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Minimal permutation representations of
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Abstract. We provide formulae for the minimal faithful permutation degree p(G) of
a group G that is a semidirect product of an elementary abelian p-group by a group of
prime order g not equal to p. These formulae apply to the investigation of groups G with
the property that there exists a nontrivial group H such that u(G x H) = u(G), in par-
ticular reproducing the seminal examples of Wright (1975) and Saunders (2010). Given an
arbitrarily large group H that is a direct product of elementary abelian groups (with mixed
primes), we construct a group G such that u(G x H) = u(G), yet G does not decompose
nontrivially as a direct product.

1 Introduction

Throughout this paper all groups are assumed to be finite. The minimal faithful
permutation degree ;1(G) of a group G is the smallest nonnegative integer n such
that G embeds in the symmetric group Sym(n). Note that «(G) = 0 if and only
if G is trivial. It is well known (and referred to as Karpilovsky’s theorem, see,
for example, [11, 12]) that if G is a nontrivial abelian group, then u(G) is the
sum of the prime powers that occur in a direct product decomposition of G into
cyclic factors of prime power order. Johnson proved (see [11, Theorem 1]) that
the Cayley representation of a group G is minimal, that is, ©(G) = |G|, if and
only if G is cyclic of prime power order, the Klein four-group or a generalised
quaternion 2-group. A number of other explicit calculations of minimal degrees
and a variety of techniques appear in Johnson [11], Wright [21, 22], Neumann
[15], Easdown and Praeger [3], Kovacs and Praeger [13], Easdown [2], Babai,
Goodman and Pyber [1], Holt [9], Holt and Walton [10], Lemieux [14], Elias,
Silbermann and Takloo-Bighash [5], Franchi [6], Saunders [17-20] and Easdown
and Saunders [4]. This present article, building on work initiated by the second
author in [8], focuses on minimal degrees of semidirect products of groups, proves
a reduction theorem (see Theorem 2.7 below) and provides exact formulae (see
Theorems 4.5 and 4.8 below) for minimal degrees in the case when the base group
is an elementary abelian p-group and the extending group is cyclic of order ¢
where p and ¢ are different primes.
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For any groups G and H and subgroups S of G, we always have the inequalities

u(S) = u(G) (1.1)
and
w(G x H) < u(G) + u(H). (1.2)

Many sufficient conditions are known for equality to occur in (1.2), for example,
when G and H have coprime order (Johnson [11, Theorem 1]), when G and H
are nilpotent (Wright [22]), when G and H are direct products of simple groups
(Easdown and Praeger [3]), and when G x H embeds in Sym(9) (Easdown and
Saunders [4]). The first published example where the inequality in (1.2) is strict
appears in Wright [22], where G x H is a subgroup of Sym(15). Saunders [17,18]
describes an infinite class of examples, which includes the example in [22] as
a special case, where strict inequality takes place in (1.2). The smallest example
in his class occurs when G x H embeds in Sym(10). In all of these examples of
strict inequality, the groups G and H have the properties that H is cyclic of prime
order and

(G x H) = n(G). (1.3)
As an application of our three main theorems, the article culminates (see Exam-
ple 5.8 below) in an infinite class of examples where (1.3) occurs, where H may be
a product of elementary abelian groups with an arbitrarily large number of factors
and different prime exponents and G does not decompose as a nontrivial direct
product.

Recall that if G is nontrivial, then 1 (G) is the smallest sum of indices for a col-
lection of subgroups ¢ = {Hj, ..., Hi} such that ﬂf-czl H; is core-free. In this
case we say that ¢ affords a minimal faithful representation of G . The subgroups
Hy, ..., H become the respective point-stabilisers for the action of G on its or-
bits and letters in the i th orbit may be identified with cosets of H; fori = 1...,k.
If k = 1, then the representation afforded by % is transitive and H; is a core-free
subgroup.

Remark 1.1. It follows quickly that if G is a group with unique subgroups of
orders pi, ..., pi respectively, where py, ..., pi are distinct primes, then ©(G) >
|Glp, + -+ |G|p, . where |G|, denotes the largest power of p dividing |G |. For
example, suppose G is the generalised quaternion group of order 4n for n > 2,
given by the presentation

G=0u={abla=b=1d"=b>da>=a").
Then (h?) is the unique subgroup of G of order 2. If n is a power of 2, then

w(G) > |G|y = |G|, whence u(G) = |G|, the only nonabelian case where this is
possible (see Johnson [11, Theorem 2]). Suppose then that n is not a power of 2
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andlet p1, ..., py be the odd prime divisors of . Then (a2"/Pi) is the unique sub-
group of G of order p; fori =1,....k,s0 u(G) > |G|o + |Glp, + -+ + |G|p;-
Write |G| = 2’”1)‘1’” ...p,‘:",wherem >2and og,...,0r > 1, and put

H = (azm_l) and H; = (ap;li,b) fori =1,...,k.
Then {H, Hy, ..., Hy} affords a faithful representation of G so that
m(G) =1Gl2 +1Glp, + -+ |Glp-

Note that if m = 2, then |a?| = n is odd, G = (a2, b) and the presentation above
simplifies, replacing a? by x:

G=(x.b|x"=b*=1x0=x71),

so that G becomes a semidirect product. If we putn = 3,then u(G) =3+4 =7
and G becomes the smallest group with the property that it does not have a nilpo-
tent subgroup with the same minimal degree. The class of groups that do have
nilpotent subgroups with the same degree was introduced by Wright [22], and its
pervasiveness within the class of permutation groups of small degree was an im-
portant tool in [4].

2 Preliminaries on semidirect products

Recall that a group G is an internal semidirect product of a normal subgroup N
by a subgroup H if G = NH and N N H is trivial, in which case the conjugation
action of N on H induces a homomorphism ¢ : N — Aut(H). Conversely, if
N and H are any groups and ¢ : H — Aut(N) any homomorphism, then the
cartesian product of sets

NxH=Nx,H={nh)|neN heH}

becomes a group, called the external semidirect product, under the binary opera-
tion

(n1.h1)(n2. ha) = (n1(n2(h™" @) hihy),
in which case N x H becomes an internal semidirect product of a copy of N by
a copy of H and we may write N x H = NH without causing confusion.

Remark 2.1. It is well known that G x, H embeds in Sym(G)x H, and in Sym(G)
if ¢ is injective. Hence (G x H) is bounded by |G| + n(H) always, and by |G|
if ¢ is injective (though see Lemma 2.2 below for an alternative proof). The bound
|G|+ 1 (H) can easily be achieved, for example, whenever the semidirect product
is direct (that is, ¢ is trivial), G any group for which the Cayley representation
is minimal and H any group of order coprime to |G|. For a class of semidirect
products that are not direct, let G = C 1;1 and H = C,2, where p and ¢ are distinct
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primes and 7 a positive integer such that ¢ > p”~!. Put H = (c) and suppose we
have a homomorphism ¢ : H — Aut(G) such that |cp| = ¢, so ¢ is neither trivial
nor injective, and that the conjugation action induced on G is irreducible. A simple
subclass of examples would be when (p,q,n) = (p,2,1) and c¢ the inversion
automorphism of G (so of order 2). (An instance of this, when (p, g, n) = (3,2, 1),
features in Example 2.8 below.) It follows, by observations in Remark 1.1, that

w(G x H) = |G|+ u(H) = p" +¢>.

For example, if (p,q,n) = (5,2, 1), then u(S) = 5+4 = 9 and we get the intran-
sitive representation S =~ Cs x C4 = ((12345), (15)(24)(6789)).

Lemma 2.2. Let K be an internal semidirect product of G by H. Then core(H )
equals ker ¢, where ¢ : H — Aut(G) is the homomorphism induced by conjuga-
tion. In particular, if ¢ is injective, then H is core-free and { H } affords a transitive
representation of K of degree |G|, so that u(K) < |G|.

