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The influence of maximal quotient groups on the
normalizer conjecture of integral group rings
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Abstract. Let N be a minimal normal subgroup of a finite group G. The aim of the present
paper is to investigate the influence of the quotient group G/N on the normalizer conjec-
ture of the integral group ring ZG. Some conditions on G/N are obtained under which
the normalizer conjecture holds for ZG.

1 Introduction

All groups considered are assumed to be finite. Let G be a group and ZG its
integral group ring. The normalizer conjecture states that

Nuze)(G) = G - Z(U(ZG)).

where Ny(zG)(G) denotes the normalizer of G in the unit group U(ZG) (see
[23, Problem 43]). If the conjecture is valid for the integral group ring ZG, then
we sometimes say that G has the normalizer property. Recently, the normalizer
conjecture has been extensively studied by many authors, see [3,5,9-20].

The normalizer conjecture intimately relates with special automorphisms of
groups. Denote by Autz(G) the group of all automorphisms of G each of which
is induced by some u € Ny(zg)(G) via conjugation. Denote by Autco(G) the
group of all Coleman automorphisms of G (an automorphism o of G is called
a Coleman automorphism if its restriction to each Sylow subgroup of G equals
the restriction of some inner automorphism of G, see [6]). It is easy to check
that Ny(z6)(G) = G - Z(U(ZG)) if and only if Autz(G) = Inn(G). In addition,
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Coleman’s Lemma (see [6, Introduction]) implies that
Autz(G) < Autco(G).

Write Outz(G) := Autz(G)/Inn(G) and Outce(G) := Autco(G)/Inn(G). By
Krempa’s result Outz(G) is an elementary abelian 2-group. So, if Outco (G) = 1
or, more generally, Outco (G) is an odd order group, then the normalizer conjec-
ture holds for ZG. In this direction, many results have appeared in the literature,
see [4,6,9, 10, 14, 16] for instance.

We should mention that in [1] Hertweck constructed a metabelian group of order
225 . 972 for which the normalizer property fails to hold. Obviously, the normalizer
property holds for any abelian group. So Hertweck’s counterexample demonstrates
that if a group G is an extension of a group A by a group B, then G does not
necessarily have the normalizer property even if both A and B do. It is interesting
to determine under what conditions G has the normalizer property provided that
both A and B have.

It is well known (see [6]) that the normalizer property holds for any simple
group. Let N be a minimal normal subgroup of a group G. Then N is a direct
product of copies of a simple group. Since the normalizer property is closed under
taking direct products (see [10, Proposition 3]), it follows that N has the normal-
izer property. The aim of this paper is to present some conditions on G/N under
which the normalizer conjecture holds for ZG. Our main results are as follows.

Theorem A. Let N be a minimal normal subgroup of G such that Z.(G/N) has
only trivial central units. Then the normalizer conjecture holds for Z.G.

Theorem B. Let N be a minimal normal subgroup of G such that G/ N is a nilpo-
tent group with a Dedekind Sylow 2-subgroup. Then the normalizer conjecture
holds for Z.G.

We note that in [10] Kimmerle investigated the influence of composition fac-
tors of a group on the normalizer conjecture. Therein he developed some useful
techniques which will be used in our proof of Theorem B when we tackle the case
in which N is non-abelian. We note also that in some sense our results could be
regarded as extensions of [11, Proposition 2.20].

Now we fix some notation. Let N < G and o € Aut(G). Suppose that N is
fixed by o (note that this is always the case if 0 € Autz(G) or, more generally,
0 € Autcol(G), see [3, Remark 4.3]). Denote by o|y the restrictions of o to N
and oG/ the automorphism of G/N induced by o in the natural way. Denote by
conj(x) the inner automorphism of G induced by x € G via conjugation. Let p
be a prime. Denote by O,(G) the largest normal p-subgroup of G. Unless stated
otherwise, other notation and terminology follow those in [22].
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2 Some known results

In this section, we recall some known results relating with the normalizer conjec-
ture which will be used in the sequel. The following result is due to Coleman. For
its proof the reader may refer to that of [23, Theorem 9.1].

