
J. Group Theory 19 (2016), 983–992
DOI 10.1515/ jgth-2016-0013 © de Gruyter 2016

The influence of maximal quotient groups on the
normalizer conjecture of integral group rings
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Abstract. LetN be a minimal normal subgroup of a finite groupG. The aim of the present
paper is to investigate the influence of the quotient group G=N on the normalizer conjec-
ture of the integral group ring ZG. Some conditions on G=N are obtained under which
the normalizer conjecture holds for ZG.

1 Introduction

All groups considered are assumed to be finite. Let G be a group and ZG its
integral group ring. The normalizer conjecture states that

NU.ZG/.G/ D G � Z.U.ZG//;

where NU.ZG/.G/ denotes the normalizer of G in the unit group U.ZG/ (see
[23, Problem 43]). If the conjecture is valid for the integral group ring ZG, then
we sometimes say that G has the normalizer property. Recently, the normalizer
conjecture has been extensively studied by many authors, see [3, 5, 9–20].

The normalizer conjecture intimately relates with special automorphisms of
groups. Denote by AutZ.G/ the group of all automorphisms of G each of which
is induced by some u 2 NU.ZG/.G/ via conjugation. Denote by AutCol.G/ the
group of all Coleman automorphisms of G (an automorphism � of G is called
a Coleman automorphism if its restriction to each Sylow subgroup of G equals
the restriction of some inner automorphism of G, see [6]). It is easy to check
that NU.ZG/.G/ D G � Z.U.ZG// if and only if AutZ.G/ D Inn.G/. In addition,
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Coleman’s Lemma (see [6, Introduction]) implies that

AutZ.G/ � AutCol.G/:

Write OutZ.G/ WD AutZ.G/=Inn.G/ and OutCol.G/ WD AutCol.G/=Inn.G/. By
Krempa’s result OutZ.G/ is an elementary abelian 2-group. So, if OutCol.G/ D 1

or, more generally, OutCol.G/ is an odd order group, then the normalizer conjec-
ture holds for ZG. In this direction, many results have appeared in the literature,
see [4, 6, 9, 10, 14, 16] for instance.

We should mention that in [1] Hertweck constructed a metabelian group of order
225 � 972 for which the normalizer property fails to hold. Obviously, the normalizer
property holds for any abelian group. So Hertweck’s counterexample demonstrates
that if a group G is an extension of a group A by a group B , then G does not
necessarily have the normalizer property even if both A and B do. It is interesting
to determine under what conditions G has the normalizer property provided that
both A and B have.

It is well known (see [6]) that the normalizer property holds for any simple
group. Let N be a minimal normal subgroup of a group G. Then N is a direct
product of copies of a simple group. Since the normalizer property is closed under
taking direct products (see [10, Proposition 3]), it follows that N has the normal-
izer property. The aim of this paper is to present some conditions on G=N under
which the normalizer conjecture holds for ZG. Our main results are as follows.

Theorem A. Let N be a minimal normal subgroup of G such that Z.G=N/ has
only trivial central units. Then the normalizer conjecture holds for ZG.

Theorem B. LetN be a minimal normal subgroup ofG such that G=N is a nilpo-
tent group with a Dedekind Sylow 2-subgroup. Then the normalizer conjecture
holds for ZG.

We note that in [10] Kimmerle investigated the influence of composition fac-
tors of a group on the normalizer conjecture. Therein he developed some useful
techniques which will be used in our proof of Theorem B when we tackle the case
in which N is non-abelian. We note also that in some sense our results could be
regarded as extensions of [11, Proposition 2.20].

Now we fix some notation. Let N E G and � 2 Aut.G/. Suppose that N is
fixed by � (note that this is always the case if � 2 AutZ.G/ or, more generally,
� 2 AutCol.G/, see [3, Remark 4.3]). Denote by � jN the restrictions of � to N
and � jG=N the automorphism of G=N induced by � in the natural way. Denote by
conj.x/ the inner automorphism of G induced by x 2 G via conjugation. Let p
be a prime. Denote by Op.G/ the largest normal p-subgroup of G. Unless stated
otherwise, other notation and terminology follow those in [22].



