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The geometry of the conjugacy problem in
wreath products and free solvable groups
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Abstract. In this paper, we describe an effective version of the conjugacy problem and
study it for wreath products and free solvable groups. The problem involves estimating the
length of short conjugators between two elements of the group, a notion which leads to
the definition of the conjugacy length function. We show that for free solvable groups the
conjugacy length function is at most cubic. For wreath products the behaviour depends on
the conjugacy length function of the two groups involved, as well as subgroup distortion
within the quotient group.

In geometric group theory there has often been a tendency to produce more effec-
tive results. For example, calculating the Dehn function of a group is an effective
version of the word problem and it gives us a better understanding of its complex-
ity. We can, furthermore, use this extra information to determine more details of
the group at hand. Estimating the length of short conjugators in a group could be
described as an effective version of the conjugacy problem, and finding a control
on these lengths in wreath products and free solvable group is the main motivation
of this paper.

The conjugacy problem is one of Max Dehn’s three decision problems for
groups formulated in 1912 (see [5]). Dehn originally described these problems
because of the significance he discovered they had in the geometry of 3-manifolds
and they have since become the most fundamental problems in combinatorial and
geometric group theory. Let � be a finitely presented group with finite generating
set X . The conjugacy problem asks whether there is an algorithm which deter-
mines when two given words on X [X�1 represent conjugate elements in � .
This question may also be asked of recursively presented groups, and we can try to
develop our understanding further by asking whether one can find, in some sense,
a short conjugator between two given conjugate elements of a group.

Suppose word-lengths in � , with respect to the given generating set X , are
denoted by j � j. The conjugacy length function is the minimal function

CLF� W N ! N
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which satisfies the following: if u is conjugate to v in � and juj C jvj � n, then
there exists a conjugator 
 2 � such that j
 j � CLF�.n/. One can define it more
concretely to be the function which sends an integer n to

max¹min¹jwj W wu D vwº W juj C jvj � n and u is conjugate to v in �º:

The conjugacy length function of a group will depend on the generating set, but
only up to the following equivalence: for functions f; g W N ! Œ0;1/ we write
f � g if there exists an integer C > 0 such that f .n/ � Cg.Cn/ for all n 2 N.
The two functions are equivalent if both f � g and g � f . In this case, we
write f � g.

We know various upper bounds for the conjugacy length function in certain
classes of groups. For example, Gromov-hyperbolic groups have a linear upper
bound; this is demonstrated by Lysenok [10]. Bridson and Haefliger showed that
CAT.0/ groups have an exponential upper bound for conjugacy length [2, Chap-
ter III.� , Theorem 1.12]. In [18], we showed that some metabelian groups, namely
the lamplighter groups, solvable Baumslag–Solitar groups and lattices in SOL,
have a linear upper bound on conjugacy length. A consequence of the result for
lattices in SOL, together with results of Behrstock and Druţu [1] and Ji, Ogle and
Ramsey [8], was that fundamental groups of prime 3-manifolds have a quadratic
upper bound. Behrstock and Druţu also show that infinite order elements in
mapping class groups have a linear upper bound for conjugator length, expanding
on a result of Masur and Minsky [12] in the pseudo-Anosov case. Jing Tao [21]
developed tools to study the conjugacy of finite order elements and showed in fact
that all elements in a mapping class group enjoy a linear bound.

In this paper, we look at wreath products and free solvable groups. The defi-
nition of a free solvable group is as follows: let F 0 D ŒF; F � denote the derived
subgroup of F , where F is the free group of rank r . Denote by F .d/ the d -th
derived subgroup, that is

F .d/ D ŒF .d�1/; F .d�1/�:

The free solvable group of rank r and derived length d is the quotient

Sr;d D F=F
.d/:

The conjugacy problem in free solvable groups was shown to be solvable by
Kargapolov and Remeslennikov [9] (see also [17]) extending the same result for
free metabelian groups by Matthews [13]. Recently, Vassileva [22] has looked
at the computational complexity of algorithms to solve the conjugacy problem
and the conjugacy search problem in wreath products and free solvable groups.
In particular, Vassileva showed that the complexity of the conjugacy search prob-
lem in free solvable groups is at most polynomial of degree 8. Using the Magnus
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embedding, and in particular the fact that its image is undistorted in the ambient
wreath product, we are able to improve our understanding of the length of short
conjugators in free solvable groups:

Theorem 1. Let r; d > 1. Then the conjugacy length function of the free solvable
group Sr;d is bounded above by a cubic polynomial.

The Magnus embedding allows us to see Sr;dC1 as a subgroup of Zr o Sr;d .
Hence, if we are to use the Magnus embedding, we need to understand conju-
gacy in wreath products. For such groups the conjugacy problem was studied by
Matthews [13], who showed that for two recursively presented groups A;B with
solvable conjugacy problem, their wreath product A o B has solvable conjugacy
problem if and only if B has solvable power problem. In Section 1, we show that
for such A and B there is an upper bound for the conjugacy length function of
A o B which depends on the conjugacy length functions of A and B and on the
subgroup distortion of infinite cyclic subgroups of B (note that these distortion
functions are related to the power problem). In the case when the B-component is
of infinite order we do not need the conjugacy length function of A.

Theorem 2. Suppose A and B are finitely generated groups. Let u D .f; b/ and
v D .g; c/ be elements in � D A o B . Then u; v are conjugate if and only if there
exists a conjugator 
 2 � such that

j
 j� � .nC 1/P.2ı
B
hbi.3P /C 1/ if b is of infinite order

or

j
 j� � P.N C 1/.2nC CLFA.n/C 1/ if b is of finite order N ,

where n D juj� C juj� , ıBH is the subgroup distortion function of H < B and

P D

´
2n if .f; b/ is not conjugate to .1; b/,
nC CLFB.n/ otherwise.

Note that when we avoid the conjugacy classes which contain elements of the
form .1; b/, and if the B-component is also of infinite order, then we can find
a short conjugator whose length is bounded above by 2.n2 C n/.2ıB

hbi
.2n/C 1/.

This appears to be independent of the conjugacy length functions of both A

and B , but such a statement seems counter-intuitive. It suggests that the conju-
gacy length functions are somehow wrapped up in the word length of the wreath
product.

As a consequence of Theorem 2, we have the following expression for the
conjugacy length function when B is torsion-free.
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Corollary 3. Let B be a torsion-free group. Define the function �Bcyc as

�Bcyc.n/ D sup¹ıB
hxi.n/ W x 2 Bº:

Then

CLFA oB.n/ � .nC CLFB.n//max¹nC CLFA.n/; n�Bcyc.nC CLFB.n//º:

We remark that, for a group � with a sufficiently quick solution to the word
problem, the time complexity of the conjugacy (search) problem has upper bound
exp.CLF�/. This can be seen by considering the naïve algorithm which searches
for a conjugating element within the ball of radius determined by the conjugacy
length function. This may be employed alongside other techniques specific to � to
improve this bound.

For example, application of this naïve algorithm to free solvable groups, using
Theorem 1 will give an algorithm with time complexity which is exponential in the
sum of the lengths of the input words (see [14] for a bound on the complexity of
the word problem). Meanwhile, Corollary 3 leads to an algorithm for A o B with
time complexity exponential in CLFA.n/ and �Bcyc.nC CLFB.n//. See [22] for
more efficient algorithms for both free solvable groups and the wreath products
where A and B have polynomial-time solutions to the conjugacy search prob-
lem and B has polynomial time to the power problem (which is related to the
function �Bcyc).

In order to apply Theorem 2 to free solvable groups we must understand the
distortion of their cyclic subgroups. Given a finitely generated subgroup H in
a finitely generated group G, with corresponding word lengths j � jH and j � jg
respectively, the subgroup distortion function ıGH compares the size of an element
in a Cayley graph of H with its size in a Cayley graph of G. It is defined as

ıGH .n/ D max¹jhjH W h 2 H; jhjG � nº:

Up to the equivalence relation � defined above, we can talk about the distor-
tion function for a subgroup. If the distortion function of a subgroup H satisfies
ıGH .n/ � n, then we say H is undistorted in G, otherwise H is distorted.

