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Ultraproducts of quasirandom groups
with small cosocles
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Abstract. A D-quasirandom group is a group without any non-trivial unitary representa-
tion of dimension less than D. Given a sequence of groups with increasing quasirandom-
ness, it is natural to ask if the ultraproduct will end up with no finite dimensional unitary
representation at all. This is not true in general, but we answer this question in the affir-
mative when the groups in question have uniform small cosocles, i.e., their quotients by
small kernels are direct products of finite simple groups.

Two applications of our results are given, one in triangle patterns inside quasirandom
groups and one in self-bohrifying groups. Our main tools are some variations of the cover-
ing number for groups, different kinds of length functions on groups, and the classification
of finite simple groups.

1 Introduction

As an indirect consequence of Kassabov, Lubotzky and Nikolov’s paper [12], the
following theorem about non-abelian finite simple groups is true.

Theorem 1.1. An ultraproduct of non-abelian finite simple groups is either finite
simple, or has no finite-dimensional unitary representation other than the trivial
one.

Definitions related to ultraproducts are presented in Section 2 for those unfa-
miliar with them.

In this paper, we shall show that non-abelian finite simple groups are not the
only kind of groups exhibiting such behavior. It turns out that such behavior has
a very close link to the notion of quasirandom groups, defined by Gowers [7],
and the notion of minimally almost periodic groups, defined by von Neumann and
Wigner [13]. All representations considered in this paper are over C. We shall
informally say that a group is quasirandom when the group is D-quasirandom for
some large D.

Definition 1.2. For a positive integer D, a group G is D-quasirandom if it has no
non-trivial unitary representation of dimension less than D.
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Definition 1.3. An infinite group is minimally almost periodic if it has no non-
trivial finite dimensional unitary representation.

A group is minimally almost periodic iff it is D-quasirandom for all D. Then it
is natural to wonder whether some sort of limit of increasingly quasirandom groups
would give us a minimally almost periodic group. One such limit to consider is the
ultraproduct.

We will prove the existence of classes of groups with similar results to Theo-
rem 1.1. The main theorem is the following Theorem 1.5.

Definition 1.4. For a group G, we define its cosocle Cos.G/ to be the intersection
of all maximal normal subgroups of G.

Let n be any positive integer. Let Cn be the class of groups that are arbitrary
direct products (not necessarily finite) of finite quasisimple groups and finite
groups G whose cosocles contain at most n conjugacy classes of G.

Theorem 1.5. For any sequence of groups in Cn with quasirandom degree going
to infinity, their non-principal ultraproducts will be minimally almost periodic.

Quasirandom groups were first introduced by Gowers to find groups with no
large product-free subset. They can be seen as stronger versions of perfect groups.

Example 1.6 (Gowers [7]). (i) A group (not necessarily finite) is 2-quasirandom
iff it is perfect. The reason is that a non-perfect group has a non-trivial abelian
quotient, which in turn has a non-trivial homomorphism into U1.C/. A per-
fect group, on the other hand, can only have the trivial homomorphism into
the abelian group U1.C/.

(ii) A finite perfect group with no normal subgroup of index less than n is at least
p

logn=2-quasirandom. In fact, using a form of Jordan’s theorem [6], a finite
perfect group with no normal subgroup of index less than n is at least
c logn-quasirandom for some constant c.

(iii) In particular, a non-abelian finite simple group G is at least c logn-quasi-
random if it has n elements.

(iv) Conversely, any D-quasirandom group must have more than .D � 1/2 ele-
ments.

(v) The alternating group An is .n � 1/-quasirandom for n > 5, and the special
linear group SL2.Fp/ is p�1

2
-quasirandom for any prime p.

Morally, ultraproducts preserve all local properties at the scale of elements.
In particular, all element-wise identities are preserved. But global properties of
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a group, like being finite or finitely generated, might be lost after taking ultraprod-
ucts. So one may wonder if a non-principal ultraproduct of increasingly quasi-
random groups is always minimally almost periodic. In other words, we want to
investigate if quasirandomness can be captured by element-wise properties. This
turns out to be false. In particular, we have the following counterexample, pointed
out by László Pyber.

Example 1.7. We recall that a group G (not necessarily finite) is 2-quasirandom
iff G is perfect. We claim that there is a sequence of Di -quasirandom groups
.Gi /i2ZC with limi!1Di D1, whose ultraproduct by any non-principal ultra-
filter is not even perfect.

Using the construction of Holt and Plesken [11, Lemma 2.1.10], one may con-
struct a finite perfect groupGp;n for each prime p � 5 and positive integer n, such
that an element of Gp;n cannot be written as a product of less than n commutators,
and that the only simple quotient ofGp;n is PSL2.Fp/, the projective special linear
group of 2 � 2 matrices over the field of p elements. Then by Example 1.6 (ii), for
any D, Gp;n is D-quasirandom for large enough p.

Let Gi be Gpi ;i , where .pi /i2ZC is a strictly increasing sequence of primes.
Then Gi is Di -quasirandom for some Di with limi!1Di D1. Let gi 2 Gi be
an element which cannot be written as a product of less than i commutators. Then
g D .gi /i2N corresponds to an element of the ultraproductG D

Q
i!! Gi by any

ultrafilter !. When ! is non-principal, clearly g cannot be written as a product of
finite number of commutators in G. So g is not in the commutator subgroup of G,
and thus G is not perfect.

However, a recent paper by Bergelson and Tao [3] proved the following theo-
rem, which sheds some new light on this inquiry:

Theorem 1.8 ([3, Theorem 49 (i)]). The ultraproduct
Q
i!! SL2.Fpi

/ by a non-
principal ultrafilter ! is minimally almost periodic.

Inspired by this, we make the following definitions:

Definition 1.9. A class F of groups is a q.u.p. (quasirandom ultraproduct prop-
erty) class if for any sequence of groups in F with quasirandom degree going to
infinity, their non-principal ultraproducts will be minimally almost periodic.

Definition 1.10. A class F of groups is a Q.U.P. class if there is an unbounded
non-decreasing function f W ZC! ZC such that any ultraproduct of any sequence
of D-quasirandom groups in F is f .D/-quasirandom.
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Remark 1.11. A Q.U.P class is automatically a q.u.p. class. It is like an effective
version of q.u.p. class, where we are able to keep track of the amount of quasiran-
domness passed down to the ultraproduct.

In this paper, the proof of Theorem 1.5 in fact shows that the class Cn is a Q.U.P.
class. And we immediately have the following corollary:

Corollary 1.12. The following classes are Q.U.P.

(i) The class CQS of finite quasisimple groups.

(ii) The class CSS of finite semisimple groups.

(iii) The class CCS.n/ of finite groups with at most n conjugacy classes in their
cosocles.

All Q.U.P. classes must have a uniformly bounded commutator width, i.e., every
element can be written as a product of uniformly bounded number of commutators.
In view of this, the following conjecture was suggested by László Pyber.

Conjecture 1.13. For any integer n, the class of perfect groups with commutator
width � n (i.e., every element of these groups can be written as a product of at
most n commutators) is Q.U.P.

