, or m>1, a=2 and $\ell < k_2 \le k_1$. Hence, using the decomposition of V in the Claim, at most k_1-1 indecomposables with minimal polynomial r_1 appear in $S_1 \oplus \cdots \oplus S_\ell$, and, when a=2, at most k_2-1 indecomposables with minimal polynomial r_2 also appear. But k_1 and k_2 copies of indecomposables with minimal polynomial r_1 and r_2 , respectively, appear in the decomposition of V. Hence $\ell \ge a$ and, without loss of generality, T_1 is indecomposable with minimal polynomial r_1 , and, in the case a=2, we may suppose T_2 is indecomposable with minimal polynomial r_2 . Put

$$S = \begin{cases} \overline{T_1} \oplus T_1' & \text{if } a = 1, \\ \overline{T_1} \oplus T_2 \oplus (T_1 \oplus T_2)' & \text{if } a = 2, \end{cases}$$

where, in the second case, $(T_1 \oplus T_2)' = T_1' \cap T_2' = E_1 \cap E_2$, which is indeed a complement for $T_1 \oplus T_2$. But $core(S) = E_1$, if a = 1, and $core(S) = E_1 \cap E_2$, if a = 2, so that the collection

$$\mathscr{C}' = \begin{cases} \mathscr{D} \cup \{S\} \cup \mathscr{E} \setminus \{E_1 \langle T \rangle\} & \text{if } a = 1, \\ \mathscr{D} \cup \{S\} \cup \mathscr{E} \setminus \{E_1 \langle T \rangle, E_2 \langle T \rangle\} & \text{if } a = 2, \end{cases}$$

affords a faithful representation of G, but with degree less than the degree of the representation afforded by \mathscr{C} , since

$$|G:S| = pq < ap^{s} = \begin{cases} |G:E_{1}\langle T \rangle| & \text{if } a = 1, \\ |G:E_{1}\langle T \rangle| + |G:E_{2}\langle T \rangle| & \text{if } a = 2. \end{cases}$$

This contradicts that \mathscr{C} is minimal. Hence $\ell \geq k_a$.

There are at most ℓ occurrences of indecomposables with minimal polynomial r_1 appearing in $S_1 \oplus \cdots \oplus S_\ell$, so at least $k_1 - \ell$ such indecomposables must occur amongst T_1, \ldots, T_t , so that $t \geq k_1 - \ell$. Thus

$$\ell pq + tp^{s} = k_{a}pq + (\ell - k_{a})pq + tp^{s}$$

$$\geq k_{a}pq + (\ell - k_{a})(a - 1)p^{s} + p^{s} \begin{cases} 0 & \text{if } a = 1, \\ k_{1} - \ell & \text{if } a = 2, \end{cases}$$

$$= k_{a}pq + (k_{1} - k_{a})p^{s}$$

and (4.4) is proven. The statement of the theorem for s > 1 is therefore captured succinctly by the formula

$$\mu(G) = k_a pq + (k_1 - k_a) p^s. \tag{4.5}$$

To complete the proof of the theorem, it therefore remains to verify the Claim. As a first step we prove

$$V = T_1 \oplus \cdots \oplus T_t \oplus (E_1 \cap \cdots \cap E_t) \tag{4.6}$$

for some indecomposables T_i such that $E_i = T_i'$ for i = 1, ..., t. Note that we have $V = E_1 \oplus T_1$ for some indecomposable T_1 , so $E_1 = T_1'$, which starts an induction. Suppose, as inductive hypothesis, that for $k \le t$,

$$V = T_1 \oplus \cdots \oplus T_{k-1} \oplus (E_1 \cap \cdots \cap E_{k-1}),$$

for some indecomposables T_1, \ldots, T_{k-1} such that $E_i = T_i'$ for $i = 1, \ldots, k-1$. By the minimality of \mathscr{C} , $E_1 \cap \cdots \cap E_k$ is a proper subspace of $E_1 \cap \cdots \cap E_{k-1}$. Further,

$$\frac{E_1 \cap \dots \cap E_{k-1}}{E_1 \cap \dots \cap E_k} \cong \frac{(E_1 \cap \dots \cap E_{k-1}) + E_k}{E_k} = \frac{V}{E_k},$$

which is indecomposable, so we may choose an indecomposable T_k such that

$$E_1 \cap \cdots \cap E_{k-1} = (E_1 \cap \cdots \cap E_k) \oplus T_k$$
.

Certainly T_k is not a subspace of E_k (for otherwise $E_1 \cap \cdots \cap E_k \cap T_k \neq \{0\}$), so it follows that $V = E_k \oplus T_k$, so we may write $E_k = T'_k$. Then

$$V = (T_1 \oplus \cdots \oplus T_{k-1}) \oplus (E_1 \cap \cdots \cap E_{k-1})$$

= $T_1 \oplus \cdots \oplus T_k \oplus (E_1 \cap \cdots \cap E_k),$

which completes the inductive step and the proof of (4.6). Note that if $\ell = 0$ (so that $\mathscr{D} = \emptyset$), then (4.6) proves the Claim (for then $\mathscr{C} = \mathscr{E}$ and $E_1 \cap \cdots \cap E_t = \{0\}$ so that $V = T_1 \oplus \cdots \oplus T_t$).