We also investigate lower bounds for the conjugacy length function of wreath
products. The distortion of cyclic subgroups of B plays an important role here
too, though it is not the only tool we use. In particular, when considering wreath
products of the form A o B when B contains a copy of Z2 we make use of the fact
that right-angled triangles in Z2 contain an area which is quadratic with respect to
the perimeter length. This is used to give a quadratic lower bound on the conjugacy
length function of these wreath products.
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Theorem 4. Let A and B be finitely generated groups. If B is not virtually cyclic,
then for any x of infinite order in the centre of B we have

CLFA oB.n/ � ıBhxi.n/:

If B contains a copy of Z2, then

CLFA oB.n/ � n2:

In particular, for some ˛ 2 Œ2; 3�, we have

CLFA oZr .n/ � n˛:

Osin [16] has described the distortion functions of subgroups of finitely gen-
erated nilpotent groups. In particular, for a c-step nilpotent group N his result
implies that the maximal distortion of a cyclic subgroup of N will be nc . A con-
sequence of Theorem 2, Theorem 4 and Osin’s work is that when restricting to
elements in A oN not conjugate to an element of the form .1; b/, the conjugacy
length function will be n˛, where ˛ 2 Œc; c C 2�. However, since we do not yet
know the conjugacy length function of a general c-step nilpotent group, apart from
this lower bound we cannot estimate the conjugacy length function ofA oN . In the
particular case when N is 2-step nilpotent we know its conjugacy length function
is quadratic by Ji, Ogle and Ramsey [8]. This implies that the conjugacy length
function of A oN , when N is torsion-free, is n˛ for some ˛ 2 Œ2; 7�.

The paper is divided into two sections, the first dealing with wreath products
and the second with free solvable groups. Within Section 1, we obtain the upper
bound in Section 1.3 with the lower bounds discussed in Section 1.4. We begin
Section 2 by recapping some details of the Magnus embedding. The subgroup
distortion of cyclic subgroups of Sr;d is dealt with in Section 2.2, before we move
onto conjugacy in free solvable groups in the final section.

1 Wreath products

1.1 Geometry of wreath products

Let A;B be groups. Denote by A.B/ the set of all functions from B to A with
finite support, and equip it with pointwise multiplication to make it a group. The
(restricted) wreath product A o B is the semidirect product A.B/ Ì B . To be more
precise, the elements of A o B are pairs .f; b/ where f 2 A.B/ and b 2 B . Multi-
plication in A o B is given by

.f; b/.g; c/ D .fgb; bc/; f; g 2 A.B/; b; c;2 B;
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where gb.x/ D g.b�1x/ for each x 2 B . The identity element in B will be
denoted by eB , while we use 1 to denote the trivial function from B to A.

We can paint a picture of A o B in a similar vein to the well-known picture for
lamplighter groups Zq o Z. In the more general context where we consider A o B ,
the problem of determining the length of an element requires a solution to the
travelling salesman problem on a Cayley graph Cay.B;X/ of B , with respect to
some finite generating set X . Suppose we take an element .f; b/ 2 A o B . We can
think of this as a set of instructions given to a salesman, who starts the day at the
vertex in Cay.B;X/ labelled by the identity. The instructions comprise
� a list of vertices to visit (the support Supp.f /),
� a particular element of A to “sell” at each of these vertices (determined by

the image of f at each vertex),
� a final vertex b where the salesman should end the day.

Intuitively, therefore, we would expect the word length of .f; b/ to be the
“quickest” way to do this. In particular, the salesman needs to find the shortest
route from the identity vertex to b in which every vertex of Supp.f / is visited at
least once. We will denote the length of such a path by K.Supp.f /; b/, following
the notation of [4].

The following lemma formalises this idea. A proof of the lemma, for a slightly
more general context, can be found in the Appendix of [4, Lemma A.1] and also
in [3, Theorem 3.4]. We fix a finite generating set X for B , let S D X [X�1,
and for each b 2 B denote the corresponding word-length as jbjB . We consider
the left-invariant word metric on B , given by dB.x; y/ WD jx�1yjB . Similarly, fix
a finite generating set T for A and let j � jA denote the word-length. For f 2 A.B/,
let

jf j D
X
x2B

jf .x/jA:

Let AeB be the subgroup of A.B/ consisting of those elements whose support is
contained in ¹eBº. Then AeB is generated by ¹ft W t 2 T º where ft .eB/ D t for
each t 2 T and � is generated by ¹.1; s/; .ft ; eB/ W s 2 S; t 2 T º. With respect
to this generating set, we will let j.f; b/j� denote the corresponding word-length
for .f; b/ 2 � , with d� representing the associated word metric.

Lemma 1.1 ([4, Lemma A.1]). Let .f; b/ 2 � D A o B , whereA andB are finitely
generated groups. Then

j.f; b/j� D K.Supp.f /; b/C jf j

where K.Supp.f /; b/ is the length of the shortest path in the Cayley graph
Cay.B; S/ of B from eB to b, travelling via every point in Supp.f /.
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1.2 Conjugacy in wreath products

Let A and B be finitely generated groups. By a result of Matthews [13], when A
and B are recursively presented with solvable conjugacy problem and when B
also has solvable power problem, the group � D A o B has solvable conjugacy
problem. In what follows, we will not need these assumptions, we will only assume
that A and B are finitely generated.

Fix b 2 B and let ¹ti W i 2 I º be a set of right-coset representatives for hbi inB .
We associate to this a family of maps

�.z/ti W A
.B/
! A

for each z in B as follows:

�.z/ti .f / D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

N�1Y
jD0

f .z�1bj ti / for bof finite order N ,

1Y
jD�1

f .z�1bj ti / for b of infinite order.

The products above are taken so that the order of multiplication is such that
f .tib

j z�1/ is to the left of f .tibj�1z�1/ for each j . When z D eB , we denote
the map �.z/ti by �ti .

Proposition 1.2 (Matthews [13]). Fix a family ¹ti W i 2 I º of right-coset represen-
tatives for hbi in B . Two elements .f; b/ and .g; c/ are conjugate in A o B if and
only if there exists an element z in B such that bz D zc and for all i 2 I either of
the following holds:

� �.z/ti .g/ D �ti .f / if b is of infinite order,
� �.z/ti .g/ is conjugate to �ti .f / if b is of finite order.

For such z in B , a corresponding function h such that .f; b/.h; z/ D .h; z/.g; c/
is defined as follows: if b is of infinite order, then for each i 2 I and each k 2 Z
we set

h.bkti / D

�Y
j�k

f .bj ti /

��Y
j�k

g.z�1bj ti /

��1
or if b is of finite order N , then for each i 2 I and each k D 0; : : : ; N � 1 we set

h.bkti / D

 
kY

jD0

f .bj ti /

!
˛ti

 
kY

jD0

g.z�1bj ti /

!�1
where ˛ti is any element satisfying �ti .f /˛ti D ˛ti�

.z/
ti
.g/.
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1.3 Upper bounds for lengths of short conjugators

Proposition 1.2 gives us an explicit description of a particular conjugator for two
elements in A o B . The following lemma tells us that any conjugator between
two elements has a concrete description similar to that given by Matthews in the
preceding proposition. With this description at our disposal we will be able to
determine their size and thus find a short conjugator.

Lemma 1.3. Let .h; z/; .f; b/; .g; c/ 2 A o B be such that

.f; b/.h; z/ D .h; z/.g; c/:

Then there is a set of right-coset representatives ¹ti W i 2 I º of hbi in B such that,
if b is of infinite order, then

h.bkti / D

�Y
j�k

f .bj ti /

��Y
j�k

g.z�1bj ti /

��1
for every i 2 I and k 2 Z; if b is of finite order N , then

h.bkti / D

 
kY

jD0

f .bj ti /

!
˛ti

 
kY

jD0

g.z�1bj ti /

!�1

for every i 2 I and k D 0; : : : ; N � 1 and where ˛ti satisfies

�ti .f /˛ti D ˛ti�
.z/
ti
.g/:

Furthermore, for any element ˛ti satisfying this relationship there exists some con-
jugator .h; z/ with h of the above form.