So far, we do not know if there is a non-Q.U.P but q.u.p. class of groups.
Some applications of our results have already been found. In a paper in prepa-

ration by Bergelson, Robertson and Zorin-Kranich [2, Theorem 1.12], it is shown
that a sufficiently quasirandom group in a q.u.p. class will have many “triangles”.
As another application, one may also use our method to find many examples of
self-bohrifying groups. Both applications will be explained in Section 8 of this
paper.

Here we shall briefly outline the sections of this article:

(i) A model case of the alternating groups to illustrate the general idea (Sec-
tion 3).

(ii) A group with a nice covering property is very quasirandom (Section 4).

(iii) Covering properties can ignore small cosocles (Section 5).

(iv) Quasirandom finite quasisimple groups have nice covering properties (Sec-
tion 6).

(v) Proof of Theorem 1.5 (Section 7).

(vi) Applications of our results (Section 8).
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2 Definitions relating to ultraproducts

Definition 2.1. A filter on N is a collection ! of subsets of N such that:

(i) ¿ … !,

(ii) if X 2 ! and X � Y , then Y 2 !,

(iii) if X; Y 2 !, then X \ Y 2 !.

An ultrafilter is a filter that is maximal with respect to the containment order.
A non-principal ultrafilter is an ultrafilter that contains no finite subset of N.

Definition 2.2. Given a sequence of groups .Gi /i2N , let G be their direct product.
Given an ultrafilter ! on N, let

N WD ¹g D .gi /i2N 2G W ¹i 2N W gi D eº 2 !º;

which is clearly a normal subgroup of G. Then we call G=N the ultraproduct of
the groups .Gi /i2N by !, denoted by

Q
i!! Gi .

Remark 2.1. An ultrafilter ! is principal (i.e., not non-principal) iff we can find
an element n 2 N such that for all subsets A � N, we have A 2 ! iff n 2 A. In
this case, the corresponding ultraproduct of groups .Gi /i2N is isomorphic to Gi .
Therefore, in practice, the useful ultrafilters are usually non-principal.

The particular choice of ultrafilter is not that important. As long as we fix
a non-principal ultrafilter, then all the discussion in the rest of the paper will be
true for the ultraproduct of this ultrafilter.

Ultraproducts have an interesting property, given by Łoś’ Theorem. Given an
ultraproduct G D

Q
i!! Gi for an ultrafilter !, any first-order statement � in the

language of groups is true for G iff it is true for most of the Gi , i.e.,

¹i 2 N W � is true for Giº 2 !:

In particular, this implies that behaviors at the scale of elements are preserved. We
shall not need Łoś’ Theorem in this paper, but it could be used as an alternative to
Proposition 7.3.

3 The class of alternating groups

Let An denote the alternating group of rank n, and Sn the symmetry group of
rank n. We shall show that the class of alternating groups is a Q.U.P. class, as
a simple illustration of the general idea to attack Theorem 1.5.
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3.1 Quasirandom alternating groups have nice covering properties

Definition 3.1. (i) For any subsets A;B of a group G, we define the product set

AB D ¹ab 2 G W a 2 A; b 2 Bº:

And we define An WD ¹a1a2 : : : an W a1; : : : ; an 2 Aº.

(ii) An element g of a groupG is said to have covering numberK if its conjugacy
class C.g/ has C.g/K D G.

(iii) Letm be any positive integer or1. Then an element g 2 G has the covering
property .K;m/ if gi has covering number K for all 1 � i � m.

(iv) A group G has the covering property .K;m/ if it has an element with the
covering property .K;m/.

Remark 3.2. Note that we use An to denote the set of elements that can be
expressed as products of exactly n elements of A. For example, the cyclic group
of order 2 has no covering property at all. The identity is always an even power
of the generator, while the generator is always an odd power of itself. There is
no uniform choice of K where every element is a product of K conjugates of the
generator.

Definition 3.3. An even permutation � 2 An is exceptional if its cycles in the cycle
decomposition have distinct odd lengths, or equivalently, if its conjugacy class
in An is different from its conjugacy class in Sn.

Lemma 3.4 (Brenner [4, Lemma 3.05]). If an even permutation � 2 An is fixed-
point free and non-exceptional, then An D C.�/4.

Proposition 3.5. For any m 2 ZC, An has the covering property .4;m/ for large
enough n.

Proof. Pick any odd prime p > m, and pick another prime q > p.
Since p; q are necessarily coprime, for any large enough integer n, we can find

positive integers a; b such that n D ap C bq. Let � 2 Sn be a permutation com-
posed of a p-cycles and b q-cycles, where all cycles are disjoint.

Since p; q are odd, � is an even permutation in An. Further, for large enough n,
a or b can be chosen to be larger than 1, so � will be non-exceptional. Since � is
also fixed-point free by construction, Lemma 3.4 implies that An D C.�/4.

Now clearly � i will also have a cycle decomposition of a p-cycles and b
q-cycles for all 1 � i � p � 1, and this implies that An D C.� i /4 for all 1 � i �
p � 1. So An has the covering property .4; p � 1/. Since p � 1 � m, An has the
covering property .4;m/.
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Corollary 3.6. For any m 2 ZC, any D0-quasirandom alternating group has the
covering property .4;m/ for large enough D0.

3.2 Covering properties passes to ultraproducts and implies
quasirandomness

Lemma 3.7. Let Gi be a sequence of groups such that all but finitely many of
them have the covering property .K;m/. Then any ultraproduct of them by a non-
principal ultrafilter will have the covering property .K;m/.

Proof. Since non-principal ultraproducts ignore finitely many exceptions in the
sequence Gi , without loss of generality we may assume all Gi have the covering
property .K;m/.

For each Gi , let gi be the element of Gi with the covering property .K;m/.
Then we claim that in any ultraproduct of Gi , the element represented by the
sequence .gi / would have the covering property .K;m/.

Pick any 1 � j � m. Then any element of Gi is a product of conjugates of gji
by ai;1; : : : ; ai;K 2 Gi . As a result, any element of the ultraproduct is a product
of conjugates of .gi /j by .ai;1/; : : : ; .ai;K/. Here we use a sequence of elements
.ai / to represent an element in the ultraproduct.

We now state a special case of Proposition 4.4, proven in Section 4.

Lemma 3.8. There is a function f W ZC ! ZC such that for anym;K 2 ZC with
m > f .D/KD

2

, any group G (not necessarily finite) with the covering property
.K;m/ is D-quasirandom.

Proposition 3.9. The class of alternating groups is a Q.U.P. class.

Proof. For any D 2 ZC, find m > f .D/4D
2

and find D0 2 Z such that any
D0-quasirandom alternating group has the covering property .4;m/. Let G be an
ultraproduct of D0-quasirandom alternating groups. Then G will also have the
covering property .4;m/. Then by Lemma 3.8, G is D-quasirandom.

4 Covering properties imply quasirandomness

This section is devoted to obtaining some element-scale properties that guarantee
the quasirandomness of a group.