We may suppose in what follows that $\ell > 0$. Put $E = E_1 \cap \cdots \cap E_t$. We next prove, by induction, that we can replace \mathscr{D} (if necessary) so that the following holds for $k = 0, \ldots, \ell$:

$$V = S_1 \oplus \cdots \oplus S_k \oplus T_1 \oplus \cdots \oplus T_t \oplus (S_1' \cap \cdots \cap S_k' \cap E), \tag{4.7}$$

where $D_i = \overline{S_i} \oplus S_i'$ and S_i is a sum of indecomposables with distinct minimal polynomials, for i = 1, ..., k. This suffices to prove the Claim, because when $k = \ell$ we have

$$S_1' \cap \cdots \cap S_k' \cap E = S_1' \cap \cdots \cap S_\ell' \cap E = \bigcap \mathscr{C} = \{0\}.$$

Note that (4.6) now becomes the initial case k=0 in a proof by induction of (4.7). Suppose, as inductive hypothesis, that $0 < k \le \ell$ and we can replace \mathscr{D} (if necessary) so that

$$V = S_1 \oplus \cdots \oplus S_{k-1} \oplus T_1 \oplus \cdots \oplus T_t \oplus (S'_1 \cap \cdots \cap S'_{k-1} \cap E),$$

where $D_i = \overline{S_i} \oplus S_i'$ and S_i is a sum of indecomposables with distinct minimal polynomials for $i = 1 \dots, k-1$. By the minimality of \mathscr{C} ,

$$core(D_1 \cap \cdots \cap D_{k-1} \cap E) \neq core(D_1 \cap \cdots \cap D_k \cap E),$$

that is,

$$S'_1 \cap \cdots \cap S'_{k-1} \cap E \neq S'_1 \cap \cdots \cap S'_{k-1} \cap E \cap \operatorname{core}(D_k).$$

But

$$\frac{S'_1 \cap \dots \cap S'_{k-1} \cap E}{S'_1 \cap \dots \cap S'_{k-1} \cap E \cap \operatorname{core}(D_k)} \cong \frac{(S'_1 \cap \dots \cap S'_{k-1} \cap E) + \operatorname{core}(D_k)}{\operatorname{core}(D_k)}$$
$$\leq \frac{V}{\operatorname{core}(D_k)} \cong \operatorname{core}(D_k)',$$

which is a sum of indecomposables with distinct minimal polynomials. Hence

$$(S'_1 \cap \cdots \cap S'_{k-1} \cap E \cap \operatorname{core}(D_k)) \oplus S_k = S'_1 \cap \cdots \cap S'_{k-1} \cap E$$

for some invariant subspace S_k contained in E, which is a sum of indecomposables with distinct minimal polynomials. Choose any complement $(S_1' \cap \cdots \cap S_{k-1}' \cap E)'$ and put

$$S'_{k} = (S'_{1} \cap \dots \cap S'_{k-1} \cap E \cap \operatorname{core}(D_{k})) \oplus (S'_{1} \cap \dots \cap S'_{k-1} \cap E)',$$

which is indeed a complement of S_k . Put

$$\widetilde{D_k} = \overline{S_k} \oplus S_k'.$$

Observe that $core(\widetilde{D_k}) = S'_k$ and

$$\begin{split} S_1' &\cap \dots \cap S_{k-1}' \cap E \cap \operatorname{core}(\widetilde{D_k}) \\ &= S_1' \cap \dots \cap S_{k-1}' \cap E \cap S_k' \\ &= (S_1' \cap \dots \cap S_{k-1}' \cap E) \cap \left[\left(S_1' \cap \dots \cap S_{k-1}' \cap E \cap \operatorname{core}(D_k) \right) \right. \\ &\left. \oplus \left(S_1' \cap \dots \cap S_{k-1}' \cap E \right)' \right] \\ &= S_1' \cap \dots \cap S_{k-1}' \cap E \cap \operatorname{core}(D_k), \end{split}$$

so we may replace D_k by $\widetilde{D_k}$ in \mathscr{D} without disturbing faithfulness or the degree of the representation afforded by \mathscr{C} . Renaming $\widetilde{D_k}$ by D_k , we get

$$V = S_{1} \oplus \cdots \oplus S_{k-1} \oplus T_{1} \oplus \cdots \oplus T_{t} \oplus (S'_{1} \cap \cdots \cap S'_{k-1} \cap E)$$

$$= S_{1} \oplus \cdots \oplus S_{k-1} \oplus T_{1} \oplus \cdots \oplus T_{t}$$

$$\oplus \left(\left(S'_{1} \cap \cdots \cap S'_{k-1} \cap E \cap \operatorname{core}(D_{k}) \right) \oplus S_{k} \right)$$

$$= S_{1} \oplus \cdots \oplus S_{k-1} \oplus T_{1} \oplus \cdots \oplus T_{t} \oplus \left(S_{k} \oplus (S'_{1} \cap \cdots \cap S'_{k-1} \cap E \cap S'_{k}) \right)$$

$$= S_{1} \oplus \cdots \oplus S_{k} \oplus T_{1} \oplus \cdots \oplus T_{t} \oplus \left(S'_{1} \cap \cdots \cap S'_{k} \cap E \right),$$

completing the inductive step, and (4.7) is proved. This completes the proof of the Claim and therefore also the proof of the theorem.