Proof. Fix a set of coset representatives ¹si W i 2 I º. By Matthews’ argument
there exists a conjugator .h1; z1/ 2 A o B for .f; b/ and .g; c/ as described in
Proposition 1.2, with respect to the coset representatives ¹si W i 2 I º. As .h; z/ and
.h1; z1/ are both conjugators, it follows that there exists some . ; y/ in Z�.f; b/
such that

.h; z/ D . ; y/.h1; z1/:

This tells us that z D yz1 and also that h.x/ D  .x/h1.y�1x/ for each x 2 B .
Since . ; y/ is in the centraliser of .f; b/, we obtain two identities:

yb D by;

 .x/f .y�1x/ D f .x/ .b�1x/ for all x 2 B: (1.1)
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For each i 2 I we set ti D ysi . First suppose that b is of infinite order. Then

h.bkti / D  .b
kti /h1.y

�1bkti /

D  .bkti /h1.b
ksi /

D  .bkti /

�Y
j�k

f .bj si /

��Y
j�k

g.z�11 bj si /

��1

D  .bkti /

�Y
j�k

f .y�1bj ti /

��Y
j�k

g.z�1bj ti /

��1
:

We can apply equation (1.1) once, and then repeat this process to shuffle the term
past all the terms involving f . This process terminates and the  term vanishes
because of the finiteness of support of both  and of f . Hence, as required, we
obtain

h.bkti / D f .b
kti / .b

k�1ti /

� Y
j�k�1

f .y�1bj ti /

��Y
j�k

g.z�1bj ti /

��1
:::

D

�Y
j�k

f .bj ti /

��Y
j�k

g.z�1bj ti /

��1
:

If instead b is of finite order, N say, then for 0 � k � N � 1 we obtain

h.bkti / D  .b
kti /

 
kY

jD0

f .y�1bj ti /

!
˛si

 
kY

jD0

g.z�1bj ti /

!�1
where ˛si can be chosen, by Proposition 1.2, to be any element which satisfies
�si .f /˛si D ˛si�

.z1/
si

.g/. With equation (1.1) the  .bkti / term can be shuffled
past the terms involving f . Unlike in the infinite order case the  term will not
vanish:

h.bkti / D

 
kY

jD0

f .bj ti /

!
 .b�1ti /˛si

 
kY

jD0

g.z�1bj ti /

!�1
:

To confirm that h is of the required form, all that is left to do is to verify that if we
set ˛ti D  .b

�1ti /˛si , then it will satisfy �ti .f /˛ti D ˛ti�
.z/
ti
.g/. We will prove

this while proving the final statement of the lemma: that any element ˛ti satis-
fying �ti .f /˛ti D ˛ti�

.z/
ti
.g/ will appear in this expression for some conjugator

between .f; b/ and .g; c/. Set

Cti D ¹˛ W �ti .f /˛ D ˛�
.z/
ti
.g/º and Csi D ¹˛ W �si .f /˛ D ˛�

.z1/
si

.g/º:
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By Proposition 1.2, we can choose h1 above so that any element of Csi appears
above in the place of ˛si . We need to check that Cti D  .b

�1ti /Csi . Observe that
we have two equalities:

 .b�1ti /�si .f / D �ti .f / .b
�1ti /; (1.2)

�.z/ti .g/ D �
.z1/
si

.g/: (1.3)

Equation (1.3) is straight-forward to show and was used above in the infinite order
argument, while equation (1.2) follows by applying equation (1.1) N times

 .b�1ti /

N�1Y
jD0

f .bj si / D

N�1Y
jD0

f .ybj si / .b
�.NC1/ti /

and then using the facts that b has order N and y is in the centraliser of b.
Suppose that ˛si 2 Csi . Then, using equations (1.2) and (1.3),

eA D ˛
�1
si
�si .f /

�1˛si�
.z1/
si

.g/

D ˛�1si  .b
�1ti /

�1�ti .f /
�1 .b�1ti /˛si�

.z/
ti
.g/:

This confirms that  .b�1ti /Csi � Cti . On the other hand, suppose instead that
˛ti 2 Cti . Then

eA D ˛
�1
ti
�ti .f /

�1˛ti�
.z/
ti
.g/

D ˛�1ti  .b
�1ti /�si .f /

�1 .b�1ti /
�1˛ti�

.z1/
si

.g/:

Hence  .b�1ti /�1˛ti 2 Csi . In particular, Cti D  .t
�1/Csi as required.

Obtaining a short conjugator will require two steps. Lemma 1.4 is the first of
these steps. Here we actually find the short conjugator, while in Lemma 1.5 we
show that the size of a conjugator .h; z/ can be bounded by a function involving
the size of z but independent of h altogether.

Recall that the conjugacy length function of B is the minimal function

CLFB W N ! N

such that if b is conjugate to c in B and jbjB C jcjB � n, then there exists a con-
jugator z 2 B such that jzjB � CLFB.n/.

Lemma 1.4. Suppose u D .f; b/; v D .g; c/ are conjugate elements in � D A o B
and let n D juj� C jvj� . Then there exists 
 D .h; z/ 2 � such that u
 D 
v and
either of the following holds:

(1) jzjB � CLFB.n/ if .f; b/ is conjugate to .1; b/,

(2) jzjB � n if .f; b/ is not conjugate to .1; b/.
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Proof. Without loss of generality we may assume that juj� � jvj� . By Lemma 1.3,
if .h0; z0/ is a conjugator for u and v, then there exists a family of right-coset
representatives ¹ti W i 2 I º for hbi in B such that

�
.z0/
ti

.g/ D �ti .f / or �
.z0/
ti

.g/ is conjugate to �ti .f /

for every i 2 I according to whether b is of infinite or finite order respectively
(the former follows from the finiteness of the support of the function h given by
Lemma 1.3).

By Proposition 1.2, .f; b/ is conjugate to .1; b/ if and only if �ti .f / D eA for
every i 2 I . In this case, we take

h.bkti / D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Y
j�k

f .bj ti / if b is of infinite order,

kY
jD0

f .bj ti / if b is of finite order N and 0 � k < N .

One can then verify that .f; b/.h; eB/ D .h; eB/.1; b/. Thus we have reduced 1 to
the case when u D .1; b/ and v D .1; c/. For this we observe that any conjugator z
for b; c in B will give a conjugator .1; z/ for u; v in A o B . Thus 1 follows.

If on the other hand .f; b/ is not conjugate to .1; b/, then by Proposition 1.2
we have �ti .f / ¤ eA for some i 2 I . Fix some such i , observe that there exists
some k 2 Z satisfying bkti 2 Supp.f / and there must also exist some j 2 Z
so that z�10 bj ti 2 Supp.g/. Pre-multiply .h0; z0/ by .f; b/k�j to get 
 D .h; z/,
where z D bk�j z0 and 
 is a conjugator for u and v since .f; b/k�j belongs to the
centraliser of u in � . By construction, z�1bkti D z�10 bj ti and hence is contained
in the support of g. We finish by applying the triangle inequality and using the
left-invariance of the word metric dB as follows:

jz�1jB � dB.eB ; z
�1bkti /C dB.z

�1bkti ; z
�1/

� jbkti jB C jz
�1bkti jB

� K.Supp.f /; b/CK.Supp.g/; c/

� juj� C jvj� :

This completes the proof.

Soon we will give Theorem 1.6, which will describe the length of short conju-
gators in wreath products A o B where B is torsion-free. Before we dive into this
however, it will prove useful in Section 2.3, when we look at conjugacy in free
solvable groups, to understand how the conjugators are constructed. In particular,



598 A. W. Sale

it is important to understand that the size of a conjugator .h; z/ 2 A o B can be
expressed in terms of the size of z in B with no need to refer to the function h at
all. This is what we explain in Lemma 1.5.

For b 2 B , let
ıB
hbi.n/ D max¹m 2 Z W jbmjB � nº

be the subgroup distortion of hbi in B . Fix a finite generating set X for B and
let Cay.B;X/ be the corresponding Cayley graph.

Lemma 1.5. Suppose u D .f; b/; v D .g; c/ are conjugate elements in � D A o B
and let n D juj� C jvj� . Suppose also that b and c are of infinite order in B .
If 
 D .h; z/ is a conjugator for u and v in � , then

j
 j� � .nC 1/P.2ı
B
hbi.3P /C 1/

where P D jzjB C n.

Proof. Without loss of generality we may assume juj� � jvj� . From Lemma 1.3
we have an explicit expression for h. We use this expression to give an upper bound
for the size of .h; z/, making use of Lemma 1.1 which tells us

j
 j� D K.Supp.h/; z/C jhj

where K.Supp.h/; z/ is the length of the shortest path in Cay.B;X/ from eB to z
travelling via every point in Supp.h/ and jhj is the sum of terms jf .x/jA over
all x 2 B .

We begin by obtaining an upper bound on the size of K.Supp.h/; z/. To do
this we build a path from eB to z, zig-zagging along cosets of hbi, see Figure 1.
Lemma 1.3 tells us that there is a family of right-coset representatives ¹tiºi2I such
that

h.bkti / D

�Y
j�k

f .bj ti /

��Y
j�k

g.z�1bj ti /

��1
for every i 2 I and k 2 Z. This expression for h tells us where in each coset the
support of h will lie. In particular, note that if we set C D Supp.f / [ zSupp.g/,
then

Supp.h/ \ hbiti ¤ ; H) C \ hbiti ¤ ;:

Furthermore, in each coset the support of hmust lie between some pair of elements
in C . Let t1; : : : ; ts be all the coset representatives for which Supp.h/ intersects
the coset hbiti . The number s of such cosets is bounded above by the size of the
set Supp.f / [ zSupp.g/, which is bounded above by juj� C jvj� D n.
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eB

z

q0
p1

qs

ps

hbit1

hbit2

hbits�1

hbits

Figure 1. We build a path from eB to z by piecing together paths qi and pi , where the
paths pi run though the intersection of Supp.h/ with a coset hbiti and the paths qi
connect these cosets.