Definition 4.1. (i) An element g of a groupG is said to have symmetric covering
number K if C.g/KC.g�1/K D G.
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(ii) Let m be a positive integer or1. Then an element g 2 G has the symmetric
covering property .K;m/ if gi has symmetric covering number K for all
1 � i � m.

(iii) A group G has the symmetric covering property .K;m/ if it has an element
g 2 G with the symmetric covering property .K;m/.

(iv) A group G has the (symmetric) covering property .K;m/ mod N for some
normal subgroup N if G=N has the (symmetric) covering property .K;m/.

Definition 4.2. (i) A pair of elements .g1; g2/ of a group G is said to have sym-
metric double covering number .K1; K2/ if we have

C.g1/
K1C.g�11 /K1C.g2/

K2C.g�12 /K2 D G:

(ii) Let m1; m2 be positive integers or1. A pair of elements .g1; g2/ in G has
the symmetric double covering property Œ.K1; m1/; .K2; m2/� if .gi1; g

j
2 / has

symmetric double covering number .K1;K2/ for all 1� i �m1;1� j �m2.

(iii) A groupG has the symmetric double covering property Œ.K1; m1/; .K2; m2/�
if it has a pair of elements .g1; g2/ in G with the symmetric double covering
property Œ.K1; m1/; .K2; m2/�.

(iv) A groupG has the symmetric double covering property Œ.K1; m1/; .K2; m2/�
mod N for some normal subgroup N if G=N has the symmetric double cov-
ering property Œ.K1; m1/; .K2; m2/�.

Remark 4.3. (i) Suppose K < K 0. Then an element with covering number K
has covering number K 0. In general, the (symmetric) covering property
.K;m/ implies the (symmetric) covering property .K 0; m0/ when K 0 � K,
m0 � m. A similar statement is also true for the symmetric double covering
properties.

(ii) Any symmetric covering property is always weaker than the corresponding
non-symmetric covering property.

(iii) Any group with the symmetric covering property .K;m/ has the symmetric
double covering property Œ.1;1/; .K;m/�. This is easily seen by taking g1 to
be the identity, and taking g2 to be the element with the symmetric covering
property .K;m/.

(iv) In our definition of the symmetric double covering properties, since C.g1/
and C.g2/ are conjugate invariant subsets of G, they necessarily commute,
i.e., C.g1/C.g2/ D C.g2/C.g1/. So the order of .K1; m1/ and .K2; m2/
does not matter.
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(v) By imitating the definition of the symmetric double covering properties, one
can in fact define the symmetric n-tuple covering properties for groups. As n
grows larger and larger, the corresponding covering properties will become
weaker and weaker. Note that most results throughout this paper would still
hold by replacing the symmetric double covering properties by the symmet-
ric n-tuple covering properties, though for our purpose here, the symmetric
double covering properties are enough.

The proof of Proposition 4.4 will be the main part of this section. Let us first
state the proposition and some corollaries.

Proposition 4.4 (Local criterion for quasirandomness). There is a function

f W ZC ! ZC

such that, for any K1; m1; K2; m2 2 ZC with mi > f .D/KD
2

i for i D 1; 2, any
group G (not necessarily finite) with the symmetric double covering property
Œ.K1; m1/; .K2; m2/� is D-quasirandom.

We shall fix this function f from now on.

Corollary 4.5. For any K;m 2 ZC with m > f .D/KD
2

, any group G (not nec-
essarily finite) with the symmetric double covering property .K;m/ is D-quasi-
random.

Corollary 4.6. For any K;m 2 ZC with m > f .D/KD
2

, any group G (not nec-
essarily finite) with the covering property .K;m/ is D-quasirandom.

Remark 4.7. We note here that a partial converse, Corollary 7.5, of the above
result is true. That is, quasirandomness implies a nice covering property mod coso-
cle. The proof of this converse will be presented in Section 7.

We shall first explore some geometric structures of UD.C/.

Definition 4.8. The Hilbert–Schmidt norm of an n-by-n complex matrix A is

kAk D
p

Tr.A�A/:

Lemma 4.9. The following statements hold.

(i) The Lie group UD.C/ has a Riemannian metric d W UD.C/ � UD.C/! R
such that d.A;B/ D kB � Ak for all A;B 2 UD.C/. The norm here is the
Hilbert–Schmidt norm.
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(ii) This metric is bi-invariant in the sense that

d.AB;AC/ D d.BA;CA/ D d.B;C /

for all A;B;C 2 UD.C/.

(iii) This metric induces a Haar measure, and the volume of UD.C/ under this
Haar measure is finite, and

vol.UD.C// D
.2�/D.DC1/=2

1Š2Š : : : .D � 1/Š
:

We shall denote this constant by vD from now on.

(iv) Under the metric d , UD.C/ has non-negative Ricci curvature everywhere.

(v) There is a function c W ZC ! RC, such that a geodesic ball of radius r in
UD.C/ will have volume bounded by c.D/rD

2

. We shall fix this function c
from now on.

Proof. These are very standard facts. See, e.g., [14] and [5].

Definition 4.10. LetG be any group. A non-negative function ` W G ! R is called
a length function if it has the following properties:

(i) `.g/ D 0 iff g is the identity element.

(ii) ` is symmetric, i.e., `.g/ D `.g�1/ for all g 2 G.

(iii) ` is conjugate invariant, i.e., `.ghg�1/ D `.h/ for all g; h 2 G.

(iv) ` satisfies the triangle inequality, i.e., `.gh/ � `.g/C `.h/ for all g; h 2 G.

A pseudo-length function is a non-negative function ` W G ! R satisfying (ii), (iii)
and (iv) above.

Lemma 4.11. Let G be a group, and suppose g1; g2 2 G have symmetric double
covering number .K1; K2/. Let � W G ! H be any homomorphism and let ` be
a length function of H . Then for all g 2 G, we have

`.�.g// � 2K1`.�.g1//C 2K2`.�.g2//:

Proof. For any g 2 G, g can be written as the product of K1 conjugates of g1,
K1 conjugates of g�11 , K2 conjugates of g2 and K2 conjugates of g�12 . So by the
triangle inequality and the conjugate invariance of `, we have

`.�.g// � K1`.�.g1//CK1`.�.g
�1
1 //CK2`.�.g2//CK2`.�.g

�1
2 //

� 2K1`.�.g1//C 2K2`.�.g2//:

Proposition 4.12. The function ` W UD.C/! R defined by `.A/ D d.A; I / is
a length function.
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Proof. Let A;B be any unitary matrices.
Positivity: Clearly `.A/ D d.A; I / � 0. And we have

`.A/ D 0 ” d.A; I / D 0 ” A D I:

Symmetry: We have

`.A/ D d.A; I / D d.AA�1; IA�1/ D d.I; A�1/ D `.A�1/:

Conjugate invariance: We have

`.BAB�1/ D d.BAB�1; I / D d.BA;B/ D d.A; I / D `.A/:

Triangle inequality: We have

`.AB/ D d.AB; I / � d.AB;B/C d.B; I /

D d.A; I /C d.B; I / D `.A/C `.B/:

We shall use ` to denote this length function from now on.

