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Ultraproducts of quasirandom groups
with small cosocles
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Abstract. A D-quasirandom group is a group without any non-trivial unitary representa-
tion of dimension less than D. Given a sequence of groups with increasing quasirandom-
ness, it is natural to ask if the ultraproduct will end up with no finite dimensional unitary
representation at all. This is not true in general, but we answer this question in the affir-
mative when the groups in question have uniform small cosocles, i.e., their quotients by
small kernels are direct products of finite simple groups.

Two applications of our results are given, one in triangle patterns inside quasirandom
groups and one in self-bohrifying groups. Our main tools are some variations of the cover-
ing number for groups, different kinds of length functions on groups, and the classification
of finite simple groups.

1 Introduction

As an indirect consequence of Kassabov, Lubotzky and Nikolov’s paper [12], the
following theorem about non-abelian finite simple groups is true.

Theorem 1.1. An ultraproduct of non-abelian finite simple groups is either finite
simple, or has no finite-dimensional unitary representation other than the trivial
one.

Definitions related to ultraproducts are presented in Section 2 for those unfa-
miliar with them.

In this paper, we shall show that non-abelian finite simple groups are not the
only kind of groups exhibiting such behavior. It turns out that such behavior has
a very close link to the notion of quasirandom groups, defined by Gowers [7],
and the notion of minimally almost periodic groups, defined by von Neumann and
Wigner [13]. All representations considered in this paper are over C. We shall
informally say that a group is quasirandom when the group is D-quasirandom for
some large D.

Definition 1.2. For a positive integer D, a group G is D-quasirandom if it has no
non-trivial unitary representation of dimension less than D.
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Definition 1.3. An infinite group is minimally almost periodic if it has no non-
trivial finite dimensional unitary representation.

A group is minimally almost periodic iff it is D-quasirandom for all D. Then it
is natural to wonder whether some sort of limit of increasingly quasirandom groups
would give us a minimally almost periodic group. One such limit to consider is the
ultraproduct.

We will prove the existence of classes of groups with similar results to Theo-
rem 1.1. The main theorem is the following Theorem 1.5.

Definition 1.4. For a group G, we define its cosocle Cos(G) to be the intersection
of all maximal normal subgroups of G.

Let n be any positive integer. Let €, be the class of groups that are arbitrary
direct products (not necessarily finite) of finite quasisimple groups and finite
groups G whose cosocles contain at most # conjugacy classes of G.

Theorem 1.5. For any sequence of groups in €, with quasirandom degree going
to infinity, their non-principal ultraproducts will be minimally almost periodic.

Quasirandom groups were first introduced by Gowers to find groups with no
large product-free subset. They can be seen as stronger versions of perfect groups.

Example 1.6 (Gowers [7]). (i) A group (not necessarily finite) is 2-quasirandom
iff it is perfect. The reason is that a non-perfect group has a non-trivial abelian
quotient, which in turn has a non-trivial homomorphism into U (C). A per-
fect group, on the other hand, can only have the trivial homomorphism into
the abelian group Uy (C).

(i1) A finite perfect group with no normal subgroup of index less than r is at least
J/log n/2-quasirandom. In fact, using a form of Jordan’s theorem [6], a finite
perfect group with no normal subgroup of index less than n is at least
¢ log n-quasirandom for some constant c.

(iii) In particular, a non-abelian finite simple group G is at least ¢ log n-quasi-
random if it has n elements.

(iv) Conversely, any D-quasirandom group must have more than (D — 1)? ele-
ments.

(v) The alternating group A, is (n — 1)-quasirandom for n > 5, and the special
linear group SLy(Fp) is £ ;1 -quasirandom for any prime p.

Morally, ultraproducts preserve all local properties at the scale of elements.
In particular, all element-wise identities are preserved. But global properties of
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a group, like being finite or finitely generated, might be lost after taking ultraprod-
ucts. So one may wonder if a non-principal ultraproduct of increasingly quasi-
random groups is always minimally almost periodic. In other words, we want to
investigate if quasirandomness can be captured by element-wise properties. This
turns out to be false. In particular, we have the following counterexample, pointed
out by Laszl6 Pyber.

Example 1.7. We recall that a group G (not necessarily finite) is 2-quasirandom
iff G is perfect. We claim that there is a sequence of D;-quasirandom groups
(Gi);eg+ withlim; o D; = oo, whose ultraproduct by any non-principal ultra-
filter is not even perfect.

Using the construction of Holt and Plesken [11, Lemma 2.1.10], one may con-
struct a finite perfect group Gp,,, for each prime p > 5 and positive integer 7, such
that an element of G, , cannot be written as a product of less than n commutators,
and that the only simple quotient of G, is PSL, (I, ), the projective special linear
group of 2 x 2 matrices over the field of p elements. Then by Example 1.6 (ii), for
any D, Gp , is D-quasirandom for large enough p.

Let G; be Gp,,i, where (p;);cz+ is a strictly increasing sequence of primes.
Then G; is D;-quasirandom for some D; with lim; o D; = 00. Let g; € G; be
an element which cannot be written as a product of less than i commutators. Then
g = (gi)ien corresponds to an element of the ultraproduct G = [];_,,, G; by any
ultrafilter . When o is non-principal, clearly g cannot be written as a product of
finite number of commutators in G. So g is not in the commutator subgroup of G,
and thus G is not perfect.

However, a recent paper by Bergelson and Tao [3] proved the following theo-
rem, which sheds some new light on this inquiry:

Theorem 1.8 ([3, Theorem 49 (i)]). The ultraproduct [];_,, SL2(Fp,) by a non-
principal ultrafilter w is minimally almost periodic.

Inspired by this, we make the following definitions:

Definition 1.9. A class ¥ of groups is a g.u.p. (quasirandom ultraproduct prop-
erty) class if for any sequence of groups in & with quasirandom degree going to
infinity, their non-principal ultraproducts will be minimally almost periodic.

Definition 1.10. A class ¥ of groups is a Q.U.P. class if there is an unbounded
non-decreasing function f : Z* — Z7 such that any ultraproduct of any sequence
of D-quasirandom groups in ¥ is f(D)-quasirandom.
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Remark 1.11. A Q.U.P class is automatically a q.u.p. class. It is like an effective
version of g.u.p. class, where we are able to keep track of the amount of quasiran-
domness passed down to the ultraproduct.

In this paper, the proof of Theorem 1.5 in fact shows that the class €, is a Q.U.P.
class. And we immediately have the following corollary:

Corollary 1.12. The following classes are Q.U.P.
(1) The class Cqgs of finite quasisimple groups.
(ii) The class €ss of finite semisimple groups.

(iii) The class Ccs(ny of finite groups with at most n conjugacy classes in their
cosocles.