If we restrict our attention to one of these cosets, hbiti , then there exist two inte-
gersm1 < m2 such that bj ti 2 Supp.h/ impliesm1 � j �m2. We can choosem1
andm2 so that bmti 2 C form 2 ¹m1; m2º. Let pi be a piecewise geodesic in the
Cayley graph ofB which connects bm1 ti to bm2 ti via bj ti for everym1 < j < m2.
The path pi will start and end at points in C . The number of geodesic segments
of pi will bem2 �m1. This is bounded above by ıB

hbi
.dB.b

m1 ; bm2//, the distance
in this expression being bounded above by

dB.b
m1 ti ; b

m2 ti /C 2dB.eB ; hbiti / � 3diam.C /:

The length of pi will therefore be at most

dB.b
j ti ; b

jC1ti /ı
B
hbi.3diam.C //

for any j 2 Z. Choose j 2 Z such that bj ti 2 C . In the case that bj ti 2 Supp.f /
we get that

dB.b
j ti ; b

jC1ti / � dB.b
j ti ; b/C dB.b; b

jC1ti /

D dB.b
j ti ; b/C dB.eB ; b

j ti /

� K.Supp.f /; b/ � n

where the last line follows because any path from eB to b via all points in Supp.f /
will have to be at least as long as the path from eB to b via the point bj ti . Similarly,
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eB

z

Supp.f /

zSupp.g/

b

bz D zc

Figure 2. The concatenation of three paths: a path from b to eB through Supp.f /,
followed by a path from eB to z, then finish off with a path from z to zc through
each point in zSupp.g/.

in the case when z�1bj ti 2 Supp.g/, we use zc D bz to get

dB.b
j ti ; b

jC1ti / � dB.b
j ti ; zc/C dB.zc; b

jC1ti /

D dB.b
j ti ; zc/C dB.z; b

j ti /

� K.Supp.g/; c/ � n

where we obtain the last line because a shortest path from z to zc via zSupp.g/
will have length precisely K.Supp.g/; c/. Hence, in either case we get that the
path pi has length bounded above by nıB

hbi
.3diam.C //.

We will now show that

diam.C [ ¹eB ; zº/ � nC jzjB D P :

This diameter will be given by the length of a path connecting some pair of points
in this set. We take a path through eB , z and all points in the set C , a path such as
that in Figure 2. The length of this path will certainly be bigger than the diameter.
Hence we have

diam.C [ ¹eB ; zº/ � K.Supp.f /; b/C jzjB CK.Supp.g/; c/

� nC jzjB D P:

For i D 1; : : : ; s � 1 let qi be a geodesic path which connects the end of pi with
the start of piC1. Let q0 connect eB with the start of p1 and qs connect the end
of ps with z. Then the concatenation of paths q0; p1; q1; : : : ; qs�1; ps; qs is a path
from eB to z via every point in Supp.h/.
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For each i , the path qi will be a geodesic connecting two points of C [ ¹eB ; zº.
The above upper bound for the diameter of this set tells us that each qi will have
length at most nC jzjB D P .

We saw above that s � n, thus bounding the number of paths pi and qi . With
this, and the above bound on the length of each pi or qi , our concatenated path
q0; p1; q1; : : : ; qs�1; ps; qs has length bounded above by

.nC 1/PC n2ıB
hbi.3P / � .nC 1/P.ı

B
hbi.3P /C 1/

thus giving an upper bound for K.Supp.h/; z/.
Now we need to turn our attention to an upper bound for jhj. By the value of

h.bkti / given to us by Lemma 1.3 we see that

jh.bkti /jA �
X
j�k

jg.z�1bj ti /jA C
X
j�k

jf .bj ti /jA

� jgj C jf j � n:

The number of elements bkti in the support of h can be counted in the following
way. Firstly, the number of i 2 I for which hbiti \ Supp.h/ ¤ ; is equal to s,
which we showed above to be bounded by n. Secondly, for each such i , recall that
there exists an m1 � m2 such that bj ti 2 Supp.h/ implies m1 � j � m2. Hence
for each i the number of k 2 Z for which bkti 2 Supp.h/ is bounded above by
m2 �m1 � ı

B
hbi
.3diam.C // � ıB

hbi
.3P /. So in conclusion we have

jvj� D K.Supp.h/; z/C jhj

� .nC 1/P.ıB
hbi.3P /C 1/C n

2ıB
hbi.3P /

� .nC 1/P.2ıB
hbi.3P /C 1/

where n D juj� C jvj� and P D jzjB C n.

Theorem 1.6. Suppose A and B are finitely generated. Let u D .f; b/; v D .g; c/
be elements of � D A o B , with b and c of infinite order, and set n D juj� C jvj� .
Then u; v are conjugate if and only if there exists a conjugator 
 2 � such that

j
 j� � .nC 1/P.2ı
B
hbi.3P /C 1/

whereP D 2n if .f; b/ is not conjugate to .1; b/ andP D nCCLFB.n/ otherwise.

Proof. By Lemma 1.4 we can find a conjugator 
 D .h; z/ which satisfies the
inequality jzjB � CLFB.n/ if .f; b/ is conjugate to .1; b/ or jzjB � n otherwise.
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Therefore if we set P D nC CLFB.n/ if .f; b/ is conjugate to .1; b/ and P D 2n
otherwise, then the result follows immediately by applying Lemma 1.5 to the con-
jugator 
 obtained from Lemma 1.4.

When we look at elements whose B-components may be of finite order, we can
still obtain some information on the conjugator length. Theorem 1.6 does the work
when we look at elements in A o B such that the B-components are of infinite
order. However, if they have finite order, we need to understand the size of the
conjugators ˛i as in Proposition 1.2 and Lemma 1.3. When the order of b is finite,
the construction of the function h by Matthews in Proposition 1.2 will work for
any conjugator ˛ti between �.z/ti .g/ and �ti .f /. Then, since

j�.z/ti .g/jA C j�ti .f /jA � jgj C jf j � n

where n D juj� C jvj� , for each coset representative ti and each bk 2 hbiwe have

jh.bkti /jA � jf j C jgj C CLFA.n/ � nC CLFA.n/:

With the aid of the conjugacy length function for A we can therefore give the
following:

Lemma 1.7. Suppose u D .f; b/; v D .g; c/ are conjugate elements in � D A o B
and let nD juj� C jvj� . Suppose also that b; c are of finite order N . If 
 D .h; z/
is a conjugator for u and v in � , then

jvj� � P.N C 1/.2nC CLFA.n/C 1/

where P D jzjB C n.

Proof. For the most part this proof is the same as for Lemma 1.5. It will differ in
two places. As mentioned above, we obtain

jh.bkti /jA � jf j C jgj C CLFA.n/

for each coset representative ti and bk 2 hbi. By a similar process as that in
Lemma 1.5 we deduce the upper bound

jhj � nN.nC CLFA.n//:

The second place where we need to modify the proof is in the calculation of an
upper bound for the length of each path pi . Since b is of finite order, each coset
will give a loop in Cay.B;X/. We will let pi run around this loop, so its length
will be bounded above by NdB.ti ; bti /. As before we get dB.ti ; bti / � n, so in
the upper bound obtained for K.Supp.h/; z/ we need only replace the distortion
function ıB

hbi
by the order N of b in B . Thus

K.Supp.h/; z/ � P.N C 1/.nC 1/
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where P D jzjB C n. Combining this with the upper bound above for jhj we get

jvj� � P.N C 1/.nC 1/C nN.nC CLFA.n//

� P.N C 1/.2nC CLFA.n/C 1/

proving the lemma.

We finish this section by applying Lemma 1.4 and Lemma 1.7 to give the com-
plete picture for the length of short conjugators in the wreath product A o B .

Theorem 1.8. Suppose A and B are finitely generated groups. Let u D .f; b/ and
v D .g; c/ be elements of � where the order of b and c is N 2 N [ ¹1º. Then
u; v are conjugate if and only if there exists a conjugator 
 2 � such that either

j
 j� � P.N C 1/.2nC CLFA.n/C 1/ if N is finite

or

j
 j� � .nC 1/P.2ı
B
hbi.3P /C 1/ if N D1,

where n D juj� C jvj� and

P D

´
2n if .f; b/ is not conjugate to .1; b/,
nC CLFB.n/ otherwise.

1.4 Lower bounds for lengths of short conjugators

We saw in Section 1.3 that the distortion of cyclic subgroups plays an important
role in the upper bound we determined for the conjugacy length function. We will
make use of the distortion to determine a lower bound as well. Firstly, however,
we give a straightforward lower bound.

