Some groups of exponent 72

Enrico Jabara, Daria V. Lytkina and Victor D. Mazurov

Communicated by Evgenii I. Khukhro

Abstract. Local finiteness is proved for groups of exponent dividing 72 with no elements of order 6.

1 Introduction

Our goal is to find conditions which guarantee local finiteness of a periodic group containing elements of orders 3 and 4 and no elements of order 6. The structure of finite groups with the same condition was described in [1].

Suppose that G is a periodic group. The spectrum $\omega(G)$ is the set of orders of elements of G. If $\omega(G)$ is finite then we define $\mu(G)$ as the set of maximal elements of $\omega(G)$ with respect to division.

In the first place, we are interested in $\{2, 3\}$ -groups with no elements of order 6. The next theorem is the central result of the paper.

Theorem 1.1. Suppose that $\mu(G) = \{8, 9\}$. Then G is locally finite.

This result is a step forward after works by B. H. Neumann [10], I. N. Sanov [12], V. D. Mazurov [9], A. K. Zhurtov and V. D. Mazurov [16] and E. Jabara and D. V. Lytkina [5] where local finiteness is shown of groups with $\mu(G)$ equal to $\{2,3\},\{4,3\},\{8,3\},\{2,9\}$ and $\{4,9\}$ respectively.

The structure of locally finite {2, 3}-groups with no elements of order 6 can be described easily.

Theorem 1.2. Suppose that G is a locally finite $\{2,3\}$ -group without elements of order 6. Then one of the following statements holds:

- (a) $G = O_3(G)T$ where $O_3(G)$ is Abelian and T is a locally cyclic or locally quaternion group acting freely on $O_3(G)$.
- (b) $G = O_2(G)R$ where $O_2(G)$ is nilpotent of class at most 2 and R is a locally cyclic 3-group acting freely on $O_2(G)$.

The work was partly supported by Russian Foundation of Basic Research (Grants 14–01–00528 and 13-01-00505) and the Integration Project of the Siberian Division of the Russian Academy of Sciences for 2012–2014 (No. 14).

- (c) $G = O_2(G)D$ where D contains a subgroup R of index 2 and $O_2(G)R$ satisfies (b).
- (d) G is a 2-group or a 3-group.

In (a)–(c), G is soluble of length at most 4.

Here $O_p(G)$, where p is a prime, is defined as the largest normal p-subgroup of G. A group B acting on a non-trivial group A is said to be acting freely on A if $a^b \neq a$ for every $a \in A \setminus \{1\}$ and every $b \in B \setminus \{1\}$. A 2-group Q is called locally quaternion if every finite subset of Q is contained in a finite subgroup of Q isomorphic to a generalized quaternion group. Note that an infinite locally quaternion group is isomorphic to a group

$$\langle a_i, b, i = 0, 1, 2, \dots | a_0^2 = 1, a_{i+1}^2 = a_i \ (i \ge 0), b^2 = a_0, a_i^b = a_i^{-1} \ (i > 0) \rangle.$$

In the general case we manage to prove local finiteness under some additional conditions.

Theorem 1.3. Let G be a $\{2,3\}$ -group without elements of order 6.

- (1) If G contains a non-trivial normal p-subgroup (p = 2 or 3), then either G is locally finite, or G is a p-group, or G is an extension of a nilpotent 2-group of class 2 by a 3-group which contains a unique subgroup of order 3.
- (2) If G contains an involution and no elements of order 27, then either G is locally finite, or G is an extension of a simple non-abelian group by a 2-group.

Note also that there exist groups G with $\mu(G) = \{2, 3^n\}$ that are not locally finite, where $n \ge 7$ (see [3, 14]), and $\mu(G) = \{2^m, 3\}$, where $m \ge 54$ (see [9]).

We say that a periodic group G is 3-isolated if and only if $\omega(G) = \{3\} \cup w'$, where none of the numbers in w' is divisible by 3.