All Q.U.P. classes must have a uniformly bounded commutator width, i.e., every
element can be written as a product of uniformly bounded number of commutators.
In view of this, the following conjecture was suggested by Laszl6 Pyber.

Conjecture 1.13. For any integer n, the class of perfect groups with commutator
width < n (i.e., every element of these groups can be written as a product of at
most 7 commutators) is Q.U.P.

So far, we do not know if there is a non-Q.U.P but q.u.p. class of groups.

Some applications of our results have already been found. In a paper in prepa-
ration by Bergelson, Robertson and Zorin-Kranich [2, Theorem 1.12], it is shown
that a sufficiently quasirandom group in a q.u.p. class will have many “triangles”.
As another application, one may also use our method to find many examples of
self-bohrifying groups. Both applications will be explained in Section 8 of this
paper.

Here we shall briefly outline the sections of this article:

(i) A model case of the alternating groups to illustrate the general idea (Sec-
tion 3).

(i1) A group with a nice covering property is very quasirandom (Section 4).
(iii) Covering properties can ignore small cosocles (Section 5).

(iv) Quasirandom finite quasisimple groups have nice covering properties (Sec-
tion 6).

(v) Proof of Theorem 1.5 (Section 7).

(vi) Applications of our results (Section 8).
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2 Definitions relating to ultraproducts

Definition 2.1. A filter on N is a collection w of subsets of N such that:

(i) 9 ¢ o,
(i) if X ewand X CY,thenY € w,
(i) if X, Y e w,then X NY € w.

An ultrafilter is a filter that is maximal with respect to the containment order.
A non-principal ultrafilter is an ultrafilter that contains no finite subset of N.

Definition 2.2. Given a sequence of groups (G;);eN, let G be their direct product.
Given an ultrafilter @ on N, let

N :={g=(gi)ien€G:{ieN:g =e}cw}

which is clearly a normal subgroup of G. Then we call G/N the ultraproduct of
the groups (G;);en by w, denoted by [[;_,,, Gi.

Remark 2.1. An ultrafilter o is principal (i.e., not non-principal) iff we can find
an element n € N such that for all subsets A C N, we have A € w iff n € A. In
this case, the corresponding ultraproduct of groups (G;);eN is isomorphic to G;.
Therefore, in practice, the useful ultrafilters are usually non-principal.

The particular choice of ultrafilter is not that important. As long as we fix
a non-principal ultrafilter, then all the discussion in the rest of the paper will be
true for the ultraproduct of this ultrafilter.

Ultraproducts have an interesting property, given by £.o$’ Theorem. Given an
ultraproduct G = [];_,,, G; for an ultrafilter w, any first-order statement ¢ in the
language of groups is true for G iff it is true for most of the G;, i.e.,

{i € N :¢istrue for G;} € w.

In particular, this implies that behaviors at the scale of elements are preserved. We
shall not need £.o$’ Theorem in this paper, but it could be used as an alternative to
Proposition 7.3.

3 The class of alternating groups

Let A, denote the alternating group of rank n, and S,, the symmetry group of
rank n. We shall show that the class of alternating groups is a Q.U.P. class, as
a simple illustration of the general idea to attack Theorem 1.5.
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3.1 Quasirandom alternating groups have nice covering properties
Definition 3.1. (i) For any subsets A, B of a group G, we define the product set
AB={abeG:a€ A, b e B}.

And we define A" ;= {ajas...ay 1 a1,...,an € A}.

(i1) Anelement g of a group G is said to have covering number K if its conjugacy
class C(g) has C(g)X = G.

(iii) Let m be any positive integer or co. Then an element g € G has the covering
property (K, m) if g' has covering number K forall 1 <i < m.

(iv) A group G has the covering property (K, m) if it has an element with the
covering property (K, m).

Remark 3.2. Note that we use A” to denote the set of elements that can be
expressed as products of exactly n elements of A. For example, the cyclic group
of order 2 has no covering property at all. The identity is always an even power
of the generator, while the generator is always an odd power of itself. There is
no uniform choice of K where every element is a product of K conjugates of the
generator.

Definition 3.3. An even permutation 0 € A, is exceptional if its cycles in the cycle
decomposition have distinct odd lengths, or equivalently, if its conjugacy class
in A, is different from its conjugacy class in S,.

Lemma 3.4 (Brenner [4, Lemma 3.05]). If an even permutation o € A,, is fixed-
point free and non-exceptional, then A, = C(c)*.

Proposition 3.5. For any m € Z, Ay, has the covering property (4, m) for large
enough n.

Proof. Pick any odd prime p > m, and pick another prime g > p.

Since p, g are necessarily coprime, for any large enough integer n, we can find
positive integers a, b such that n = ap + bq. Let 0 € S,, be a permutation com-
posed of a p-cycles and b g-cycles, where all cycles are disjoint.

Since p, g are odd, o is an even permutation in A, . Further, for large enough 7,
a or b can be chosen to be larger than 1, so o will be non-exceptional. Since o is
also fixed-point free by construction, Lemma 3.4 implies that A, = C(0)*.

Now clearly o/ will also have a cycle decomposition of a p-cycles and b
g-cycles forall 1 <i < p — 1, and this implies that A,, = C(¢")* forall 1 <i <
p — 1. So A, has the covering property (4, p — 1). Since p — 1 > m, A, has the
covering property (4, m). ]
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Corollary 3.6. For any m € Z, any D’-quasirandom alternating group has the
covering property (4, m) for large enough D’.

3.2 Covering properties passes to ultraproducts and implies
quasirandomness

Lemma 3.7. Let G; be a sequence of groups such that all but finitely many of
them have the covering property (K, m). Then any ultraproduct of them by a non-
principal ultrafilter will have the covering property (K, m).

Proof. Since non-principal ultraproducts ignore finitely many exceptions in the
sequence G;, without loss of generality we may assume all G; have the covering
property (K, m).

For each Gj, let g; be the element of G; with the covering property (K, m).
Then we claim that in any ultraproduct of G;, the element represented by the
sequence (g;) would have the covering property (K, m). .

Pick any 1 < j < m. Then any element of G; is a product of conjugates of gij
by ai,1,...,a; k € G;. As a result, any element of the ultraproduct is a product
of conjugates of (g;)/ by (a; 1), ..., (a; k). Here we use a sequence of elements
(a;) to represent an element in the ultraproduct. o

We now state a special case of Proposition 4.4, proven in Section 4.

Lemma 3.8. Thzere is a function f : ZV — ZF such that foranym, K € Z" with
m > f(D)KP, any group G (not necessarily finite) with the covering property
(K, m) is D-quasirandom.

Proposition 3.9. The class of alternating groups is a Q.U.P. class.

