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Abstract. Suppose that y is an irreducible complex character of a finite group G and let
Jy be the smallest integer n such that the cyclotomic field Q, contains the values of y.
Let p be a prime, and assume that y € Irr(G) has degree not divisible by p. We show that
if G is solvable and y(1) is odd, then there exists g € Ng(P)/P’ with o(g) = fy, where
P € Syl,(G). In particular, fy divides [Ng(P) : P’|.

Introduction

Suppose that G is a finite group and let y € Irr(G) be an irreducible complex char-
acter of G. Among the different numbers that one can associate to the character y
(such as the degree y(1), or the determinantal order o(y) of y), we are concerned
here with the so-called Feit number f, of y, which is the smallest possible inte-
ger n such that the field of values of y is contained in the cyclotomic field Q,
(obtained by adjoining a primitive zn-th root of unity to Q). Since y(g) is a sum of
o(g)-roots of unity for g € G, notice that f) is always a divisor of |G]|.

The number fy is a classical invariant in character theory that has been studied
by Burnside, Blichfeldt and Brauer, among others. But it was W. Feit who, fol-
lowing work of Blichfeldt, made an astonishing conjecture that remains open until
today: If G is a finite group and y € Irr(G), then there is g € G of order f) (see
for instance [2]). This conjecture was proven to be true by G. Amit and D. Chillag
in [1] for solvable groups.

Our aim in this note is to come back to the Amit—Chillag theorem to prove
a global/local (with respect to a prime p) variation (for odd-degree characters with
p’-degree).

Theorem A. Let p be a prime and let G be a finite solvable group. Let y € Irr(G)
be of degree not divisible by p, and let P € Syl,(G). If x(1) is odd, then there
exists an element g € Ng(P)/ P’ such that o(g) = fy. In particular, the Feit
number [, divides [Ng(P) : P'|.
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It is unfortunate that we really need to assume that y(1) is odd, as G = GL(2, 3)
shows us: if y € Irr(G) is non-rational of degree 2, then f) = 8; but the normalizer
of a Sylow 3-subgroup of G has exponent 6. Also, Theorem A is not true outside
solvable groups, as shown by G = As, p = 2, and any y € Irr(G) of degree 3
(which has fy = 5).

We shall conclude this note by recording the fact that Feit’s conjecture is also
true for Brauer characters, but only for solvable groups. (The group G = Ag has
(2-)Brauer characters ¢ € IBr(G) with f, = 105 but no elements of that order.)

1 Proofs

We begin with a well-known elementary lemma.

Lemma 1.1. Let N < G be finite groups. Let y € Irr(G) and let P € Syl,,(G) for
some prime p. If x(1) is not divisible by p, then some constituent of y y is P -invar-
iant and any two are Ng (P )-conjugate.

Proof. Let 0 € Irr(N) be under y, and let Gy be the stabilizer of 8 in G. Since
|G : Gg| is not divisible by p, we have that P8 C Gy for some g € G. Hence
@ =068 ~'is a P-invariant constituent of xnN- Let T € Irr(N) be P-invariant
under y. Then T = ¢* for some x € G by Clifford’s theorem. Hence P, P* C G,
and there exists some ¢ € G such that P = P>, Since ¢*! = 1! = 7, the result
follows. |

Let y € Irr(G). We write Q(y) = Q(x(g) : g € G), the field of values of y. We
will use the following well-known result about Gajendragadkar special characters.
We recall that if G is a p-solvable group, then y € Irr(G) is p-special if y(1) is
apower of p and every subnormal constituent of y has determinantal order a power
of p.

Lemma 1.2. Let G be a finite p-solvable group and let P € Syl,(G). Then restric-
tion yields an injection from the set of p-special characters of G into the set of
characters of P. In particular, if x is p-special, then Q(y) = Q(xp) € Qig),
and fy is a power of p.

Proof. This statement is a particular case of [3, Proposition 6.1]. See also [3, Cor-
ollary 6.3]. |

The following result will help us to control fields of values under certain cir-
cumstances.
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Lemma 1.3. Let G be a finite group, let g be a prime and let { be a primitive q-th
root of unity. Suppose that G is q-solvable and y € Irr(G) is q-special. If y # 1,

then ¢ € Q(y).

