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This is online appendix for “Quantile Difference in Differences with Time-varying Qualifi-

cation in Panel Data.” Appendix A provides estimation and inference for the parameters

of interest explained in Section 3. Appendix B provides proofs for our main theorems.

Appendix C describes identification and inference for the QTIM, i.e., the estimates for in-

movers. Appendix D explains background, data, and additional results for our application.

Appendix E checks the robustness of our application results using another distributional

DID method by Athey and Imbens (2006). Appendix F provides untreated moving effects

in our application.

Appendix A. Estimation and Inference

The section proposes estimators for the parameters of interest and establishes a functional

central limit theorem for the QTIS estimator over a compact subset strictly included in the

unit interval and noted T 1. We also establish the results on consistency and asymptotic

distribution of the estimator.

For all τ ∈ T , we estimate:

QT̂IS(τ) = F̂−1
Y 1

3 |Q2=1,Q3=1
(τ)− F̂−1

Y 0
3 |Q2=1,Q3=1

(τ).

For i, j ∈ {0, 1}, letting αkij = 1{Qk2 = i, Qk3 = j} and nij =
∑n

k=1 α
k
ij, the estimator of

1The same argument can be applied to the QTIM.
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FYs|ij(y) is given by

F̂Ys|ij(y) =
1

nij

n∑
k=1

1{Yks}αkij.

The first term in QT̂IS(τ) is estimated by inverting the empirical distributions of observed

outcomes for in-stayers :

F̂−1
Y 1

3 |Q2=1,Q3=1
(τ) = inf{y : F̂Y 1

3 |Q2=1,Q3=1(y) ≥ τ},

The estimator of the counterfactual quantiles in the second term is derived from the identi-

fication results in Theorem 1:

F̂−1
Y 0

3 |Q2=1,Q3=1
(τ) = inf{y : F̂Y 0

3 |Q2=1,Q3=1(y) ≥ τ},

where

F̂Y 0
3 |Q2=1,Q3=1(y) = 1

n11

∑n11

i=1 1{F̂−1
∆Y 0

3 |1,1
(F̂∆Y2|1,1(∆Y2)) ≤ y − F̂−1

Y2|1,1(F̂Y1|1,1(Y1))}.

The final challenge remaining is the estimation of F̂−1
∆Y 0

3 |1,1
(·). Using the identification result

in Theorem 1, we estimate it as:

F̂−1
∆Y 0

3 |1,1
(δ) =

1

n

n∑
i=1

(1−Qi2)(1−Qi3)

p̂11

p̂11(X)

p̂00(X)
1{∆Yi3 ≤ δ}

/ 1

n

n∑
i=1

(1−Qi2)(1−Qi3)

p̂11

p̂11(X)

p̂00(X)
,

The denominator ensures that the estimator lies between 0 and 1. We also need to estimate

the propensity scores, p00(X) and p11(X), in the first step.

Next, under standard assumptions in the literature (Hirano, Imbens, and Ridder 2003),

we show that the estimator of the QTIS converges at the parametric rate of
√
n, even when

the propensity scores are estimated nonparametrically. Consider the following assumptions.

Assumption 5.1

E[1{∆Y 0
3 ≤ y}|0, 0, X] is continuously differentiable for all x ∈ Supp(X).

Assumption 5.2

(i) Supp(X) =
∏r

j=1[xlj, xuj] is a Cartesian product of compact intervals with r the dimension
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of X.

(ii) fX(·) the density of X is bounded away from 0 on Supp(X).

Assumption 5.3

(i) p00(x) and p11(x) are continuously differentiable of order s ≥ 7r.

(ii) p00(x) and p11(x) are bounded away from 0 and 1.

Assumption 5.4

p00(x) and p11(x) are estimated nonparametrically by series logit where the power series are

of order K = nν with 1
4(s/r−1)

< ν < 1
9
.

Assumption 5.5

The observed data (Yi3, Yi2, Yi1;Xi, Qi3, Qi2) are independently and identically distributed.