Proof. For any D € Z™, find m > f(D)4D2 and find D’ € Z such that any
D’-quasirandom alternating group has the covering property (4, m). Let G be an
ultraproduct of D’-quasirandom alternating groups. Then G will also have the
covering property (4, m). Then by Lemma 3.8, G is D-quasirandom. o

4 Covering properties imply quasirandomness

This section is devoted to obtaining some element-scale properties that guarantee
the quasirandomness of a group.

Definition 4.1. (i) Anelement g of a group G is said to have symmetric covering
number K if C(g)XC(g~H)K = G.
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(ii) Let m be a positive integer or co. Then an element g € G has the symmetric
covering property (K, m) if g' has symmetric covering number K for all
1 <i<m.

(iii) A group G has the symmetric covering property (K, m) if it has an element
g € G with the symmetric covering property (K, m).

(iv) A group G has the (symmetric) covering property (K,m) mod N for some
normal subgroup N if G/N has the (symmetric) covering property (K, m).

Definition 4.2. (i) A pair of elements (g1, g2) of a group G is said to have sym-
metric double covering number (K1, K3) if we have

Cgn®rcgrhHX (g ® (g HX2 = 6.

(i) Let m, mp be positive integers or co. A pair of elements (g1, gz)_ in G has
the symmetric double covering property [(K1,m1), (K2, m2)]if (g7, gé) has
symmetric double covering number (K1, K») forall 1 <i <m,1 <j <mjy.

(iii) A group G has the symmetric double covering property [(K1,m1), (K2, m2)]
if it has a pair of elements (g1, g2) in G with the symmetric double covering
property [(K1,m1), (K2, m2)].

(iv) A group G has the symmetric double covering property [(K1,m1), (K2, m2)]
mod N for some normal subgroup N if G/N has the symmetric double cov-
ering property [(K1,m1), (K2, m2)].

Remark 4.3. (i) Suppose K < K’. Then an element with covering number K
has covering number K’. In general, the (symmetric) covering property
(K, m) implies the (symmetric) covering property (K’,m’) when K’ > K,
m’ < m. A similar statement is also true for the symmetric double covering
properties.

(il)) Any symmetric covering property is always weaker than the corresponding
non-symmetric covering property.

(iii) Any group with the symmetric covering property (K, m) has the symmetric
double covering property [(1, 00), (K, m)]. This is easily seen by taking g; to
be the identity, and taking g» to be the element with the symmetric covering
property (K, m).

(iv) In our definition of the symmetric double covering properties, since C(g1)
and C(g») are conjugate invariant subsets of G, they necessarily commute,

ie., C(g1)C(g2) = C(g2)C(g1)- So the order of (Ky,m1) and (Kz,m>3)
does not matter.
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(v) By imitating the definition of the symmetric double covering properties, one
can in fact define the symmetric n-tuple covering properties for groups. As n
grows larger and larger, the corresponding covering properties will become
weaker and weaker. Note that most results throughout this paper would still
hold by replacing the symmetric double covering properties by the symmet-
ric n-tuple covering properties, though for our purpose here, the symmetric
double covering properties are enough.

The proof of Proposition 4.4 will be the main part of this section. Let us first
state the proposition and some corollaries.

Proposition 4.4 (Local criterion for quasirandomness). There is a function
fzt -zt

such that, for any K1,m1, Ko, mp € ZV with m; > f(D)KiD2 fori = 1,2, any
group G (not necessarily finite) with the symmetric double covering property
[(K1,my), (Ky,m2)] is D-quasirandom.

We shall fix this function f from now on.
Corollary 4.5. For any K,m € Z with m > f(D)KDZ, any group G (not nec-

essarily finite) with the symmetric double covering property (K, m) is D-quasi-
random.

Corollary 4.6. For any K,m € Z" with m > f(D)KDz, any group G (not nec-
essarily finite) with the covering property (K, m) is D-quasirandom.

Remark 4.7. We note here that a partial converse, Corollary 7.5, of the above
result is true. That is, quasirandomness implies a nice covering property mod coso-
cle. The proof of this converse will be presented in Section 7.

We shall first explore some geometric structures of Up (C).
Definition 4.8. The Hilbert—Schmidt norm of an n-by-n complex matrix A4 is
| Al = Tr(A*A).

Lemma 4.9. The following statements hold.

(1) The Lie group Up(C) has a Riemannian metric d : Up(C) x Up(C) — R
such that d(A, B) = ||B — A|| for all A, B € Up(C). The norm here is the
Hilbert—Schmidt norm.
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(i1) This metric is bi-invariant in the sense that
d(AB,AC) =d(BA,CA) =d(B,C)
forall A,B,C € Up(C).
(iii) This metric induces a Haar measure, and the volume of Up (C) under this
Haar measure is finite, and
(271)D(D+1)/2
1mn...(b-nv

We shall denote this constant by vp from now on.

vol(Up(C)) =

(iv) Under the metric d, Up (C) has non-negative Ricci curvature everywhere.

(V) There is a function ¢ : Z — R™, such that a geodesic ball of radius r in
Up (C) will have volume bounded by ¢(D)rP~. We shall fix this function ¢
from now on.

Proof. These are very standard facts. See, e.g., [14] and [5]. O

Definition 4.10. Let G be any group. A non-negative function £ : G — R is called
a length function if it has the following properties:

(1) £(g) = Oiff g is the identity element.
(i) ¢ is symmetric, i.e., £(g) = £(g~ ') forall g € G.
(iii) £ is conjugate invariant, i.e., £(ghg™') = £(h) forall g,h € G.
(iv) ¢ satisfies the triangle inequality, i.e., £(gh) < £(g) + £(h) forall g,h € G.
A pseudo-length function is a non-negative function £ : G — R satisfying (ii), (iii)

and (iv) above.

Lemma 4.11. Let G be a group, and suppose g1, g2 € G have symmetric double
covering number (K1, K»). Let ¢ : G — H be any homomorphism and let £ be
a length function of H. Then for all g € G, we have

E(p(2) = 2K1L(p(g1)) + 2K2L(¢(g2))-

Proof. For any g € G, g can be written as the product of K; conjugates of g1,
K conjugates of gl_l, K> conjugates of g> and K3 conjugates of g5 1. So by the
triangle inequality and the conjugate invariance of £, we have

U (9)) = Kil(d(g1)) + Kilp(gr ") + K2l(¢(g2) + K2L(d(31))
<2K14(p(g1) + 2K2£(9(82)). o

Proposition 4.12. The function £ : Up(C) — R defined by £(A) = d(A, 1) is
a length function.
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Proof. Let A, B be any unitary matrices.
Positivity: Clearly £(A) = d(A, 1) > 0. And we have

(A =0 < d(A,])=0 < A=1.
Symmetry: We have

0A) =d(A, 1) =d(AA™ L, 1Ay =d(I, A7) = £(A71).
Conjugate invariance: We have

U(BAB™Y) = d(BAB™',I) = d(BA, B) = d(A,I) = L(A).
Triangle inequality: We have

((AB) = d(AB.I) < d(AB.B) +d(B.I)
=d(A. 1)+ d(B.1) = {(A) + ((B). O

We shall use £ to denote this length function from now on.