Proof. Let Q be a Sylow g-subgroup of G. By Lemma 1.2, we have that ¢ - ¢
is an injection from the set of g-special characters of G into the set Irr(Q). In
particular, Q(y) = Q(xg). Of course, yp # 1. Thus, we may assume that G
is a g-group. We also may assume that y is faithful by modding out by ker(y).
Choose x € Z(G) of order g. We have that y(yy = x(1)A, where A € Irr({x)) is
faithful. Hence A(x") = ¢ for some integer i . In particular, { € Q(y). o

The following observation will be used later.

Lemma 1.4. Suppose that A is a linear character of a finite group G, and let
P € Syl,(G). LetNg(P) € H < G andletv = Ag. Then o(A) = o(v).

Proof. 1If A = 1g, there is nothing to prove. We may assume A is non-principal
and hence G’ < G. We have that P C PG’ < G. By the Frattini argument, we
have that G = G'Ng(P) = G'H. Since G’ C ker(\) and ker(v) = ker(1) N H,
the result follows. o

The proof of Theorem A requires the use of a magical character; the canonical
character associated to a character five defined by Isaacs in [4]. We summarize the
properties of Y below.

Let L € K <G with L <G and K/L abelian. Let 8 € Irr(K) and ¢ € Irr(6).
Suppose that 6 is the unique irreducible constituent of ¢X (in this case we say
that ¢ is fully ramified with respect to K /L or equivalently that 8 is fully ramified
with respect to K/L) and ¢ is G-invariant. Then we say that (G, K, L, 0, ¢) is
a character five.

Theorem 1.5. Let (G, K, L, 0, ¢) be a character five, and suppose that K/L is
a q-group for some odd prime q. Then there exist a character ¥ of G such that
K C ker(y) and a subgroup U < G such that

(@) UK=GandUNK =L,
(b) ¥ (g) # 0 for every g € G, w(1)?> = |K : L| and the determinantal order of
v is a power of q,

(¢) if K € W < G, then the equation &w = Yrw &g for characters & € Irr(W0)
and &y € Ier(W N U @) defines a one-to-one correspondence between these
two sets,
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(d) if KCW <G, then& € Irr(W|9) and &y € Irr(W N U|) correspond in the
sense of (¢) if and only if éo = wwé where Y denotes the complex conjugate
of v,

(e) if K/L is elementary abelian, then Q(y¥) € Q.

Proof. For parts (a)—(c) see [9, Theorem 3.1]. Part (d) follows from [4, Corol-
lary 9.2] (since the complement U provided by [9] is “good” not only for G/L
but also for every W/L where K € W < G). For part (e), by [4, Theorem 9.1]
and [4, discussion at the end of p. 619], the values of the character ¢ are Q-linear
combinations of products of values of the bilinear multiplicative symplectic form
L, >y K x K — C* associated to ¢ (defined in [4, beginning of Section 2]).
The values of < -, - >, are values of linear characters of cyclic subgroups of K /L.
Since K /L is g-elementary abelian, we do obtain that Q(y) C F. |

We can finally prove Theorem A, which we restate here.

Theorem 1.6. Let p be a prime and let G be a finite solvable group. Let y € Irr(G)
be of degree not divisible by p, and let P € Syl,(G). If x(1) is odd, then there
exists an element g € Ng(P)/P’ such that o(g) = fy. In particular, the Feit
number fy divides [Ng(P) : P'|.

Proof. By the Amit—Chillag theorem [1], we may assume that p divides |G|. We
proceed by induction on |G|.

Let N <« G.If 8 € Irr(N) is P-invariant and lies under y, then we may assume
that 0 is G-invariant. Let ¥ € Irr(Gg|0) be the Clifford correspondent of y. By the
character formula for induction, Q(y) € Q(¥) and (1) = |G : Gg|¥(1). Thus
the character ¥ satisfies the hypotheses of the theorem in Gg and f, divides fy.
If Gg < G, then by induction there exists some g € Ng,(P)/P’ <Ng(P)/P’
(notice that the P-invariance of 6 implies P € Gg) such that o(g) = fy . Hence,
some power of g has order f) and we may assume Gy = G.