Lemma 4.13. For any � > 0 and any integer m > vD=.c.D/�
D2

/, any m points
in UD.C/ will have two points with distance smaller than �. Here vD and c.D/
are as in Lemma 4.9.

Proof. This follows from a volume packing argument.
Since our metric is bi-invariant, each ball of radius �

2
in UD.C/ has the same

volume vol.B�=2/. So by our assumption on m, we have

m >
vD

c.D/�D
2
�

vol.UD.C//
vol.B�=2/

:

Now for any m points in UD.C/, suppose any two of them have distance larger
than �. Then the balls of radius �

2
centered at these m points will be disjoint and

contained in UD.C/, which is impossible. So two of the points have distance
smaller than �.

Lemma 4.14. Any non-trivial cyclic subgroup of UD.C/ contains an element of
length larger than

p
2.

Proof. Let A be any non-trivial element of UD.C/ of finite order. Let �1; : : : ; �D
be its eigenvalues, and, without loss of generality, say �1 ¤ 1. Then �1 is a prim-
itive n-th root of unity for some n. Replacing A by a proper power of itself, we
may assume that �1 is an n-th root of unity closest to �1. Then in particular,
j�1 � 1j >

p
2.
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Then we know

`.A/2 D Tr.A � I /�.A � I / D
DX
iD1

j�i � 1j
2
� j�1 � 1j

2 > 2:

Now suppose A has infinite order. Let �1; : : : ; �D be its eigenvalues, and with-
out loss of generality say �1 ¤ 1. Then �1 is an element of infinite order on the
unit circle. Replacing A by a proper power of itself, we may assume that �1 is
arbitrarily close to �1. Then in particular, j�1 � 1j >

p
2. Then we are done by

the same computation.

Proof of Proposition 4.4. For any �1; �2 > 0, pick

m1 >
vD

c.D/�D
2

1

and m2 >
vD

c.D/�D
2

2

:

For any unitary representation � W G ! UD.C/ of a group G with the symmetric
double covering property Œ.K1; m1/; .K2; m2/�, we may find elements g1; g2 2 G
for this symmetric double covering property.

Now consider the points I; �.g1/; �.g21/; : : : ; �.g
m1

1 /. By Lemma 4.13, since
m1 > vD=.c.D/�

D2

1 /, we can find two points with distance less than �1. Say
d.�.gs1/; �.g

t
1// < �1 for some 1 � s < t � m1. Then

`.�.gt�s1 // D d.�.gt�s1 /; I / D d.�.gt1/; �.g
s
1// < �1:

So we have `.�.gi1// < �1 for some 1� i �m1. Similarly we have `.�.gj2 // < �2
for some 1 � j � m2.

To sum up, there are elements gi1; g
j
2 2 G with symmetric double covering

number .K1; K2/, and `.�.gi1// < �1, `.�.gj2 // < �2. So by Lemma 4.11, all ele-
ments of �.G/ would have length smaller than 2K1�1 C 2K2�2.

Now pick �1; �2 small enough so that

2K1�1 C 2K2�2 �
p
2:

(Say �1 �
p
2=.4K1/ and �2 �

p
2=.4K2/.) Then all elements of �.G/ would

have length at most
p
2. But by Lemma 4.14, this means �.G/ is trivial.

So, a group with the symmetric double covering property Œ.K1;m1/; .K2;m2/�
will be D-quasirandom if m1 � f .D/KD

2

1 and m2 � f .D/KD
2

2 , where

f .D/ D
vD

c.D/
.2
p
2/D

2

:

Remark 4.15. Note that the above argument proves Proposition 4.4 for all groups,
not necessarily finite. However, if one only needs to prove Proposition 4.4 for finite
groups, and only for the covering property .K;m/, then a group isD-quasirandom
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if m
K
� the length ratio of the longest and the shortest closed geodesics of Un.C/.

So one can interpret the optimal value of m
K

as a measure of the “shape” of the
finite group. The smaller this optimal value is, the “more rounded” the finite group
looks like.

5 Covering properties and the cosocle

In this section, we will show that a certain nice covering property mod cosocle is
equivalent to a weaker covering property of the whole group.

Lemma 5.1. Let G be a group, and let N be a normal subgroup of G contained
in its cosocle. Let C be a conjugate invariant symmetric subset of G such that
CN D G. Then for any non-empty conjugate invariant subset S � G, SC D S
iff S D G.

Proof. Suppose SC D S and S ¤ G. Then we have SC i D S for any positive
integer i . So S must contain the subgroup generated by C . Since C is conjugate
invariant, the subgroup generated by C is a normal subgroup, and it is a proper
normal subgroup since it is contained in S ¤ G. In particular, C is contained in
a maximal normal subgroup M of G.

But since N is in the cosocle, it is contained in M . So

CN �MN DM ¨ G:

This is a contradiction.

Proposition 5.2. Let G be a group with the symmetric double covering property
Œ.K1; m1/; .K2; m2/� mod N for a normal subgroup N contained in the cosocle,
and suppose that N contains exactly n conjugacy classes of G. Then G has the
symmetric double covering property Œ..3n � 2/K1; m1/; ..3n � 2/K2; m2/�.

Proof. Find g1; g2 2 G such that .g1N; g2N/ has symmetric double covering
number .K1; K2/ in G=N . Let

C WD C.g1/
K1C.g�11 /K1C.g2/

K2C.g�12 /K2 :

Then by assumption, C is mapped surjectively onto G=N through the quotient
map. So CN D G.

Now N contains exactly n conjugacy classes of G. I claim that C 3t contains
at least t C 1 conjugacy classes of G in N , which would imply that C 3n�3 � N .
Then C 3n�2 � CN D G, finishing our proof.

We proceed by induction. As a convention we define C 0 to be ¹eº. Then the
claim is true when t D 0.



1150 Y. Yang

Now assume the statement is true for some t < n. Then C 3t contains t C 1
conjugacy classes of G in N . Let them be C1; : : : ; CtC1. Then we have

C 3tC1 � C

 
tC1[
iD1

Ci

!
:

Suppose for contradiction that C 3tC2 is disjoint from C.N �
StC1
iD1 Ci /. Then we

observe that

C

 
N �

tC1[
iD1

Ci

!
� CN � C

 
tC1[
iD1

Ci

!

D G � C

 
tC1[
iD1

Ci

!
� G � C 3tC1:

So C 3tC2 � C 3tC1. Then Lemma 5.1 implies that C 3tC2 D C 3tC1 D G. This
contradicts the assumption that C 3tC2 is disjoint from C.N �

StC1
iD1 Ci /.

So, C 3tC2 intersects with C.N �
StC1
iD1 Ci /. Let g be an element in this inter-

section. Then g 2 CCtC2 for some conjugacy class CtC2 of G in N disjoint from
C1; : : : ; CtC1. Find h 2 CtC2 such that g 2 Ch. Then since C is symmetric, we
have h 2 Cg � C 3tC3. So C 3tC3 intersects with CtC2. Since C 3tC3 is conjugate
invariant, we conclude that C 3tC3 contains CtC2.

Finally, since e 2 C , we see that C 3tC3 also contains C1; C2; : : : ; CtC1. So
C 3tC3 contains t C 2 conjugacy classes of G in N .