Lemma 4.13. For any € > 0 and any integer m > vD/(c(D)eDZ), any m points
in Up (C) will have two points with distance smaller than €. Here vp and ¢ (D)
are as in Lemma 4.9.

Proof. This follows from a volume packing argument.
Since our metric is bi-invariant, each ball of radius % in Up (C) has the same
volume vol(B/>). So by our assumption on m, we have

1)) vol(Up (C))
"= c(D)eD? = vol(Bej2)

Now for any m points in Up (C), suppose any two of them have distance larger
than €. Then the balls of radius 5 centered at these m points will be disjoint and
contained in Up (C), which is impossible. So two of the points have distance
smaller than e. |

Lemma 4.14. Any non-trivial cyclic subgroup of Up (C) contains an element of
length larger than V2.

Proof. Let A be any non-trivial element of Up (C) of finite order. Let A1,...,Ap
be its eigenvalues, and, without loss of generality, say A1 % 1. Then A1 is a prim-
itive n-th root of unity for some n. Replacing A by a proper power of itself, we
may assume that A is an n-th root of unity closest to —1. Then in particular,

A1 —1] > V2.
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Then we know
D
LA =Tr(A—D*(A-1)=>_ [ hi =1 = |} =1 > 2.
i=1
Now suppose A has infinite order. Let A1, ..., Ap be its eigenvalues, and with-
out loss of generality say A; # 1. Then A; is an element of infinite order on the
unit circle. Replacing A by a proper power of itself, we may assume that A; is
arbitrarily close to —1. Then in particular, |A; — 1| > +/2. Then we are done by
the same computation. o

Proof of Proposition 4.4. For any €1, €, > 0, pick

> D d > D
m; > ———— and mp > ——.
c(D)eP? c(D)ed?
For any unitary representation ¢ : G — Up (C) of a group G with the symmetric
double covering property [(K1,m1), (K2, m>2)], we may find elements g1, g2 € G
for this symmetric double covering property.

Now consider thezpoints 1,¢(g1), ¢(gf), .., ¢(g]""). By Lemma 4.13, since
my > vD/(c(D)ef) ), we can find two points with distance less than €;. Say
d(¢(g}). ¢(g})) < ei forsome 1 <s <t < my. Then

LP(g1™) = d(¢(g1). 1) = d(p(g1). $(g1)) <e1.

So we have K(qb(g’i)) < €1 forsome 1 <i < m;. Similarly we have €(¢(g£)) <€
forsome 1 < j < m,. .

To sum up, there are elements g‘i, gé € G with symmetric double covering
number (K1, K3), and £(¢ (g’i)) < €1, U(¢(g})) < €2.Soby Lemma4.11, all ele-
ments of ¢(G) would have length smaller than 2K€; + 2K5€5.

Now pick €1, €2 small enough so that

2K1€1 + 2K5¢ep < \/5

(Say €1 < +/2/(4K1) and €5 < +/2/(4K>).) Then all elements of ¢(G) would
have length at most +/2. But by Lemma 4.14, this means ¢ (G) is trivial.
So, a group with the symmetric double covering property [(K1,m1), (K2,m2)]
will be D-quasirandom if m; > f(D)KlD2 and mp > f(D)KzDz, where
UpD D2
D) = ——(2v2)P".
f(D) = 35 0V2) .

Remark 4.15. Note that the above argument proves Proposition 4.4 for all groups,
not necessarily finite. However, if one only needs to prove Proposition 4.4 for finite
groups, and only for the covering property (K, m), then a group is D-quasirandom
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if % >> the length ratio of the longest and the shortest closed geodesics of Uy (C).
So one can interpret the optimal value of % as a measure of the “shape” of the
finite group. The smaller this optimal value is, the “more rounded” the finite group
looks like.

5 Covering properties and the cosocle

In this section, we will show that a certain nice covering property mod cosocle is
equivalent to a weaker covering property of the whole group.

Lemma 5.1. Let G be a group, and let N be a normal subgroup of G contained
in its cosocle. Let C be a conjugate invariant symmetric subset of G such that
CN = G. Then for any non-empty conjugate invariant subset S € G, SC = §
iff S =G.

Proof. Suppose SC = S and S # G. Then we have SC? = S for any positive
integer i. So S must contain the subgroup generated by C. Since C is conjugate
invariant, the subgroup generated by C is a normal subgroup, and it is a proper
normal subgroup since it is contained in S # G. In particular, C is contained in
a maximal normal subgroup M of G.

But since N is in the cosocle, it is contained in M. So

CNCMN=MCG.

This is a contradiction. O

Proposition 5.2. Let G be a group with the symmetric double covering property
[(K1,my), (Ky,mp)] mod N for a normal subgroup N contained in the cosocle,
and suppose that N contains exactly n conjugacy classes of G. Then G has the
symmetric double covering property [((3n — 2)K1,m1), ((3n —2) K>, m»)].

Proof. Find g1, g2 € G such that (g1 N, goN) has symmetric double covering
number (K1, K») in G/N. Let

C:=CgnKrcgrHXic(gXc(gsHke.

Then by assumption, C is mapped surjectively onto G/N through the quotient
map. So CN = G.

Now N contains exactly n conjugacy classes of G. I claim that C3’ contains
at least 1 + 1 conjugacy classes of G in N, which would imply that C3"=3 D N.
Then C3"=2 > CN = G, finishing our proof.

We proceed by induction. As a convention we define C° to be {e}. Then the
claim is true when ¢ = 0.
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Now assume the statement is true for some ¢ < n. Then C3! contains ¢ + 1
conjugacy classes of G in N. Let them be C1q, ..., Cs41. Then we have

t+1
C3l‘+l - C(U Cl)

i=1

Suppose for contradiction that C 3 %2 is disjoint from C(N — Ufii C;). Then we
observe that

C(N—UC,-) 2CN—C<UCi)

i=1 i=1

t+1
:G_C(UCZ) 2G—C3t+1.

i=1

So C3*%2 C €31, Then Lemma 5.1 implies that C3*2 = C3*! = G. This
contradicts the assumption that C 372 is disjoint from C(N — Uf:{ Ci).

So, C3*+2 intersects with C(N — Ufi} C;). Let g be an element in this inter-
section. Then g € C C;4, for some conjugacy class C;45 of G in N disjoint from
Ci,...,Cs41. Find h € Cy45 such that g € Ch. Then since C is symmetric, we
have h € Cg € C313,So C3'13 intersects with C; . Since C3*3 is conjugate
invariant, we conclude that C3**3 contains C;y».