We claim that we may assume that y is primitive. Otherwise, suppose that y
is induced from v € Irr(H) for some H < G. In particular, p does not divide
|G : H| and so H contains some Sylow p-subgroup of G, which we may assume
is P. Again by the character formula for induction, the degree ¥ (1) is an odd
p/-number and f divides fy. By induction thereis g € Ny (P)/P’ <Ng(P)/P’
such that o(g) = fy. Thus some power of g has order f, as claimed.

By [5, Theorem 2.6] the primitive character y factorizes as a product

X=l_[)(q»
q

where the y, are g-special characters of the group G for distinct primes g.
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Let o € Gal(QG|/Q(x))- Then
[14=TTxe
q q

By using the uniqueness of the product of special characters (see [3, Proposi-
tion 7.2]), we conclude that )(g = xq for every q. Hence fy, divides f, for
every ¢, and since the integers fy, are coprime also ]_[q [, divides fy. Notice
that Q(x) € Q(xq : q) S Qﬂq frq DY elementary Galois theory. This implies the

equality
fX = 1_[ qu'
q

Now, consider K = OP?(G) < G. Notice that PK = OP(G) < G. By the
Frattini argument G = PKNg(P) = KNg(P). If K =1, then P <G and we
are done in this case. We may assume that K > 1. Let K/L be a chief factor
of G. Then K/L is an abelian p’-group. If H = Ng(P)L, then G = KH and
K N H = L, by astandard group theoretical argument. Furthermore, all the com-
plements of K in G are G-conjugate to H. Finally, notice that Cg/r (P) =1
using that H N K = L.

We claim that for every ¢, there exists some g-special y; € Irr(H ) such that S
is equal to fy, and yz(1) is an odd p’-number.

If ¢ € {2, p}, then the character A = y, is linear (because x has odd p’-degree).
Let A* = Ag. Then A* is g-special (since A is linear and g-special, this is straight-
forward from the definition) and f;+ = f) by Lemma 1.4.

Let g # p be an odd prime and write n = y,. We work to find some character
n* € Irr(H) of odd p’-degree with f,+ = f,. By Lemma 1.1, let 6 € Irr(K) be
some P-invariant constituent of ng and let ¢ € Irr(L) be some P -invariant con-
stituent of 177,. By the second paragraph of the proof, we know that both 6 and ¢ are
G-invariant and hence ¢ lies under 6. By [8, Theorem 6.18] one of the following
holds:

(a) 0L = th'=1 @i, where the ¢; € Irr(L) are distinctand t = |K : L],
(b) 01 € Irr(L), or
(c) O = e, where ¢ € Irr(L) and e? = |K : L|.
Notice that the situation described in case (a) cannot occur here, because ¢ is
G-invariant.
In the case described in (b), we have ¢ = 0 € Irr(L). Then restriction defines
abijection between the set of irreducible characters of G lying over 6 and the set of

irreducible characters of H lying over ¢ (by [7, Corollary (4.2)]). Write § = ng.
By [7, Theorem A], we know that ¢ is g-special. We claim that Q(n) = Q(§).



1134 C. Vallejo Rodriguez

Clearly, Q(§) € Q(n). If 0 € Gal(Q(n)/Q(£)), then notice that ¢ is o-invariant
because &7, is a multiple of ¢. Now, ¢ is P-invariant, and because Cg,7(P) = 1,
there is a unique P -invariant character over ¢ (by [8, Problem 13.10]). By unique-
ness, we deduce that 07 = 6. Now, 19 lies over 6 and restricts to £, so we deduce
that n° = 7, by the uniqueness in the restriction. Thus Q(n) = Q(§). We write
nt=§.