Formula (4.5) captures the three alternatives in the previous theorem when s > 1. However, by Remark 4.4 and Theorem 4.5, we have the following further simplification (eventually) if there turn out to be only finitely many generalised Mersenne primes:

Corollary 4.6. With the hypotheses of Theorem 4.5, if s > 1 and there are only finitely many generalised Mersenne primes, then there is an integer N such that for all $q \geq N$, $\mu(V \rtimes T) = k_1 pq$.

Example 4.7. The smallest instance when $q > p^{s-1}$, so that the third alternative of (4.1) is able to kick in, occurs when p=2 and q=3, so that s=2. Let $T=\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, so that $\varphi_T=x^2+x+1$, and put $G=\mathbb{F}_2^2\rtimes T\cong C_2^2\rtimes C_3\cong \mathrm{Alt}(4)$. As expected, (4.1) predicts correctly that $\mu(G)=p^s=4$.

Theorem 4.8. Suppose that r_1, \ldots, r_m are distinct irreducible polynomials over \mathbb{F}_p of degree $s \geq 2$, where s is the order of p modulo q, such that

$$\varphi_T = (x-1)r_1 \dots r_m$$
 and $\chi_T = (x-1)^k r_1^{k_1} \dots r_m^{k_m}$.

We may suppose $k_1 \ge k_2 \ge \cdots \ge k_m$. Then

$$\mu(V \times T) = \begin{cases} k_1 p q & \text{if } k \leq k_1, \ q < p^{s-1}, \\ k_1 p q + (k - k_1) p & \text{if } k > k_1, \ q < p^{s-1}, \\ k_1 p^s + k p & \text{if } m = 1, \ q > p^{s-1}, \\ k_2 p q + (k_1 - k_2) p^s & \text{if } m > 1, \ k \leq k_2, \ q > p^{s-1}, \\ k_2 p q + (k_1 - k_2) p^s & \text{if } m > 1, \ k > k_2, \ q > p^{s-1}. \end{cases}$$

$$(4.8)$$

Proof. As before, let a be the smallest integer such that $q < ap^{s-1}$. By Lemma 4.3, a=1 or 2. We again put $k_a=0$ when m=1 and a=2. Put $G=V \rtimes T=V \langle T \rangle$. We have a decomposition $V=\widetilde{V} \oplus Z$, where

$$\widetilde{V} = \bigoplus_{(i,j) \in I} V_{ij}$$
 and $Z = \bigoplus_{\alpha=1}^k Z_{\alpha}$,

where the V_{ij} are indecomposable subspaces of V with minimal polynomials from amongst r_1, \ldots, r_m , adopting the notation of the proof of the previous theorem, and the Z_{α} are one-dimensional indecomposable subspaces of V on which the action of T is trivial (so $Z_{\alpha}\langle T \rangle \cong C_p \times C_q$). By Theorem 4.5 and (4.5),

$$\mu(\widetilde{V}\langle T\rangle) = k_a pq + p^s(k_1 - k_a). \tag{4.9}$$

Certainly, by (1.1), we have $\mu(G) \ge \mu(\widetilde{V}\langle T \rangle)$. There are two cases.

Case 1: Suppose that $k_a \ge k$. Let \mathscr{C} be the collection of subgroups described in the first part of the proof of Theorem 4.5 that affords a faithful representation of $\widetilde{V}(T)$ of degree $\mu(\widetilde{V}(T))$, replacing V by \widetilde{V} throughout. For $\alpha = 1, \ldots, k$, put

$$U_{\alpha} = W_{\alpha} \oplus Z_{\alpha}$$
 and $\widehat{H}_{\alpha} = \overline{U_{\alpha}} \oplus W'_{\alpha} \oplus \bigoplus_{\beta \neq \alpha} Z_{\beta}$,

where $\overline{U_{\alpha}}$ is a canonical codimension 1 subspace of U_{α} with trivial core (see Lemma 3.6), and here W'_{α} denotes a complement of W_{α} in \widetilde{V} , so that

$$\operatorname{core}(\widehat{H}_{\alpha}) = W'_{\alpha} \oplus \bigoplus_{\beta \neq \alpha} Z_{\beta}.$$