Finally, since e € C, we see that C3'13 also contains Cy,Cs,...,Cr11. SO

€33 contains t + 2 conjugacy classes of G in N. |

Proposition 5.3. Let G be a group with the symmetric covering property (K, m)
mod N for a normal subgroup N contained in the cosocle, and suppose that N
contains exactly n conjugacy classes of G. Then G has the symmetric covering
property ((3n —2)K, m).

Proof. Same strategy as Proposition 5.2. o

6 Quasirandom finite simple groups have nice covering properties

In this section we shall show that, for finite quasisimple groups, large quasiran-
domness will imply a nice covering property. We shall first deal with finite simple
groups of bounded ranks in Section 6.1. Then we shall deal with the case of alter-
nating groups in Section 6.2. Finally, we shall deal with finite simple groups of
large ranks by embedding alternating groups into them in Section 6.3. The classi-
fication of finite simple groups is used in this section.
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Definition 6.1. For a finite quasisimple group G, we define its rank r(G) as the
following:

(i) When the only simple quotient of G is abelian or sporadic, then r(G) = 1.
(i) When the only simple quotient of G is A, then r(G) = n.

(iii) When the only simple quotient of G is a group of Lie type, then r(G) is the
(twisted) rank of that finite simple group as an algebraic group.

6.1 Finite simple groups of bounded ranks

Lemma 6.2 (Stolz and Thom [15, Proposition 3.8]). There is a function
K:72t >zt

such that, in any finite simple group of Lie type of rank < r, any non-identity
element will have covering number K(r).

We shall fix this function K(r) from now on.

Lemma 6.3 (Babai, Goodman and Pyber [1, Proposition 5.24]). Let k be any posi-
tive integer. Then for any finite simple group G, if |G| = k¥, then |G| has a prime
divisor greater than k.

Proposition 6.4. Let G be a finite simple group of rank < r. For any m < o9,
G has the covering property (K(r), m) if G is D-quasirandom for large enough D.

Proof. By choosing D to be larger than some absolute constant, a D-quasirandom
group G cannot be an abelian group, a sporadic group, or an alternating group of
rank < r. So we only need to consider finite simple groups of Lie type.

Recall that any D-quasirandom group must have more than (D — 1)? elements.
For any m € Z%, let D be an integer > 1 + v/m™”. Then all D-quasirandom
finite simple groups will have order > m™” and thus have an element g of prime
order p > m. Then g’ are non-identity for all 1 <i < p — 1. Then Lemma 6.2
states that all these elements have covering number K(r). So G has the covering
property (K(r), m). |

Corollary 6.5. Let G be a finite quasisimple group of rank < r. For any m < 00,
G has the symmetric covering property (K(r) max(3r+1,34),m) if G is D-quasi-
random for large enough D.

Proof. 1f a quasisimple group is D-quasirandom, then the simple group it covers
is D-quasirandom. Therefore, it is enough to show that, if a finite simple group G
has the covering property (K, m), then any perfect central extension G’ of it will
have the covering property (K max(3r + 1, 34),m).
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Let Z be the center of G’. Then Z will be the cosocle of G’, and the Schur
multiplier of the simple group G would provide an upper bound for | Z|. Since G
has a rank at most r, by going through the list of finite simple groups, its Schur
multiplier has a size at most max(3r + 1,34). So if G has the covering prop-
erty (K, m), Proposition 5.3 implies that G’ has the symmetric covering property
(K max(3r + 1, 34),m). o

6.2 Alternating groups

Proposition 6.6. Let G be a quasisimple group over an alternating group. Then
for any m < oo, G has the symmetric covering property (20, m) if G is D-quasi-
random for large enough D.

Proof. If G is D-quasirandom for some large D, then the alternating group it
covers must be A, for some large n. Then Proposition 3.5 implies that A, has the
covering property (4, m). Now when n > 7, A,, will have a Schur multiplier of 2.
So G has the covering property (20, m). |

6.3 Finite simple groups of large ranks

The goal of this subsection is to prove the following proposition.

Proposition 6.7. There is an absolute constant Ko such that for any m < oo, all
finite quasisimple groups of ranks > r will have the symmetric covering property
(Ko, m) for large enough r.

By the classification of finite simple groups, a finite simple group of rank larger
than some absolute constant will have to be a classical finite simple group of Lie
type or an alternating group. Any classical finite simple group of Lie type is in one
of the following four classes:

(i) The projective special linear groups PSL,, (IF,). For large enough n, SL;, (IF,)
are their universal perfect central extensions.

(ii) The projective symplectic groups PSp,, (F;). For large enough n, Sp,, (IF,) are
their universal perfect central extensions.

(iii) The projective special unitary groups PSU,(F,). For large enough n,
SU, (IF4) are their universal perfect central extensions.

(iv) The projective Omega groups PQ;’n (Fq), PR3, (Fy), or PQ2,41(Fy). Here
Qy(Fy) are the commutator subgroups of the special orthogonal groups
SO, (Fy), and

P (Fy) = Qu(Fq)/Z(Qu(Fy)).



Ultraproducts of quasirandom groups with small cosocles 1153

The plus or minus signs indicate different quadratic forms used to obtain the
groups in even dimensions. For large enough n, Q,(F,) are the universal
perfect central extensions of P2, (IF,).

The above statements can be found in any standard textbook in classical groups
(e.g., see [8]). It is enough to show Proposition 6.7 for SL,(Fy), Sp,(Fy,),
SU,(IFg), and 2, (IFy), since they are the universal perfect central extensions of
the simple groups they cover, and since the order of the Schur multipliers of these
groups are bounded above by a function of r.

We start by analyzing a length function for groups of Lie type over finite fields.

Definition 6.8. Let g be an n x n matrix over a finite field F. Let

mg = sup dim(ker(a — g)).

acF>

n— mg

Then the Jordan length of g is £ (g) :=

Proposition 6.9. Let G be any subgroup of GLy, (F) for some finite field F. The
function £y on G is a pseudo-length function.

Proof. Non-negativity: For any g € G,

mg = sup dim(ker(a — g)) < n.
acF*

Soly(g) = "57< = 0.
Symmetry: For any g € G, any a € F*, and any vector v € F", we have

v eker(a—g) < av=_gv
<~ g_lv =alv
< veker(@a!—gh).
As a result,

mg = sup dim(ker(a — g)) = sup dim(ker(a™' — g™ 1)) =m

aeF >

g—l.