Theorem 1.4. *Let G be a* 3-isolated group. Then one of the following statements holds:

- (1) G is an extension of a non-abelian simple group by a 3'-group.
- (2) G is an extension of a non-trivial 3-group of exponent 3 by a 3'-group.
- (3) G is an extension of a nilpotent group of class 2 by a subgroup of S_3 .
- (4) G = NA where A is isomorphic to $A_5 \simeq SL_2(4)$ and N is the direct product of subgroups of order 16 every one of which is invariant in G and isomorphic to the natural $SL_2(4)$ -module of dimension 2 over a field of order 4.

2 Notation and known facts

We say that a group G has period n if the identity $x^n = 1$ holds whenever $x \in G$. The minimal n with this property is called the exponent of G.

For a periodic group G denote by $\Gamma_n(G)$ the set of its elements of order n. Elements of $\Gamma_2(G)$ will be called involutions. Let $\Delta(G) = \{x^2 \mid x \in \Gamma_4(G)\}$.

Let a be an automorphism of a group G. If there exist integers m and n such that $g^{a^2}(g^a)^m g^n = 1$ for all $g \in G$ then a is said to be a quadratic automorphism of G.

If the order of a is s and $gg^a \dots a^{a^{s-1}} = 1$ for all $g \in G$, then a is said to be a splitting automorphism of G.

Lemma 2.1 (V. P. Shunkov [13]). If a periodic group G contains an involution t with finite centralizer $C_G(t)$, then G is locally finite.

Lemma 2.2 ([4, Theorem 16.8.7]). A group of order $p^a q^b$ for primes p, q and $a, b \in \mathbb{N}$ is soluble.

The next result is well known.

Lemma 2.3. Suppose that $G = \langle t, x \mid t^2 = x^3 = (tx)^m = 1 \rangle$. If m = 2, 3 or 4, then G is isomorphic to the symmetric group S_3 of degree 3, the alternating group A_4 of degree 4 or the symmetric group S_4 of degree 4 respectively.

Lemma 2.4 ([15, Lemma 6], [11]). Suppose that a group X possesses a splitting automorphism of order 3. Then X is nilpotent of class at most 3 and the order of every non-trivial element of [[X, X], X] equals 3. In particular, if a group of order 3 acts freely on a finite group X, then X is nilpotent of class 2.

Lemma 2.5 ([5, 9, 10, 12, 16]). If
$$\mu(G) = \{2^m, 3^n\}$$
, where

$$(m,n) \in \{(1,1),(2,1),(3,1),(1,2),(2,2)\},\$$

then G is locally finite.

Lemma 2.6. Let G be a periodic group generated by a pair of quadratic automorphisms of an elementary Abelian p-group. Then G is isomorphic to an extension of a finite p-group by a subgroup of the direct product $L_1 \times \cdots \times L_s$ where $L_i \simeq GL(2, p^{m_i})$, $i = 1, \ldots, s$. Here p is a prime and m_i is a natural number for every i.

Proof. See [6, proof of Theorem 2].

Lemma 2.7 ([7]). Suppose that a group G contains a subgroup X of order 3 such that $C_G(X) = \langle X \rangle$. If for every $g \in G$ the subgroup $\langle X, X^g \rangle$ is finite, then one of the following holds:

- (1) $G = NN_G(X)$ for a periodic nilpotent subgroup N of class 2 and NX is a Frobenius group with core N and complement X.
- (2) G = NA where A is isomorphic to $A_5 \simeq SL_2(4)$ and N is a normal elementary Abelian 2-subgroup; here N is a direct product of subgroups of order 16 that are normal in G and isomorphic to the natural $SL_2(4)$ -module of dimension 2 over a field of order 4.
- (3) G is isomorphic to $L_2(7)$.

In particular, G is locally finite.

3 Proof of Theorem 1.1

Let G be a group with $\mu(G) = \{8, 9\}$. Our goal is to prove that G is locally finite. Suppose the contrary, i.e. G is not locally finite.

Lemma 3.1. Suppose that $v \in \Gamma_4$, $t = v^2$, $x \in \Gamma_3$, $x^t = x^{-1}$. Then $[x, x^v] = 1$.