First, we show preliminary results on the weak convergence of some empirical distri-

butions, which allows us to use the functional delta method. Additional notations are

used below: ĜYs|ij(y) =
√
n(F̂Ys|ij(y) − FYs|ij(y)), ĜY d

s |ij(y) =
√
n(F̂Y d

s |ij(y) − FY d
s |ij(y)),

Ĝ∆Yv |ij(δ) =
√
n(F̂∆Yv |ij(δ) − F∆Yv |ij(δ)), Ĝ∆Y d

v |ij(δ) =
√
n(F̂∆Y d

v |ij(δ) − F∆Y d
v |ij(δ)) for s ∈

{1, 2, 3}, v ∈ {3, 2} and i, j, d ∈ {0, 1}. We also assume that nij goes to ∞ as the sample

size n becomes ∞ and
√
n/nij converges to

√
1/pij.

Proposition 2 Define Ỹi3 = F−1
∆Y 0

3 |1,1
(F∆Y2|1,1(∆Yi2))+F−1

Y2|1,1(FY1|1,1(Yi1)). Denote F̃Y 0
3 |1,1(y)

the estimator for the counterfactual distribution based on observations {Ỹi3}. Let G̃Y 0
3 |1,1(y) =

√
n(F̃Y 0

3 |1,1(y)− FY 0
3 |1,1(y)). Under Assumptions 1-4, and 5.1-5.5:

(Ĝ∆Y 0
3 |1,1, Ĝ∆Y2|1,1, G̃Y 0

3 |1,1, ĜY3|1,1, ĜY2|1,1, ĜY1|1,1)→ (W1
1,W1

2,V1
0,V1

1,W1
3,W1

4)

in the space S = l∞(∆Y3|11(0))× l∞(∆Y2|11)× l∞(Y3|11(0))× l∞(Y3|11)× l∞(Y2|11)× l∞(Y1|11)

where l∞(Ω) is the space of all uniformly bounded functions on the set Ω, associated with

the supremum norm ‖ · ‖∞ and (W1
1,W1

2,V1
0,V1

1,W1
3,W1

4) is a Gaussian process with mean
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0 and covariance V 1(g, g′) = E[ψ1(g)ψ1(g′)] for (g, g′) ∈ S × S, with

ψ1(g) =



E[1{∆Y3≤g1}|X,0,0]
p11p00(X)

(p00(X)Q3
2 − p11(X)D3

2) +
D3

2

p11

p11(X)
p00(X)

1{∆Y3 ≤ g1} − F∆Y 0
3 |1,1(g1)

(1−Q2)(1−Q3)
p11

1{∆Y2 ≤ g2} − F∆Y2|1,1(g2)

(1−Q2)(1−Q3)
p11

1{Ỹ3 ≤ g3} − FỸ3|1,1(g3)

(1−Q2)(1−Q3)
p11

1{Y3 ≤ g4} − FY3|1,1(g4)

(1−Q2)(1−Q3)
p11

1{Y2 ≤ g5} − FY2|1,1(g5)

(1−Q2)(1−Q3)
p11

1{Y1 ≤ g6} − FY1|1,1(g6)


where Q3

2 = Q2Q3 and D3
2 = (1−Q2)(1−Q3).

The next proposition provides the joint limiting distribution of observed in-stayers out-

comes and counterfactual untreated potential outcomes for in-stayers.

Proposition 3 Let Ĝ1
0(y) =

√
n(F̂Y 0

3 |1,1(y) − FY 0
3 |1,1(y)) and let Ĝ1

1(y) =
√
n(F̂Y 1

3 |1,1(y) −

FY 1
3 |1,1(y)). Under Assumptions 1-4, and 5.1-5.5:

(Ĝ1
0, Ĝ

1
1)→ (G1

0,G1
1)

where G1
0 and G1

1 are tight Gaussian processes with mean 0 and almost surely uniformly

continuous paths on the space Y3|11(0)× Y3|11(1) given by

G1
1 = V1

1

and

G1
0 = V1

0 +

∫ {
W1

1 ◦ F−1
Y2|1,1 ◦ FY1|1,1(v)− F∆Y 0

3 |1,1

(
y −

W1
2 −W1

2 ◦ F−1
Y2|1,1 ◦ FY2|1,1(v)

fY2|1,1 ◦ F−1
Y2|1,1 ◦ FY2|1,1(v)