Now put

$$\widehat{\mathscr{C}} = \{\widehat{H}_1, \dots, \widehat{H}_k, H_{k+1} \oplus Z, \dots, H_{k_n} \oplus Z\} \cup \{K_j \oplus Z \mid (1, j) \in X\},\$$

where the notation $K_j \oplus Z$ represents the internal semidirect product resulting from joining K_j with Z (since the action of T on Z is trivial). Then

$$\operatorname{core}\left(\bigcap\widehat{\mathscr{C}}\right) = \operatorname{core}\left(\bigcap\mathscr{C}\right) \oplus \bigcap_{\alpha=1}^{k} \bigoplus_{\beta \neq \alpha} Z_{\beta} = \{0\},$$

so $\widehat{\mathscr{C}}$ affords a faithful representation of G. Its degree is the same as the degree of the representation of $\widetilde{V}\langle T\rangle$ afforded by \mathscr{C} , which is $\mu(\widetilde{V}\langle T\rangle)$, so

$$\mu(G) \le \mu(\widetilde{V}\langle T \rangle) \le \mu(G),$$

whence we have equality. Formula (4.9) captures the first and fourth alternatives in (4.8).

Case 2: Suppose that $k > k_a$. We make the same definitions as in the previous case, except that we put

$$\widehat{\mathscr{C}} = \{\widehat{H_1}, \dots, \widehat{H_{k_a}}\} \cup \{K_j \oplus Z \mid (1, j) \in X\}$$

$$\cup \left\{ \left(\widetilde{V} \oplus \bigoplus_{\beta \neq \alpha} Z_{\beta} \right) \langle T \rangle \mid \alpha = k_a + 1, \dots, k \right\}.$$

Again the representation of G afforded by $\widehat{\mathscr{C}}$ is faithful. Its degree is

$$k_a pq + (k - k_a)p + p^s(k_1 - k_a),$$

which therefore serves as a lower bound for $\mu(G)$.

By Proposition 4.1, there exists a collection $\mathscr{C} = \mathscr{D} \cup \mathscr{E}$ of subgroups affording a minimal representation of G such that

$$\mathscr{D} = \{D_1, \dots, D_\ell\}$$
 and $\mathscr{E} = \{E_1\langle T \rangle, \dots, E_t\langle T \rangle\},\$

where D_1, \ldots, D_k are codimension 1 subspaces of V and, after reordering (if necessary), E_1, \ldots, E_{t_0} are complements of indecomposables with minimal polynomials from amongst r_1, \ldots, r_m and E_{t_0+1}, \ldots, E_t are complements of one-dimensional indecomposables. As before, $\ell \geq k_a$ and, by the same reasoning as before, $t_0 \geq k_1 - \ell$ and $t - t_0 \geq k - \ell$. By the definition of a, and since $p \neq q$, we have $(a-1)p^{s-1} < q$, so

$$pq \ge (a-1)p^s + p$$
.

Hence

$$\mu(G) = \ell pq + (t - t_0)p + t_0 p^s$$

$$= k_a pq + (\ell - k_a)pq + (t - t_0)p + t_0 p^s$$

$$\geq k_a pq + (\ell - k_a)((a - 1)p^s + p) + (k - \ell)p + p^s \begin{cases} 0 & \text{if } a = 1, \\ k_1 - \ell & \text{if } a = 2, \end{cases}$$

$$= k_a pq + (k - k_a)p + p^s(k_1 - k_a),$$

whence we have

$$\mu(G) = k_a pq + (k - k_a)p + p^s(k_1 - k_a). \tag{4.10}$$

Formula (4.10) captures the second, third and fifth alternatives in (4.8), and the proof is complete.

Illustrations of formula (4.8) are implicit in applications in the next section.

5 Adding direct factors without increasing the degree

Results of the preceding section are applied now to investigate possible ways in which μ may fail to be additive with respect to taking direct products. The question of when additivity occurs is an important theme in the work of Johnson [11] and Wright [22]. The failure of additivity in general was demonstrated by a seminal example in [22] and explored further by Saunders [17–19]. In all their cases, nontrivial groups G and H are exhibited in which G does not decompose nontrivially as a direct product, H is a cyclic group of prime order and

$$\mu(G \times H) = \mu(G). \tag{5.1}$$

We reproduce these examples below as special cases of applications of the formulae in Theorems 4.5 and 4.8. By combining these formulae with Theorem 2.7, we finish by exhibiting examples of groups G that do not decompose nontrivially as direct products, but such that (5.1) holds for arbitrarily large direct products H of elementary abelian groups (with mixed primes).