Proof. Consider a group

$$H(l,m) = \langle a, b \mid a^2 = b^4 = (ab^2)^3 = (ab)^l = [a, b]^m \rangle$$

for $l,m \in \{8,9\}$. The mapping $a \to tx = v^2x$, $b \to v$ obviously can be extended to a homomorphism of one of the groups H(l,m) onto the group $\langle x,v\rangle$. On the other hand, computations in GAP ([2]) show that |H(8,8)| = 4, H(9,9) = 1, $H(9,8) \simeq L_2(17)$ and $H(8,9) \simeq 3^2$: 4. Since $\langle x,v\rangle$ contains elements of order 2 and 3 and no elements of order 17, it follows that $\langle x,v\rangle \simeq H(8,9)$ and the lemma is proved.

Lemma 3.2. Suppose that $t, u \in \Gamma_2$, $t \neq u$, [t, u] = 1. If $x \in \Gamma_3$ and $x^t = x^{-1}$, then $\langle x, t, u \rangle \simeq S_4$.

Proof. The group $K = \langle x, t, u \rangle$ is a homomorphic image of one of the groups

$$K(l,m) = \langle a, b, c \mid 1 = a^3 = b^2 = c^2 = (ab)^2 = (bc)^2 = (ac)^l$$

= $(abc)^m = (baa^c)^{72} \rangle$.

Computations in GAP ([2]) show that we have |K(8,8)| = 4, K(9,9) = 1 and $K(8,9) \simeq K(9,8) \simeq S_4$. Therefore K is a homomorphic image of the group S_4 . On the other hand, |K| is divisible by 3 and 4, hence $K \simeq S_4$.

Lemma 3.3. If $t \in \Delta$ and $u \in \Gamma_2$, then $(tu)^8 = 1$.

Proof. Suppose that $(tu)^9 = 1$. We can assume that $x = tu \in \Gamma_3$. If not, then we change u to $t^{utu} \in \langle t, u \rangle$. By assumption there exists an element $v \in G$ with the property that $v^2 = t$. By Lemma 3.1, $[x, x^v] = 1$. By Lemma 2.1, $C_G(t)$ contains an involution $w \neq t$.

By Lemma 3.2, $\langle t, w, z \rangle \simeq S_4$ for every non-trivial $z \in \langle x, x^v \rangle$, therefore for any involution y of $\langle t, w, z \rangle$ either $(wy)^3 = 1$ or $(wy)^4 = 1$ holds. For every $l_1, l_2, \ldots, l_8 \in \{3, 4\}$ define the group

$$L(l_1, ..., l_8) = \langle a, b, c, d \mid 1 = a^3 = b^3 = c^2 = d^2 = [a, b] = (ac)^2$$

$$= (bc)^2 = [c, d] = (da)^{l_1} = (db)^{l_2} = (dab)^{l_3}$$

$$= (dab^{-1})^{l_4} = (cda)^{l_5} = (cdb)^{l_6}$$

$$= (cdab)^{l_7} = (cdab^{-1})^{l_8} \rangle.$$

Computations in GAP show that the order of any of these groups is at most 24. On the other hand, the mapping $a \to x$, $b \to x^v$, $c \to t$, $d \to w$ can be extended to a homomorphism of one of these groups onto $\langle x, x^v, t, w \rangle$ whose order is divisible by $36 = 9 \cdot 4$. That contradiction proves the lemma.

Lemma 3.4. If $t \in \Delta$ and $x \in \Gamma_3$, then $\langle t, x \rangle \simeq A_4$.