Proof. Certainly ker ¢ is a normal subgroup of K contained in H, so we have that
ker ¢ < core(H). Conversely, elements of core( H) commute with elements of G,
so core(H) < ker . o

It will be useful, in verifying the first alternative of the main formula (4.1)
below, to note that, under certain conditions, the minimal degree of the semidirect
product coincides with the minimal degree of the base group:

Lemma 2.3. Suppose that G x4 H is a semidirect product of groups such ¢ is
injective. If G has a minimal faithful representation afforded by a collection of
subgroups that are invariant under the conjugation action of H, then

w(G x H) = n(G).

Proof. We may regard G x H = GH as an internal semidirect product. Since ¢ is
injective, H is core-free by Lemma 2.2. Suppose that {B1, ..., B} is a collection
of subgroups of G invariant under conjugation by H and affords a minimal faithful
representation of G. Fori = 1 to k, put D; = B; H, which is a subgroup of GH
of index |G : Bj|. Then {D1,..., Dy} affords a faithful representation of GH
of degree |G : B1|+ -+ |G : Bx| = u(G). But u(GH) > u(G), so we have
equality. |

Example 2.4. Let p and ¢ be primes such that the field F, = {0,..., p — 1} has
a primitive gthroot { of 1. Let ¢ : Cy — Aut(Cg ) be the homomorphism induced
by the map

2
c (X1, X2,...,X9) (xl,xg,xg s Xg ),
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where ¢ is a generator of C; and x1, ..., x4 € Cp. Put G = Cj x, C4. We may
write G = KC as an internal semidirect product of K = Cg by C = C,, where
K is an internal direct product H ... Hy, where H; = Cp, fori = 1,...,q. Put

Hi=Hy...Hi_Hiy...Hy,

which is a subgroup of K of index p, fori =1,...,q. Put ¢ = {I/-I\l, .. .,I/-I;}.
Then N% is trivial, so % affords a faithful representation of K of degree pq.
But each H; is invariant under the conjugation action by C, so u(G) = pq, by
Lemma 2.3. It is interesting that in this case we can also find a faithful transitive
representation of G by letting a; be a generator for H; for each i and putting

H={d. . dfecH . Hyl|ij++i,=0}.

Then H is a core-free subgroup of G (in fact, a canonical codimension 1 sub-
space of the additive vector space corresponding to the base group, in the sense of
Lemma 3.6 below) of index pq.

Consider groups H and K of coprime order and C a cyclic group such that |C|
and |H || K| are also coprime. Let ¢ : C — Aut(H x K) be a homomorphism, so
that we may form the semidirect product

G=(HxK)xC =(HxK)x,C.

Let o : C — Aut(H) and ¢g : C — Aut(K) where, forallh € H, k € K and
ceC,
(h.k)(cp) = (h(con). k(cpk)), 2.1

so that we have the related semidirect products
HxC =Hxg, C and K xC =K Xy, C.

If ¢ is trivial, then G = H x K x C. If ¢y is trivial, then G = H x (K x C). If
@x is trivial, then G =~ (H x C) x K. Note that always G embeds in the direct
product (H x C) x (K x C) under the map

((h,k),c) = ((h,c), (k,c))
forallh € H, k € K, ¢ € C, so that, by (1.1) and (1.2),
w(G) = pu(H*xC)x (KxC)) < pu(HxC)+ u(K=xC). (2.2)

In Theorem 2.7 below, we show that equality occurs throughout (2.2) when both
¢m and @k are nontrivial and C = C; for some prime ¢g. We first establish some
useful general facts.
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Lemma 2.5. Let G = HC be an internal semidirect product of a normal subgroup
H by a cyclic subgroup C = Cy4 for some prime q not dividing |H|. Let K be
a subgroup of G that is not a subgroup of H.

(a) There exists g € G suchthat K = (H N K)C? is an internal semidirect prod-
uctof H N K by C8.

(b) If H N K is normal in H, then H N K is normal in G.
(¢) If K is normal in G, then K = (H N K)C.

Proof. Part (a) follows by Sylow’s theorem, and then parts (b) and (c) are imme-
diate. |

Lemma 2.6. Let G = HC be an internal semidirect product that is not direct
of a normal subgroup H by a cyclic subgroup C = Cy; for some prime q not
dividing |H |. Then any collection € affording a minimal faithful representation of
G does not contain any normal subgroup of G that is a subgroup of H.

Proof. Let% = {Kj, ..., K} afford a minimal faithful representation of G. Sup-
pose, by way of contradiction, that ¥ contains a subgroup of H that is normal
in G. Without loss of generality, we may assume that K; < H and K; is nor-
mal in G. If K1 # H, then {K;C, H, K>, ..., K;} affords a faithful representa-
tion of degree smaller than that afforded by ¥, contradicting minimality. Hence
Ky = H.Itk = 1,then H = core(H) = {1}, which is impossible. Hence k > 1.
Put N = core(K, N---N K), so H NN = {1}. If ¢ does not divide |N|, then
N < H,so N ={1} and {K>, ..., K} affords a faithful representation, again
contradicting minimality. Hence ¢ divides |N|, so, by Lemma 2.5 (c), we have
N = (H N N)C = C, yielding a final contradiction, since C is not normal. 0O

The following theorem reduces calculations of minimal degrees of semidirect
products by a g-cycle, where ¢ is a prime that does not divide the order of the base
group, to those cases where the base group is a p-group for p # q.

Theorem 2.7. Let G = (H x K) x C be a semidirect product where H and K
are groups of coprime order and C = Cy for some prime q not dividing |H || K|.
Then

w(H) + n(K) +q if @ is trivial,
G) = wW(H) + (K xC) if og is trivial,
# B wW(H xC) + u(K) if ok is trivial,

W(H xC) + u(K xC) ifneither pg nor ¢k is trivial.
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Proof. Note that the first case is a special case of the second and third cases, and
the formulae for the first three cases follow by Johnson’s result [11, Theorem 1]
that p is additive with respect to taking direct products of groups of coprime order.

Suppose then that neither ¢ not g are trivial. We may regard G = HKC
as an internal semidirect product of HK by C, where HK is an internal direct
product of H and K. By (2.2), it suffices to prove

n(G) = u(HC) + uw(KC). (2.3)

Let % be a collection of subgroups of G that affords a minimal faithful permu-
tation representation of G. Since |H| and | K| are coprime, subgroups of HK
have the form Ho Ky for some Hyp < H and K¢ < K. By Lemma 2.5 (a), sub-
groups of G that are not subgroups of HK have the form HoK¢C¥é for some
Hy < H,Ky < K and g € G, such that Hy K is normal in Hy KoC¥. By a result
of Johnson [11, Lemma 1], we may assume that each element of % is meet-
irreducible, that is, does not decompose as the intersection of two larger subgroups.
Therefore, elements of 4 have the form

H()K, HK(),HlKCx or Hchy

for some Ho, Hy < H, Ko, K1 < K and x, y € G. In these respective cases, note
that

coreg(HoK) = corey - (Ho)K, coreg(HKo) = H coreg(Kop),
and, by Lemma 2.5 (¢),

(H,KC™) coreg; - (H1)KC if g divides |core; (H1 KC™)|,
core =
G core -~ (H1) K otherwise,

and

core (HK,C?) = H coreg - (K1)C if g divides |core, (HK1C”)],
G ! | H coreg~ (K1) otherwise.

Put
Dy = {H() | Ho < H and HyK € (5},

&g ={H,C | Hy < H and H; KC* € ¥ for some x € G},
9k ={Ko | Ko < K and HK( € €},
Ex ={K1C | Ky < Kand HK,C”? € ¢ for some y € G}.