Finally, we consider the situation described in (c). Since 6z, is not irreducible,
then |K : L|isnotag’-group, by [8, Corollary 11.29]. Hence K /L is g-elementary
abelian and e is a power of ¢. By Theorem 1.5 (and using that all the complements
of K/L in G/L are conjugate), there exists a (not necessarily irreducible) charac-
ter Y of G such that:

(i) ¥ contains K in its kernel, ¥ (g) # O for every g € G, ¥ (1) = e and the
determinantal order of V¥ is a power of ¢,

(i) if K €W <G and & € Irr(W|0), then éwng = Ywnuo for a unique
irreducible character & of W N H,

(iii) the values of ¥ lie on Q.

In particular, ng = ¥ng, so that ng € Irr(H|¢) (where we are viewing v as
a character of H). We claim that 7q is ¢-special. First notice that no(1) = n(1)/e
is a power of g. Now, we want to show that whenever S is a subnormal subgroup
of H, the irreducible constituents of (779)s have determinantal order a power of ¢g.
Since (19)r, is a multiple of ¢, which is g-special, we only need to control the irre-
ducible constituents of (179)s when L C S << H, by using [3, Proposition 2.3].
We have that K C SK << G. Write

NSk =aiyr+---+aryr,
where the y; € Irr(SK) are ¢-special because 1 is g-special and a; € Ny. By using
property (ii) of ¥, we have that ng = ¥ s(1o)s also decomposes as
ns =a1ys(yi)o+ -+ ar¥s(yrlo
= Ys(ai(yr)o + -+ ar(yr)o).

Since v never vanishes on G, we conclude that (n9)s = a1(y1)o + -+ + ar(yr)o.
It suffices to see that o((y;)o) is a power of ¢ for every y; constituent of nsg. Just
notice that

det((y;)s) = det(¥s(yi)o) = det(y5) 0D det((y1)0)°.

Since o(v), o(yi), yi (1) and e are powers of ¢, we easily conclude that also the
determinantal order of (y;)o is a power of ¢. This proves that ng is g-special. We
claim that Q(n) = Q(no) so that the two Feit numbers are the same. Let { be
a primitive g-th root of unity and write F' = Q(¢). Then the values of ¥ lie in F.
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We next see that n and 1o are non-principal. This is obvious because 6 and ¢ are
fully ramified. Suppose that o € Gal(Q)g|/ F) stabilizes 1. Then

Yo = ¥ng = yng.
Using that v is never zero, we conclude that n = no. Now, by part (d) of Theo-

rem 1.5, we have that £ and &y correspond (as in part (c) of Theorem 1.5) if and
only if (£9)¢ = V. Hence, if o € Gal(Qg|/ F) and ng = no, then

U =0 = @)% =vn°
(since Q (V) is also contained in F). This implies that n° = 7. By Galois theory,
we have that F(n) = F(no). By Lemma 1.3, this implies Q (1) = Q(n¢). We set
n* = no. The claim follows.
Now, we define y* =[], x4™ which has odd p’-degree. The character x* is
irreducible by [3, Proposition 7.2]. Also fy+ = ]_[q )(; as in the fourth paragraph
of this proof. Hence

Sy = l_[f)(q* = l_Iqu = fx-
q q

By the inductive hypothesis, there exists g € Ny (P)/P’ < Ng(P)/P’ such that
0(g) = [y and we are done. ]

It is natural to ask if Feit’s conjecture admits a version for ( p-)Brauer characters.
Using the deep theory in [6], this is easy to prove for solvable groups. Let G
be a solvable group. We write G° to denote the set of p-regular elements of G
(elements whose order is not divisible by p). If ¢ € IBr(G), by [6, Corollary 10.3]
there exists a canonically defined y € Irr(G) such that ygo = ¢ (the character
X 1is canonical as an Isaacs’ Bj/-character). By the uniqueness of the lifting, we
have that Q(y) = Q(¢) C Q|g|,, - By the Amit-Chillag theorem there exists an
element g € G such that o(g) = fy = f, (of course g is p-regular). However,
we have noticed in the introduction that Feit’s conjecture does not hold for Brauer
characters in general.
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