Soly(g) =Ls(g™h).
Conjugate-invariance: For any g,h € G, any a € F*, and any vector v € F",
we have

veker(a—g) < av=gv
< ahv = (hgh™YHYhv
< hv € ker(a —hgh™).
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As a result,

mg = sup dim(ker(a — g)) = sup dim(ker(a — hgh™1)) = Mpgp—1-

acF> acF>

Sotly(g) = Ly(hgh™").
Triangle inequality: For any g,h € G, any a,b € F*, and any vector v € F",
we have

v € ker(a — g) Nker(a —abh™') = gv =av =abh™ v
= v e ker(abh™! —g).

So we know ker(a — g) Nker(a —abh™1) C ker(abh™! — g). As a result, we
have

mgp > dimker(ab — gh)

> dimker(abh™! — g)

> dim(ker(a — g) Nker(a — abh™'))

> dim(ker(a — g)) + dim(ker(a — abh™ 1)) —n

> dim(ker(a¢ — g)) + dim(ker(b — h)) — n.
Since this is true for all a, b € F*, therefore

mg +mp —n < mgp.

Soly(gh) = Ly(g) + Ly (h). =
Lemma 6.10. Given an nyxny matrix A over a finite field F, and an np xn, matrix

B over the same finite field, then £ j(A & B) > 21 4y (A) + nl'fﬁnzﬁj(B).

ni+n

Proof. Forany a € F*, we have
ker(a — A ® B) = ker((a — A) ® (a — B)) = ker(a — A) & ker(a — B).
So dimker(a — A &® B) < my4 + mp. Since this is true for all a € F*, therefore
mgaep < mgq + mp. So we have
ny+nz —mygB
ny+np
M +ny—my —mp
ny+nz
an —myg np —mp
ni+ns ni+ns

ni
> Ly(A) +
ny+no 7 (4) ny+nj

ltj(A® B) =

np

Lj(B). O
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Lemma 6.11 (Stolz and Thom [15, Lemma 3.11]). There is an absolute con-
stant co such that for any finite classical quasisimple group of Lie type G, and
for any g € G\ Z(G), where Z(G) is the center of G, then C(g)X = G for all
K > m.

In short, elements of large Jordan length will automatically have small covering
number.

The next step is to identify subgroups of these quasisimple groups of Lie type
isomorphic to the alternating groups. A key step is to treat elements in alternat-
ing groups as matrices, namely permutation matrices. These are the matrices with
exactly one entry of value 1 in each column and in each row, and O for all other
entries. Such an n x n matrix will act on the standard orthonormal basis of an
n-dimensional vector space by permutation, and thus will provide an embedding
of Sy, into GL,, (F) for any field F. Any such matrix is in A, iff it has determi-
nant 1.

Lemma 6.12. If P is an n X n permutation matrix where its cycle decomposition
has k cycles, then we have £ j(P) > %

Proof. By cycle decomposition, after a change of basis in the vector space, P will
be a direct sum of many cyclic permutation matrices. By Lemma 6.10, it is enough
to prove the case when P is a single cycle of length 7, and show that £ y (P) > ”n;l

Since P is a single cycle of length n, its eigenvalues in the algebraic closure
of F are precisely all the n-th roots of unity, with multiplicity 1 for each root of

unity. So dimker(a — P) < 1 foralla € F*.So{;(P) > "n;l =

Proposition 6.13. There is an absolute constant Kg such that, for any m < oo,
for any finite quasisimple group of Lie type of n X n matrices, if it contains Ay
as permutation matrices, then it will have the covering property (Ko, m) for large
enough n.

Proof. Let Ko > 3co for the absolute constant cp in Lemma 6.11. Then any
element A of Jordan length > % will have covering number Ky in any finite quasi-
simple group of Lie type.

Pick any odd prime p > m, and pick another prime g > p. For any large
enough 7, we have n = ap + bq for some integers a > 1,0 < b < p + 1. Then
find o0 € A, made up of exactly @ p-cycles and b g-cycles, where all cycles are
disjoint. This element will be fixed-point free and non-exceptional, and it will have
atmosta + b < 7 4 p cycles.

For any finite quasisimple group of Lie type of n x n matrices, suppose it con-
tains A, as permutation matrices. Let P be the matrix corresponding to o. Then
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we have
n

n—o5—=>r 1 1
t(Pyz —L =12
n p n 3
The last inequality follows because p > 3 andn > 2p + g > 3p.
So this element will have covering number Ky in G. It clearly has order pg, and
all of its powers coprime to pq will also have the same covering number. So G has

the covering property (Ko, p — 1). |

Corollary 6.14. For any m < oo, all finite special linear groups of rank r for
large enough r will have the covering property (Ko, m). Here Ky is the absolute
constant in Proposition 6.13.

Proposition 6.15. There is an absolute constant Ky, such that for any m < oo, we
have the following:

(1) For any finite quasisimple group of Lie type of 2n X 2n matrices, if it con-
tains Ay as {P ® P : P € A, is a permutation n X n matrix}, then it will
have the covering property (Ko, m) for large enough n.

(i1) Let I be the 1 x 1 identity matrix. For any finite quasisimple group of Lie
type of 2n+1)x(2n+1) matrices, if it contains Ay, as{P®P P11 : P € A,
is a permutation n xn matrix}, then it will have the covering property (Ko, m)
for large enough n.

(iii) Let I be the 2 x 2 identity matrix. For any finite quasisimple group of Lie
type of 2n+2)x(2n+2) matrices, if it contains A, as {P®P DI, : P € A,
is a permutation n Xn matrix}, then it will have the covering property (Kg, m)
for large enough n.

Proof. The strategy is identical to Proposition 6.13. Just take 0 @ 0,0 & o & I;
oro @ o @ I, instead of o, and use Lemma 6.10. O

Definition 6.16. A vector space V' is a non-degenerate formed space if it has a non-
degenerate quadratic form Q (the orthogonal case), or a non-degenerate alternating
bilinear form B (the symplectic case), or a non-degenerate Hermitian form B (the
unitary case).

Lemma 6.17 (Witt’s Decomposition Theorem). Let V' be any non-degenerate
formed space over a finite field F. Then we have an orthogonal decomposition
V=We® (EB?:l H;), where W is anisotropic of dimension at most 2, and H;
are hyperbolic planes.

Proof. These are standard facts in the geometry of classical groups (see [8]). O
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Proposition 6.18. For a non-degenerate formed space, the special isometry group,
i.e., the group of isometries of determinant 1, contains an alternating group in one
of the ways described by Proposition 6.15.

Proof. Let V be any finite-dimensional non-degenerate formed space over any
finite field F'. Then we have an orthogonal decomposition V = W & H with an
anisotropic space W of dimension at most 2, and an orthogonal sum of hyperbolic
planes H = P;_, H;.