The influence of maximal quotient groups 985

2 Some known results

In this section, we recall some known results relating with the normalizer conjec-
ture which will be used in the sequel. The following result is due to Coleman. For
its proof the reader may refer to that of [23, Theorem 9.1].

Theorem 2.1. Let G be a group and let v 2 ZG be an element with augmenta-
tion 1. Let ' be an automorphism of G such that v D g�1vg' for all g 2 G. Then
for any Sylow subgroup P of G there is an element g in the support of v such that
' coincides with conjugation by g on P .

Theorem 2.2 (Krempa). Let G be a group. Then OutZ.G/ is an elementary abel-
ian 2-group.

By using Krempa’s result, Jackowski and Marciniak proved the following result.

Theorem 2.3 ([8, Theorem 3.6]). If G has a normal Sylow 2-subgroup, then
OutZ.G/ D 1.

Recall that an automorphism � of G is said to be p-central if � jP D idjP for
some Sylow p-subgroup P ofG, where p is a prime. As far as p-central automor-
phisms are concerned, Hertweck and Kimmerle proved the following result.

Theorem 2.4 ([6, Theorem 14]). Let G be a simple group. Then there is a prime
p 2 �.G/ such that every p-central automorphism of G is inner. In particular,
OutCol.G/ D 1.

Jurianns, de Miranda and Robério proved the following result, which general-
izes an early result obtained by Marciniak and Roggenkamp in [17].

Theorem 2.5 ([9, Theorem 3.1]). Let G be a group with abelian Sylow 2-sub-
groups. Suppose that there exists a nilpotent normal subgroup N of G such that
G=N has a normal Sylow 2-subgroup. Then every class-preserving Coleman auto-
morphism of G of 2-power order is inner. In particular, OutZ.G/ D 1.

3 Proofs of Theorems A and B

In this section, we present proofs of Theorems A and B. To do this, the following
technical result ([13, Proposition 3.1]) and its proof are needed. For the reader’s
convenience, we include an outline of its original proof below.
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Proposition 3.1. LetG be a group with a normal subgroupN such that the central
units of Z.G=N/ are trivial. Let � 2 AutZ.G/. Then there is an element b 2 G
such that for any Sylow subgroup P of G there exists an element a 2 N with
� conj.b�1/jP D conj.a/jP . Furthermore, � conj.b�1/jG=N D idjG=N .

Proof. Let H D G=N and let s W H ! G be a section such that s.eH / D eG ,
where eM is the identity element of a group M . Let u be a unit of NU.ZG/.G/

inducing � via conjugation, i.e., g� D gu for all g 2 G. We may assume that
the augmentation �.u/ D 1. Then by [13, Lemma 2.1] the image Nu of u in ZH
is an element t of H . Let b D s.t/, w D ub�1 and let ' D � conj.b�1/. Then
Nw D 1 and w D g�1wg' for any g 2 G. We may write w D

P
h2H whs.h/,

where wh 2 ZN for each h 2 H . Then we have 1 D Nw D
P
h2H �.wh/h. It fol-

lows that �.we/ D 1 and �.wh/ D 0 for all h ¤ e, where e D eH .
Let g 2 G and let Ng be its image inH . Then for any h 2 H there exists ch 2 N

such that g�1s.h/g' D chs. Ng�1h Ng/. In particular, ce D g�1g' . Then we haveX
h2H

whs.h/ D w D g
�1wg' D

X
h2H

g�1whgchs. Ng
�1h Ng/:

Note that g�1whgch 2 ZN for any h 2 H . It follows that w Ng�1h Ng D g
�1whgch

for all h 2 H . Taking h D e D eH , we get we D g�1wegce D g�1weg' . Let P
be a Sylow subgroup of G. Note that the support of we is contained in N . So by
Theorem 2.1 there exists some a 2 N such that ' coincides with conjugation by a
onP . This means � conj.b�1/jP D conj.a/jP . Since ' D conj.w/ and Nw D 1, the
second assertion follows immediately. This completes the proof of Proposition 3.1.