)
−W1

2 ◦ F∆Y 0
3 |1,1(y − F−1

Y2|1,1 ◦ FY1|1,1(v))
}
K(y, v)dFY1|1,1

where

K(y, v) =
f∆Y2|Y1,1,1(F−1

∆Y2|1,1 ◦ F∆Y 0
3 |1,1(y − F−1

Y2|1,1 ◦ FY1|1,1(v)))

f∆Y2|1,1 ◦ F−1
∆Y2|1,1 ◦ F∆Y 0

3 |1,1(y − F−1
Y2|1,1 ◦ FY1|1,1(v))

.
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The next theorem establishes asymptotic properties of the QTIS estimator.

Theorem 2 Suppose FY 0
3 |1,1 admits a positive continuous density fY 0

3 |1,1 on an interval [a, b]

containing an ε-enlargement of the set {F−1
Y 0

3 |1,1
(τ) : τ ∈ T } in Y3|11(0) with T ⊂ (0, 1).

Under Assumptions 1-4, and 5.1-5.5:

√
n(QT̂IS(τ)−QTIS(τ))→ G1+

1 (τ)−G1+
0 (τ),

where (G1+
1 (τ),G1+

0 (τ)) is a stochastic process in the metric space (l∞(T ))2 such that

G1+
0 (τ) =

G1
0(F−1

Y 0
3 |1,1

(τ))

fY 0
3 |1,1(F−1

Y 0
3 |1,1

(τ))
and G1+

1 (τ) =
G1

1(F−1
Y 1

3 |1,1
(τ))

fY 1
3 |1,1(F−1

Y 1
3 |1,1

(τ))

Because our estimators do not have standard asymptotic distributions, we achieve infer-

ence using a nonparametric bootstrap. Here, we present the algorithm procedure only for

QT̂IS(τ), while the same technique can be used to perform inference on QT̂IM(τ).

Algorithm

Let B the number of bootstrap iterations. For b = 1, ..., B,

1. Draw a sample of size n with replacement from the original data

2. Compute QT̂ISb(τ) = F̂−1b
Y 1

3 |Q2=1,Q3=1
(τ)− F̂−1b

Y 0
3 |Q2=1,Q3=1

(τ), where

F̂ b
Y 0

3 |1,1
(y) =

1

nb11

∑
i

1{F̂−1b
∆Y 0

3 |1,1
(F̂ b

∆Y2|1,1(∆Yi2)) ≤ y − F̂−1b
Y2|1,1(F̂ b

Y1|1,1(Yi1))}.

3. Let Ib = supτ |QT̂ISb(τ)−QT̂IS(τ)|, a (1− α) confidence band is given by

QT̂IS(τ)− cB1−α/
√
n ≤ QTIS(τ) ≤ QT̂IS(τ) + cB1−α/

√
n

where cB1−α is the (1− α) quantile of {Ib}Bb=1

The next proposition establishes the validity of the nonparametric bootstrap for our

inference procedure.
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Proposition 4 Under Assumptions 1-4, and 5.1-5.5:

√
n(QT̂IS∗(τ)−QT̂IS(τ))→∗ G1+

1 (τ)−G1+
0 (τ)

where G1+
1 (τ) and G1+

0 (τ) are defined above, and→∗ indicates weak convergence in probability

under the bootstrap law.

Appendix B. Proofs

B.1 Identification

B.1.1 Proof of Theorem 1

Proof. We use the following result in the proof. Given two random variables U and V , their

joint density in terms of the copula pdf is given by,

f(u, v) = c(FU(u), FV (v))fU(u)fV (v). (B1)

The copula pdf in term of their joint density is

c(a, b) = f(F−1
U (a), F−1

V (b))
1

fU(F−1
U (a))

1

fV (F−1
V (b))

. (B2)

For a given copula C, let c the its associated pdf. Let c3 be the copula pdf associated to

C∆Y 0
3 ,Y

0
2 |Q2=1,Q3=1 and c2 the copula cdf associated to C∆Y 0

2 ,Y
0
1 |Q2=1,Q3=1. Let f3 = f∆Y 0

3 ,Y
0
2 |Q2=1,Q3=1

be the joint pdf of ∆Y 0
3 and Y 0

2 conditional onQ2 = 1 andQ3 = 1 so that f2 = f∆Y 0
2 ,Y

0
1 |Q2=1,Q3=1.

