J. Group Theory 17 (2014), 947-955
DOI 10.1515/jgt-2014-0007 © de Gruyter 2014

Some groups of exponent 72

Enrico Jabara, Daria V. Lytkina and Victor D. Mazurov

Communicated by Evgenii I. Khukhro

Abstract. Local finiteness is proved for groups of exponent dividing 72 with no elements
of order 6.

1 Introduction

Our goal is to find conditions which guarantee local finiteness of a periodic group
containing elements of orders 3 and 4 and no elements of order 6. The structure of
finite groups with the same condition was described in [1].

Suppose that G is a periodic group. The spectrum w(G) is the set of orders
of elements of G. If w(G) is finite then we define ©(G) as the set of maximal
elements of w(G) with respect to division.

In the first place, we are interested in {2, 3}-groups with no elements of order 6.
The next theorem is the central result of the paper.

Theorem 1.1. Suppose that 1(G) = {8, 9}. Then G is locally finite.

This result is a step forward after works by B. H. Neumann [10], I. N. Sanov
[12], V.D. Mazurov [9], A.K. Zhurtov and V.D. Mazurov [16] and E. Jabara
and D. V. Lytkina [5] where local finiteness is shown of groups with 1« (G) equal
to {2, 3}, {4, 3}, {8, 3}, {2, 9} and {4, 9} respectively.

The structure of locally finite {2, 3}-groups with no elements of order 6 can be
described easily.

Theorem 1.2. Suppose that G is a locally finite {2, 3}-group without elements of
order 6. Then one of the following statements holds:

(a) G = 03(G)T where O3(G) is Abelian and T is a locally cyclic or locally
quaternion group acting freely on O3(G).

(b) G = O02(G)R where O(G) is nilpotent of class at most 2 and R is a locally
cyclic 3-group acting freely on O,(G).
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(¢) G = 02(G)D where D contains a subgroup R of index 2 and O»(G)R sat-
isfies (b).

(d) G isa?2-group or a 3-group.
In (a)—(c), G is soluble of length at most 4.

Here O,(G), where p is a prime, is defined as the largest normal p-subgroup
of G. A group B acting on a non-trivial group A is said to be acting freely on A
if a® # a for every a € A\ {1} and every b € B\ {1}. A 2-group Q is called
locally quaternion if every finite subset of Q is contained in a finite subgroup
of Q isomorphic to a generalized quaternion group. Note that an infinite locally
quaternion group is isomorphic to a group
(aib, i =0,1,2,... a2 =1,a,, =a; (i 20), b*> = ag, a® =a;’! (i >0)).
In the general case we manage to prove local finiteness under some additional
conditions.

Theorem 1.3. Let G be a {2, 3}-group without elements of order 6.

(1) If G contains a non-trivial normal p-subgroup (p = 2 or 3), then either G is
locally finite, or G is a p-group, or G is an extension of a nilpotent 2-group
of class 2 by a 3-group which contains a unique subgroup of order 3.

(2) If G contains an involution and no elements of order 27, then either G is
locally finite, or G is an extension of a simple non-abelian group by a 2-group.

Note also that there exist groups G with u(G) = {2, 3"} that are not locally
finite, where n = 7 (see [3, 14]), and u(G) = {2, 3}, where m = 54 (see [9]).

We say that a periodic group G is 3-isolated if and only if w(G) = {3} U w’,
where none of the numbers in w’ is divisible by 3.

Theorem 1.4. Let G be a 3-isolated group. Then one of the following statements
holds:

(1) G is an extension of a non-abelian simple group by a 3'-group.

(2) G is an extension of a non-trivial 3-group of exponent 3 by a 3'-group.

(3) G is an extension of a nilpotent group of class 2 by a subgroup of Ss.

(4) G = NA where A is isomorphic to A5 >~ SLy(4) and N is the direct product
of subgroups of order 16 every one of which is invariant in G and isomorphic
to the natural SL,(4)-module of dimension 2 over a field of order 4.
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2 Notation and known facts

We say that a group G has period n if the identity x” = 1 holds whenever x € G.
The minimal n with this property is called the exponent of G.

For a periodic group G denote by I',(G) the set of its elements of order 7.
Elements of I';(G) will be called involutions. Let A(G) = {x? | x € ['4(G)}.

Let a be an automorphism of a group G. If there exist integers m and n such
that g"2 (g*)"g" = 1forall g € G then a is said to be a quadratic automorphism
of G.