Proposition 1.9. Let A and B be finitely generated groups. Then

CLFA oB.n/ � CLFB.n/:

Proof. Let n 2 N. The value CLFB.n/ is defined to be the smallest integer such
that whenever b; c are conjugate elements in B and satisfy jbjB C jcjB � n, then
there is a conjugator z 2 B such that jzjB � CLFB.n/. Let bn; cn be elements
which realise this minimum. That is:

(i) jbnjB C jcnjB � n,

(ii) a minimal length conjugator zn 2 B satisfies jznjB D CLFB.n/.

Consider the elements un D .1; bn/ and vn D .1; cn/ in A o B , where 1 represents
the trivial function. Then by Lemma 1.1,

junj� C jvnj� � n:
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Any conjugator .h; x/ must satisfy hbn D h and bnx D xcn. We may take h D 1
since any non-trivial function h (the existence of such a conjugator is only possible
when bn is of finite order) will lead to a larger conjugator. Thus a minimal length
conjugator for un and vn will have the form .1; x/ where x can be chosen to be
any conjugator for bn and cn. In particular, this shows that the minimal length
conjugator for un and vn has length CLFB.n/.

1.4.1 Distorted elements

Let B be a finitely generated group containing an element x of infinite order.
If the centraliser of x in B , denoted ZB.x/, is sufficiently large relative to hxi
(see Lemma 1.11), then we can use the distortion of hxi in B to construct two
sequences of functions from B to A that allow us to demonstrate a lower bound
on the conjugacy length function of A o B in terms of this distortion. Given any
element b of infinite order inB , by taking x D b3 we ensure that x has sufficiently
large centraliser in order to apply Lemma 1.11. Since the distortion of hbi in B is
(roughly) a third of the distortion of hxi, we can conclude that the distortion func-
tion of any cyclic subgroup in B provides a lower bound for the conjugacy length
function of A o B .

Theorem 1.10. Let A and B be finitely generated groups and let b 2 B be any
element of infinite order. Then

CLFA oB.4nC 4C 10jbjB/ �
4

3
ıB
hbi.n/ � 4:

In order to prove Theorem 1.10 we will use the following closely-related
lemma:

Lemma 1.11. If the set ¹y 2 ZB.x/ W y2 … hxiº is non-empty, then

CLFA oB.4.nC Lx C 1/C 2jxjB/ � 4ıBhxi.n/

where Lx D min¹jyjB W y 2 ZB.x/; y2 … hxiº.

Proof of Theorem 1.10. To obtain the theorem we need to apply Lemma 1.11,
taking x D b3. Then b 2 ZB.x/ and b2 … hxi, hence Lx � jbjB . The distortion
function for b satisfies

ıB
hbi.n/ �

1

3
ıB
hxi.n/ � 1:

Hence the theorem follows by application of Lemma 1.11.

Proof of Lemma 1.11. Take an element y in ZB.x/ which realises this minimum.
Let a be any element in the chosen generating set of A and consider the functions
f; gn W B ! A which take values of either eA or a and which have the following
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supports:

Supp.f / D ¹eB ; yº;

Supp.gn/ D ¹x�ı.n/; xı.n/yº

where
ı.n/ D ıB

hxi.n/:

We use these functions to define a pair of conjugate elements:

u D .f; x/; vn D .gn; x/:

First we will show that the sum of the sizes of these elements grows with n.
Observe that

juj� C jvnj� D K.Supp.f /; x/C 2CK.Supp.gn/; x/C 2

where the notation is as in Lemma 1.1. For every n,

K.Supp.f /; x/ � 2jyjB C jxjB ;

n � K.Supp.gn/; x/ � 2jyjB C 4nC jxjB :

The lower bound forK.Supp.gn/;x/ follows by observing that the distance from x

to x�ı.n/ is greater than n since, by the definition of the distortion function,
jxı.n/C1j > n. Any path satisfying the requirements ofK.Supp.gn/; x/must pass
through both x and x�ı.n/.

The upper bound comes from considering the piecewise geodesic starting at eB ,
then travelling to x�ı , then on to xı.n/y before heading to x, its final destination.
The reader may verify, using the triangle inequality, that the sum of the lengths of
these geodesics is bounded above by 2jyjB C 4nC jxjB .

Hence
n � juj� C jvnj� � 4nC 4Lx C 2jxjB C 4:

As an example of a conjugator we may take 
n D .hn; eB/ where hn is given by

hn.x
iy/ D a if 0 � i � ı.n/ � 1;

hn.x
�i / D a�1 if 1 � i � ı.n/;

hn.b/ D eA otherwise.

We will now verify that this is indeed a conjugator. To do so, we need to verify
that f hxn D hngn. We need only check this holds for elements of the form xiy

or x�i for 0 � i � ı.n/ since otherwise both sides evaluate to the identity. The
reader can verify that

f .xiy/hn.x
i�1y/ D a D hn.x

iy/gn.x
iy/
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hxi

eB

y

x�1

x�ı.n/

xı.n/�1y

xı.n/y

Figure 3. The support of hn is the union of the two shaded regions.

whenever 0 � i � ı.n/. Provided 1 � i � ı.n/ � 1 we get

f .x�i /hn.x
�i�1/ D a�1 D hn.x

�i /gn.x
�i /

and in the last two cases, that is for i 2 ¹0; ı.n/º, both sides equal the identity.
Now we will show that any conjugator for u and vn will have to have size

bounded below by 4ı.n/. This is done by showing the support of the associated
function will contain at least 2ı.n/ elements. We will first give the family of ele-
ments z 2 B for which there exists a conjugator for u and vn of the form .h; z/ for
some function h. Suppose z is some such element. Lemma 1.3 then tells us what
the corresponding function h will look like. In particular, in order for the support
of h to be finite, we must have that

Supp.f / \ hxit ¤ ; ” zSupp.gn/ \ hxit ¤ ;

for any t 2 B (note that this does not apply in general, but it does here because the
functions have been designed so their supports intersect each coset with at most
one element). Hence zSupp.gn/ will intersect the cosets hxiyi exactly once for
each i D 0; 1 and it will not intersect any other coset. Let � be the permutation
of ¹0; 1º such that zxı.n/y 2 hxiy�.1/ and zx�ı.n/ 2 hxiy�.0/. Since y is in the
centraliser of x, it follows that z 2 hxiy�.i/�i for each i . If �.i/ ¤ i , then this
implies that z 2 hxiy�1\hxiy, so y2 2 hxi, contradicting our choice of y. Hence
�.i/ D i for i 2 ¹0; 1º, and thus z 2 hxi.

The support of gn was chosen in such a way that it is sufficiently spread out in
the two cosets of hxi. It means that shifting Supp.gn/ by any power of x does not
prevent the support of h needing at least 2ı.n/ elements. In particular, if z D xk

for some �ı.n/ < k < ı.n/, then the support of h will consist of elements xiy
for 0 � i < ı.n/C k and x�i for 1 � i � ı.n/ � k. Here the support has pre-
cisely 2ı.n/ elements. If k lies outside this range, then the support will contain at
least as many as 2ı.n/ elements, for example if k � ı.n/, then the support will
consist of elements xiy for 0 � i < ı.n/C k as well as xi for any i satisfying
0 � i < �ı.n/C k. This implies that, by Lemma 1.1, any conjugator for u and vn
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will have to have size at least 4ı.n/, providing the required lower bound for the
conjugacy length function.

In [19], the author shows that groups of the form A o BS.1; q/, where BS.1; q/
is a Baumslag–Solitar group, have an exponential conjugacy length function. The
lower bound is obtained by using the methods in the proof of Theorem 1.10.

Osin [16] has described the distortion functions of subgroups of finitely gen-
erated nilpotent groups. In particular, for a c-step nilpotent group N his result
implies that the maximal distortion of a cyclic subgroup of N will be nc , and
this occurs when the subgroup is contained in the centre of N . A consequence of
Theorem 1.6, Theorem 1.10 and Osin’s work is that when restricting to elements
in A oN not conjugate to an element of the form .1; b/, the (restricted) conju-
gacy length function will be n˛, where ˛ 2 Œc; c C 2�. However, since we do not
yet know the conjugacy length function of a general c-step nilpotent group, apart
from this lower bound we cannot estimate the conjugacy length function of A oN .
In the particular case when N is 2-step nilpotent, we know its conjugacy length
function is quadratic by Ji, Ogle and Ramsey [8]. Hence the conjugacy length
function of A oN , when N is torsion-free, is n˛ for some ˛ 2 Œ2; 7�.

1.4.2 Using the area of triangles

We will show that the conjugacy length function of wreath productsA o B whereA
is finitely generated and B contains a copy of Z2, are non-linear, and in particular
are at least quadratic. Combined with Theorem 1.6 we learn, for example, that
CLFA oZr .n/ � n˛ for some ˛ 2 Œ2; 3� whenever r � 2. The methods used here
differ to those used above in that we do not use subgroup distortion. Instead we
rely on the area of triangles in Z2 being quadratic with respect to the perimeter
length.