Example 5.1. Consider the groups

$$G_1 = \mathbb{F}_5^2 \rtimes T_1, \quad G_2 = \mathbb{F}_5^3 \rtimes T_2, \quad G_3 = \mathbb{F}_5^4 \rtimes T_3,$$

where

$$T_1 = \begin{bmatrix} 0 & 4 \\ 1 & 4 \end{bmatrix}, \quad T_2 = \begin{bmatrix} 0 & 4 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad T_3 = \begin{bmatrix} 0 & 4 & 0 & 0 \\ 1 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Then

$$|T_1| = |T_2| = |T_3| = 3,$$

$$\varphi_{T_1} = \chi_{T_1} = x^2 + x + 1,$$

$$\varphi_{T_2} = \chi_{T_2} = \varphi_{T_3} = (x - 1)(x^2 + x + 1),$$

$$\chi_{T_3} = (x - 1)^2(x^2 + x + 1).$$

Then $G_1 \cong C_5^2 \rtimes C_3$ and $\mu(G_1) = 15$, by the second alternative of (4.1). A minimal faithful representation is afforded by a canonical core-free subspace of \mathbb{F}_5^2 (see Lemma 3.6), yielding

$$G_1 \cong \langle a_1, a_2, b \mid a_1^5 = a_2^5 = b^3 = 1 = [a_1, a_2], \ a_1^b = a_2, \ a_2^b = a_1^{-1} a_2^{-1} \rangle$$

 $\cong \langle \alpha_1, \alpha_2, \beta \rangle,$

where

$$\alpha_1 = (1\ 2\ 3\ 4\ 5)(6\ 7\ 8\ 9\ 10)(11\ 14\ 12\ 15\ 13),$$

$$\alpha_2 = (1\ 2\ 3\ 4\ 5)(6\ 9\ 7\ 10\ 8)(11\ 12\ 13\ 14\ 15),$$

$$\beta = (1\ 11\ 6)(2\ 12\ 7)(3\ 13\ 8)(4\ 14\ 9)(5\ 15\ 10).$$

By the first alternative of (4.8), we have $\mu(G_2) = 15$. A minimal faithful representation is afforded by a canonical core-free subspace of \mathbb{F}_5^3 , yielding

$$G_2 \cong G_1 \times C_5 \cong \langle \alpha_1, \alpha_2, \alpha_3, \beta \rangle$$
,

where α_1 , α_2 and β are as above, and

$$\alpha_3 = (1\ 2\ 3\ 4\ 5)(6\ 7\ 8\ 9\ 10)(11\ 12\ 13\ 14\ 15).$$

In fact, G_1 and G_2 are isomorphic to subgroups of the transitive permutation group introduced at the end of Wright's paper [22], which was the first published counter-example to additivity of μ with respect to direct product. By contrast, now using the second alternative of (4.8), $\mu(G_3) = 15 + 5 = 20$. A faithful intransitive representation of G_3 is given by the previous canonical core-free subspace of \mathbb{F}_5^3 , augmented in an obvious way in \mathbb{F}_5^4 , and a subgroup of index 3, yielding

$$G_3 \cong G_2 \times C_5 \cong G_1 \times C_5^2 \cong \langle \alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta \rangle$$

where α_1 , α_2 , α_3 and β are as above, but fixing five new letters, and

$$\alpha_4 = (16\ 17\ 18\ 19\ 20).$$

Observe that $\mu(C_5)^2 = 10$, so that

$$\max\{\mu(G_1), \mu(C_5^2)\} = 15 < \mu(G_1 \times C_5^2) = 20 < 25 = \mu(G_1) + \mu(C_5^2).$$
 (5.2)

This answers affirmatively a question of Saunders [17], whether there exist groups K and L such that

$$\max\{\mu(K), \mu(L)\} < \mu(K \times L) < \mu(K) + \mu(L). \tag{5.3}$$

Note that if G and H are groups such that

$$\mu(H) < \mu(G)$$
 and $\mu(G \times H) = \mu(G) < \mu(G) + \mu(H)$

(such as the example in [22]), then (5.3) holds easily by taking any group M of order coprime to $|G \times H|$, putting K = G and $L = M \times H$, and invoking Johnson's result that μ is additive with respect to taking direct products of groups of coprime order. However, the solution (5.2) given here appears to be novel in that only two primes, namely 3 and 5, divide $|K \times L|$, taking $K = G_1$ and $L = C_5^2$. This

example clearly generalises, by (4.8), to an infinite class of examples, where (5.3) holds and only two distinct primes p and q divide $|K \times L|$. Note that (5.3) fails, if $K \times L$ is a p-group, since μ is additive with respect to taking direct products of nilpotent groups by a theorem of Wright [22].