Finally, define ∆Y = Supp(∆Y 0
3 |Q2 = 1, Q3 = 1) and Y = Supp(Y2|Q2 = 1, Q3 = 1). We

have the following equalities,
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Pr(Y 0
3 ≤ y|1, 1) = Pr(∆Y 0

3 + Y 0
2 ≤ y|Q2 = 1, Q3 = 1)

= E[1{∆Y 0
3 ≤ y − Y 0

2 }|Q2 = 1, Q3 = 1]

=

∫
Y

∫
∆Y

1{δ ≤ y − y′}f3(δ, y′)dδdy′

=

∫
Y

∫
∆Y

1{δ ≤ y − y′}c3(F∆Y 0
3 |1,1(δ), FY 0

2 |1,1(y′))f∆Y 0
3 |1,1(δ)fY 0

2 |1,1(y′)dδdy′

(B3)

=

∫
Y

∫
∆Y

1{δ ≤ y − y′}c2(F∆Y 0
3 |1,1(δ), FY 0

2 |1,1(y′))f∆Y 0
3 |1,1(δ)fY 0

2 |1,1(y′)dδdy′

(B4)

Using equation (B2), we know that

c2(F∆Y 0
3 |1,1(δ), FY 0

2 |1,1(y′)) = f2(F−1
∆Y 0

3 |1,1
(F∆Y 0

3 |1,1(δ)), F−1
Y 0

1 |1,1
(FY 0

2 |1,1(y′)))

× 1

f∆Y 0
2 |1,1(F−1

∆Y 0
2 |1,1

(F∆Y 0
3 |1,1(δ)))

1

fY 0
1 |1,1(F−1

Y 0
1 |1,1

(FY 0
2 |1,1(y′)))

(B5)

Equality (B3) follows from equation (B1) and equality (B4) follows from Assumption 2. Let

us make the following change of variables, u = F−1
∆Y 0

2 |1,1
(F∆Y 0

3 |1,1(δ)) and v = F−1
Y 0

1 |1,1
(FY 0

2 |1,1(y′)).

We have,

1. δ = F−1
∆Y 0

3 |1,1
(F∆Y 0

2 |1,1(u))

2. y′ = F−1
Y 0

2 |1,1
(FY 0

1 |1,1(v))

3. dδ =
f
∆Y 0

2 |1,1
(u)

f
∆Y 0

3 |1,1
(F−1

∆Y 0
3 |1,1

(F
∆Y 0

2 |1,1
(u)))

du

4. dy′ =
f
Y 0

1 |1,1

f
Y 0

2 |1,1
(F−1

Y 0
2 |1,1

(F
Y 0

1 |1,1
(v)))

dv

We replace (B4) and equalities 1-4 in equation (B3), and we obtain
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Pr(Y 0
3 ≤ y|11) =

∫
Y2

∫
∆Y2

1{F−1
∆Y 0

3 |11
(F∆Y 0

2 |11(u)) ≤ y − F−1
Y 0

2 |11
(FY 0

1 |11(v))}f2(u, v)dudv

= E[1{F−1
∆Y 0

3 |11
(F∆Y 0

2 |11(u)) ≤ y − F−1
Y 0

2 |11
(FY 0

1 |11(v))}|Q2 = 1, Q3 = 1] (B6)

Where equality (B6) follows from the definition of expectation.