Then let (v;, w;) be a hyperbolic pair generating H; for eachi. Forany o € A,

we can let o act by permutation on the set {vy,..., Vs, W1, ..., Wy} such that
0 (vi) = V() and 0 (w;) = W (;)-
Now clearly {vy, ..., vy, Wi,..., Wy} is abasis of H. So the above action of o

induces a linear transformation P & P on H, where P is the n x n permutation
matrix for o. And this P @ P is clearly an isometry on H by construction. Now
taking the direct sum of P @ P on H and the identity matrix on W, we shall
obtain our desired embedding of A, into the full isometry group.

Finally, since P is a permutation matrix for an even permutation, it has determi-
nant 1. Therefore the above embedding of A, is in the special isometry group. O

Corollary 6.19. For any m < oo, any finite symplectic or special unitary group
of rank v has the covering property (Ko, m) for large enough r. Here K is the
absolute constant in Proposition 6.15.

Corollary 6.20. For any m < oo, any Q;rn (Fg), Ron+1Fy) or 23, (Fy) has the
covering property (Ko, m) for large enough n. Here Ky is the absolute constant
in Proposition 6.15.

Proof. Embed A, in SO;n (¢), SO5,,(g) and SO2,41(g) in the ways described
by Proposition 6.15. After taking the commutator subgroup, the groups Q;n (9),
Q5,(q) and 23,4 1(¢g) will still contain A, through this embedding, because A,
is its own commutator subgroup. So we may apply Proposition 6.15 to Q;n (9),
25, (q) and 223, 41(g) and obtain the desired result. ]

Proposition 6.7 is proven by putting Corollary 6.14, Corollary 6.19 and Corol-
lary 6.20 together.

7 Proof of Theorem 1.5

The results of Section 6 can be summarized into the following useful lemma.
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Lemma 7.1. For any integer D and any constant ¢, we can find integers D', K1,
K>, my, my such that all D’-quasirandom finite quasisimple groups have thze
symmetric double covering property [(K1,my), (K2, m2)] such that my > cKlD ,
my > cK D2

Proof. Let K1 be max(20, K¢), where the absolute constant K is as in Proposi-
tion 6.7. Pick some integer m; > cK ID ® Find large enough r such that, according
to Proposition 6.7 and Proposition 6.6, all finite quasisimple groups (including the
alternating case) of ranks > r will have the symmetric covering property (K1, m1).

Set K, := K(r)max(3r 4+ 1,34) as in Corollary 6.5, and pick some integer
my > ch ? Then for large enough D’, all D’-quasirandom finite quasisimple
groups will have the symmetric covering property (K5, m»).

In all cases, a D’-quasirandom finite quasisimple group will have the symmetric
double covering property [(K1,m1), (K2, m3)]. ]

Remark 7.2. In the above proof, one cannot substitute the double covering prop-
erties with the covering properties. To have a covering property (K, m), a finite
simple group must either have a large enough rank to accommodate the large m,
according to Proposition 6.7, or it must have a small enough rank to accommodate
the small K, according to Proposition 6.5. So there might be a gap between the
“large enough rank” and the “small enough rank”, where the finite simple sub-
groups in the gap would fail to have the covering property (K, m), no matter how
quasirandom they are.

In short, the covering properties of finite quasisimple groups are not necessarily
uniform. It is uniform when obtained through increasing ranks, and it is uniform
when obtained through base fields of increasing sizes. At least with the techniques
in this paper, we cannot combine the two uniformities into one. So we must use
the double covering properties.

Proposition 7.3. Let G be a group with the symmetric double covering property
for some parameters, and let (Gi)iey be an arbitrary family of groups with the
symmetric double covering property for some uniform parameters. Then the fol-
lowing are true:

(1) For any normal subgroup N, G has the symmetric double covering property
for the same parameters mod N .

(i) Any quotient group of G has the symmetric double covering property for the
same parameters.

(iii) The group [[;c; Gi has the symmetric double covering property for the same
parameters.
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(iv) As a result of (ii) and (iii), any ultraproduct [];_,, Gi has the symmetric
double covering property for the same parameters.

Proof. Statements (i), (ii) and (iv) are straightforward.

To see (iii), let g; 1, gi,2 € G; be the pairs giving G; the symmetric double
covering property. Then we claim that (g;,1)ier, (gi2)ier € [[;e7 Gi is the pair
giving the desired symmetric double covering property.

For any element (g;);er € [[;c; Gi., then each g; is in G;. And by its symmet-
ric double covering property, we know

Gi = Cgi) X Cler X1 Clgin) X2 gk,

So we can find a;,;,b;,; € G; fori € I and 1 < j < Ky, and ¢; ;.d; j € G; for
i €landl < j < Kj, such that

g = ( [ (@ijginaibijgiibi] )

1<j<K;
x ( [ (cijgineiNdijgi2)7"d;} )
1<j<K>
Since the above identity is true for all i € I, we have
(8i)ier = ( [1 (@ipier(giviertaiidy)
1<j<K;

x ((bi,j)ier(gi1)iey (bi,j)i_ell))

X( [T (eipier(giiereiidy)

1<j=<K>
x ((di,j)ier(gin)ier (di,j)i_GII))-
So we have proven (iii). O

Corollary 7.4. Let €qs be the class of finite quasisimple groups. Then €qs is
a Q.U.P. class.

Proof. For any integer D, and for the constant ¢ = f(D) as in Proposition 4.4,
we can find D/, K, Ko, m1, m5 as in Lemma 7.1.
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Let G; be a sequence of D’-quasirandom groups in €qs. Then G; all have the
symmetric double covering property [(K1,m1), (K2, m>2)]. Then any ultraproduct

G=1]]a

i—w
will have the symmetric double covering property [(K1,m1), (K2, m2)] by Propo-

sition 7.3. Since m > f(D)KlD2 and m, > f(D)KDZ, G is D-quasirandom by
Proposition 4.4. |

Corollary 7.5 (Quasirandomness implies a nice covering property mod cosocle).
For any integer D, and any constant ¢, we can find integers D', K1, Ko, m1, m»
such that all finite D'-quasirandom groups have the symmetric double covering
property [(K1,m1), (K2, m2)] mod cosocle, with my > cKlDz, my > cKzDz.

Proof. Let D', K1, Ko, my, m, be exactly as in Lemma 7.1. Let G be any finite
D’-quasirandom group.

Let N be the cosocle of G. Then G/ N is a direct product of D’-quasirandom
finite simple groups. These simple groups all have the symmetric double covering
property [(K1,m1), (K2, m>3)]. So by Proposition 7.3, their product G/ N will have
this same symmetric double covering property. |

Corollary 7.6. Let Ccs(n) be the class of finite groups with at most n conjugacy
classes in their cosocles. Then Ccg(y) is a Q.U.P. class.

Proof. Letc = f(D)(3n — 2)D2.

For any integer D, and for the constant ¢, we can find D', K1, K>, m1,m» as in
Corollary 7.5.