Example 5.2. Let p and q be primes such that p has order s = q - 1 modulo q, so that $\pi = 1 + x + \cdots + x^{q-1}$ is irreducible over \mathbb{F}_p . Suppose also $(p,q) \neq (2,3)$, as this guarantees that $q < p^{q-2} = p^{s-1}$, so that the second alternative of (4.1) will apply. (The case (p,q) = (2,3) is explored above in Example 4.7 when illustrating the third alternative of (4.1).) The smallest case satisfying our conditions is (p,q) = (2,5). Consider the groups

$$H_1 = \mathbb{F}_p^{q-1} \rtimes T_1 \cong C_p^{q-1} \rtimes C_q \quad \text{and} \quad H_2 = \mathbb{F}_p^q \rtimes T_2 \cong C_p^q \rtimes C_q \cong H_1 \times C_p,$$

where T_1 and T_2 are matrices over \mathbb{F}_p in rational canonical form having characteristic polynomials π and $(1 + x)\pi$ respectively. Then

$$\mu(H_1) = pq = \mu(H_2) = \mu(H_1 \times C_p),$$

by the second alternative of (4.1) and the first alternative of (4.8). Observe that H_1 is a subgroup of the complex reflection group C(p, p, q), a member of the infinite class of counterexamples studied by Saunders in [18]. In the smallest case, when p = 2 and q = 5, the groups become

$$H_1 \cong C_2^4 \operatorname{sd} C_5$$
 and $H_2 \cong C_2^5 \operatorname{sd} C_5 \cong H_1 \times C_2$,

and

$$\mu(H_1) = \mu(H_1 \times C_2) = 10 < 12 = \mu(H_1) + \mu(C_2).$$

The group H_1 and these properties appear for the first time in [17]. It is gratifying that the smallest example that comes from Saunders' investigations, where he was motivated by questions about complex reflection groups, also coincides with the smallest example that arises as an application of Theorems 4.5 and 4.8. By results in [4], it is impossible to create a smaller example by any method, in the sense that $G \times H$ cannot embed in Sym(9) and have H nontrivial and $\mu(G) = \mu(G \times H)$.

We say that an integer $m \ge 3$ is Mersenne with respect to an integer $n \ge 2$ if $m = 1 + n + \dots + n^{\alpha}$ for some integer α . Note that this implies

$$m = \frac{n^{\alpha+1} - 1}{n-1} < n^{\alpha+1}.$$

Lemma 5.3. If m is Mersenne with respect to n, then k is not Mersenne with respect to n for $m < k \le 2m$.

Proof. If m and k are Mersenne with respect to n and $m < k \le 2m$, then there exist α and β such that $m = 1 + n + \dots + n^{\alpha}$ and $k = m + n^{\alpha + 1} + \dots + n^{\alpha + \beta}$, whence $n^{\alpha + 1} \le n^{\alpha + 1} + \dots + n^{\alpha + \beta} = k - m \le m < n^{\alpha + 1}$, which is impossible. \square

The following corollary is of independent interest and probably well known.

Corollary 5.4. Given a positive integer n, there exists infinitely many primes that are not Mersenne with respect to n.

Proof. This follows quickly from Lemma 5.3 and Bertrand's postulate.

Lemma 5.5. Let $n \ge 2$, $k \ge 3$ and N any positive integer. Then any strictly increasing sequence of k integers strictly between N and 2N contains a consecutive subsequence of $\lfloor k/2 \rfloor$ elements, none of which are Mersenne with respect to n.

Proof. Let t_1,\ldots,t_k be a strictly increasing sequence of integers strictly between N and 2N. If t_i is not Mersenne with respect to n for all i, then we are done using the entire sequence. Suppose then that some element in the sequence is Mersenne with respect to n, and let t_j be the least such element. Then, for all ℓ such that $j < \ell \le k$, we have $N < t_j < t_\ell < 2N < 2t_j$, so that t_ℓ is not Mersenne with respect to n, by Lemma 5.3. If $j > \lfloor k/2 \rfloor$, then $t_1,\ldots,t_{\lfloor k/2 \rfloor}$ is a consecutive subsequence of $\lfloor k/2 \rfloor$ elements, none of which are Mersenne with respect to n, and we are done. Otherwise $j \le \lfloor k/2 \rfloor$ elements, none of which are Mersenne with respect to n, and again we are done.

Proposition 5.6. If p_1, \ldots, p_k are prime numbers, then there exist infinitely many primes that are not Mersenne with respect to p_i for each i.

Proof. Let p_1, \ldots, p_k be primes and N any positive integer. By the Green–Tao theorem [7] there exists an arithmetic progression of primes

$$q_{-M}, q_{-M+1}, \dots, q_0 = q, q_1, \dots, q_M$$

for some $M \ge \max\{N, 2^k\}$. We may suppose the common difference is s so that $q = q_{-M} + Ms \ge 2^k s$ and $q_i = q + is$ for each i = 1, ..., M. In particular,

$$q < q_1 < \dots < q_M < 2q. (5.4)$$

By Lemma 5.5, there exists a consecutive subsequence of q_1, \ldots, q_M , starting at q_{i_1} for some $i_1 \geq 1$, of length $M_1 = \lfloor M/2 \rfloor \geq 2^{k-1}$ consisting of elements none of which are Mersenne with respect to p_1 , which starts an induction. Suppose $j \leq k$ and, as inductive hypothesis, that we have a consecutive subsequence starting at $q_{i_{j-1}}$ of length $M_{j-1} \geq 2^{k-j+1}$ consisting of elements none of which are

Mersenne with respect to p_1, \ldots, p_{j-1} . By Lemma 5.5, this contains a consecutive subsequence starting at q_{ij} for some $i_j \geq i_{j-1}$ of length $M_j \geq \lfloor M_{j-1}/2 \rfloor \geq 2^{k-j}$ consisting of elements none of which are Mersenne with respect to p_1, \ldots, p_j , establishing the inductive step. The lemma now follows by induction by observing that $M_k \geq 2^{k-k} = 1$, so that we have found at least one prime $q_{i_k} \geq N$ that is not Mersenne with respect to p_1, \ldots, p_k .