If the order of @ is s and gg? .. .a® " =1 for all g € G, then a is said to be
a splitting automorphism of G.

Lemma 2.1 (V. P. Shunkov [13]). If a periodic group G contains an involution t
with finite centralizer Cg(t), then G is locally finite.

Lemma 2.2 ([4, Theorem 16.8.7]). A group of order p“qb for primes p, q and
a,b € N is soluble.

The next result is well known.

Lemma 2.3. Suppose that G = {t,x | t? = x> = (tx)" = 1). If m = 2,3 or 4,
then G is isomorphic to the symmetric group S3 of degree 3, the alternating
group Ag of degree 4 or the symmetric group S4 of degree 4 respectively.

Lemma 2.4 ([15, Lemma 6], [11]). Suppose that a group X possesses a splitting
automorphism of order 3. Then X is nilpotent of class at most 3 and the order
of every non-trivial element of [[X, X], X] equals 3. In particular, if a group of
order 3 acts freely on a finite group X, then X is nilpotent of class 2.

Lemma 2.5 ([5,9, 10, 12, 16]). If w(G) = {2, 3"}, where

(m.n) € {(1,1).(2,1),(3.1).(1,2).(2,2)},

then G is locally finite.

Lemma 2.6. Let G be a periodic group generated by a pair of quadratic auto-
morphisms of an elementary Abelian p-group. Then G is isomorphic to an exten-
sion of a finite p-group by a subgroup of the direct product Ly X -+ X Lg where
L; >~ GL(2, p™i),i = 1,...,s. Here p is a prime and m; is a natural number for
every .

Proof. See [6, proof of Theorem 2]. O
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Lemma 2.7 ([7]). Suppose that a group G contains a subgroup X of order 3 such
that Cg(X) = (X). If for every g € G the subgroup (X, X&) is finite, then one of
the following holds:

(1) G = NNg(X) for a periodic nilpotent subgroup N of class 2 and NX is
a Frobenius group with core N and complement X .

(2) G = NA where A is isomorphic to As >~ SL,(4) and N is a normal elemen-
tary Abelian 2-subgroup; here N is a direct product of subgroups of order 16
that are normal in G and isomorphic to the natural SL, (4)-module of dimen-
sion 2 over a field of order 4.

(3) G is isomorphic to L,(7).

In particular, G is locally finite.

3 Proof of Theorem 1.1

Let G be a group with (G) = {8, 9}. Our goal is to prove that G is locally finite.
Suppose the contrary, i.e. G is not locally finite.

Lemma 3.1. Suppose that v € T4, t = v2, x € T'3, x* = x~L. Then [x,x"] = 1.
Proof. Consider a group
H(l,m) = {a,b | a* = b* = (ab?)? = (ab)} = [a.b]"™)

for [, m € {8, 9}. The mapping @ — tx = v?x, b — v obviously can be extended
to a homomorphism of one of the groups H(/,m) onto the group (x, v). On the
other hand, computations in GAP ([2]) show that |H(8,8)| =4, H(9,9) =1,
H(9,8) ~ L,(17)and H(8,9) ~ 32 : 4. Since (x, v) contains elements of order 2
and 3 and no elements of order 17, it follows that (x, v) ~ H(8, 9) and the lemma
is proved. |

Lemma 3.2. Suppose that t,u € T, t #u, [t,u] = 1. If x € T'3 and x* = x71,
then (x,t,u) >~ Sy.
Proof. The group K = (x, t,u) is a homomorphic image of one of the groups
K(,m)={a,b,c|1=a>=b%=c?=(ab)? = (bc)? = (ac)’
= (abe)™ = (baa®)"?).

Computations in GAP ([2]) show that we have |K(8,8)] =4, K(9,9) = 1 and
K(8,9) ~ K(9,8) >~ S4. Therefore K is a homomorphic image of the group S4.
On the other hand, | K| is divisible by 3 and 4, hence K ~ S4. ]



Some groups of exponent 72 951

Lemma 3.3.Ift € A and u € T3, then (tu)® = 1.

Proof. Suppose that (fu)° = 1. We can assume that x = ru € T'z. If not, then we
change u to t*"™ € (t,u). By assumption there exists an element v € G with the
property that v? = t. By Lemma 3.1, [x, x’] = 1. By Lemma 2.1, C (¢) contains
an involution w # ¢.