Proposition 5.3. Let G be a group with the symmetric covering property .K;m/
mod N for a normal subgroup N contained in the cosocle, and suppose that N
contains exactly n conjugacy classes of G. Then G has the symmetric covering
property ..3n � 2/K;m/.

Proof. Same strategy as Proposition 5.2.

6 Quasirandom finite simple groups have nice covering properties

In this section we shall show that, for finite quasisimple groups, large quasiran-
domness will imply a nice covering property. We shall first deal with finite simple
groups of bounded ranks in Section 6.1. Then we shall deal with the case of alter-
nating groups in Section 6.2. Finally, we shall deal with finite simple groups of
large ranks by embedding alternating groups into them in Section 6.3. The classi-
fication of finite simple groups is used in this section.
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Definition 6.1. For a finite quasisimple group G, we define its rank r.G/ as the
following:

(i) When the only simple quotient of G is abelian or sporadic, then r.G/ D 1.

(ii) When the only simple quotient of G is An, then r.G/ D n.

(iii) When the only simple quotient of G is a group of Lie type, then r.G/ is the
(twisted) rank of that finite simple group as an algebraic group.

6.1 Finite simple groups of bounded ranks

Lemma 6.2 (Stolz and Thom [15, Proposition 3.8]). There is a function

K W ZC ! ZC

such that, in any finite simple group of Lie type of rank � r , any non-identity
element will have covering number K.r/.

We shall fix this function K.r/ from now on.

Lemma 6.3 (Babai, Goodman and Pyber [1, Proposition 5.4]). Let k be any posi-
tive integer. Then for any finite simple groupG, if jGj � kk

2

, then jGj has a prime
divisor greater than k.

Proposition 6.4. Let G be a finite simple group of rank � r . For any m <1,
G has the covering property .K.r/;m/ ifG isD-quasirandom for large enoughD.

Proof. By choosingD to be larger than some absolute constant, aD-quasirandom
group G cannot be an abelian group, a sporadic group, or an alternating group of
rank � r . So we only need to consider finite simple groups of Lie type.

Recall that anyD-quasirandom group must have more than .D � 1/2 elements.
For any m 2 ZC, let D be an integer > 1C

p
mm

2 . Then all D-quasirandom
finite simple groups will have order > mm

2

, and thus have an element g of prime
order p > m. Then gi are non-identity for all 1 � i � p � 1. Then Lemma 6.2
states that all these elements have covering number K.r/. So G has the covering
property .K.r/;m/.

Corollary 6.5. Let G be a finite quasisimple group of rank � r . For any m <1,
G has the symmetric covering property .K.r/max.3rC1; 34/;m/ ifG isD-quasi-
random for large enough D.

Proof. If a quasisimple group is D-quasirandom, then the simple group it covers
is D-quasirandom. Therefore, it is enough to show that, if a finite simple group G
has the covering property .K;m/, then any perfect central extension G0 of it will
have the covering property .K max.3r C 1; 34/;m/.
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Let Z be the center of G0. Then Z will be the cosocle of G0, and the Schur
multiplier of the simple group G would provide an upper bound for jZj. Since G
has a rank at most r , by going through the list of finite simple groups, its Schur
multiplier has a size at most max.3r C 1; 34/. So if G has the covering prop-
erty .K;m/, Proposition 5.3 implies that G0 has the symmetric covering property
.K max.3r C 1; 34/;m/.

6.2 Alternating groups

Proposition 6.6. Let G be a quasisimple group over an alternating group. Then
for any m <1, G has the symmetric covering property .20;m/ if G is D-quasi-
random for large enough D.

Proof. If G is D-quasirandom for some large D, then the alternating group it
covers must be An for some large n. Then Proposition 3.5 implies that An has the
covering property .4;m/. Now when n > 7, An will have a Schur multiplier of 2.
So G has the covering property .20;m/.

6.3 Finite simple groups of large ranks

The goal of this subsection is to prove the following proposition.

Proposition 6.7. There is an absolute constant K0 such that for any m <1, all
finite quasisimple groups of ranks � r will have the symmetric covering property
.K0; m/ for large enough r .

By the classification of finite simple groups, a finite simple group of rank larger
than some absolute constant will have to be a classical finite simple group of Lie
type or an alternating group. Any classical finite simple group of Lie type is in one
of the following four classes:

(i) The projective special linear groups PSLn.Fq/. For large enough n, SLn.Fq/
are their universal perfect central extensions.

(ii) The projective symplectic groups PSpn.Fq/. For large enough n, Spn.Fq/ are
their universal perfect central extensions.

(iii) The projective special unitary groups PSUn.Fq/. For large enough n,
SUn.Fq/ are their universal perfect central extensions.

(iv) The projective Omega groups P�C2n.Fq/, P��2n.Fq/, or P�2nC1.Fq/. Here
�n.Fq/ are the commutator subgroups of the special orthogonal groups
SOn.Fq/, and

P�n.Fq/ D �n.Fq/=Z.�n.Fq//:
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The plus or minus signs indicate different quadratic forms used to obtain the
groups in even dimensions. For large enough n, �n.Fq/ are the universal
perfect central extensions of P�n.Fq/.

The above statements can be found in any standard textbook in classical groups
(e.g., see [8]). It is enough to show Proposition 6.7 for SLn.Fq/, Spn.Fq/,
SUn.Fq/, and �n.Fq/, since they are the universal perfect central extensions of
the simple groups they cover, and since the order of the Schur multipliers of these
groups are bounded above by a function of r .

We start by analyzing a length function for groups of Lie type over finite fields.

Definition 6.8. Let g be an n � n matrix over a finite field F . Let

mg WD sup
a2F �

dim.ker.a � g//:

Then the Jordan length of g is `J .g/ WD
n�mg

n

Proposition 6.9. Let G be any subgroup of GLn.F / for some finite field F . The
function `J on G is a pseudo-length function.

Proof. Non-negativity: For any g 2 G,

mg D sup
a2F �

dim.ker.a � g// � n:

So `J .g/ D
n�mg

n
� 0.

Symmetry: For any g 2 G, any a 2 F �, and any vector v 2 F n, we have

v 2 ker.a � g/ ” av D gv

” g�1v D a�1v

” v 2 ker.a�1 � g�1/:

As a result,

mg D sup
a2F �

dim.ker.a � g// D sup
a2F �

dim.ker.a�1 � g�1// D mg�1 :

So `J .g/ D `J .g�1/.
Conjugate-invariance: For any g; h 2 G, any a 2 F �, and any vector v 2 F n,

we have

v 2 ker.a � g/ ” av D gv

” ahv D .hgh�1/hv

” hv 2 ker.a � hgh�1/:
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As a result,

mg D sup
a2F �

dim.ker.a � g// D sup
a2F �

dim.ker.a � hgh�1// D mhgh�1 :

So `J .g/ D `J .hgh�1/.
Triangle inequality: For any g; h 2 G, any a; b 2 F �, and any vector v 2 F n,

we have

v 2 ker.a � g/ \ ker.a � abh�1/ H) gv D av D abh�1v

H) v 2 ker.abh�1 � g/:

So we know ker.a � g/ \ ker.a � abh�1/ � ker.abh�1 � g/. As a result, we
have

mgh � dim ker.ab � gh/

� dim ker.abh�1 � g/

� dim.ker.a � g/ \ ker.a � abh�1//

� dim.ker.a � g//C dim.ker.a � abh�1// � n

� dim.ker.a � g//C dim.ker.b � h// � n:

Since this is true for all a; b 2 F �, therefore

mg Cmh � n � mgh:

So `J .gh/ � `J .g/C `J .h/.