Suppose x and y generate a copy of Z2 inB . For each n 2N let fn; gn W B! A

be functions which take values of either eA or a, where a is an element of a gener-
ating set for A, and have supports given by

Supp.fn/ D ¹x�n; : : : ; x�1; eB ; x; : : : ; xnº;

Supp.gn/ D ¹x�ny�n; : : : ; x�1y�1; eB ; xy; : : : ; xnynº:

Consider the two elements un D .fn; y/ and vn D .gn; y/. These are conjugate
via the element .hn; eB/ where hn is defined by

hn.x
iyj / D a if 0 < i � n and 0 � j < i;

hn.x
iyj / D a�1 if � n � i < 0 and i � j < i;

hn.z/ D eA otherwise.
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It is clear that the sizes of un and vn grow linearly with n. In particular, using
Lemma 1.1, one can verify that

4nC 2 � junj� � 4njxjB C jyjB C 2nC 1;

4nC 2 � jvnj� � 4njxyjB C jyjB C 2nC 1:

Suppose that .h; z/ is any conjugator for un and vn. First we claim that z must
be a power of y. This follows from a similar argument as in the proof of Theo-
rem 1.10. By Lemma 1.3, given z we can construct the function h. The support
of h will be finite only if for any t 2 B ,

Supp.fn/ \ hyit ¤ ; ” zSupp.gn/ \ hyit ¤ ;: (1.4)

First observe that z 2 hx; yi D Z2 since otherwise we would have

Supp.fn/ \ hyiz D ;

while on the other hand z 2 zSupp.gn/\hyiz. By the nature of Z2 we can see that
if z acts on it by translation in any direction except those parallel to y, then (1.4)
cannot hold, implying h will have infinite support. Thus any conjugator for un
and vn must be of the form .h; yk/ for some integer k.

A simple geometric argument now gives us a quadratic lower bound on the
size of .h; yk/ relative to n. The support of h will be contained in the cosets hyixi

for�n � i � n. Within each coset it will include precisely one of xi or xryiCk , as

ykSupp.gn/

Supp.fn/
n

n

Figure 4. The shaded region indicates Supp.h/, while the dark shaded region is
a triangle contained in Supp.h/ which contains 1

2
n.nC 1/ elements.
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well as all elements in between. Specifically, xiyj 2 Supp.h/ if and only if either
0 � j < i C k or i C k � j < 0. A triangle of elements is therefore contained
in the support of h. Regardless of what value of k is chosen this triangle can be
chosen to have at least n elements along the base and side, giving a minimum
of 1

2
n.nC 1/ elements in Supp.h/. Thus any conjugator must have size bounded

below by n.nC 1/.

Theorem 1.12. Let A and B be finitely generated groups and suppose that B con-
tains a copy of Z2 generated by elements x and y. The conjugacy length function
of A o B satisfies

CLFA oB.4n.jxjB C jxyjB C 1/C 2jyjB C 2/ � n2 C n:

When B D Zr for some r � 2 we get the following upper and lower bounds:

.nC 14/.n � 2/

256
� CLFAoZr .n/ � 2n.nC 1/.12nC 1/:

Proof. The lower bounds follow from the argument preceding the theorem. The
upper bound for the second expression is an immediate consequence of Theo-
rem 1.6, using the facts that CLFZr is identically zero, allowing us to takeP D 2n,
and the distortion function for cyclic subgroups in Zr is the identity function.

The use of area in this way to provide a lower bound on the conjugacy length
function raises the question of whether, in general, one can use the Dehn function
of a group B to provide a lower bound for CLFA oB .

Question. Let AreaB W N ! N be the Dehn function of a finitely presented
groupB . Is it true that CLFA oB.n/�AreaB.n/ for any finitely generated groupA?

2 Free solvable groups

We now turn our attention to study the conjugacy length function of free solvable
groups. The method involves using the Magnus embedding to see the free solvable
group Sr;dC1 as a subgroup of the wreath product Zr o Sr;d . Results of Section 1
will be central to estimating the length of a conjugating element.

2.1 The Magnus embedding

We briefly recap two equivalent definitions of the Magnus embedding, one alge-
braic, one geometric. For more details see [20].
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2.1.1 Definition via Fox calculus

In order to define the Magnus embedding we need to first define Fox derivatives.
These are derivations on a group ring Z.F /, where F is the free group on genera-
torsX D ¹x1; : : : ; xrº. Recall that a derivation on a group ring Z.G/ is a mapping
D W Z.G/! Z.G/ which satisfies the following two conditions for every pair of
elements a; b 2 Z.G/:

D.aC b/ D D.a/CD.b/;

D.ab/ D D.a/".b/C aD.b/:

For each generator xi of F we can define a unique derivation of Z.F /, @
@xi

, which
satisfies

@xj

@xi
D ıij

where ıij is the Kronecker delta.
Let N be a normal subgroup of F and denote the quotient homomorphism

by ˛ W F ! F=N . The Magnus embedding gives a way of recognising F=N 0,
where N 0 is the derived subgroup of N , as a subgroup of the wreath product
M.F=N/ D Zr o F=N .

Given a derivation D on Z.F /, denote by D? W Z.F /! Z.F=N/ the com-
position of D with ˛ (extended linearly over Z.F /). Consider the group ring
Z.F=N/ and let R be the free Z.F=N/-module with generators t1; : : : ; tr . We
define a homomorphism

' W F !M.F=N/ D

 
F=N R

0 1

!
D

´ 
g a

0 1

!
W g 2 F=N; a 2 R

µ
by

'.w/ D

 
˛.w/ @?w

@x1
t1 C � � � C

@?w
@xr

tr

0 1

!
:

Note that M.F=N/ Š Zr o F=N . Magnus [11] recognised that the kernel of ' is
equal to N 0 and hence ' induces an injective homomorphism from F=N 0

to M.F=N/ which is known as the Magnus embedding. In the rest of this paper,
we will use ' to denote both the homomorphism defined above and the Magnus
embedding it induces.

2.1.2 Geometric definition

Take a wordw in F and construct the path �w which starts at the identity and along
which we read out by the word w in the Cayley graph Cay.F=N;X/ of F=N ,
where X is the image of the generating set X in the quotient F=N .
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Let E be the edge set of the Cayley graph Cay.F=N;X/. Define a function
�w W E ! Z such that for each edge .g; gx/ 2 E the value of �w.g; gx/ is equal
to the net number of times the path �w traverses this edge – for each time the path
travels from g to gx countC1; for each time the path goes from gx to g count �1.

Given w 2 F we will use �w to define a function Pw W F=N ! Zr in the
natural way

Pw.g/ D .�w.g; gx1/; : : : ; �w.g; gxr//:

Define the geometric Magnus embedding to be the function 'geo W F ! Zr o F=N
such that 'geo.w/ D .Pw ; ˛.w// for w 2 F .

Theorem 2.1 ([20]). The two definitions of the Magnus embedding, ' and 'geo,
are equal, up to application of an isomorphism M.F=N/ Š Zr o F=N .

The isomorphism in Theorem 2.1 is defined in [20] and is the natural isomor-
phism that one would define.

2.1.3 Properties of the Magnus embedding and Fox calculus

In [20], we used Theorem 2.1 to demonstrate that the Magnus embedding is
2-bi-Lipschitz with respect to word metrics determined by canonical generating
sets. In particular, let j � jF=N 0 and dF=N 0 denote respectively the word length and
word metric on F=N 0 with respect to the generating set ˛.X/ and let j � jM and
dM denote respectively the word length and word metric on the wreath product
M.F=N/ with respect to the generating set´ 

˛.x1/ 0

0 1

!
; : : : ;

 
˛.xr/ 0

0 1

!
;

 
1 t1

0 1

!
; : : : ;

 
1 tr

0 1

!µ
:

This generating set coincides with the one on the wreath product described in
Section 1.1, with respect to the generating set ˛.X/ on F=N and the standard
generating set for Zr .

Theorem 2.2 ([20]). The subgroup '.F=N 0/ is undistorted in M.F=N/. To be
precise, for each g 2 F=N 0,

1

2
jgjF=N 0 � jgjM � 2jgjF=N 0 :

We quickly recall the fundamental formula of Fox calculus. Let " W Z.F /! Z
be the augmentation homomorphism sending every element of F to 1.