Proof. Set $u = t^x$, $v = u^x$. If $(tx)^8 = 1$, then by Lemma 3.3 the following relations are true:

$$1 = t^2 = x^3 = (tx)^8 = (tu)^8 = (t^u v)^8 = [t, uv]^8 = ((tu)^4 v)^8 = ((ut)^4 v)^8.$$

Besides, for some $l, r, s \in \{8, 9\}$ the following properties hold:

$$((xt)^2 \cdot (tx^u)^2)^l = ((xt)^2 (x^2(tx)^2 t)^2)^r = (ux^t)^s = 1.$$

GAP computations show that the order of a group with such properties is at most 2. Thus $(tx)^8 \neq 1$ and hence

$$(tx)^9 = (tx^{-1})^9 = 1.$$

Since $(tx^{-1})^3 = tt^x t^{x^2} = tuv$, we get $(tuv)^3 = 1$. In the group $K = \langle t, tuv \rangle$ by Lemma 3.3, the equation

$$(t \cdot tuv)^8 = (uv)^8 = 1$$

holds. As is shown in the previous paragraph this is possible only when tuv = 1, i.e. $(tx^{-1})^3 = 1$. That implies $\langle t, x \rangle \simeq A_4$ and the lemma is proved.

Lemma 3.5. Suppose that $t, u \in \Delta$, $x \in \Gamma_3$. Then $(tu)^4 = (tux)^3 = 1$.

Proof. By Lemmas 3.3 and 3.4, the group $\langle t, u, x \rangle$ satisfies the properties

$$1 = t^2 = u^2 = x^3 = (tx)^3 = (ux)^3 = (t^u x)^3 = (u^t x)^3 = (tu)^8 = (tux)^8$$

where $s \in \{8, 9\}$. GAP computations show that in a group with such properties the relations $(tu)^4 = (tux)^3 = 1$ hold. The lemma is proved.

Lemma 3.6. If $a, b, c \in \Delta$, then [[a, b], c] = 1.

Proof. Suppose that $x \in \Gamma_3$. Then by Lemmas 3.4 and 3.5, in $K = \langle x, a, b, c \rangle$ the following elements are trivial:

$$a^{2}, b^{2}, c^{2}, x^{3}, (ab)^{4}, (ac)^{4}, (bc)^{4}, (a^{b}c)^{4}, (b^{c}a)^{4}, (c^{a}b)^{4},$$

$$(ax)^{3}, (bx)^{3}, (cx)^{3}, (abx)^{3}, (acx)^{3}, (bcx)^{3}, (a^{b}cx)^{3}, (b^{c}ax)^{3}, (c^{a}bx)^{3},$$

$$((ab)^{2}c)^{4}, ((ac)^{2}b)^{4}, ((bc)^{2}a)^{4}, ((ab)^{2}cx)^{3}, ((ac)^{2}bx)^{3}, ((bc)^{2}ax)^{3}.$$

Besides, $(abcx)^8 = 1$ or $(abcx)^9 = 1$. GAP computations show that in a group with such properties [[a, b], c] = 1. The lemma is proved.

Lemma 3.7. The group $P = \langle \Delta \rangle$ is nilpotent of class 2 and period 4.

Proof. Suppose that $a, b \in \Delta$. By Lemma 3.6, [a, b] commutes with every element of Δ and thus belongs to the center of P. Therefore P/Z(P) is Abelian and P is nilpotent of class 2. Since P is generated by involutions, it has period 4. The lemma is proved.

It is clear that the set $\omega(G/P)$ contains elements of orders 3 and 2 and is distinct from $\omega(G)$. By Lemma 1.5, G/P is locally finite. In this case G is locally finite as well. Theorem 1.1 is proved.

4 Proof of Theorem 1.2

Let G be a locally finite $\{2,3\}$ -group without elements of order 6. Suppose also that G contains elements of orders 2 and 3. The goal of this section is to prove that one of the cases (a)–(c) of Theorem 1.2 holds.

Suppose first that G is finite. By Lemma 2.2, G is soluble. If $P = O_2(G) \neq 1$, then a Sylow 3-subgroup of G acts freely on P, therefore it is cyclic and P is nilpotent of class 2 by Lemma 2.4. It is clear that (b) or (c) holds.

If $O_2(G) = 1$, then $P = O_3(G)$ is a Sylow subgroup of G acted freely by a Sylow 2-subgroup T. In particular, T contains a unique involution which inverts P. Thus P is Abelian and T is a cyclic or a quaternion group, i.e. (a) holds.