Let G; be a sequence of D’-quasirandom groups in €cg(,). Then G; all have
the symmetric double covering property [(K1,m1), (K2, m2)] mod cosocles. Since
the cosocles contain at most n conjugacy classes, by Proposition 5.2, G; all have
the symmetric double covering property [((3n —2)K1,m1), ((3n —2) K>, m>)].
Then any ultraproduct G = [[,;_,, G; will have the symmetric double covering
property [((3n —2)K1,m1), ((3n — 2) K5, m»)] by Proposition 7.3.

Since m1 > f(D)[(3n —2)K1]P*, my > f(D)[(3n —2)K]P?, G is D-quasi-
random by Proposition 4.4. |

Proof of Theorem 1.5. For any integer D, let ¢ = f(D)(3n — 2)D2. We can find
D’, Ky, K»,my,my as in Corollary 7.5 and Lemma 7.1.

Let G; be a sequence of D’-quasirandom groups in €,. So each G; is a direct
product of D’-quasirandom groups in €qgs U €cs(n)- These factor groups must have
the symmetric double covering property [((3n — 2)K1,m1), ((3n — 2)K,,m>3)].
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By Proposition 7.3, G; must also have this symmetric double covering property
[((3n—2)K1,m1), ((3n —2) K32, m3)]. Then any ultraproduct G = [[;_,,, G; will
have the symmetric double covering property [((3n—2) K1, m1), ((3n—2) K>, m>)]
by Proposition 7.3.

Since m1 > £(D)[(3n —2)K1]P? and ma> > £(D)[(3n — 2)K]P?, it follows
from Proposition 4.4 that G is D-quasirandom. o

8 Applications

8.1 Triangles in a quasirandom group

A quasirandom group usually contains many patterns. For example, Gowers has
shown the following result:

Theorem 8.1 (Gowers [7, Theorem 5.1]). Pick any €1,€3 > 0,0 <a < 1. If G is
a D-quasirandom group for some large enough D, then for any subset A of G
such that |A| > |G|, there are more than (1 — e1)a?|G| elements x € G such
that |AN xA| > (1 — e2)a?|G|.

Morally, if we define an x-pair to be a set {y, xy} for some y € G, then this
theorem means that any large enough subset of a quasirandom group G will con-
tain many x-pairs for many x.

Now given a g.u.p. class, we can obtain minimally almost periodic groups via
ultraproducts of sequences of increasingly quasirandom groups. Then by applying
ergodic theory on the ultraproduct, more patterns similar to that of Theorem 8.1
might emerge. It is proven by Bergelson, Robertson and Zorin-Kranich [2] that,
for a quasirandom group G in a q.u.p class, any large enough subset of G x G will
contain many x-triangle for many x.

Definition 8.2. Let g be an element of a group G. Then a g-triangle is the set
{(x,y),(gx,y),(gx,gy)} € G x G forsome x,y € G.

Theorem 8.3 (Bergelson, Robertson and Zorin-Kranich [2, Theorem 1.12]). Let
G be contained in a q.u.p. class. For any € > 0, 0 < o < 1, there are integers
D and K such that, if G is D-quasirandom, then for any subset A of G x G with
|A| > «|G|?, the set Ty = {g € G : A contains more than (a* —€)|G |? triangles)
can cover G with at most K left translates of itself.

8.2 Self-bohrifying groups

The application in this section is related to topological groups. We shall treat all
groups in previous sections as discrete groups.
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Definition 8.4. A Bohr compactification of a topological group G is a continuous
homomorphism b : G — bG such that any continuous homomorphism from G to
a compact group factors uniquely through b.

Remark 8.5. (i) The Bohr compactification exists for any group by the work of
Holm [10]. It is obviously unique up to a unique isomorphism.

(ii) Clearly, a discrete group is minimally almost periodic iff it has trivial Bohr
compactification. Note that for a discrete group, any abstract homomorphism
from it to another topological group is automatically continuous.

Definition 8.6. A topological group G is said to be self-bohrifying if its Bohr com-
pactification bG is the same abstract group as G, but with a compact topology.

By the results and techniques of this paper, one can find many examples of
self-bohrifying groups. In particular, we have the following theorem.

Theorem 8.7. Let n be a positive integer. Let G; be a sequence of increasingly
quasirandom groups in €y, the class defined as in Theorem 1.5. Then [ |;cn Gi is
self-bohrifying as a discrete group.

Corollary 8.8. Let G; be a sequence of non-abelian finite simple groups of increas-
ing order. Then | |;cn Gi is self-bohrifying as a discrete group.

We will prove Theorem 8.7 by first showing that [ [;cny Gi/ | [;epy Gi 18 mini-
mally almost periodic, and then using a lemma by Hart and Kunen [9].

Definition 8.9. Let G; be a sequence of groups.

(i) Their sum is the group | [,y Gi = {g € [ ;e Gi : only finitely many coor-
dinates of g is non-trivial}.

(ii) Their reduced product is the group [ ;e Gi/ ey Gi-

Lemma 8.10 (Hart and Kunen [9, Lemma 3.8]). Let {G;};en be a sequence of
finite groups. Then [];cn Gi is self-bohrifying if all but finitely many G; are
perfect groups, and [|;cn Gi/ |l;en Gi has trivial Bohr compactification, i.e.,
[lien Gi/ Uien Gi is minimally almost periodic.

Proof of Theorem 8.7. All 2-quasirandom groups are perfect. So it is enough
to show that the reduced product of G; is minimally almost periodic, i.e., it is
D-quasirandom for all D.

For any integer D, let c = f(D)(3n — 2)D2. We can find D', Ky, Ky, m1,m»
as in Corollary 7.5 and Lemma 7.1.



Ultraproducts of quasirandom groups with small cosocles 1163

Let G; be a sequence of increasingly quasirandom groups in €,. Then all but
finitely many G; will be D’-quasirandom. Since we are interested in the reduced
product, which is invariant under the change of finitely many coordinates, we may
without loss of generality assume that all G; are D’-quasirandom.

Since G; € €y, each G; is a direct product of D’-quasirandom groups in
€qs U Cesn)- These factor groups must have the symmetric double covering prop-
erty [((3n —2)K1,m1), ((3n —2) K>, m»)]. By Proposition 7.3, G; must also have
this symmetric double covering property [((3n — 2)K;1,m1), ((3n —2)K», m»)].

Now by Proposition 7.3, covering properties are preserved by arbitrary prod-
ucts and quotients. So [ [;cpy G; will have this covering property, and the reduced
product [ [;cny Gi/ L eny Gi will also have this covering property.

Since m; > ¢[(3n — 2)K1]D2 and mp > ¢[(3n — 2)K]D2, the reduced product
is D-quasirandom by Proposition 4.4. So we are done by Lemma 8.10. o
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