By inspection, the index sum of elements of %" in G is equal to the index sum of
elements of Y U &g in HC added to the index sum of elements of Zx U &k
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in KC. Hence, to complete the proof of (2.3), it suffices to show that ¥y U &g and
Pk U &k afford faithful representations of HC and KC respectively. Observe
that

coreHc( (| Hon () Hl)KﬂHcoreKC( | Kon ) Kl)

Hoe%y H|Ceéy Koe9k K|\ Ceéx

C coreg (ﬂ%) ={1).

In particular,

coreHc( m Hy N ﬂ H1)={1}.

Ho<€9y H,Ceéy
If Z # @ then, since (| Py < H, we have

coreg e (ﬂ(@H U 511)) C coreg e ( ﬂ Hy N ﬂ Hl) = {1}.
HoeZy H|Ceéy
Suppose that Vg = 0. If &g = @, then Yx U Ex # @ so that

H C coreg (ﬂ%) = {1},
which is impossible. Hence &g # @ and
corey e ( ﬂ H1) = {1}.
H|Ceéy

If core; - (H1C) contains an element of order ¢ for all H1C € & then, in each
case, core - (H1C) = corey - (H1)C, so that

C:coreHc( ﬂ Hl)C: ﬂ coreg - (H1C)

HiCeéy H,Ceéy

is a normal subgroup of HC, contradicting that ¢y is nontrivial. Hence, for at
least one H;C € &y, we have coreg; - (H C) = corey ~(H1), so that

coreHc(ﬂgH):coreHc( N ch)

HiCeéy
= coregc ( ﬂ Hl) = {1}.
H|Ceéy

This proves that Py U &g affords a faithful representation of HC. Similarly
Pk U &k affords a faithful representation of KC, and this completes the proof
of (2.3). |
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Example 2.8. Let G be the holomorph of C3 x Cs, that is,
G = (C3 X Cs5) g Aut(C3 x Cs5) = (C3 X C5) ¥ (Cy x Cy).

We may regard G = HKCD as an internal semidirect product of a direct prod-
uct HK by another direct product CD, where H = (h) = C3, K = (k) = Cs,
C = {(c) = Cy = Aut(C3) and D = (d) = C4 = Aut(Cs). Then

w(G) = u(C3 x Cs) =8

and
G =~ ((123), (45678), (12), (4576)),

which verifies that 1(G) = 8. Put C; = (cd?), C; = {cd), G = HKC; and
G2 = HKCz. Then

Gy = (C3 x Cs) x, C5 = ((123), (45678), (12)(47)(56)).

where ¢ induces conjugation action that is inversion, and both C3 x,, C> and
Cs Xy, C are dihedral, where ¢ = Pc, and ¢y = ¢c, are defined by (2.1), and
both nontrivial. As predicted by Theorem 2.7,

1(G1) =8 =3+5=u(C3 x4, C2) + p(Cs %y, C2).
However,
G2 = (C3 x Cs) xy Cy = ((123), (45678), (12)(4576)),

where C3 xy, C4 is generalised quaternion of degree 7 (see Remark 1.1) and
Csxy, C4 has degree u(Cs) = 5,by Lemma 2.3, where v = Ve, and ¥z = Y,
are defined by (2.1). Here

w(G2) =8 <12 =745 = pu(Cz 3y, Cs) + p(Cs Xy, Cy).
This is the smallest example where we do not get equality throughout in (2.2), yet
all of the homomorphisms defining the semidirect products are nontrivial.
3 Preliminaries on group actions on a vector space

The aim in this section is to develop machinery to calculate, in the next section,
minimal degrees of all semidirect products of elementary abelian p-groups by
cyclic groups of order ¢ where p and g are different primes, exploiting the fact that
group actions may be analysed using standard methods from linear algebra. Let V
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be an n-dimensional vector space over I, written additively, and 7 : V' — V an
invertible linear transformation. Define the semidirect product of V by (T) (or
more simply the semidirect product of V by T') to be

VT =Vx(T)={w.T)|veV, iclZ), (3.1)
with binary operation
@, TH(w,T/) = v+ T'(w), T'*), (3.2)

forv,w e V andi € Z. Then V x T becomes a group. A subspace of V that is
T -invariant is referred to simply as invariant. Thus invariant subspaces of V' be-
come normal subgroups of V' x T'. We define the core of any subspace W of V,
denoted by core(W), to be the largest invariant subspace of V' contained in W.
Thus core(W) = coreg (W), in the usual sense, that is, the largest normal sub-
group of G contained in W, where G =V x T.

We suppose throughout, unless stated otherwise, that 7' # id and 77 = id,
where id is the identity linear transformation and ¢ is a prime different to p. The
characteristic and minimal polynomials of 7" are referred to as yr = yr(x) and
o1 = @71 (x) respectively. By choosing a basis for V' we may identify V' with the
vector space [ of column vectors of length n with entries from I, and 7" with the
n x n matrix of the linear transformation with respect to the basis, and so regard
T'(v) = Tv as a matrix product. Under these identifications V x T = Cj %, C4
under the map

A1
TH > (@, ... a?), b7,
An

where we write Cp = (a), Cqg = (b), and ¢ : Cg — Aut(Cy) is the homomor-
phism induced by

by : (aAl,...,aA”) = (a)‘/l,...,akjl),
where
A1 A
T|:|=]":
An A

Lemma 3.1. Let T1 and T, be n x n matrices over Iy, of multiplicative order q
and put V = ]Fl’,’ for some positive integer n. Then V x Ty = V x T, if and only
if T1 and some power of T, are similar. In particular, if Ty and T are similar,
thenV xT7 =V xT5.
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Proof. If Ty and T2k are similar, for some k € Z, then k # 0 modulo ¢, T} equals
P! T2k P for some invertible matrix P, and the mapping (v, Tli ) (P, Tfi),
forv e V and i € Z, is an isomorphism. Conversely, if 6 : V xT; — V x T3 is
an isomorphism, then (0, 77)6 = (w, T2k ) for some w € V and integer k, and one
may check that 77 and Tzk are similar. |

Thus, in calculating minimal degrees later, we may assume 7 is in primary rati-
onal canonical form. By Maschke’s theorem, since p does not divide g = [(T')|, all
invariant subspaces of V' have invariant complements, so that the minimal polyno-
mial g7 is square-free with regard to irreducible factors. All blocks in the primary
rational canonical form of 7' become companion matrices of monic irreducible
polynomials, and the restriction of 7 to an indecomposable subspace of V will
always have an irreducible minimal polynomial. The canonical form is thus char-
acterised uniquely, up to the order of blocks, by y7. The number of blocks corre-
sponding to one particular irreducible factor is just the multiplicity of that factor
in y7. An irreducible factor of 7 = @7 (x) divides x4 — 1, so is either x — 1 or
a polynomial of the form

e (x) = (x—oz)(x—ap)...(x—aps_l), (3.3)
where s is the multiplicative order of p modulo ¢ and « is a primitive gth root of 1
in an extension field F = () of F), (where F = [F, if s = 1).

Remark 3.2. The previous lemma in principle allows for nontrivial determina-
tion of isomorphism between semidirect products in our class. For example, take
n=6,p =13and g = 7, so that s = 2. Consider the following irreducible poly-
nomials over [Fq3:

r1=x2+3x+1,
r2:x2+6x+1,
r3 = x4+ 5x + 1.

Put 71 = r12r2, Ty = r22r3 and 713 = r12r3. Let 7; be the companion matrix for
m; and G; = F163 x T;, for i = 1,2,3. There exists a primitive 7th root « in an
extension [ of [F;3 such that

r = (x—a)(x —a®),
rp = (x— az)(x — as),
r3 =r3(x) = (x —e’)(x —a®).

It follows that 75 and T12 are similar, but 773 is not similar to any power of 77.
Hence, G; =~ G,, but G| % G3, by Lemma 3.1.
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The following two lemmas are probably well known.