Remark 5.7. Ramanujan [16] showed that $\pi(n) - \pi(n/2)$ tends to infinity as n does, where $\pi(n)$ denotes the number of primes less than or equal to n, generalising Bertrand's postulate. This also guarantees the existence of an integer q and primes q_1, \ldots, q_M such that (5.4) holds, and the proof of Proposition 5.6 proceeds as above, but avoiding use of the Green–Tao theorem.

In the following example, given an arbitrarily large direct product H of elementary abelian groups built from any collection of primes and positive integer exponents, we construct a group G such that $\mu(G \times H) = \mu(G)$, yet G does not decompose nontrivially as a direct product.

Example 5.8. Let $P = \{p_1, \ldots, p_k\}$ be a finite collection of distinct primes and $N = \{n_1, \ldots, n_k\}$ a collection of positive integers. Choose a prime $q \geq 5$ that is not Mersenne with respect to each prime in P, and larger than all of the primes in P, the existence of which is guaranteed by Proposition 5.6. Consider an integer $i \in \{1, \ldots, k\}$. Let s_i be the multiplicative order of p_i modulo q and put $m_i = s_i n_i$. Then $s_i > 1$ and we can find a monic irreducible polynomial $\pi_i \in \mathbb{F}_{p_i}$ of degree s_i such that its roots in an extension of \mathbb{F}_{p_i} are primitive qth roots of 1. We have $q < p_i^{s_i-1}$, by Lemma 4.3, since q is not Mersenne with respect to p_i . Denote the companion matrix over a field \mathbb{F} of a monic polynomial $\pi \in \mathbb{F}[x]$ by M_{π} . Define T_i to be the $m_i \times m_i$ matrix over \mathbb{F}_{p_i} that is the matrix direct sum of n_i copies of M_{π_i} . Now put

$$\widehat{T}_i = T_i \oplus I_{n_i},$$

where I_{n_i} is an identity matrix (over \mathbb{F}_{p_i}). Then $|T_i| = |\widehat{T}_i| = q$,

$$\varphi_{T_i} = \pi_i, \quad \chi_{T_i} = \pi_i^{n_i}, \quad \varphi_{\widehat{T_i}} = (x-1)\pi_i \quad \text{and} \quad \chi_{\widehat{T_i}} = (x-1)^{n_i}\pi_i^{n_i}.$$

Now let $G_i = V_i \rtimes T_i$ and $\widehat{G_i} = \widehat{V_i} \rtimes \widehat{T_i}$, where

$$V_i = \mathbb{F}_{p_i}^{m_i}$$
 and $\widehat{V}_i = \mathbb{F}_{p_i}^{m_i + n_i}$.

Then

$$\mu(G_i) = \mu(\widehat{G_i}) = n_i \, p_i q_i, \tag{5.5}$$

by Theorems 4.5 and 4.8. Observe that, because I_{n_i} acts trivially on $\mathbb{F}_{p_i}^{n_i}$,

$$\widehat{G_i} \cong G_i \times C_{p_i}^{n_i}. \tag{5.6}$$

Now put

$$T = \bigoplus_{i=1}^{k} T_i, \quad \widehat{T} = \bigoplus_{i=1}^{k} \widehat{T}_i, \quad V = \bigoplus_{i=1}^{k} V_i, \quad \widehat{V} = \bigoplus_{i=1}^{k} \widehat{V}_i,$$

where the zeros outside the matrix blocks down the diagonals act as formal zeros (not in any particular field) for the purpose of matrix multiplication, and the elements of V and \widehat{V} may be regarded as column vectors over $\mathbb{F}_{p_1} \cup \cdots \cup \mathbb{F}_{p_k}$. Thus, because the construction respects direct sum decompositions, T and \widehat{T} may be regarded as acting on V and \widehat{V} (on the left) by usual matrix multiplication. Hence, as in (3.1) and (3.2), we may define

$$G = V \rtimes T$$
 and $\widehat{G} = \widehat{V} \rtimes \widehat{T}$.