Lemma 6.10. Given an n1�n1 matrixA over a finite fieldF , and an n2�n2 matrix
B over the same finite field, then `J .A˚ B/ � n1

n1Cn2
`J .A/C

n2

n1Cn2
`J .B/.

Proof. For any a 2 F �, we have

ker.a � A˚ B/ D ker..a � A/˚ .a � B// D ker.a � A/˚ ker.a � B/:

So dim ker.a � A˚ B/ � mA CmB . Since this is true for all a 2 F �, therefore
mA˚B � mA CmB . So we have

`J .A˚ B/ D
n1 C n2 �mA˚B

n1 C n2

�
n1 C n2 �mA �mB

n1 C n2

�
n1 �mA

n1 C n2
C
n2 �mB

n1 C n2

�
n1

n1 C n2
`J .A/C

n2

n1 C n2
`J .B/:
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Lemma 6.11 (Stolz and Thom [15, Lemma 3.11]). There is an absolute con-
stant c0 such that for any finite classical quasisimple group of Lie type G, and
for any g 2 G nZ.G/, where Z.G/ is the center of G, then C.g/K D G for all
K � c

`J .g/
.

In short, elements of large Jordan length will automatically have small covering
number.

The next step is to identify subgroups of these quasisimple groups of Lie type
isomorphic to the alternating groups. A key step is to treat elements in alternat-
ing groups as matrices, namely permutation matrices. These are the matrices with
exactly one entry of value 1 in each column and in each row, and 0 for all other
entries. Such an n � n matrix will act on the standard orthonormal basis of an
n-dimensional vector space by permutation, and thus will provide an embedding
of Sn into GLn.F / for any field F . Any such matrix is in An iff it has determi-
nant 1.

Lemma 6.12. If P is an n � n permutation matrix where its cycle decomposition
has k cycles, then we have `J .P / � n�k

n
.

Proof. By cycle decomposition, after a change of basis in the vector space, P will
be a direct sum of many cyclic permutation matrices. By Lemma 6.10, it is enough
to prove the case whenP is a single cycle of length n, and show that `J .P /� n�1

n
.

Since P is a single cycle of length n, its eigenvalues in the algebraic closure
of F are precisely all the n-th roots of unity, with multiplicity 1 for each root of
unity. So dim ker.a � P / � 1 for all a 2 F �. So `J .P / � n�1

n
.

Proposition 6.13. There is an absolute constant K0 such that, for any m <1,
for any finite quasisimple group of Lie type of n � n matrices, if it contains An
as permutation matrices, then it will have the covering property .K0; m/ for large
enough n.

Proof. Let K0 > 3c0 for the absolute constant c0 in Lemma 6.11. Then any
element A of Jordan length � 1

3
will have covering numberK0 in any finite quasi-

simple group of Lie type.
Pick any odd prime p > m, and pick another prime q > p. For any large

enough n, we have n D ap C bq for some integers a > 1, 0 < b < p C 1. Then
find � 2 An made up of exactly a p-cycles and b q-cycles, where all cycles are
disjoint. This element will be fixed-point free and non-exceptional, and it will have
at most aC b � n

p
C p cycles.

For any finite quasisimple group of Lie type of n � n matrices, suppose it con-
tains An as permutation matrices. Let P be the matrix corresponding to � . Then
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we have

`J .P / �
n � n

p
� p

n
D 1 �

1

p
�
p

n
>
1

3
:

The last inequality follows because p � 3 and n � 2p C q > 3p.
So this element will have covering numberK0 inG. It clearly has order pq, and

all of its powers coprime to pq will also have the same covering number. SoG has
the covering property .K0; p � 1/.

Corollary 6.14. For any m <1, all finite special linear groups of rank r for
large enough r will have the covering property .K0; m/. Here K0 is the absolute
constant in Proposition 6.13.

Proposition 6.15. There is an absolute constantK0, such that for anym <1, we
have the following:

(i) For any finite quasisimple group of Lie type of 2n � 2n matrices, if it con-
tains An as ¹P ˚ P W P 2 An is a permutation n � n matrixº, then it will
have the covering property .K0; m/ for large enough n.

(ii) Let I1 be the 1 � 1 identity matrix. For any finite quasisimple group of Lie
type of .2nC1/�.2nC1/matrices, if it contains An as ¹P˚P˚I1 W P 2 An
is a permutation n�nmatrixº, then it will have the covering property .K0; m/
for large enough n.

(iii) Let I2 be the 2 � 2 identity matrix. For any finite quasisimple group of Lie
type of .2nC2/�.2nC2/matrices, if it contains An as ¹P˚P˚I2 W P 2 An
is a permutation n�nmatrixº, then it will have the covering property .K0; m/
for large enough n.

Proof. The strategy is identical to Proposition 6.13. Just take � ˚ � , � ˚ � ˚ I1
or � ˚ � ˚ I2 instead of � , and use Lemma 6.10.

Definition 6.16. A vector space V is a non-degenerate formed space if it has a non-
degenerate quadratic formQ (the orthogonal case), or a non-degenerate alternating
bilinear form B (the symplectic case), or a non-degenerate Hermitian form B (the
unitary case).

Lemma 6.17 (Witt’s Decomposition Theorem). Let V be any non-degenerate
formed space over a finite field F . Then we have an orthogonal decomposition
V D W ˚ .

Ln
iD1Hi /, where W is anisotropic of dimension at most 2, and Hi

are hyperbolic planes.

Proof. These are standard facts in the geometry of classical groups (see [8]).
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Proposition 6.18. For a non-degenerate formed space, the special isometry group,
i.e., the group of isometries of determinant 1, contains an alternating group in one
of the ways described by Proposition 6.15.

Proof. Let V be any finite-dimensional non-degenerate formed space over any
finite field F . Then we have an orthogonal decomposition V D W ˚H with an
anisotropic spaceW of dimension at most 2, and an orthogonal sum of hyperbolic
planes H D

Ln
iD1Hi .

Then let .vi ; wi / be a hyperbolic pair generatingHi for each i . For any � 2 An,
we can let � act by permutation on the set ¹v1; : : : ; vn; w1; : : : ; wnº such that
�.vi / D v�.i/ and �.wi / D w�.i/.

Now clearly ¹v1; : : : ; vn; w1; : : : ; wnº is a basis of H . So the above action of �
induces a linear transformation P ˚ P on H , where P is the n � n permutation
matrix for � . And this P ˚ P is clearly an isometry on H by construction. Now
taking the direct sum of P ˚ P on H and the identity matrix on W , we shall
obtain our desired embedding of An into the full isometry group.