Theorem 2.1. Let G be a group and let v € Z.G be an element with augmenta-
tion 1. Let ¢ be an automorphism of G such that v = g~ vg? forall g € G. Then
for any Sylow subgroup P of G there is an element g in the support of v such that
¢ coincides with conjugation by g on P.

Theorem 2.2 (Krempa). Let G be a group. Then Outg (G) is an elementary abel-
ian 2-group.

By using Krempa'’s result, Jackowski and Marciniak proved the following result.

Theorem 2.3 ([8, Theorem 3.6]). If G has a normal Sylow 2-subgroup, then
Outz(G) = 1.

Recall that an automorphism o of G is said to be p-central if o|p = id|p for
some Sylow p-subgroup P of G, where p is a prime. As far as p-central automor-
phisms are concerned, Hertweck and Kimmerle proved the following result.

Theorem 2.4 ([6, Theorem 14]). Let G be a simple group. Then there is a prime
p € n(G) such that every p-central automorphism of G is inner. In particular,
Outcol(G) =1

Jurianns, de Miranda and Robério proved the following result, which general-
izes an early result obtained by Marciniak and Roggenkamp in [17].

Theorem 2.5 ([9, Theorem 3.1]). Let G be a group with abelian Sylow 2-sub-
groups. Suppose that there exists a nilpotent normal subgroup N of G such that
G/ N has a normal Sylow 2-subgroup. Then every class-preserving Coleman auto-
morphism of G of 2-power order is inner. In particular, Outz (G) = 1.

3 Proofs of Theorems A and B

In this section, we present proofs of Theorems A and B. To do this, the following
technical result ([13, Proposition 3.1]) and its proof are needed. For the reader’s
convenience, we include an outline of its original proof below.
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Proposition 3.1. Let G be a group with a normal subgroup N such that the central
units of Z(G/N) are trivial. Let ¢ € Auty(G). Then there is an element b € G
such that for any Sylow subgroup P of G there exists an element a € N with
¢ conj(b~1)|p = conj(a)|p. Furthermore, ¢ conj(b™")|g,ny = id|g/n-

Proof. Let H =G/N and let s : H — G be a section such that s(eg) = eg,
where ey is the identity element of a group M. Let u be a unit of Nyzg)(G)
inducing ¢ via conjugation, i.e., g# = g¥ for all g € G. We may assume that
the augmentation € (1) = 1. Then by [13, Lemma 2.1] the image u of u in ZH
is an element # of H. Let b = s(¢), w = ub~! and let ¢ = ¢ conj(h~1). Then
w=1and w=g lwg? for any g € G. We may write w = Y,z wps(h),
where wy, € ZN for each h € H. Then we have 1 = w = ) ;. €(wp)h. It fol-
lows that €(w,) = 1 and €(wy,) = O for all & # e, where e = ep.

Let g € G and let g be its image in H. Then for any & € H there exists ¢, € N
such that g7 1s(h)g? = cj,s(g7'hg). In particular, c, = g~ 'g%. Then we have

Y wps(h) =w =g 'wg? = > g wpgens (@ hy).
heH heH

Note that g~ wygc, € ZN for any h € H. It follows that Wag—1pg = g 'wpgep,

forall h € H. Takingh = e = ey, we get we = g 'wegce = g 'weg?. Let P
be a Sylow subgroup of G. Note that the support of w, is contained in N. So by
Theorem 2.1 there exists some a € N such that ¢ coincides with conjugation by a
on P . This means ¢ conj(h~1)|p = conj(a)|p. Since ¢ = conj(w) and w = 1, the
second assertion follows immediately. This completes the proof of Proposition 3.1.

|

As a direct result of Proposition 3.1, we have the following ([13, Theorem 3.2]).