Lemma 3.3. Let W be a subspace of a vector space V. Suppose V. = K & K’ for
some subspaces K and K' such that K is also a subspace of W. Put L = W N K'.
Then

W=K&L.

The codimension of L in K’ is the same as the codimension of W in V. If. further,
T :V — V is a linear transformation and K is the core of W with respect to T,
then L is core-free.

Proof. All of the claims follow quickly from the definitions. o

Lemma 3.4. Let T : V — V be an invertible linear transformation such that o1
has degree d. Let W be a subspace of V' of codimension k. Then core(W) has
codimension at most kd. In particular, if W has codimension 1, then core(W) has
codimension at most d.

Proof. The claim follows from the fact that
core(W) =W NTW)N---NnT4 (W)

and W, T(W),...,T4=1(W) all have the same codimension in V, since T is
invertible. o

Proposition 3.5. Let T : V — V be an invertible linear transformation of a finite-
dimensional vector space V such that ¢t is a product of distinct irreducible
factors. Let W be a codimension 1 subspace of V. Then any invariant comple-
ment of core(W) in V' is a sum of indecomposable subspaces with distinct minimal
polynomials.

Proof. Let o7 (x) = r1(x)...rm(x), where ry, ..., ry, are the distinct irreducible
factors. Put V; = ker(r; (T')) and W; = core(W) N V; fori = 1,...,m. Then we
have core(W) =W, & --- ® W,,. Leti € {1,...,m}. Let k; be the number of
indecomposable components of 1 having minimal polynomial r;, which is just the
number of indecomposable components of V;. To complete the proof, therefore,
by the Krull-Schmidt theorem, it suffices to show that the number of indecompos-
able components of W; is k; or k; — 1. Let d; be the degree of r;. Observe that
W; = corey, (W N V;). But W N V; has codimension at most 1 in V;. Thus W;
has codimension at most d; in V;, by Lemma 3.4. But d; is the dimension of any
indecomposable component of V;, so W; contains at least k; — 1 indecomposable
components. |
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Lemma 3.6. Let T : V — V be a linear transformation such that o7 = r1 ...y
for distinct irreducible polynomials ry, . .., rp. Suppose that V.=V @ --- ® Vi,
where V; = ker(r;(T)) is indecomposable for i = 1,...,m. Let B; be a basis
forVifori =1,...,mandput B = By U---U By, which is a basis for V. Put

=Y b eV | A =0y
{ }

beB beB

Then V is a core-free subspace of codimension 1. Conversely, if W is a core-free
subspace of codimension 1, then we can choose a basis B; for Vi fori = 1,...,m
such that W = V.

Proof. Put n = dim(V). If n = 1, then the claims hold trivially, so we may sup-
posen > 2.If B = {vy,...,v,}, then {v; —va,...,v1 — vy} is a basis for V, so
dim(V) =n — 1. Because r; ..., ry are distinct, V1, ..., V), are the unique inde-
composable subspaces, and none of these is contained in V, so core(V) = {0}.
Conversely, let W be a codimension 1 subspace of V' such that core(W) = {0}.
Choose any basis Bi for W N V. Certainly, W N V1 has codimension 1 in V7,
since core(W) = {0}. Hence By U {v} is a basis for V; for some v{ € V;. Put

Bi={b+uv|beB}U{v

Then B; is also a basis for Vj. If m = I,then V=V, and V =W, startmg
an induction. Suppose m > 1 and put V= = V2@ @ Vp,sothat V=11 & V.
Certainly, W N V has codimension 1 in V, since core(W) {0}. Suppose, as
an inductive hypothesis, that we have bases Bj, ..., By, for V,,..., V;, respec-
tively, such that

Wﬂ?:{chce?
ceC

> e =0f,

ceC

where C = B, U --- U By,. Observe that (W N V)@ (W N /17) has codimension 1
in W, so we may choose some

we W\(WNnV)®Wwnh)).

But w = v + v for some unique w € Vj and v € V. If one of v or ¥is in W, then
both are, contradicting the choice of w. Hence v, v ¢ W.Butv = ) .. Acc for
some scalars A.. Put

A= e

ceC
By the inductive hypothesis, A % 0. Now put

1
penuf-Lal

1
Blz{b—IU
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so that B is a basis for V;. Finally, put B = B; U---U By, and form V with
respect to B. But,

. 1
w=v+v=—k(—zv)+z/¥cc

and =X + Y .cc Ac = —=A + A = 0, so that w € V, by definition. Noting that
W=@eWnvyewny)

it is straightforward, using the inductive hypothesis, to verify that W € V. Be-
cause dim(W) = n — 1 = dim(V'), we have W = V, establishing the inductive
step. o

We call the subspace V defined in the statement of the previous lemma, the
canonical core-free subspace associated with V (depending of course on the
choice of basis).

Proposition 3.7. Let W be a subspace of a finite-dimensional vector space V over
I, acted on by an invertible linear transformation T : V — V of order q, where
p and q are distinct primes. Then W has codimension 1 if and only if some (and
hence every) invariant complement core(W)' of core(W) in V is a sum of inde-
composable components with distinct minimal polynomials such that

W = core(W) & core(W)’
for some canonical core-free subspace core(W)' of core(W)'.

Proof. Note first that the hypotheses guarantee that 7 is invertible and ¢7 is
a product of distinct irreducible polynomials. The “if” direction is immediate by
Lemma 3.6. Suppose then that W has codimension 1, and choose some invari-
ant complement core(W)’ of core(W) in V. By Proposition 3.5, the indecompos-
able components of core(W)’ have distinct minimal polynomials. By Lemma 3.3,
W = core(W) & (W N core(W)'), and W N core(W)' is core-free of codimen-
sion 1 in core(W)'. By Lemma 3.6, there is a choice of basis for core(W)’ such
that W N core(W)' = core(W)'. O

4 Minimal degrees when the base group is elementary abelian

Throughout this section p and ¢ are distinct primes. Let V = IFI',‘ o CI’} be an
n-dimensional vector space over the field IF;, of p elements, for some fixed positive
integer n, and 7" an n x n matrix with entries from IF;, of multiplicative order g.
Recall that, if W is a subspace of V' that is invariant under this action, then W has
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an invariant complement W’ in V. The minimal polynomial ¢7 is a product of
distinct irreducible polynomials, all of degree s where s is the multiplicative order
of p modulo ¢, with the possible exception (when s > 2) of a factor x — 1. Note
that s = 1 if and only if [F,, has a primitive gth root of unity, in which case all the
irreducible factors of ¢7 are linear.

Proposition 4.1. Ler G = V x T. There exist nonnegative integers £ and t and
a collection € = 9 U & affording a minimal faithful representation of G such
that

2 ={D1,...,Dg} and & ={E(T),...,E(T)}

for some codimension 1 subspaces D1,...,Dy of V, and invariant subspaces
Eq,...,E; of V, such that each of E1,..., E; complements an indecompos-
able subspace (where we interpret { =0 andt =0 to mean D =0 and & = 0
respectively).

Note that it is possible to have t = 1 and E1 = {0}, the complement of V' in the
case that V' is indecomposable.

Proof. We may regard G = VC as an internal semidirect product of V by C =
(T) = Cg4, but still retaining vector space terminology and additive notation for
the group operation restricted to V. By [11, Lemma 1] there exists a collection
% of meet-irreducible subgroups affording a minimal faithful representation of G.
Then ¥ = 2 U &, where &, possibly empty, comprises all subgroups in ¢ of
index divisible by ¢, and &, possibly empty, consists of all subgroups in ¢ of order
divisible by ¢. In particular, elements of & are subgroups of V. By Lemma 2.6,
these must all be proper subgroups of V', since V' is normal in G, so, being meet-
irreducible, must have codimension 1 as subspaces of V.