Finally, since P is a permutation matrix for an even permutation, it has determi-
nant 1. Therefore the above embedding of An is in the special isometry group.

Corollary 6.19. For any m <1, any finite symplectic or special unitary group
of rank r has the covering property .K0; m/ for large enough r . Here K0 is the
absolute constant in Proposition 6.15.

Corollary 6.20. For any m <1, any �C2n.Fq/, �2nC1.Fq/ or ��2n.Fq/ has the
covering property .K0; m/ for large enough n. Here K0 is the absolute constant
in Proposition 6.15.

Proof. Embed An in SOC2n.q/, SO�2n.q/ and SO2nC1.q/ in the ways described
by Proposition 6.15. After taking the commutator subgroup, the groups �C2n.q/,
��2n.q/ and �2nC1.q/ will still contain An through this embedding, because An
is its own commutator subgroup. So we may apply Proposition 6.15 to �C2n.q/,
��2n.q/ and �2nC1.q/ and obtain the desired result.

Proposition 6.7 is proven by putting Corollary 6.14, Corollary 6.19 and Corol-
lary 6.20 together.

7 Proof of Theorem 1.5

The results of Section 6 can be summarized into the following useful lemma.



1158 Y. Yang

Lemma 7.1. For any integer D and any constant c, we can find integers D0, K1,
K2, m1, m2 such that all D0-quasirandom finite quasisimple groups have the
symmetric double covering property Œ.K1; m1/; .K2; m2/� such that m1 > cKD

2

1 ,
m2 > cK

D2

.

Proof. Let K1 be max.20;K0/, where the absolute constant K0 is as in Proposi-
tion 6.7. Pick some integer m1 > cKD

2

1 . Find large enough r such that, according
to Proposition 6.7 and Proposition 6.6, all finite quasisimple groups (including the
alternating case) of ranks� r will have the symmetric covering property .K1; m1/.

Set K2 WD K.r/max.3r C 1; 34/ as in Corollary 6.5, and pick some integer
m2 > cK

D2

2 . Then for large enough D0, all D0-quasirandom finite quasisimple
groups will have the symmetric covering property .K2; m2/.

In all cases, aD0-quasirandom finite quasisimple group will have the symmetric
double covering property Œ.K1; m1/; .K2; m2/�.

Remark 7.2. In the above proof, one cannot substitute the double covering prop-
erties with the covering properties. To have a covering property .K;m/, a finite
simple group must either have a large enough rank to accommodate the large m,
according to Proposition 6.7, or it must have a small enough rank to accommodate
the small K, according to Proposition 6.5. So there might be a gap between the
“large enough rank” and the “small enough rank”, where the finite simple sub-
groups in the gap would fail to have the covering property .K;m/, no matter how
quasirandom they are.

In short, the covering properties of finite quasisimple groups are not necessarily
uniform. It is uniform when obtained through increasing ranks, and it is uniform
when obtained through base fields of increasing sizes. At least with the techniques
in this paper, we cannot combine the two uniformities into one. So we must use
the double covering properties.

Proposition 7.3. Let G be a group with the symmetric double covering property
for some parameters, and let .Gi /i2I be an arbitrary family of groups with the
symmetric double covering property for some uniform parameters. Then the fol-
lowing are true:

(i) For any normal subgroup N , G has the symmetric double covering property
for the same parameters mod N .

(ii) Any quotient group of G has the symmetric double covering property for the
same parameters.

(iii) The group
Q
i2I Gi has the symmetric double covering property for the same

parameters.
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(iv) As a result of (ii) and (iii), any ultraproduct
Q
i!! Gi has the symmetric

double covering property for the same parameters.

Proof. Statements (i), (ii) and (iv) are straightforward.
To see (iii), let gi;1; gi;2 2 Gi be the pairs giving Gi the symmetric double

covering property. Then we claim that .gi;1/i2I ; .gi;2/i2I 2
Q
i2I Gi is the pair

giving the desired symmetric double covering property.
For any element .gi /i2I 2

Q
i2I Gi , then each gi is in Gi . And by its symmet-

ric double covering property, we know

Gi D C.gi;1/
K1C.g�1i;1 /

K1C.gi;2/
K2C.g�1i;2 /

K2 :

So we can find ai;j ; bi;j 2 Gi for i 2 I and 1 � j � K1, and ci;j ; di;j 2 Gi for
i 2 I and 1 � j � K2, such that

gi D

 Y
1�j�K1

.ai;jgi;1a
�1
i;j /.bi;jg

�1
i;1b
�1
i;j /

!

�

 Y
1�j�K2

.ci;jgi;2c
�1
i;j /.di;j .gi;2/

�1d�1i;j /

!
:

Since the above identity is true for all i 2 I , we have

.gi /i2I D

 Y
1�j�K1

..ai;j /i2I .gi;1/i2I .ai;j /
�1
i2I /

� ..bi;j /i2I .gi;1/
�1
i2I .bi;j /

�1
i2I /

!

�

 Y
1�j�K2

..ci;j /i2I .gi;2/i2I .ci;j /
�1
i2I /

� ..di;j /i2I .gi;2/
�1
i2I .di;j /

�1
i2I /

!
:

So we have proven (iii).

Corollary 7.4. Let CQS be the class of finite quasisimple groups. Then CQS is
a Q.U.P. class.

Proof. For any integer D, and for the constant c D f .D/ as in Proposition 4.4,
we can find D0; K1; K2; m1; m2 as in Lemma 7.1.
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Let Gi be a sequence of D0-quasirandom groups in CQS. Then Gi all have the
symmetric double covering property Œ.K1; m1/; .K2; m2/�. Then any ultraproduct

G D
Y
i!!

Gi

will have the symmetric double covering property Œ.K1; m1/; .K2; m2/� by Propo-
sition 7.3. Since m1 > f .D/KD

2

1 and m2 > f .D/KD
2

, G is D-quasirandom by
Proposition 4.4.

Corollary 7.5 (Quasirandomness implies a nice covering property mod cosocle).
For any integer D, and any constant c, we can find integers D0; K1; K2; m1; m2
such that all finite D0-quasirandom groups have the symmetric double covering
property Œ.K1; m1/; .K2; m2/� mod cosocle, with m1 > cKD

2

1 , m2 > cKD
2

2 .

Proof. Let D0; K1; K2; m1; m2 be exactly as in Lemma 7.1. Let G be any finite
D0-quasirandom group.

Let N be the cosocle of G. Then G=N is a direct product of D0-quasirandom
finite simple groups. These simple groups all have the symmetric double covering
property Œ.K1; m1/; .K2; m2/�. So by Proposition 7.3, their productG=N will have
this same symmetric double covering property.

Corollary 7.6. Let CCS.n/ be the class of finite groups with at most n conjugacy
classes in their cosocles. Then CCS.n/ is a Q.U.P. class.