Corollary 3.2. Let G be a group with a normal subgroup A of odd order such that
the central units of Z.(G/A) are trivial. Then Outz(G) = 1.

In addition, the following well-known result is also needed in the sequel. For its
proof the reader may refer to [2].

Lemma 3.3. Let ¢ € Aut(G) be of p-power order, where p is a prime. Suppose
that there is a normal subgroup N of G such that 9|y = id|n, ¢|g/n = id|G/N-
Then ¢|G /o,y = 1dlG/0,zw))- Furthermore, if ¢ fixes element-wise a Sylow
p-subgroup of G, then ¢ is an inner automorphism of G.

Proof of Theorem A. Let G and N be as in Theorem A. Let ¢ € Autz(G). We
have to show that ¢ € Inn(G). The proof is divided into two cases according to
whether N is abelian or not.
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Case 1: N is abelian. If N is of odd order, then the assertion follows from
Corollary 3.2. Note that N is an elementary abelian p-group. So it remains to con-
sider the case when N is of 2-power order. Take a Sylow 2-subgroup P of G. Then
N < P.By Proposition 3.1, there exists b € G such that ¢ := ¢ conj(h™!) acts as
conjugation by some element x € N on P and induces identity on G/ N . Namely,
we have ¢|p = conj(x)|p and ¢|g/y = id|g/n. Write 0 := ¢ conj(x~1). Then
we have o|p = id|p and 0|g/y = id|g/n . Note that N is contained in P. So we
also have 0|y = id|y. Since by Theorem 2.2 o2 is inner, without loss of gener-
ality, we may assume that o is of 2-power order. Applying Lemma 3.3, we have
o € Inn(G), yielding that ¢ € Inn(G).

Case 2: N is non-abelian. Since ¢ € Autz(G), it follows from Proposition 3.1
that there exists an element b € G such that ¢ := ¢ conj(h~1) acts as conjuga-
tion by some element in N on every Sylow subgroup of G. It follows that ¢,
when restricts to N, is a Coleman automorphism of N. Since N is a non-abelian
minimal normal subgroup of G, it follows that N is a direct product of isomor-
phic non-abelian simple groups. It is known that Outcg( ) is closed under tak-
ing direct products (see [3, Remark 4.3]). So by Theorem 2.4, Outco(N) = 1
and thus ¢|y = conj(x)|y for some x € N. In addition, by Proposition 3.1, we
have ¢|g/ny = id|g/n. Write 0 := ¢ conj(x~!). Then we have 0|y = id|y and
olg/n = id|g,n. As before, we may assume that o is of 2-power order. Note that
Z(N) = 1. So by Lemma 3.3, we have ¢ € Inn(G), implying ¢ € Inn(G). This
completes the proof of Theorem A. |

We note that Ritter and Sehgal presented a characterization of finite groups
whose integral group rings have only trivial central units; in particular, the inte-
gral ring of the symmetric group S, of degree n possesses this property, for this
see [21].

Corollary 3.4. Let G be an extension of a simple group by a group whose integral
group ring has only trivial central units. Then the normalizer conjecture holds
for Z.G. In particular, this is the case when G is an extension of a simple group by
the symmetric group Sy, of degree n.

Before proving Theorem B, we recall a result ([7, Theorem 11]) due to Higman
which states that the integral group ring ZG has trivial units if and only if G is
either an abelian group of exponent 2,3,4,6 or G = Qg x E, where Og denotes
the quaternion group of order 8 and E is an elementary abelian 2-group.

Proof of Theorem B. Let G, N be as in Theorem B. Write H := G/N. Then by
hypothesis, H is a nilpotent group with a Dedekind Sylow 2-subgroup, say P.
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Let 0 € Autz(G). We have to show o € Inn(G). The proof is divided into two
cases according to whether P is abelian or Hamiltonian 2-group.

Case 1: P is abelian. The proof splits into two subcases according to whether
N is abelian or not.