The actions of T and \widehat{T} on the respective ith direct summands is nontrivial, for each i, and the orders of these direct summands are pairwise coprime and also coprime to q, so, by repeated application of the last alternative in the formula given in Theorem 2.7 and by (5.5), we have

$$\mu(G) = \sum_{i=1}^{k} \mu(G_i) = \sum_{i=1}^{k} n_i \, p_i \, q_i = \sum_{i=1}^{k} \mu(\widehat{G}_i) = \mu(\widehat{G}).$$

Also, by (5.6),

$$\widehat{G} \cong G \times C_{p_1}^{n_1} \times \cdots \times C_{p_k}^{n_k}.$$

Finally, put $H = C_{p_1}^{n_1} \times \cdots \times C_{p_k}^{n_k}$, which is our arbitrarily large direct product of elementary abelian groups, using all of the primes p_1, \ldots, p_k . Then $\mu(G \times H)$ equals $\mu(G)$. By construction, the irreducible action on each direct summand guarantees that G does not decompose nontrivially as a direct product. Note that when $H = C_{p_1} \times \cdots \times C_{p_k}$, the action of G on each Sylow p_i -subgroup is irreducible. The authors are not aware of any simpler method for achieving this last property, which appears to be inextricably linked to number-theoretic properties of the particular primes involved.

Remark 5.9. It is an open problem whether there are finitely many generalised Mersenne primes. If there are only finitely many, then we can avoid the use of Proposition 5.6 in the previous example, simply by choosing q to be larger also than the largest generalised Mersenne prime (for that would guarantee $q < p_i^{s_i-1}$ for each i, by Remark 4.4).

Bibliography

- [1] L. Babai, A. J. Goodman and L. Pyber, On faithful permutation representations of small degree, *Comm. Algebra* **21** (1993), 1587–1602.
- [2] D. Easdown, Minimal faithful permutation and transformation representations of groups and semigroups, in: *Algebra* (Novosibirsk 1989), Contemporary Math. 131(3), American Mathematical Society, Providence (1992), 75–84.
- [3] D. Easdown and C. E. Praeger, On minimal faithful permutation representations of finite groups, *Bull. Aust. Math. Soc.* **38** (1988), 207–220.
- [4] D. Easdown and N. Saunders, The minimal faithful permutation degree for a direct product obeying an inequality condition, *Comm. Algebra*, to appear.
- [5] B. Elias, L. Silbermann and R. Takloo-Bighash, Minimal permutation representations of nilpotent groups, *Exp. Math.* **19** (2010), no. 1, 121–128.
- [6] C. Franchi, On minimal degrees of permutation representations of abelian quotients of finite groups, *Bull. Aust. Math. Soc.* **84** (2011), 408–413.
- [7] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, *Ann. of Math.* (2) **167** (2008), 481–547.
- [8] M. Hendriksen, *Minimal permutation representations of classes of semidirect products of groups*, M.Sc. thesis, University of Sydney, Sydney, 2015.
- [9] D. F. Holt, Representing quotients of permutation groups, *Quart. J. Math.* **48** (1997), 347–350.
- [10] D. F. Holt and J. Walton, Representing the quotient groups of a finite permutation group, *J. Algebra* **248** (2002), 307–333.
- [11] D. L. Johnson, Minimal permutation representations of finite groups, *Amer. J. Math.* **93** (1971), 857–866.
- [12] G. I. Karpilovsky, The least degree of a faithful representation of abelian groups, *Vestnik Khar'kov Gos. Univ.* **53** (1970), 107–115.
- [13] L. G. Kovacs and C. E. Praeger, Finite permutation groups with large abelian quotients, *Pacific J. Math.* **136** (1989), 283–292.
- [14] S. Lemieux, Finite exceptional p-groups of small order, Comm. Algebra 35 (2007), 1890–1894.
- [15] P.M. Neumann, Some algorithms for computing with finite permutation groups, in: *Groups* (St Andrews 1985), London Math. Soc. Lecture Note Ser. 121, Cambridge University Press, Cambridge (1987), 59–92.
- [16] S. Ramanujan, A proof of Bertrand's postulate, *J. Indian Math. Soc* 11 (1919), 181–182.
- [17] N. Saunders, Strict inequalities for minimal degrees of direct products, *Bull. Aust. Math. Soc.* 79 (2009), 23–30.

- [18] N. Saunders, The minimal degree for a class of finite complex reflection groups, *J. Algebra* **323** (2010), 561–573.
- [19] N. Saunders, *Minimal faithful permutation representations of finite groups*, Ph.D. thesis, University of Sydney, Sydney, 2011.
- [20] N. Saunders, Minimal faithful permutation degrees for irreducible coxeter groups and binary polyhedral groups, *J. Group Theory* **17** (2014), no. 5, 805–832.
- [21] D. Wright, Degrees of minimal permutation representations of covering groups of abelian groups, *Amer. J. Math.* **96** (1974), 578–592.
- [22] D. Wright, Degrees of minimal embeddings of some direct products, *Amer. J. Math.* **97** (1975), 897–903.

Received January 27, 2016.

Author information

David Easdown, School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia.

E-mail: david.easdown@sydney.edu.au

Michael Hendriksen, School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia.

E-mail: m.hendriksen91@gmail.com