Proof. Let c D f .D/.3n � 2/D
2

.
For any integerD, and for the constant c, we can findD0; K1; K2; m1; m2 as in

Corollary 7.5.
Let Gi be a sequence of D0-quasirandom groups in CCS.n/. Then Gi all have

the symmetric double covering property Œ.K1; m1/; .K2; m2/�mod cosocles. Since
the cosocles contain at most n conjugacy classes, by Proposition 5.2, Gi all have
the symmetric double covering property Œ..3n � 2/K1; m1/; ..3n � 2/K2; m2/�.
Then any ultraproduct G D

Q
i!! Gi will have the symmetric double covering

property Œ..3n � 2/K1; m1/; ..3n � 2/K2; m2/� by Proposition 7.3.
Since m1 > f .D/Œ.3n � 2/K1�D

2

, m2 > f .D/Œ.3n � 2/K�D
2

, G is D-quasi-
random by Proposition 4.4.

Proof of Theorem 1.5. For any integer D, let c D f .D/.3n � 2/D
2

. We can find
D0; K1; K2; m1; m2 as in Corollary 7.5 and Lemma 7.1.

Let Gi be a sequence of D0-quasirandom groups in Cn. So each Gi is a direct
product ofD0-quasirandom groups in CQS[CCS.n/. These factor groups must have
the symmetric double covering property Œ..3n � 2/K1; m1/; ..3n � 2/K2; m2/�.
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By Proposition 7.3, Gi must also have this symmetric double covering property
Œ..3n�2/K1; m1/; ..3n�2/K2; m2/�. Then any ultraproduct G D

Q
i!! Gi will

have the symmetric double covering property Œ..3n�2/K1; m1/; ..3n�2/K2; m2/�
by Proposition 7.3.

Since m1 > f .D/Œ.3n � 2/K1�D
2

and m2 > f .D/Œ.3n � 2/K�D
2

, it follows
from Proposition 4.4 that G is D-quasirandom.

8 Applications

8.1 Triangles in a quasirandom group

A quasirandom group usually contains many patterns. For example, Gowers has
shown the following result:

Theorem 8.1 (Gowers [7, Theorem 5.1]). Pick any �1; �2 > 0; 0 < ˛ < 1. If G is
a D-quasirandom group for some large enough D, then for any subset A of G
such that jAj � ˛jGj, there are more than .1 � �1/˛2jGj elements x 2 G such
that jA \ xAj � .1 � �2/˛2jGj.

Morally, if we define an x-pair to be a set ¹y; xyº for some y 2 G, then this
theorem means that any large enough subset of a quasirandom group G will con-
tain many x-pairs for many x.

Now given a q.u.p. class, we can obtain minimally almost periodic groups via
ultraproducts of sequences of increasingly quasirandom groups. Then by applying
ergodic theory on the ultraproduct, more patterns similar to that of Theorem 8.1
might emerge. It is proven by Bergelson, Robertson and Zorin-Kranich [2] that,
for a quasirandom groupG in a q.u.p class, any large enough subset ofG �G will
contain many x-triangle for many x.

Definition 8.2. Let g be an element of a group G. Then a g-triangle is the set
¹.x; y/; .gx; y/; .gx; gy/º � G �G for some x; y 2 G.

Theorem 8.3 (Bergelson, Robertson and Zorin-Kranich [2, Theorem 1.12]). Let
G be contained in a q.u.p. class. For any � > 0, 0 < ˛ < 1, there are integers
D and K such that, if G is D-quasirandom, then for any subset A of G �G with
jAj � ˛jGj2, the set TA D ¹g 2 G W A contains more than .˛4��/jGj2 trianglesº
can cover G with at most K left translates of itself.

8.2 Self-bohrifying groups

The application in this section is related to topological groups. We shall treat all
groups in previous sections as discrete groups.
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Definition 8.4. A Bohr compactification of a topological group G is a continuous
homomorphism b W G ! bG such that any continuous homomorphism from G to
a compact group factors uniquely through b.

Remark 8.5. (i) The Bohr compactification exists for any group by the work of
Holm [10]. It is obviously unique up to a unique isomorphism.

(ii) Clearly, a discrete group is minimally almost periodic iff it has trivial Bohr
compactification. Note that for a discrete group, any abstract homomorphism
from it to another topological group is automatically continuous.

Definition 8.6. A topological groupG is said to be self-bohrifying if its Bohr com-
pactification bG is the same abstract group as G, but with a compact topology.

By the results and techniques of this paper, one can find many examples of
self-bohrifying groups. In particular, we have the following theorem.

Theorem 8.7. Let n be a positive integer. Let Gi be a sequence of increasingly
quasirandom groups in Cn, the class defined as in Theorem 1.5. Then

Q
i2N Gi is

self-bohrifying as a discrete group.

Corollary 8.8. LetGi be a sequence of non-abelian finite simple groups of increas-
ing order. Then

Q
i2N Gi is self-bohrifying as a discrete group.

We will prove Theorem 8.7 by first showing that
Q
i2N Gi=

`
i2N Gi is mini-

mally almost periodic, and then using a lemma by Hart and Kunen [9].

Definition 8.9. Let Gi be a sequence of groups.

(i) Their sum is the group
`
i2N Gi D ¹g 2

Q
i2N Gi W only finitely many coor-

dinates of g is non-trivialº.

(ii) Their reduced product is the group
Q
i2N Gi=

`
i2N Gi .

Lemma 8.10 (Hart and Kunen [9, Lemma 3.8]). Let ¹Giºi2N be a sequence of
finite groups. Then

Q
i2N Gi is self-bohrifying if all but finitely many Gi are

perfect groups, and
Q
i2N Gi=

`
i2N Gi has trivial Bohr compactification, i.e.,Q

i2N Gi=
`
i2N Gi is minimally almost periodic.

Proof of Theorem 8.7. All 2-quasirandom groups are perfect. So it is enough
to show that the reduced product of Gi is minimally almost periodic, i.e., it is
D-quasirandom for all D.

For any integer D, let c D f .D/.3n � 2/D
2

. We can find D0; K1; K2; m1; m2
as in Corollary 7.5 and Lemma 7.1.
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Let Gi be a sequence of increasingly quasirandom groups in Cn. Then all but
finitely many Gi will be D0-quasirandom. Since we are interested in the reduced
product, which is invariant under the change of finitely many coordinates, we may
without loss of generality assume that all Gi are D0-quasirandom.

Since Gi 2 Cn, each Gi is a direct product of D0-quasirandom groups in
CQS [ CCS.n/. These factor groups must have the symmetric double covering prop-
erty Œ..3n� 2/K1; m1/; ..3n� 2/K2; m2/�. By Proposition 7.3, Gi must also have
this symmetric double covering property Œ..3n � 2/K1; m1/; ..3n � 2/K2; m2/�.

Now by Proposition 7.3, covering properties are preserved by arbitrary prod-
ucts and quotients. So

Q
i2N Gi will have this covering property, and the reduced

product
Q
i2N Gi=

`
i2N Gi will also have this covering property.

Since m1 > cŒ.3n � 2/K1�D
2

and m2 > cŒ.3n � 2/K�D
2

, the reduced product
is D-quasirandom by Proposition 4.4. So we are done by Lemma 8.10.
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