Subcase 1.1: N is abelian. Then N is an elementary abelian p-group for some
prime p. If p = 2, then G has a normal Sylow 2-subgroup and thus the assertion
follows from Theorem 2.3. If p # 2, then G has an abelian Sylow 2-subgroup.
Note that G is a nilpotent-by-nilpotent group. So the assertion follows from The-
orem 2.5.

Subcase 1.2: N is non-abelian. Aso € Autz(G), it follows that o |y € Aut(N).
Let N = S xS x---x S, where § is a non-abelian simple group. By Theorem 2.4,
there exists a prime ¢ such that every g-central automorphism of § is inner. Let
Q be a Sylow g-subgroup of N. Then there exists some element g € G such that
olo = conj(g)|o. Write ¢ := o conj(g~!). Then ¢|y € Aut(N). It follows that
¢|n permutes on the set of all minimal normal subgroups of N. On the other hand,
note that ¢|g = id|g; in particular, ¢|snp = id|snp for each S. We conclude
that ¢|y must fix every S, i.e., ¢|s € Aut(S). Consequently, ¢|s is a g-central
automorphism of S and thus ¢|s € Inn(S). As N is the direct product of copies
of S, it follows that ¢| 5 € Inn(N). Let x € N such that ¢|y = conj(x)|y. Write
¢ := @ conj(x~ ). Then ¢|y = id|y. Since H is nilpotent and ¢|g € Autz(H),
it follows from Theorem 2.1 that ¢|g = conj(h)|g for some h € H. Note that
¢ € Autz(G). So, without loss of generality, we may assume that ¢ is of 2-power
order and that % is of 2-power order. Since H is a nilpotent, it follows that z € P.
Keep in mind that in our case P is abelian. So actually ¢|g = conj(h)|g = id|g.
Now by Lemma 3.3 we have ¢|G/0,zv)) = 1d|G/0,z(n))- Note that in our case
Z(N) = 1. So the previous equality yields that ¢ = id, implying o € Inn(G), as
desired.

Case 2: P is Hamiltonian. Let P = Qg x E, where E denotes an elemen-
tary abelian 2-group. The proof of this case splits into two subcases according
to whether N is abelian or not.

Subcase 2.1: N is abelian. Then N is an elementary abelian p-group for some
prime p. In the case when p = 2, the group G has a normal Sylow 2-subgroup and
thus the assertion follows from Theorem 2.3. It remains to consider the case when
p # 2. Let L be the normal subgroup of G such that L/N = O(H ), where O(H)
denotes the maximal normal subgroup of H of odd order. Then L is of odd order
and G/L = G/N/L/N = P.This shows that G may be regarded as an extension
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of an odd order group L by Qg x E. Since Z(Qg x E) has only trivial units, it
follows from Corollary 3.2 that the normalizer conjecture holds for ZG.

Subcase 2.2: N is non-abelian. Denote by M the normal subgroup of G such
that M/N = O(H). We claim that Outce (M) is a 2’-group. Let p € Autce (M)
be of 2-power order. We have to show that p € Inn(M). As in the proof of Sub-
case 1.2 above, without loss of generality, we may assume that p|y = id|x. Since
p € Autcol(M), it follows that p|ar/y € Autcol(M/N). Note that M/ N is of odd
order. So, on the one hand, by [6, Proposition 1], p|as/n is of odd order. On the
other hand, by hypothesis, p is of 2-power order, so p[ps/n is of 2-power order.
Consequently, we must have p|p/n = id|p/n. Now, applying Lemma 3.3, we
obtain that p|yr/0,z(N)) = id|pm/0,(z(n))- Since N is a non-abelian minimal nor-
mal subgroup of G, it follows that Z(N) = 1. Hence the previous equality yields
p = id. As p is arbitrary, Outce (M) is a 2/-group, as desired.