As a direct result of Proposition 3.1, we have the following ([13, Theorem 3.2]).

Corollary 3.2. Let G be a group with a normal subgroup A of odd order such that
the central units of Z.G=A/ are trivial. Then OutZ.G/ D 1.

In addition, the following well-known result is also needed in the sequel. For its
proof the reader may refer to [2].

Lemma 3.3. Let ' 2 Aut.G/ be of p-power order, where p is a prime. Suppose
that there is a normal subgroup N of G such that 'jN D idjN , 'jG=N D idjG=N .
Then 'jG=Op.Z.N// D idjG=Op.Z.N//. Furthermore, if ' fixes element-wise a Sylow
p-subgroup of G, then ' is an inner automorphism of G.

Proof of Theorem A. Let G and N be as in Theorem A. Let � 2 AutZ.G/. We
have to show that � 2 Inn.G/. The proof is divided into two cases according to
whether N is abelian or not.
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Case 1: N is abelian. If N is of odd order, then the assertion follows from
Corollary 3.2. Note thatN is an elementary abelian p-group. So it remains to con-
sider the case whenN is of 2-power order. Take a Sylow 2-subgroup P ofG. Then
N � P . By Proposition 3.1, there exists b 2 G such that ' WD � conj.b�1/ acts as
conjugation by some element x 2 N on P and induces identity on G=N . Namely,
we have 'jP D conj.x/jP and 'jG=N D idjG=N : Write � WD ' conj.x�1/. Then
we have � jP D idjP and � jG=N D idjG=N . Note that N is contained in P . So we
also have � jN D idjN . Since by Theorem 2.2 �2 is inner, without loss of gener-
ality, we may assume that � is of 2-power order. Applying Lemma 3.3, we have
� 2 Inn.G/, yielding that � 2 Inn.G/.

Case 2: N is non-abelian. Since � 2 AutZ.G/, it follows from Proposition 3.1
that there exists an element b 2 G such that ' WD � conj.b�1/ acts as conjuga-
tion by some element in N on every Sylow subgroup of G. It follows that ',
when restricts to N , is a Coleman automorphism of N . Since N is a non-abelian
minimal normal subgroup of G, it follows that N is a direct product of isomor-
phic non-abelian simple groups. It is known that OutCol. � / is closed under tak-
ing direct products (see [3, Remark 4.3]). So by Theorem 2.4, OutCol.N / D 1

and thus 'jN D conj.x/jN for some x 2 N . In addition, by Proposition 3.1, we
have 'jG=N D idjG=N . Write � WD ' conj.x�1/. Then we have � jN D idjN and
� jG=N D idjG=N : As before, we may assume that � is of 2-power order. Note that
Z.N / D 1. So by Lemma 3.3, we have � 2 Inn.G/, implying � 2 Inn.G/. This
completes the proof of Theorem A.

We note that Ritter and Sehgal presented a characterization of finite groups
whose integral group rings have only trivial central units; in particular, the inte-
gral ring of the symmetric group Sn of degree n possesses this property, for this
see [21].

Corollary 3.4. Let G be an extension of a simple group by a group whose integral
group ring has only trivial central units. Then the normalizer conjecture holds
for ZG. In particular, this is the case when G is an extension of a simple group by
the symmetric group Sn of degree n.

Before proving Theorem B, we recall a result ([7, Theorem 11]) due to Higman
which states that the integral group ring ZG has trivial units if and only if G is
either an abelian group of exponent 2; 3; 4; 6 or G Š Q8 �E, where Q8 denotes
the quaternion group of order 8 and E is an elementary abelian 2-group.

Proof of Theorem B. Let G;N be as in Theorem B. Write H WD G=N . Then by
hypothesis, H is a nilpotent group with a Dedekind Sylow 2-subgroup, say P .
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Let � 2 AutZ.G/. We have to show � 2 Inn.G/. The proof is divided into two
cases according to whether P is abelian or Hamiltonian 2-group.

Case 1: P is abelian. The proof splits into two subcases according to whether
N is abelian or not.