Let K € &, so ¢ divides |K|. Put W = K N V. Note that V' is elementary
abelian, so all of its subgroups are normal in V. By (a) and (b) of Lemma 2.5,
K = W(T)8 for some g € G and W is an invariant subspace of V' (being normal
in G). Certainly W # V (for otherwise G = K € %, contradicting minimality),
so V=W @ W’ for some nontrivial invariant subspace W’ of V. If W' is not
indecomposable, then W’ = W, @ W, for some nontrivial invariant subspaces W}
and Wy of V,so W = (W & W) N (W @& W) and K = K; N K5, where K is
a proper subgroup of K; = (W @ W/)(T8) fori = 1 and 2, contradicting that K
is meet-irreducible. Hence W’ is indecomposable. Note that K and W (T') have the
same core and index in G, so we may, if necessary, replace K by W(T)in &. o

In what follows we develop a complete catalogue, namely, (4.1) and (4.8) be-
low, of formulae for (V' x T'). Note, throughout, that T # I, so o7 (x) # x — 1.
The next two theorems cover all possibilities, where s is the order of p modulo g.
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In the first case (Theorem 4.5), we investigate what happens when all of the fac-
tors of the minimal polynomial have the same degree s > 1. In the second case
(Theorem 4.8), we investigate the remaining possibilities, namely, when x — 1 is
a factor and all other factors have the same degree s > 2.

Lemma 4.2. If G =V x T, where all irreducible factors of ¢t are linear, then
wu(G) = np.

Proof. Suppose that all irreducible factors of ¢7 are linear. Without loss of gen-

erality, we may suppose T is diagonal and V = (v1,...,v,), where vq,..., v,
are eigenvectors for 7. Fori = 1,...,n,put H; = (v1,...,0i—1,Vi41,...,Un).
Then {H1, ..., H,} affords a minimal faithful representation of V' by T'-invariant
subspaces of degree np. By Lemma 2.3, u(G) = u(V) = np. ]

An illustration of the phenomenon of Lemma 4.2 appears above in Example 2.4.

Lemma 4.3. Let p and q be distinct primes and s the multiplicative order of p
modulo q. Suppose that s > 2. Let a be the smallest integer such that ¢ < ap*~!.
Thena=1,ora=2andq=1+p+---+p L Ifs=a=2 then p=2

and g = 3.

Proof. Suppose a > 1, s0 p*~! < g. Note that ¢ divides p* — 1 = (p — 1)(1 +
p+---4 pS~1). If ¢ divides p — 1, theng < p < p*~!, a contradiction. Hence ¢
divides 1 + p+---+ pSland p> ' <g <1+ p+---+ p*~L It follows that
g=1l4+p+---+plt<2planda =2. |

Remark 4.4. A generalised Mersenne prime g has the formg = 1+p+---+ pk -1

for some prime p and integer k (which includes the usual Mersenne primes of the
form 2k — 1). The previous lemma asserts that, in our context, ifa = 2 and s > 2,
then g must be a generalised Mersenne prime. It is not known if there are infinitely
many such primes.

Theorem 4.5. Suppose that ry, ...,y are distinct irreducible polynomials over
[y, of degree s, where s is the order of p modulo q, such that

or =r1...rm and )(Tzrfl...r,’flm.

We may suppose k1 > ko > -+ > ky,. Then

np if s =1,
k1 if s> 1landgq < p*~1,

w(V =Ty = | 174 . P @D
kip ifs>1,m=1landgq > p* ",

kopg + (k1 —ko)p® ifs>1,m>landq > p*~ L.
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Proof. The first alternative in (4.1) is given by Lemma 4.2, so we may suppose
s > 1. Let a denote the smallest integer such that ¢ < ap*~!. By Lemma 4.3,
a = 1 or 2. It is convenient, throughout, to put k,, 41 = 0. In particular, if m = 1
anda = 2,thenky, =k, =0.Put G =V x T = V{(T) (regarded as an internal
semidirect product, mixing addition and multiplication, without ever causing con-
fusion). We have a direct sum decomposition

m ki
Vz@@Vij= @ Vij,

i=1i=1 (i,j)el

where Vj; is an indecomposable subspace of V' such that T'|y;; has minimal poly-
nomial r; for each (i, j) € I, where I ={(i,j) |1 <i <m, 1 <j <k;}. For

J C I, put
Vi = ED Vij,
(i,j)eJ
sothat V.=V; =V; @ V. If W = V; forsome J C I, then put W’ = Vp\ z,
sothat V=W @ W'.

Note that if k, = 0, then m = 1 and a = 2. Suppose for the time being that
kg >1, so either a =1, or a =2 and m > 2. Because k; > kg1 > -+ >
km > km+1 = 0, we have that, for each j = 1 to kg, there exists some largest
{; €{a,...,m} such that

ke, = j = kg1,
and we put
£
W =DV,
i=1

so that T'[w, has minimal polynomial ry ...rg;. In particular, we have {1 = m,
since k;, > 1 > 0 = kyy 1, and T'|w, has minimal polynomial ry ... ry,. Thus

ka
v=rxo@w. (4.2)
j=1

where X = {(1,)) | ko < j <ki}ifa =2and k1 > kp, and X = @ otherwise,
in which case we interpret Vx = {0}. For j = 1 to kg, put

Hi=W; & W/,

where W] is a canonical codimension 1 subspace of W; as described in Lemma 3.6,
so that core(W;) = {0}, core(H;) = Wj’ and |G : Hj| = pq.For (1, j) € X, put

Kj = Vl/j(T)7
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so that core(K;) = Vl/j and |G : K;| = p*. Now put
¢ ={Hiy,...,Hy,} U{K; | (1,]) € X}. 4.3)
Then

core (()%) = ﬂW n () Vi =Wnvg={0}
Jj=1 1,/)ex

so that ¢ affords a faithful representation of G of degree

ka
YIG:Hjl+ > |G : Kj| =kapq + (ki —ka)p®.
j=1 (1,/)eX

Note that if k; = 0, so that m = 1 and @ = 2, then (4.2) may be interpreted as
V =V (since X = I) and (4.3) may be interpreted as ¢ = {K; | (1,j) € I},
and the conclusion about the faithfulness and degree of the representation afforded
by % still holds. This proves that, in all cases,

w(G) < kapg + (k1 —ka)p®.

We now prove that this formula is also a lower bound for ©(G). By Proposi-
tion 4.1, there exists a collection € = & U & affording a minimal faithful repre-
sentation of G such that

P ={Diy.....Dg} and & ={E\(T).....E(T)}

for some codimension 1 subspaces Di,..., Dy of V, and invariant subspaces
Eqy, ..., E; of V, each of which complements an indecomposable subspace. We
interpret £ = 0 and t = 0 to mean D = @ and & = @ respectively. By Proposition
3.7, fori =1,...,¢, we may write

D; = core(D;) @ core(D;) = S; & S/,

where we put S; = core(D;)’. The degree of the representation afforded by ¢
is £pg + tp*, so to complete the proof of the theorem it suffices to show

lpg +1tp® > kapq + (k1 —ka)p°. (4.4)

As a stepping stone towards doing this, we will first prove £ > k,. We use the
following claim, which we will prove later:

Claim. We have a decomposition

V=Sie--oS e o &1
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for some invariant subspaces S1,...,S¢, T1,..., Tt of V such that, after possible
replacement of 9 (without changing ),

Di=S; &S] and E;=T;,

where S; is a sum of indecomposable subspaces with distinct minimal polynomials
fori =1,...,4, and Tj is indecomposable for j = 1,...,t.