Note that G/M =~ P = Qg x E. So Z(G/M) has only trivial units. Thus by
Proposition 3.1, there exists some b € G such that for any Sylow subgroup Q
of G there is s € M with o conj(b)|g = conj(s)|p. In particular, this implies
that o conj(b)|ps € Autcol(M). As before, we may assume that o conj(b) is of
2-power order. Since Outco (M) is a 2'-group, there exists some element x € M
such that o conj(b)|pr = conj(x)|ar. Applying Proposition 3.1 again, we have
oconj(b)|g/m = id|g/p . Write y = o conj(hx~1). Then we have y|p = id|py
and y|g/pm = id|G,p - Without loss of generality, we may assume that y is of 2-
power order. Then by Lemma 3.3, we have y|g/0,zm)) = 1dlG/0,@m))- It is
clear that O2(Z(M)) = 1 since O2(Z(M)) is contained in N and N is a non-
abelian minimal normal subgroup of G. Thus we actually have y = id. Namely,
o = conj(xb~!) € Inn(G). The proof of Theorem B is finished. ]

As a direct consequence of Theorem B, we have the following result.

Corollary 3.5. Let G be an extension of a simple group by a Dedekind group. Then
the normalizer conjecture holds for 7.G.

We note that if the quotient group G/ N in Theorem B is abelian, then a stronger
result can be stated as follows.

Corollary 3.6. Let N be a minimal normal subgroup of a group G such that G/ N
is an abelian group. Then Outco(G) = 1. In particular, this is the case when G is
an extension of a simple group by an abelian group.

Proof. Let 0 € Autco (G). We have to show that o € Inn(G). We first consider
the case when N is abelian. In this case, N is an elementary abelian p-group for
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some prime p. Let P be the Sylow p-subgroup of G. Then by the definition of o
there exists some x € G suchthato|p = conj(x)|p. Without loss of generality, we
may assume that o|p = id|p. In particular, we have o|y = id|y. Since G/N is
abelian, it follows that 0|,y = id|g,n . Thus o(o) divides the order N and hence
o is of p-power order. Applying Lemma 3.3, we have o € Inn(G), as desired. It
remains to consider the case when N is non-abelian. The proof for this case is
similar to that of Subcase 1.2 in Theorem B. So we leave it to the reader. o

We would like to point out that Corollary 3.5 may be restated in terms of the
derived subgroup of G.

Corollary 3.7. Suppose that the derived subgroup G’ is a minimal normal sub-
group of G. Then Outco(G) = 1. In particular, this is the case when G’ is a simple

group.

We note that the condition that G/ N is nilpotent in Theorem B is used to guar-
antee that the Sylow 2-subgroup of G/ N is a direct factor of the whole group. So
a more general result than Theorem B can be stated as follows.

Theorem 3.8. Let N be a minimal normal subgroup of G such that the Sylow
2-subgroup of G/ N is both Dedekind and a direct factor of G/N. Then the nor-
malizer conjecture holds for 7.G.

We close this paper by stating the following remark. Before that, we recall
aresult ([16, Theorem B]) which says that if G is a group whose non-trivial normal
subgroups have the same order, then Outco(G) = 1.

Remark 3.9. In [10] Kimmerle proved that if G has no composition factor of or-
der 2, then Outco (G) is a 2'-group (see [10, Proposition 3] and [6, Theorem 14]).
In this spirit, we shall record the following result: if G has a chief series of length 2,
then Outco(G) = 1; in particular, this is the case when G has a composition
series of length 2. In fact, if all non-trivial normal subgroups of G have the same
order, then the assertion follows from [16, Theorem B]. Otherwise, G has two
minimal normal subgroups N and M say, such that |N| < |[M]|. Since G has
a chief series of length 2, it follows that {N,G/N} = {M, G/M} (up to isomor-
phism). So |[N| = |G/M| and N N M = 1. We obtain that G = M x N. Since
Outcol(M) = Outco(N) = 1 and Outce(-) is closed under taking direct prod-
ucts (see [3, Remark 4.3]), it follows that Outco (G) = 1.
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