Lemma 2.3 (Fundamental formula of Fox calculus [6, (2.3)]). Let a 2 Z.F /. Then

a � ".a/1 D

rX
iD1

@a

@xi
.xi � 1/:
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Recall that ˛ is the quotient map ˛ W F ! F=N . Let N̨ be the canonical map
F=N 0 ! F=N extended linearly over Z.F=N 0/. In Section 2.3, we will require
the following result:

Lemma 2.4 (see also Gruenberg [7, Section 3.1, Theorem 1]). An element of the
kernel of N̨ W Z.F=N 0/! Z.F=N/ can be written in the form

mX
jD1

rj .hj � 1/

for some integer m, where rj 2 F=N 0 and hj 2 N=N 0 for each j D 1; : : : ; m.

Proof. Take an arbitrary element a in the kernel of N̨ . Suppose we can write

a D
X

g2F=N 0

ˇgg

where ˇg 2 Z for each g 2 F=N 0. Note that there are only finitely many g for
which ˇg is non-zero. Fix a coset xN . ThenX

N̨ .g/DxN

ˇg D 0

since this is the coefficient of xN in N̨ .a/. Notice that N̨ .g/ D xN if and only if
there is some h 2 N such that g D xh. Thus the sum can be rewritten asX

h2Nn¹1º

ˇxh D �ˇx :

This leads us to X
N̨ .g/DxN

ˇgg D
X

h2Nn¹1º

ˇxhx.h � 1/

which implies the lemma after summing over all left-cosets.

2.2 Subgroup distortion

We saw in Theorem 1.6 that in order to understand the conjugacy length function
of a wreath productA o B we need to understand the distortion function for infinite
cyclic subgroups in B .

We will see below that all cyclic subgroups of free solvable groups Sr;d are
undistorted. This is not always the case in finitely generated solvable groups. For
example, in the solvable Baumslag–Solitar groups BS.1; q/D ha; b W aba�1D bqi
the subgroup generated by the element b is at least exponentially distorted since
bq
n

D anba�n. Because this type of construction does not work in Z o Z or free
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metabelian groups, it leads to a question of whether all subgroups of these groups
are undistorted (see [3, Section 2.1]). Davis and Olshanskii answered this question
in the negative, giving, for any positive integer t , 2-generated subgroups of these
groups with distortion function bounded below by a polynomial of degree t .

The following lemma is given in [3, Lemma 2.3].

Lemma 2.5. Let A;B be finitely generated abelian groups. Then every finitely
generated abelian subgroup of A o B is undistorted.

Davis and Olshanskii prove this by showing that such subgroups are retracts
of a finite index subgroup of A o B . A similar process can be applied to finitely
generated abelian subgroups of free solvable groups to show that they are undis-
torted [15]. Below we give an alternative proof for cyclic subgroups which
provides an effective estimate for the constant1 and which uses only results given
in this paper.

Proposition 2.6. Every cyclic subgroup of a free solvable group is undistorted. In
particular, suppose d � 1 and let x be a non-trivial element of Sr;d . Then

ı
Sr;d
hxi

.n/ � 2n:

Proof. Let w be a non-trivial element of the free group F . There exists an inte-
ger c such that w 2 F .c/ n F .cC1/, where we include the case F .0/ D F . First we
suppose that d D c C 1.

If c D 0, then we have x 2 F=F 0 D Zr and we apply linear distortion in Zr .
If c > 0, then we take a Magnus embedding ' W Sr;d ,! Zr o Sr;c and observe that
since w 2 F .c/ n F .d/ the image of x in ' is .f; 1/ for some non-trivial function
f W Sr;c ! Zr . If f k denotes the function such that f k.b/ D kf .b/ for b 2 Sr;c ,
then for any k 2 Z, since the Magnus embedding is 2-bi-Lipschitz (Theorem 2.2),

jxkjSr;d �
1

2
j.f; 1/kjM D

1

2
j.f k; 1/jM :

We can apply Lemma 1.1 to get

1

2
j.f k; 1/jM D

1

2

�
K.Supp.f /; 1/C

X
b2Sr;c

jkf .b/jZr

�
and since the image of f lies in Zr and f is non-trivialX

b2Sr;c

jkf .b/jZr D jkj
X
b2Sr;c

jf .b/jZr � jkj:

1 We thank Olshanskii for improving the constant from 2d to 2.
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Hence
jxkjSr;d �

1

2
j.f k; 1/jM �

1

2
jkj:

This implies
ı
Sr;d
hxi

.n/ � 2n:

Now suppose that d > c C 1. Then we define a homomorphism

 W Sr;d ! Sr;cC1

by sending the free generators of the group Sr;d to the corresponding free gener-
ator of the group Sr;cC1. Then, as before, set x D wF .d/ and define y to be the
image of x under  . By the construction of  we have that y D wF .cC1/. Note
that y is non-trivial and  does not increase the word length. Hence, using the
result above for Sr;cC1, we observe that

jxkjSr;d � jy
k
jSr;cC1 �

1

2
jkj:

This estimate suffices to show that the distortion function is always bounded above
by 2n.

2.3 Conjugacy in free solvable groups

The fact that the conjugacy problem is solvable in free solvable groups was
shown by Kargapolov and Remeslennikov [9]. The following theorem was given
by Remeslennikov and Sokolov [17]. They use it, alongside Matthews’ result for
wreath products, to show the decidability of the conjugacy problem in Sr;d .

Theorem 2.7 (Remeslennikov–Sokolov [17]). Suppose F=N is torsion-free and
let u; v 2 F=N 0. Then '.u/ is conjugate to '.v/ in M.F=N/ if and only if u is
conjugate to v in F=N 0.

The proof of Theorem 2.8 more-or-less follows Remeslennikov and Sokolov’s
proof of the preceding theorem. With it one can better understand the nature of
conjugators and how they relate to the Magnus embedding. In particular, it tells
us that once we have found a conjugator in the wreath product Zr o Sr;d�1 for the
image of two elements in Sr;d , we need only modify the function component of
the element to make it lie in the image of the Magnus embedding.

Theorem 2.8. Let u; v be two elements in F=N 0 such that '.u/ is conjugate
to '.v/ in M.F=N/. Let g 2M.F=N/ be identified with .f; 
/ 2 Zr o F=N .
Suppose that '.u/g D g'.v/. Then there exists an element w 2 F=N 0 such that
'.w/ D .fw ; 
/ is a conjugator.
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Proof. Let g 2M.F=N/ be such that '.u/g D g'.v/. Suppose

g D

 

 a

0 1

!
D .f; 
/

for 
 2 F=N and a 2 R. Denote by N̨ W F=N 0 ! F=N the quotient homomor-
phism. By direct calculation we obtain the two equations

N̨ .u/
 D 
 N̨ .v/; (2.1)
rX
iD1

@?u

@xi
ti C N̨ .u/a D 


rX
iD1

@?v

@xi
ti C a: (2.2)

We now split the proof into two cases, depending on whether or not N̨ .u/ is the
identity element.

Case 1: N̨ .u/ is trivial. In this case, equation (2.2) reduces to
rX
iD1

@?u

@xi
ti D 


rX
iD1

@?v

@xi
ti

and it follows that '.
0/ D .h; 
/ will be a conjugator for '.u/ and '.v/, where

0 is any lift of 
 in F=N 0.

Case 2: N̨ .u/ is non-trivial. Note that in this case we actually show a stronger
result, that any conjugator for '.u/ and '.v/ must lie in the subgroup '.F=N 0/.
This is clearly not necessarily true in the first case.

First conjugate '.u/ by '.
0/, where 
0 is a lift of 
 in F=N 0. This gives us
two elements which are conjugate by a unipotent matrix inM.F=N/, in particular
there exist b1; : : : ; br in Z.F=N/ such that the conjugator is of the form

'.
0/
�1g D 
 0 D

 
1 b1t1 C : : :C br tr

0 1

!
:

Hence the aim now is to show that there is some y 2 N such that 
 0 D '.y/, in
particular

@?y

@xi
D bi (�)

for each i . Therefore, without loss of generality, we assume that '.u/ and '.v/ are
conjugate by such a unipotent matrix.