Suppose by way of contradiction that £ < k,. Certainly, then, either a = 1 and
{ <ky,orm>1,a=2and ¥l < ky < k;. Hence, using the decomposition of V/
in the Claim, at most k; — 1 indecomposables with minimal polynomial r; appear
in S ®---& Sy, and, when a = 2, at most k» — 1 indecomposables with min-
imal polynomial r, also appear. But k; and k, copies of indecomposables with
minimal polynomial ry and ry, respectively, appear in the decomposition of V.
Hence ¢ > a and, without loss of generality, T is indecomposable with minimal
polynomial r1, and, in the case a = 2, we may suppose 73 is indecomposable with
minimal polynomial 5. Put

g Ti & Ty ifa =1,
T ST, ®d (T ®T,) ifa=2,
where, in the second case, (T} @ T2)" = T{ N T; = E; N E», which is indeed
a complement for 77 @ T». Butcore(S) = E;,ifa = 1,and core(S) = E1 N E»,
if a = 2, so that the collection
, P ULSTUELE(T)} ifa =1,
2 UA{SYUELE(T), E2(T)} ifa =2,

affords a faithful representation of G, but with degree less than the degree of the

representation afforded by %, since
G: E(T ifa =1,

G| = pg <ap* = {19721 L
|G : E1(T)| + |G : Ex(T)| ifa=2.

This contradicts that ¢ is minimal. Hence £ > k.

There are at most £ occurrences of indecomposables with minimal polynomial
rq appearing in S; @ --- ® Sy, so atleast k1 — £ such indecomposables must occur
amongst T4, ..., Ty, so thatt > ky — £. Thus

lpg +1tp° =kapg + (L —ka) pg + tp°

0 ifa =1
> kapq + (L —ka)(a—1)p* + p° ’
apq +(—ka)la=1p° +p {kl—e ifa—2.

= kapq + (k1 — ko) p*
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and (4.4) is proven. The statement of the theorem for s > 1 is therefore captured
succinctly by the formula

w(G) = kapq + (k1 —ka) p*. 4.5)

To complete the proof of the theorem, it therefore remains to verify the Claim.
As a first step we prove

V=T1&---®T:®(E1N---NE;) (4.6)

for some indecomposables 7; such that E; = Tl/ fori =1,...,t. Note that we
have V = E; & T; for some indecomposable 77, so E; = Tl’ , which starts an
induction. Suppose, as inductive hypothesis, that for k <z,

V=T1& - ®Tr1®(E1N--NEg_y),

for some indecomposables 77, ..., Tx—q such that E; = Tl/ fori =1,...,k—1.
By the minimality of €, E1 N --- N E} is a proper subspace of 1 N ---N Ex_q.
Further,

Ein---NEr_ - (E1N---NEx_1)+ Ex v
EiN---NE; E E’
which is indecomposable, so we may choose an indecomposable 7} such that

EixN---NE_1=(E1N---NE) D Tk.
Certainly T} is not a subspace of Ej (for otherwise E1 N--- N E N Ty # {0}),
so it follows that V' = Ej & T}, so we may write £ = T,é. Then
V=MN& - &T-)®(E1N---N Ej_1)
=T @ - DT ®(E1N---NEy),

which completes the inductive step and the proof of (4.6). Note that if £ = 0 (so
that 2 = ), then (4.6) proves the Claim (for then 4 = & and E;N---NE; = {0}
sothat V. =T1 p--- P Ty).

We may suppose in what follows that £ > 0. Put E = E1 N --- N E;. We next
prove, by induction, that we can replace Z (if necessary) so that the following
holds fork =0, ..., ¢:

V=51€9~--EBSk69T169”-€BTtEB(S{ﬂ---ﬂS,’cﬂE), 4.7)

where D; = S; & Sl.’ and S; is a sum of indecomposables with distinct minimal
polynomials, for i = 1,...,k. This suffices to prove the Claim, because when
k = € we have

SiﬂmﬂS;cﬂE:S{ﬂ'“mSéﬂE:m(g={0}'
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Note that (4.6) now becomes the initial case k = 0 in a proof by induction of (4.7).
Suppose, as inductive hypothesis, that 0 < k < £ and we can replace Z (if neces-
sary) so that

V=S8S1®& @SN &® - ®T;®S1N---NS;_;NE),

where D; = S; & Sl.’ and S; is a sum of indecomposables with distinct minimal
polynomials fori = 1...,k — 1. By the minimality of &,

core(DyN---NDp_1NE)F#core(DyN---NDrNE),

that is,
SiN---NS,_NE#S N---NS;_, NE Ncore(Dg).
But
Sin---ns,_ NE N(Siﬂ---ﬂS;c_lﬂE)-i-core(Dk)
S{N---NS;_, NENcore(Dy) - core(Dy)
< =~ core(Dy)’,

~ core Dy,

which is a sum of indecomposables with distinct minimal polynomials. Hence
(Sin---NS_NENcore(Dy)) &S =8 N---NS,_ NE

for some invariant subspace Sy contained in £, which is a sum of indecomposables

e .. . , , ,
with distinct minimal polynomials. Choose any complement (S N---NS; _, NE)
and put

Sp=(S]N---NSi_, NENcore(Dy)) & (S;N---NS;_, NEY,
which is indeed a complement of S. Put
Dy =S¢ @ S;.
Observe that core(Dy) = S . and

Sin---NS,_, N E N core(Dy)
=8iN---NS,_,NENS,

=SN---NS_NEN [(S{ N---NS;_, NE Ncore(Dy))
@(S{m---ms,;_lmE)’]

=S{N---NS;_; NE Ncore(Dg),
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so we may replace Dy by lf)\;c in 2 without disturbing faithfulness or the degree
of the representation afforded by ¢". Renaming Dy by Dy, we get
V=S81&® @S 101 & ®T; &S N---NS_, NE)
=51® - @Sk18T1 & & T
@ ((SyN---NS;_, NENcore(Dy)) & Sk)
=518 @S 1®T1 @ BT & (Sk®(S]N---NS_; NENSY)
=51®- ST & - BT d(STN---NSLNE),

completing the inductive step, and (4.7) is proved. This completes the proof of the
Claim and therefore also the proof of the theorem. |

Formula (4.5) captures the three alternatives in the previous theorem when
s > 1. However, by Remark 4.4 and Theorem 4.5, we have the following further
simplification (eventually) if there turn out to be only finitely many generalised
Mersenne primes:

Corollary 4.6. With the hypotheses of Theorem 4.5, if s > 1 and there are only
finitely many generalised Mersenne primes, then there is an integer N such that
forallg > N, u(VxT) = kipq.

Example 4.7. The smallest instance when ¢ > p*~!, so that the third alterna-
tive of (4.1) is able to kick in, occurs when p = 2 and ¢ = 3, so that s = 2. Let
T =[91],sothatgr = x? + x + L,andput G = FZ x T = C3 x C3 = Alt(4).
As expected, (4.1) predicts correctly that u(G) = p5 = 4.

Theorem 4.8. Suppose that r1, ..., ry are distinct irreducible polynomials over
Fp of degree s > 2, where s is the order of p modulo q, such that
or =(x—Dri...rm and xp=(x— 1)"}"{Cl r,’f{”

We may suppose k1 > ko > -+ > ky,. Then

kipg ifk <ki,q<p 1,
kipg+ (k—k\)p  ifk>ki q<pt,
kipS+kp ifm=1,q>p1,

w(V xT) = (4.8)

kzpq—i—(kl—kz)ps l'fm>1,k§k2,q>ps_1,
kapq + (k1 —k2) p*
+(k —k2)p ifm>1,k>ky qg> ps~'.
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Proof. Asbefore, let a be the smallest integer such that ¢ < ap®~!. By Lemma 4.3,
a =1or2. Weagainputks =0 whenm = landa =2.PutG =V xT = V(T).
We have a decomposition V =V & Z, where

k
V=P v ad Z={P Z.
a=1

G, ))el
where the V;; are indecomposable subspaces of I with minimal polynomials from
amongst 71, ..., 'y, adopting the notation of the proof of the previous theorem,

and the Z, are one-dimensional indecomposable subspaces of V' on which the
action of 7 is trivial (so Zy(T') = Cp x Cy4). By Theorem 4.5 and (4.5),

p(VA(T)) = kapq + p* (k1 — ko). (4.9)
Certainly, by (1.1), we have u(G) > /L(V(T)). There are two cases.