Subcase 1.1: N is abelian. Then N is an elementary abelian p-group for some
prime p. If p D 2, then G has a normal Sylow 2-subgroup and thus the assertion
follows from Theorem 2.3. If p ¤ 2, then G has an abelian Sylow 2-subgroup.
Note that G is a nilpotent-by-nilpotent group. So the assertion follows from The-
orem 2.5.

Subcase 1.2: N is non-abelian. As � 2 AutZ.G/, it follows that � jN 2 Aut.N /.
LetN D S �S �� � ��S , where S is a non-abelian simple group. By Theorem 2.4,
there exists a prime q such that every q-central automorphism of S is inner. Let
Q be a Sylow q-subgroup of N . Then there exists some element g 2 G such that
� jQ D conj.g/jQ. Write ' WD � conj.g�1/. Then 'jN 2 Aut.N /. It follows that
'jN permutes on the set of all minimal normal subgroups ofN . On the other hand,
note that 'jQ D idjQ; in particular, 'jS\Q D idjS\Q for each S . We conclude
that 'jN must fix every S , i.e., 'jS 2 Aut.S/. Consequently, 'jS is a q-central
automorphism of S and thus 'jS 2 Inn.S/. As N is the direct product of copies
of S , it follows that 'jN 2 Inn.N /. Let x 2 N such that 'jN D conj.x/jN . Write
� WD ' conj.x�1/. Then �jN D idjN . Since H is nilpotent and �jH 2 AutZ.H/,
it follows from Theorem 2.1 that �jH D conj.h/jH for some h 2 H . Note that
� 2 AutZ.G/. So, without loss of generality, we may assume that � is of 2-power
order and that h is of 2-power order. Since H is a nilpotent, it follows that h 2 P .
Keep in mind that in our case P is abelian. So actually �jH D conj.h/jH D idjH .
Now by Lemma 3.3 we have �jG=O2.Z.N// D idjG=O2.Z.N//. Note that in our case
Z.N / D 1. So the previous equality yields that � D id, implying � 2 Inn.G/, as
desired.

Case 2: P is Hamiltonian. Let P D Q8 �E, where E denotes an elemen-
tary abelian 2-group. The proof of this case splits into two subcases according
to whether N is abelian or not.

Subcase 2.1: N is abelian. Then N is an elementary abelian p-group for some
prime p. In the case when p D 2, the groupG has a normal Sylow 2-subgroup and
thus the assertion follows from Theorem 2.3. It remains to consider the case when
p ¤ 2. Let L be the normal subgroup of G such that L=N D O.H/, where O.H/
denotes the maximal normal subgroup of H of odd order. Then L is of odd order
andG=L Š G=N=L=N Š P . This shows thatG may be regarded as an extension
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of an odd order group L by Q8 �E. Since Z.Q8 �E/ has only trivial units, it
follows from Corollary 3.2 that the normalizer conjecture holds for ZG.

Subcase 2.2: N is non-abelian. Denote by M the normal subgroup of G such
that M=N D O.H/. We claim that OutCol.M/ is a 20-group. Let � 2 AutCol.M/

be of 2-power order. We have to show that � 2 Inn.M/. As in the proof of Sub-
case 1.2 above, without loss of generality, we may assume that �jN D idjN . Since
� 2 AutCol.M/, it follows that �jM=N 2 AutCol.M=N/. Note that M=N is of odd
order. So, on the one hand, by [6, Proposition 1], �jM=N is of odd order. On the
other hand, by hypothesis, � is of 2-power order, so �jM=N is of 2-power order.
Consequently, we must have �jM=N D idjM=N . Now, applying Lemma 3.3, we
obtain that �jM=O2.Z.N// D idjM=O2.Z.N//. Since N is a non-abelian minimal nor-
mal subgroup of G, it follows that Z.N / D 1. Hence the previous equality yields
� D id. As � is arbitrary, OutCol.M/ is a 20-group, as desired.