Assume that '.u/
 0 D 
 0'.v/. Then equation (2.1) tells us that N̨ .u/ D N̨ .v/.
Hence uv�1 D z 2 N . Observe that

@?z

@xi
D
@?u

@xi
�
@?v

@xi
;
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hence from equation (2.2) we get

.1 � N̨ .u//bi D
@?z

@xi

for each i D 1; : : : ; r .
Let c be an element of Z.F=N 0/ such that @

?c
@xi
D bi for each i . We therefore

have the following:

.1 � N̨ .u//

rX
iD1

@?c

@xi
.˛.xi / � 1/ D

rX
iD1

@?z

@xi
.˛.xi / � 1/:

We can choose c so that ".c/ D 0, and then apply the fundamental formula of Fox
calculus, Lemma 2.3, to both sides of this equation to get

.1 � N̨ .u//c D z � 1

since z 2 N implies ".z/ D 1. In Z.F=N/ the right-hand side is 0. Furthermore,
since F=N is torsion-free, .1 � N̨ .u// is not a zero divisor, so c lies in the kernel
of the homomorphism N̨? W Z.F=N 0/! Z.F=N/. Hence there is an expression
of c in the following way (see Lemma 2.4):

c D

mX
jD1

rj .hj � 1/

where m is a positive integer and for each j D 1; : : : ; m we have rj 2 F=N 0 and
hj 2 N=N

0. Differentiating this expression therefore gives

bi D
@?c

@xi
D

mX
jD1

�
@?rj

@xi
".hj � 1/C N̨ .rj /

@?.hj � 1/

@xi

�

D

mX
jD1

N̨ .rj /
@?hj

@xi
:

We set

y D

mY
jD1

rjhj r
�1
j 2 N:

Since hj 2 N=N 0 for each j , we have the following equations:

@?.h1h2/

@xi
D
@?h1

@xi
C
@?h2

@xi
;

@?.rjhj r
�1
j /

@xi
D rj

@?hj

@xi
:

Using these, the condition (�) can be verified. Hence, g D '.
0/'.y/, so taking
w D 
0y gives us a conjugator '.
0y/ D .fw ; 
/ of the required form.
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Theorem 2.8 tells us that when considering two conjugate elements in F=N 0

we may use the wreath product result, Theorem 1.8, and the fact that the Magnus
embedding does not distort word lengths, Theorem 2.2, to obtain a control on the
length of conjugators in F=N 0 in terms of the conjugacy length function of F=N .
Recall that in A o B the conjugacy length function of B plays a role only when we
consider elements conjugate to something of the form .1; b/. Hence, with the use
of the following lemma, we can obtain an upper bound on the conjugacy length
function of F=N 0 which is independent of the conjugacy length function of F=N
and depends only on the distortion of cyclic subgroups in F=N .

Lemma 2.9. Let .f; b/ be a non-trivial element in the image '.F=N 0/ where b
is of infinite order in F=N . Then .f; b/ is not conjugate to any element of the
form .1; c/ in Zr o F=N .

Proof. First note that we may assume b ¤ e, since otherwise for .f; e/ to be
conjugate to .1; c/, c would have to be e and f D 1. Suppose, for contradiction,
that .1; c/ D .h; z/�1.f; b/.h; z/. Then

0 D �h.zg/C f .zg/C h.b�1zg/ (2.3)

for every g 2 F=N . We will show that for this to be true, the support of h must be
infinite. Write f and h in component form, that is

f .g/ D .f1.g/; : : : ; fr.g// and h.g/ D .h1.g/; : : : ; hr.g//

for g 2 F=N and where fi ; hi W F=N ! Z. Recall that the generators of F are
X D ¹x1; : : : ; xrº. We will abuse notation, letting this set denote a generating set
for F=N as well. Consider the function †f W F=N ! Z defined by

†f .g/ D

rX
iD1

fi .g/ �

rX
iD1

fi .gx
�1
i /

for g 2 F=N and similarly †h for h in place of f . Since .f; b/ is in the image
of the Magnus embedding, using the geometric definition of Section 2.1.2, it gives
a path � from the identity to b in the Cayley graph of F=N . The geometric def-
inition also tells us that the function fi counts C1 when � travels from g to gxi
and �1 each time it goes from gxi to g. Therefore †f .g/ counts the net number
of times this path leaves the vertex labelled g and in particular we deduce that

†f .e/ D 1; †f .b/ D �1 and †f .g/ D 0 for g ¤ e; b:

From equation (2.3) we get †f .g/ D †h.g/ �†h.b�1g/ for every g 2 F=N .
Note that if the support of h is to be finite, the support of †h must also be finite.
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Consider any coset hbit in F=N . Suppose first that t is not a power of b.
Then†f is identically zero on hbit . Since 0 D †f .bkt / D †h.bkt /�†h.bk�1t /
implies that †h is constant on hbit , if h is to have finite support, then this must
always be zero since b is of infinite order. Looking now at hbi, we similarly get
†h.b

k/ D †h.b
k�1/ for all k ¤ 0; 1. Again, the finiteness of the support of h

implies that†h.bk/ D 0 for all k ¤ 0. However, 1 D †f .e/ D †h.e/�†h.b�1/,
so †h.e/ D 1. To summarise:

†h.g/ ¤ 0 ” g D e:

We can use this to construct an infinite path in Cay.F=N;X/, which contains
infinitely many points in Supp.h/ and thus obtain a contradiction. Start by set-
ting g0 to be e. Since †h.e/ D 1, there is some xi1 2 X such that either of the
following holds:

� hi1.e/ ¤ 0,

� hi1.x
�1
i1
/ ¤ 0.

If the former is true, then let g1 D xi1 ; in the latter case take g1 D x�1i1 . Since
†h.g1/ D 0, there must be some adjacent vertex g2 such that either g2 D g1xi2
and hi2.g1/ ¤ 0 or g2 D g1x�1i2 and hi2.g2/ ¤ 0. We can extend this construction
endlessly, building an infinite sequence .gm/ for m 2 Z [ ¹0º. Furthermore, for
each edge in the induced path in Cay.F=N;X/, at least one of its end points will
be in the support of h. Since hi .gm/ is finite for every i and every m, this path
must have infinitely many edges. Hence Supp.h/ must be infinite.

We now use Theorem 2.8, Lemma 2.9 and work from Section 1 to give an
estimate of the conjugacy length function of a group F=N 0 with respect to the
subgroup distortion of its cyclic subgroups. Recall that N̨ W F=N 0 ! F=N denotes
the canonical homomorphism and ıF=N

h N̨ .u/i
is the distortion function for the sub-

group of F=N generated by N̨ .u/.

Theorem 2.10. Let N be a normal subgroup of F such that F=N is torsion-free.
Let u; v be elements in F=N 0. Then u; v are conjugate in F=N 0 if and only if there
exists a conjugator 
 2 F=N 0 such that

j
 jF=N 0 � .16n
2
C 8n/.2ıF=N

h N̨ .u/i.12n/C 1/:

In particular,

CLFF=N 0.n/ � .16n
2
C 8n/.2�F=Ncyc .12n/C 1/

where �F=Ncyc .m/ D sup¹ıF=N
hxi

.m/ W x 2 F=N º.
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Proof. We begin by choosing a conjugator .h; 
/ 2 Zr o F=N for which 
 is
short, as in Lemma 1.4. Then Theorem 2.8 tells us that there exists some lift 
0
of 
 in F=N 0 such that '.
0/ D .h0; 
/ is a conjugator. First suppose that u … N .
Then N̨ .u/ has infinite order in F=N and we may apply Lemma 1.5 to give us

j'.
0/jM � .n
0
C 1/P 0.2ıF=N

h N̨ .u/i.3P
0/C 1/

where n0 D j'.u/jM C j'.v/jM andP 0 D 2n0 if '.u/ is not conjugate to .1; N̨ .u//
or P 0 D n0 C CLFF=N .n0/ otherwise. Lemma 2.9 tells us that we can discount the
latter situation and set P 0 D 2n0. By Theorem 2.2 we see that j
 jF=N 0 � 2j
0jM
and n0 � 2n. Then, provided u … N , the result follows.

If, on the other hand, u2N , then we must apply the torsion version, Lemma 1.7.
The upper bound we get on j'.
0/jM this time will beP 0.2n0C1/, where p0 D 2n0

and n0 � 2n as in the previous case. This leads to

j
0jF=N 0 � 16n
2
C 4n:

Clearly, this upper bound suffices to give the stated result.

In the special case where N 0 D F .d/ the quotient F=N 0 is the free solvable
group Sr;d of rank r and derived length d . Plugging Proposition 2.6 into Theo-
rem 2.10 gives us an upper bound for the length of short conjugators between two
elements in free solvable groups.

Corollary 2.11. Let r; d > 1. Then the conjugacy length function of Sr;d is a cubic
polynomial.

Proof. In light of Proposition 2.6, applying Theorem 2.10 gives us a conjugator

 2 Sr;d such that j
 jSr;d � .16n

2 C 8n/.48nC 1/.

We may ask whether this upper bound is sharp. Indeed, Theorem 1.12 tells us it
is possible to find elements in Zr o Zr which observe a quadratic conjugacy length
relationship. However, it seems that this will not necessarily carry through to the
free metabelian groups Sr;2 as the elements un and vn considered in Theorem 1.12
cannot be recognised in the image of the Magnus embedding for Sr;2. Restricting
to elements in this image seems to place too many restrictions on the nature of
the support of the corresponding functions of the conjugate elements. It therefore
seems plausible that the conjugacy length function for Sr;2 could be subquadratic.
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