By Lemma 3.2, (¢, w, z) >~ S4 for every non-trivial z € (x, x?), therefore for
any involution y of (f,w,z) either (wy)? =1 or (wy)* = 1 holds. For every
l1,02,...,lg € {3,4)} define the group

L(l,....Is) = (@a.b,c.d |1 =a® =b> = ¢? = d? = [a,b] = (ac)?
= (be)? = [c.d] = (da)"" = (db)™ = (dab)P
= (dab™")"* = (cda)’s = (cdb)'s
= (cdab)" = (cdab™")%).

Computations in GAP show that the order of any of these groups is at most 24.
On the other hand, the mapping a — x, b — x¥, ¢ — t, d — w can be extended
to a homomorphism of one of these groups onto (x, x?, ¢, w) whose order is divis-
ible by 36 = 9 - 4. That contradiction proves the lemma. o

Lemma 3.4. Ift € A and x € '3, then (t, x) >~ Ay.

Proof. Setu =t*, v = u*.If (tx)® = 1, then by Lemma 3.3 the following rela-
tions are true:

1 =12 =x3= (%)% = (uw)? = (*v)® = [r.uv]® = (tu)*v)® = ((ur)*v)d.
Besides, for some [, 7, s € {8, 9} the following properties hold:
((x)?- (IX")Z)I = (x> (P(0)*0)%)" = (ux')’ = 1.

GAP computations show that the order of a group with such properties is at most 2.
Thus (tx)® # 1 and hence

(tx)° = (txH = 1.

Since (tx~1)3 = 1*1%° = tuv, we get (fuv)> = 1. In the group K = (¢, tuv) by
Lemma 3.3, the equation

(- tuv)® = uv)® =1

holds. As is shown in the previous paragraph this is possible only when fuv = 1,
i.e. (tx~1)3 = 1. That implies (t, x) ~ A4 and the lemma is proved. ]
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Lemma 3.5. Suppose that t,u € A, x € T's. Then (tu)* = (tux)® = 1.

Proof. By Lemmas 3.3 and 3.4, the group (¢, u, x) satisfies the properties
1= =u>=x> = (tx)’ = (ux)’ = ("x)* = (' x)* = (1w)® = (1ux)’,

where s € {8, 9}. GAP computations show that in a group with such properties the
relations (fu)* = (tux)3 = 1 hold. The lemma is proved. ]

Lemma 3.6. Ifa,b,c € A, then [[a,b],c] = 1.

Proof. Suppose that x € I'3. Then by Lemmas 3.4 and 3.5, in K = (x,a, b, c) the
following elements are trivial:

a?,b%,¢2,x3, (ab)*, (ac)*, (be)?, (abc)4, (b¢a)*, (c?b)*,
(ax)3, (bx)3, (cx)3, (abx)3, (acx)?, (bex)?, (abcx)3, (b€ax)3, (c*bx)3,
((@b)*c)*, ((ac)*b)*. ((be)?a)*, ((ab)?cx)?, ((ac)*bx)?, ((be)?ax)’.

Besides, (abcx)® = 1 or (abcx)® = 1. GAP computations show that in a group
with such properties [[a, b], c] = 1. The lemma is proved. ]

Lemma 3.7. The group P = (A) is nilpotent of class 2 and period 4.

Proof. Suppose thata, b € A. By Lemma 3.6, [a, b] commutes with every element
of A and thus belongs to the center of P. Therefore P/Z(P) is Abelian and P is
nilpotent of class 2. Since P is generated by involutions, it has period 4. The
lemma is proved. o

It is clear that the set w(G/ P) contains elements of orders 3 and 2 and is distinct
from w(G). By Lemma 1.5, G/ P is locally finite. In this case G is locally finite
as well. Theorem 1.1 is proved.

4 Proof of Theorem 1.2

Let G be a locally finite {2, 3}-group without elements of order 6. Suppose also
that G contains elements of orders 2 and 3. The goal of this section is to prove that
one of the cases (a)—(c) of Theorem 1.2 holds.

Suppose first that G is finite. By Lemma 2.2, G is soluble. If P = O,(G) # 1,
then a Sylow 3-subgroup of G acts freely on P, therefore it is cyclic and P is
nilpotent of class 2 by Lemma 2.4. It is clear that (b) or (c) holds.