Note that G=M Š P D Q8 �E. So Z.G=M/ has only trivial units. Thus by
Proposition 3.1, there exists some b 2 G such that for any Sylow subgroup Q
of G there is s 2M with � conj.b/jQ D conj.s/jQ. In particular, this implies
that � conj.b/jM 2 AutCol.M/. As before, we may assume that � conj.b/ is of
2-power order. Since OutCol.M/ is a 20-group, there exists some element x 2M
such that � conj.b/jM D conj.x/jM . Applying Proposition 3.1 again, we have
� conj.b/jG=M D idjG=M : Write 
 D � conj.bx�1/. Then we have 
 jM D idjM
and 
 jG=M D idjG=M . Without loss of generality, we may assume that 
 is of 2-
power order. Then by Lemma 3.3, we have 
 jG=O2.Z.M// D idjG=O2.Z.M//. It is
clear that O2.Z.M// D 1 since O2.Z.M// is contained in N and N is a non-
abelian minimal normal subgroup of G. Thus we actually have 
 D id. Namely,
� D conj.xb�1/ 2 Inn.G/. The proof of Theorem B is finished.

As a direct consequence of Theorem B, we have the following result.

Corollary 3.5. LetG be an extension of a simple group by a Dedekind group. Then
the normalizer conjecture holds for ZG.

We note that if the quotient groupG=N in Theorem B is abelian, then a stronger
result can be stated as follows.

Corollary 3.6. Let N be a minimal normal subgroup of a group G such that G=N
is an abelian group. Then OutCol.G/ D 1. In particular, this is the case when G is
an extension of a simple group by an abelian group.

Proof. Let � 2 AutCol.G/. We have to show that � 2 Inn.G/. We first consider
the case when N is abelian. In this case, N is an elementary abelian p-group for
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some prime p. Let P be the Sylow p-subgroup of G. Then by the definition of �
there exists some x 2 G such that � jP D conj.x/jP . Without loss of generality, we
may assume that � jP D idjP . In particular, we have � jN D idjN . Since G=N is
abelian, it follows that � jG=N D idjG=N . Thus o.�/ divides the orderN and hence
� is of p-power order. Applying Lemma 3.3, we have � 2 Inn.G/, as desired. It
remains to consider the case when N is non-abelian. The proof for this case is
similar to that of Subcase 1.2 in Theorem B. So we leave it to the reader.

We would like to point out that Corollary 3.5 may be restated in terms of the
derived subgroup of G.

Corollary 3.7. Suppose that the derived subgroup G0 is a minimal normal sub-
group ofG. Then OutCol.G/ D 1. In particular, this is the case whenG0 is a simple
group.

We note that the condition that G=N is nilpotent in Theorem B is used to guar-
antee that the Sylow 2-subgroup of G=N is a direct factor of the whole group. So
a more general result than Theorem B can be stated as follows.

Theorem 3.8. Let N be a minimal normal subgroup of G such that the Sylow
2-subgroup of G=N is both Dedekind and a direct factor of G=N . Then the nor-
malizer conjecture holds for ZG.

We close this paper by stating the following remark. Before that, we recall
a result ([16, Theorem B]) which says that ifG is a group whose non-trivial normal
subgroups have the same order, then OutCol.G/ D 1.

Remark 3.9. In [10] Kimmerle proved that if G has no composition factor of or-
der 2, then OutCol.G/ is a 20-group (see [10, Proposition 3] and [6, Theorem 14]).
In this spirit, we shall record the following result: ifG has a chief series of length 2,
then OutCol.G/ D 1; in particular, this is the case when G has a composition
series of length 2. In fact, if all non-trivial normal subgroups of G have the same
order, then the assertion follows from [16, Theorem B]. Otherwise, G has two
minimal normal subgroups N and M say, such that jN j < jM j. Since G has
a chief series of length 2, it follows that ¹N;G=N º D ¹M;G=M º (up to isomor-
phism). So jN j D jG=M j and N \M D 1. We obtain that G DM �N . Since
OutCol.M/ D OutCol.N / D 1 and OutCol. � / is closed under taking direct prod-
ucts (see [3, Remark 4.3]), it follows that OutCol.G/ D 1.
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