Suppose now that G is infinite. As has already been proved, each of its finite subgroups containing elements of orders 2 and 3 is soluble of degree 4. Therefore G is also soluble of degree 4 and in particular $O_p(G) \neq 1$ for some $p \in \{2, 3\}$.

Let $O_2(G) \neq 1$. Since a Sylow 3-subgroup of G acts freely on $O_2(G)$, the group $O_3(G/O_2(G))$ is locally cyclic and

$$|(G/O_2(G))/O_3(G/O_2(G))| \le 2.$$

In this case one of the cases (b), (c) of the theorem holds.

If $O_3(G) \neq 1$, then a Sylow 2-subgroup of G acts freely on $O_3(G)$ and thus contains a unique involution. Hence $O_3(G)$ is Abelian,

$$O_2(G/O_3(G)) = G/O_3(G)$$

and the case (a) of the theorem holds. Theorem 1.2 is proved.

5 Proof of Theorem 1.3

(1) If p = 3 and G is not a 3-group, then $G/O_3(G)$ is a (locally finite) 2-group with a unique involution and $O_3(G)$ is Abelian. In particular, G is locally finite.

Suppose that p=2 and G is not a 2-group. Then $O_2(G)$ is nilpotent of class 2. Set $\overline{G}=G/\Phi(O_2(G))$. Then $V=O_2(G)/\Phi(O_2(G))$ coincides with $C_{\overline{G}}(V)$. If x is an element of order 3 in \overline{G} , then x induces a quadratic automorphism in V and hence $\langle x, x^g \rangle$ is a finite group for every $g \in \overline{G}$. By Theorem 1.2, $H=\langle x, x^g \rangle V$ is an extension of a 2-group U by $\langle x \rangle$ and [v, u, u]=1 for every $u \in U$, $v \in V$. This means that $[v, u^2]=1$ and hence $u^2 \in V$. Thus H/V is of order 3 or isomorphic to A_4 . By [8, Theorem 1], $\langle x^{\overline{G}} \rangle V/V$ is an extension of a 2-group by $\langle x \rangle$ and hence $\langle x \rangle V \preceq \overline{G}$. If $\overline{G} \setminus V$ contains an involution, then \overline{G}/V is an extension of a locally cyclic 3-group by a group of order 2 and hence G is locally finite.

(2) Let N be a non-trivial normal subgroup of G. If $G \setminus N$ contains an element of order 3, then by Lemma 2.4, N is nilpotent and according to (1), G is locally finite.

Suppose that G is not locally finite and S is the intersection of all normal subgroups N of G such that G/N is a 2-group. If S is a non-trivial 3-group and G/S is also not trivial, then any involution of G inverts S and G/S contains a unique involution. In particular, G is locally finite.

Suppose that S is non-trivial and not a 3-group. Obviously, S is generated by elements of order 3. If N is a proper non-trivial normal subgroup of S, then $S \setminus N$ contains an element of order 3 and the same arguments as above show that N is nilpotent of class 2. So G contains a non-trivial nilpotent normal subgroup $\langle N^G \rangle$ and by (1) is locally finite. Therefore S is a simple non-abelian group and G/S is a 2-group. The theorem is proved.

6 Proof of Theorem 1.4

Let G be a 3-isolated group. First, suppose that $N = O_3(G) \neq 1$. If all 3-elements of G are contained in N, then G/N is a 3'-group, i.e. (2) holds. Suppose that $G \setminus N$ contains an element x of order 3 and prove that this is impossible. Without loss of generality, we can assume that N is an elementary Abelian 3-group and G/N acts faithfully on N by conjugation in G.

Since $N\langle x \rangle$ is a group of exponent 3, x induces a quadratic automorphism in N. By the definition of N there exist elements y and z of order 3 such that $\langle z, y \rangle$ is not a 3-group. By Lemma 2.6, the center of $\langle z, y \rangle$ contains an involution which is impossible.