Case 1: Suppose that k, > k. Let % be the collection of subgroups described
in the first part of the proof of Theorem 4.5 that affords a faithful representation of
V{(T) of degree (V(T)), replacing V by V throughout. Fora = 1,...,k, put
Up=Wo®Zy and Hy=Us & Wy & € Zs.
B#a

where U, is a canonical codimension 1 subspace of U, with trivial core (see
Lemma 3.6), and here W,, denotes a complement of W, in V, so that

core(Hy) = W, & @ Zg.
p#a
Now put
€ ={Hy.....Ho.He®Z,... . H, ® Z) U{K; & Z | (1,)) € X},

where the notation K; & Z represents the internal semidirect product resulting
from joining K; with Z (since the action of T on Z is trivial). Then

core(ﬂ ‘2) = core(ﬂ ‘5) &) ﬁ @ Zg = {0},

a=1p#a

so ¢ affords a faithful representation of G. Its degree is the same as the degree of
the representation of V (T') afforded by &, which is u(V(T)), so

1(G) < n(V(T)) < u(G).

whence we have equality. Formula (4.9) captures the first and fourth alternatives
in (4.8).
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Case 2: Suppose that k > k,. We make the same definitions as in the previous
case, except that we put

¢ ={H.....H,}U{K; & Z|(.j)eX)}

U {('17@ @Zﬂ)m

B#a

azka—}—l,...,k}.

Again the representation of G afforded by % is faithful. Its degree is
kapq + (k —ka)p + p’* (k1 — ka).

which therefore serves as a lower bound for p(G).
By Proposition 4.1, there exists a collection ¢ = & U & of subgroups affording
a minimal representation of G such that

.@Z{D],...,De} and g={E1<T),...,Et(T)},

where D1q,..., Dy are codimension 1 subspaces of V' and, after reordering (if
necessary), E1, ..., E¢, are complements of indecomposables with minimal poly-
nomials from amongst ry,...,7, and Eq 41, ..., E; are complements of one-
dimensional indecomposables. As before, £ > k, and, by the same reasoning as
before, tg > k1 — £ and t — t9 > k — £. By the definition of a, and since p # ¢,
we have (a — 1) p*~! < ¢, so

pq = (a—1)p° + p.
Hence

w(G) = pg+ (t —to)p +top’
=kapqg+ (L —ka)pg+ (t—to)p +top°

> kapg + (U —ka)((@—Dp* +p) + (k—Dp+ p* {21 I
=kapq + (k—ka)p + p* (k1 —ka),
whence we have
(G) = kapq + (k —ka)p + p* (k1 — ka). (4.10)
Formula (4.10) captures the second, third and fifth alternatives in (4.8), and the
proof is complete. o

[lustrations of formula (4.8) are implicit in applications in the next section.
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5 Adding direct factors without increasing the degree

Results of the preceding section are applied now to investigate possible ways in
which p may fail to be additive with respect to taking direct products. The question
of when additivity occurs is an important theme in the work of Johnson [11] and
Wright [22]. The failure of additivity in general was demonstrated by a seminal
example in [22] and explored further by Saunders [17-19]. In all their cases, non-
trivial groups G and H are exhibited in which G does not decompose nontrivially
as a direct product, H is a cyclic group of prime order and

u(G x H) = u(G). 5.1

We reproduce these examples below as special cases of applications of the formu-
lae in Theorems 4.5 and 4.8. By combining these formulae with Theorem 2.7, we
finish by exhibiting examples of groups G that do not decompose nontrivially as
direct products, but such that (5.1) holds for arbitrarily large direct products H of
elementary abelian groups (with mixed primes).

Example 5.1. Consider the groups

G1=F2xT), Gy=TF2xTs, G3=FsxTs,

where
04 00
0 4 0
0 4 1 4 00
T = , Ir=1|1 4 0|, Tz=
1 4 001 0
0 0 1
0 0 01
Then

|T1| = |T2| = |T3| =3,

or, = =X+ x+1,

o1, = X1, = P1, = (r = DEZ +x + 1),
X, = (x— D2(x% +x +1).

Then G = C52 x C3 and u(G1) = 15, by the second alternative of (4.1). A min-
imal faithful representation is afforded by a canonical core-free subspace of IF?
(see Lemma 3.6), yielding

Gi = (ar.az.b|ai =a3 =b> =1 = [a1,a2], &} = az. 4} = ay'ay")

= (a1, 02, B),



1042 D. Easdown and M. Hendriksen

where
a; =(12345)(678910)(11 141215 13),

ar = (12345)(697108)(11 1213 14 15),
B=(1116)(2127)(3138)(4 14 9)(5 15 10).

By the first alternative of (4.8), we have u(G,) = 15. A minimal faithful repre-
sentation is afforded by a canonical core-free subspace of ]F53 yielding

Gy = Gy x Cs = (a1, 02,03, B),
where o1, @ and B are as above, and
a3 =(12345)(678910)(11 1213 14 15).

In fact, G1 and G, are isomorphic to subgroups of the transitive permutation group
introduced at the end of Wright’s paper [22], which was the first published counter-
example to additivity of p with respect to direct product. By contrast, now using
the second alternative of (4.8), u(Gs3) = 15 4+ 5 = 20. A faithful intransitive rep-
resentation of G3 is given by the previous canonical core-free subspace of F2,
augmented in an obvious way in F2, and a subgroup of index 3, yielding

Gz = Gy xCs5 =~ G X C52 >~ (oy, 00, 3,04, ),
where a1, a», @3 and B are as above, but fixing five new letters, and
ag = (1617 18 19 20).
Observe that 11(Cs)? = 10, so that
max{1t(G1), (C3)} = 15 < u(G1 x C3) = 20 < 25 = u(G1) +1(C3). (5.2)

This answers affirmatively a question of Saunders [17], whether there exist groups
K and L such that

max{p(K), (L)} < (K x L) < (K) + p(L). (5.3)
Note that if G and H are groups such that
pu(H) < pu(G) and w(G x H) = pn(G) < n(G) + n(H)

(such as the example in [22]), then (5.3) holds easily by taking any group M of
order coprime to |G x H |, putting K = G and L = M x H, and invoking Johnson’s
result that p is additive with respect to taking direct products of groups of coprime
order. However, the solution (5.2) given here appears to be novel in that only
two primes, namely 3 and 5, divide |K x L|, taking K = Gy and L = C52. This
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example clearly generalises, by (4.8), to an infinite class of examples, where (5.3)
holds and only two distinct primes p and ¢ divide |K x L|. Note that (5.3) fails,
if K x L is a p-group, since p is additive with respect to taking direct products of
nilpotent groups by a theorem of Wright [22].

Example 5.2. Let p and g be primes such that p has order s = ¢ — 1 modulo ¢, so
thatw = 1 + x + --- + x4~ 1 is irreducible over FF,. Suppose also (p, ¢) # (2, 3),
as this guarantees that ¢ < p9=2 = ps~1, so that the second alternative of (4.1)
will apply. (The case (p, q) = (2, 3) is explored above in Example 4.7 when illus-
trating the third alternative of (4.1).) The smallest case satisfying our conditions
is (p,q) = (2,5). Consider the groups

Hi=FI"'"%Ti =CI7'xC; and Hy =FIxTr=CIxCq=HyxCp,

where T7 and T are matrices over I, in rational canonical form having charac-
teristic polynomials 7= and (1 + x)m respectively. Then

w(H1) = pq = w(Hz) = u(Hy x Cp),

by the second alternative of (4.1) and the first alternative of (4.8). Observe that H
is a subgroup of the complex reflection group C(p, p, ¢), a member of the infinite
class of counterexamples studied by Saunders in [18]. In the smallest case, when
p = 2 and g = 5, the groups become

Hy = CysdCs and Hy = C;sdCs = Hy x Ca,

and
w(Hp) = p(Hy x C2) =10 < 12 = u(Hy) + pn(Ca).