If O,(G) =1, then P = O3(G) is a Sylow subgroup of G acted freely by
a Sylow 2-subgroup 7. In particular, 7" contains a unique involution which inverts
P.Thus P is Abelian and 7 is a cyclic or a quaternion group, i.e. (a) holds.
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Suppose now that G is infinite. As has already been proved, each of its finite
subgroups containing elements of orders 2 and 3 is soluble of degree 4. Therefore
G is also soluble of degree 4 and in particular O,(G) # 1 for some p € {2, 3}.

Let O»(G) # 1. Since a Sylow 3-subgroup of G acts freely on O,(G), the
group O3(G/0,(G)) is locally cyclic and

(G/02(G))/ 03(G/ 02(G))| < 2.

In this case one of the cases (b), (c¢) of the theorem holds.
If O3(G) # 1, then a Sylow 2-subgroup of G acts freely on O3(G) and thus
contains a unique involution. Hence O3(G) is Abelian,

02(G/03(G)) = G/ 03(G)

and the case (a) of the theorem holds. Theorem 1.2 is proved.

5 Proof of Theorem 1.3

(1) If p = 3 and G is not a 3-group, then G/O3(G) is a (locally finite) 2-group
with a unique involution and O3(G) is Abelian. In particular, G is locally finite.

Suppose that p = 2 and G is not a 2-group. Then O, (G) is nilpotent of class 2.
SetG = G/®(02(G)). Then V = 0,(G)/ ®(02(G)) coincides with Ca(V).If x
is an element of order 3 in G, then x induces a quadratic automorphism in V' and
hence (x, x8) is a finite group for every g € G.By Theorem 1.2, H = (x, x&)V is
an extension of a 2-group U by (x) and [v, u,u] = 1 foreveryu € U, v € V. This
means that [v, u?] = 1 and hence u? € V. Thus H/V is of order 3 or isomorphic
to A4. By [8, Theorem 1], (x@)V/V is an extension of a 2-group by (x) and
hence (x)V < G.If G \ V contains an involution, then G/ V is an extension of
a locally cyclic 3-group by a group of order 2 and hence G is locally finite.

(2) Let N be a non-trivial normal subgroup of G.If G \ N contains an element
of order 3, then by Lemma 2.4, N is nilpotent and according to (1), G is locally
finite.

Suppose that G is not locally finite and § is the intersection of all normal sub-
groups N of G such that G/N is a 2-group. If S is a non-trivial 3-group and G/S
is also not trivial, then any involution of G inverts S and G/S contains a unique
involution. In particular, G is locally finite.

Suppose that S is non-trivial and not a 3-group. Obviously, S is generated by
elements of order 3. If N is a proper non-trivial normal subgroup of S, then S \ N
contains an element of order 3 and the same arguments as above show that N is
nilpotent of class 2. So G contains a non-trivial nilpotent normal subgroup (N G)
and by (1) is locally finite. Therefore S is a simple non-abelian group and G/ S is
a 2-group. The theorem is proved.
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6 Proof of Theorem 1.4

Let G be a 3-isolated group. First, suppose that N = O3(G) # 1. If all 3-elements
of G are contained in N, then G/ N is a 3’-group, i.e. (2) holds. Suppose that G\ N
contains an element x of order 3 and prove that this is impossible. Without loss of
generality, we can assume that N is an elementary Abelian 3-group and G/ N acts
faithfully on N by conjugation in G.

Since N (x) is a group of exponent 3, x induces a quadratic automorphismin N.
By the definition of N there exist elements y and z of order 3 such that (z, y) is
not a 3-group. By Lemma 2.6, the center of (z, y) contains an involution which is
impossible.

Let N be the largest normal 3’-subgroup of G. Suppose that N # 1. By Lem-
ma 2.4, N is nilpotent. We will prove that in this case G is locally finite. We can
assume that N is Abelian. If x is an element of order 3 in G, then x induces
in N a quadratic automorphism and hence (x, x&) is finite for every g € G. Since
Cg (x) is a 3-group of exponent 3 acting freely on N, it follows that Cg (x) = (x).
By Lemma 2.7, G is locally finite and one of the cases (3)—(4) holds.

Now suppose that G does not contain any non-trivial 3- or 3’-subgroups. If N is
a non-trivial normal subgroup of G such that there exists an element x of order 3
which does not belong to N, then N is nilpotent by Lemma 2.4 and we are back
to one of the considered cases. So suppose that every non-trivial normal subgroup
of G contains all elements of order 3 of G. Let M be the intersection of all normal
subgroups N of G such that G/N is a 3’-subgroup. Then M is simple, as above,
and the case (1) holds. The theorem is proved.
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