Let N be the largest normal 3'-subgroup of G. Suppose that $N \neq 1$. By Lemma 2.4, N is nilpotent. We will prove that in this case G is locally finite. We can assume that N is Abelian. If x is an element of order 3 in G, then x induces in N a quadratic automorphism and hence $\langle x, x^g \rangle$ is finite for every $g \in G$. Since $C_G(x)$ is a 3-group of exponent 3 acting freely on N, it follows that $C_G(x) = \langle x \rangle$. By Lemma 2.7, G is locally finite and one of the cases (3)–(4) holds.

Now suppose that G does not contain any non-trivial 3- or 3'-subgroups. If N is a non-trivial normal subgroup of G such that there exists an element x of order 3 which does not belong to N, then N is nilpotent by Lemma 2.4 and we are back to one of the considered cases. So suppose that every non-trivial normal subgroup of G contains all elements of order 3 of G. Let M be the intersection of all normal subgroups N of G such that G/N is a 3'-subgroup. Then M is simple, as above, and the case (1) holds. The theorem is proved.

Bibliography

- E. R. Fletcher, B. Stellmacher and W. B. Stewart, Endliche Gruppen, die kein Element der Ordnung 6 enthalten, Quart. J. Math. Oxford Ser. (2) 28 (1977), 143–154.
- [2] The GAP Group, GAP Groups, Algorithms, and Programming, http://www.gap-system.org.
- [3] T. Grundhofer and E. Jabara, Fixed-point-free 2-finite automorphism groups, *Arch. Math.* **97** (2011), 219–223.
- [4] M. Hall, The Theory of Groups, Chelsea, New York, 1976.
- [5] E. Jabara and D. V. Lytkina, On groups of period 36, Sib. Math. J. 54 (2013), 29–32.
- [6] D. V. Lytkina and V. D. Mazurov, Periodic groups generated by a pair of virtually quadratic automorphisms of an abelian group, *Sib. Math. J.* **51** (2010), 475–478.
- [7] V. D. Mazurov, Groups containing a self-cetralizing subgroup of order 3, *Algebra Logic* **42** (2003), 29–36.

- [8] V.D. Mazurov, Characterization of alternating groups, *Algebra Logic* **44** (2005), 31–39.
- [9] V. D. Mazurov, Groups of exponent 24, Algebra Logic 49 (2010), 515–525.
- [10] B. H. Neumann, Groups whose elements have bounded orders, J. Lond. Math. Soc. 12 (1937), 195–198.
- [11] B. H. Neumann, Groups with automorphisms that leave only the neutral element fixed, *Arch. Math.* **7** (1956), 1–5.
- [12] I. N. Sanov, Solution of Burnside's problem for exponent 4 (in Russian), Leningrad State Univ. Ann. Math. Ser. 1940 (1940), 166–170.
- [13] V. P. Shunkov, Periodic groups with an almost regular involution (in Russian), Algebra Logika 7 (1968), 113–121.
- [14] A. I. Sozutov, On the structure of the non-invariant factor in some Frobenius groups, *Sib. Math. J.* **35** (1994), 795–801.
- [15] A. K. Zhurtov, Regular automorphisms of order 3 and Frobenius pairs, Sib. Math. J. 41 (2000), 268–275.
- [16] A. K. Zhurtov and V. D. Mazurov, Local finiteness of some groups with given element orders (in Russian), *Vladikavkaz Mat. Zh.* 11 (2009), 11–15.

Received September 6, 2013; revised January 13, 2014.

Author information

Enrico Jabara, Dipartimento di Filosofia e Beni Culturali, University of Venice-Ca' Foscari, Dorsoduro 3483/D, 30123 Venezia, Italy. E-mail: jabara@unive.it

Daria V. Lytkina, SibSUTIS, Kirova Str. 86, 630102 Novosibirsk, Russia; and Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia. E-mail: daria.lytkin@gmail.com

Victor D. Mazurov, Sobolev Institute of Mathematics, Koptjuga Ave. 4, 630090 Novosibirsk, Russia. E-mail: mazurov@math.nsc.ru