The group H; and these properties appear for the first time in [17]. It is gratifying
that the smallest example that comes from Saunders’ investigations, where he was
motivated by questions about complex reflection groups, also coincides with the
smallest example that arises as an application of Theorems 4.5 and 4.8. By results
in [4], it is impossible to create a smaller example by any method, in the sense that
G x H cannot embed in Sym(9) and have H nontrivial and u(G) = u(G x H).

We say that an integer m > 3 is Mersenne with respect to an integer n > 2 if
m=14n+4---+ n* for some integer . Note that this implies

m=-———-— <n°‘+1.

n—1

Lemma 5.3. If m is Mersenne with respect to n, then k is not Mersenne with
respect ton form < k < 2m.
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Proof. If m and k are Mersenne with respect to n and m < k < 2m, then there exist
aand Bsuchthatm = 1+n+---+n%andk = m+n®t1 ...+ n®*tP whence
netl < petl ooy @B — k —m < m < n®t!, which is impossible. o

The following corollary is of independent interest and probably well known.

Corollary 5.4. Given a positive integer n, there exists infinitely many primes that
are not Mersenne with respect to n.

Proof. This follows quickly from Lemma 5.3 and Bertrand’s postulate. o

Lemma 5.5. Let n > 2, k > 3 and N any positive integer. Then any strictly in-
creasing sequence of k integers strictly between N and 2N contains a consecutive
subsequence of |k /2] elements, none of which are Mersenne with respect to n.

Proof. Letty,...,1; be a strictly increasing sequence of integers strictly between
N and 2N . If ¢; is not Mersenne with respect to n for all 7, then we are done using
the entire sequence. Suppose then that some element in the sequence is Mersenne
with respect to n, and let ¢; be the least such element. Then, for all £ such that
Jj <t <k, wehave N <t; <ty <2N < 2tj, so that t; is not Mersenne with
respect to n, by Lemma 5.3. If j > |k/2], then f1,...,1x/2) is a consecutive
subsequence of |k /2| elements, none of which are Mersenne with respect to 7,
and we are done. Otherwise j < |k/2] and #; 41, ..., is a consecutive subse-
quence with k — j > k — |k /2| > |k/2] elements, none of which are Mersenne
with respect to n, and again we are done. o

Proposition 5.6. If p1, ..., px are prime numbers, then there exist infinitely many
primes that are not Mersenne with respect to p; for each i.

Proof. Let p1,..., pr be primes and N any positive integer. By the Green-Tao
theorem [7] there exists an arithmetic progression of primes

q—-M 4—M+1,----90 = 4,91, -- ., qM

for some M > max{N, 2k}. We may suppose the common difference is s so that
q=q-pm+ Ms > 2k andg; = q +isforeachi =1,..., M. In particular,

q<q1<--<qpm <24q. 5.4)

By Lemma 5.5, there exists a consecutive subsequence of ¢, ..., gy, starting at
q;, for some i; > 1, of length M| = |[M/2]| > 2k=1 consisting of elements none
of which are Mersenne with respect to pj, which starts an induction. Suppose
j < k and, as inductive hypothesis, that we have a consecutive subsequence start-
ing at g;,_, of length M;_; > 2k=7+1 consisting of elements none of which are
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Mersenne with respectto p1,..., pj—1. By Lemma 5.5, this contains a consecutive
subsequence starting at ¢;; for some i; > i, of length M; > [M;_ /2] > 2k=J
consisting of elements none of which are Mersenne with respect to p1,..., pj,
establishing the inductive step. The lemma now follows by induction by observing
that M > 2k=k — 1, so that we have found at least one prime g;,, > N that is not
Mersenne with respect to py, ..., pk. o

Remark 5.7. Ramanujan [16] showed that 7 (n) — 7 (n/2) tends to infinity as n
does, where 7(n) denotes the number of primes less than or equal to 7, general-
ising Bertrand’s postulate. This also guarantees the existence of an integer g and
primes ¢, . . ., g such that (5.4) holds, and the proof of Proposition 5.6 proceeds
as above, but avoiding use of the Green—Tao theorem.

In the following example, given an arbitrarily large direct product H of ele-
mentary abelian groups built from any collection of primes and positive integer
exponents, we construct a group G such that (G x H) = u(G), yet G does not
decompose nontrivially as a direct product.

Example 5.8. Let P = {p1,..., px} be a finite collection of distinct primes and
N = {ny,...,n;} acollection of positive integers. Choose a prime ¢ > 5 that is
not Mersenne with respect to each prime in P, and larger than all of the primes
in P, the existence of which is guaranteed by Proposition 5.6. Consider an integer
i €{l,...,k}.Lets; be the multiplicative order of p; modulo ¢ and put m; = s;n;.
Then s; > 1 and we can find a monic irreducible polynomial 7; € I, of degree
s; such that its roots in an extension of I, are primitive gth roots of 1. We have
q < pisi _1, by Lemma 4.3, since ¢ is not Mersenne with respect to p;. Denote the
companion matrix over a field IF of a monic polynomial & € F[x] by M. Define
T; to be the m; x m; matrix over I, that is the matrix direct sum of n; copies
of My;. Now put

Ti =T @ In,,
where I, is an identity matrix (over Iy, ). Then |T;| = |7"\,| =gq,
o, =i xp =7, en=@—Dm and yo = (-1

Now let G; =Vl-><17}and/G\,~=I’/;><17’“\l-,where

M U, — amitn;
Vi _]Fpi and V; _]Fpi .

Then
w(Gi) = u(G;) = n;piq;, (5.5
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by Theorems 4.5 and 4.8. Observe that, because I, acts trivially on IF"l.’,
G~ G; xCl. (5.6)

Now put

k
T=@n T=@n. v=Pv. V=,
i=1 i=1 i=1 i=1

where the zeros outside the matrix blocks down the diagonals act as formal zeros
(not in any particular field) for the purpose of matrix multiplication, and the ele-
ments of V and ¥ may be regarded as column vectors over Fp, U---UTF,,. Thus,
because the construction respects direct sum decompositions, 7 and T may be re-
garded as acting on V' and % (on the left) by usual matrix multiplication. Hence,
asin (3.1) and (3.2), we may define

G=VxT and G=VxT.

The actions of T and T on the respective ith direct summands is nontrivial, for
each i, and the orders of these direct summands are pairwise coprime and also
coprime to g, so, by repeated application of the last alternative in the formula
given in Theorem 2.7 and by (5.5), we have

k k k
WG =Y "G =Y nipigi =y _ (G = u(@G).
i=1 i=1 i=1
Also, by (5.6),
G~G x Cpl x o x Cyk.

Finally, put H = CIZ’I‘ X oo X C;,f , which is our arbitrarily large direct product
of elementary abelian groups, using all of the primes p1, ..., pr. Then u(G x H)
equals £ (G). By construction, the irreducible action on each direct summand guar-
antees that G does not decompose nontrivially as a direct product. Note that when
H = Cp, x -+ x Cp,, the action of G on each Sylow p;-subgroup is irreducible.
The authors are not aware of any simpler method for achieving this last property,
which appears to be inextricably linked to number-theoretic properties of the par-
ticular primes involved.

Remark 5.9. It is an open problem whether there are finitely many generalised
Mersenne primes. If there are only finitely many, then we can avoid the use of
Proposition 5.6 in the previous example, simply by choosing g to be larger also
than the largest generalised Mersenne prime (for that would guarantee g < pff -1
for each i, by Remark 4.4).
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