Pr(∆Y 0
3 ≤ δ|Q2 = 1, Q3 = 1) =

Pr(∆Y 0
3 ≤ δ,Q2 = 1, Q3 = 1)

p11

= E

[
Pr(∆Y 0

3 ≤ δ,Q2 = 1, Q3 = 1)|X
p11

]
= E

[
p11(X)

p11

Pr(∆Y 0
3 ≤ δ|Q2 = 1, Q3 = 1), X)

]
= E

[
p11(X)

p11

Pr(∆Y 0
3 ≤ δ|Q2 = 0, Q3 = 0), X)

]
(B7)

= E

[
p11(X)

p11

E [(1−Q2)(1−Q3)1{∆Y3 ≤ δ}|Q2 = 0, Q3 = 0, X]

]
(B8)

= E

[
p11(X)

p11p00(X)
E [(1−Q2)(1−Q3)1{∆Y3 ≤ δ}|X]

]
(B9)

= E

[
(1−Q2)(1−Q3)

p00(X)

p11(X)

p11

1{∆Y3 ≤ δ}
]

(B10)

Where the first three equalities hold by definition of conditional probability and conditional

expectation. Equality (B7) holds by Assumption 1. Equality (B8) is true since Q2 = Q3 = 0

implies ∆Y 0
3 = ∆Y3 and (1−Q2)(1−Q3) = 1. Equality (B9) holds because

E[(1−Q2)(1−Q3)1{∆Y3 ≤ δ}|X] = p00(X)E [(1−Q2)(1−Q3)1{∆Y3 ≤ δ}|Q2 = 0, Q3 = 0, X] .

Finally, equality (B10) results from the Law of Iterated Expectations.

8



B.1.2 Proof of Example 1

Proof. First, notice that for in-stayers and out-stayers, Q2 = Q3 so that for both subgroups,

∆Y 0
3 = q(U3, X)− q(U2, X).

P (∆Y 0
3 ≤ δ|X = x,Q2 = 1, Q3 = 1) =

∫
1{q(u, x)− q(ũ, x) ≤ δ}dFU3,U2|X,Q2=1,Q3=1(u, ũ|x)

=

∫
1{q(u, x)− q(ũ, x) ≤ δ}dFU3,U2|X,Q2=0,Q3=0(u, ũ|x)

= P (∆Y 0
3 ≤ δ|X = x,Q2 =, Q3 = 0)

This proves that Assumption 1 is satisfied. The second equality holds because (U3, U2|X,Q2 =

0, Q3 = 0) and (U3, U2|X,Q2 = 1, Q3 = 1) have the same distribution.

We now show that Assumption 2 is also satisfied. We have:

P (∆Y 0
3 ≤ δ,Y 0

2 ≤ y|Q2 = 1, Q3 = 1)

= P (q(U3, X)− q(U2, X) ≤ δ, q(U2, X) + η + βq ≤ y|Q2 = 1, Q3 = 1)

= P (q(U2, X)− q(U1, X) ≤ δ, q(U1, X) + η + βq ≤ y|Q2 = 1, Q3 = 1)

= P (∆Y 0
2 ≤ δ, Y 0

1 ≤ y|Q2 = 1, Q3 = 1),

where the second equality holds because (U3, U2, X, η|Q2 = 1, Q3 = 1) and (U2, U1, X, η|Q2 =

1, Q3 = 1) have the same distribution.

B.1.3 Proof of Proposition 1

Proof. Straightforward, identical approach to proof of Theorem 1.
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B.2 Inference

B.2.1 Proof of Proposition 2

Let us introduce the notations F = (F1, F2, F2, F4), where F1 = F∆Y 0
3 |11, F2 = F∆Y 0

2 |11,

F3 = FY 0
2 |11 and F4 = FY 0

1 |11. Define

φn(F ) =
1

n11

n∑
i=1

1{F−1
1 (F2(∆Yi2)) ≤ y − F−1

3 (F4(Yi1))}δi11

and

φ(F ) = E[1{F−1
1 (F2(∆Yi2)) ≤ y − F−1

3 (F4(Yi1))}|Q2 = 1, Q3 = 1]

The first step of the proof is to establish Hadamard differentiability of φ(F ) and this follows

from Lemma B.6. in Callaway and Li (2017). Defining vn(F ) =
√
n(φn(F )−φ(F )), we know

by Lemma B.7. in Callaway and Li (2017) that

sup
y
|vn(F̂ )(y)− vn(F )(y)| →p 0.

Now let W3 = (Q2, Q3, X,∆Y3) and define

h(W3, δ) =
E[1{∆Y3 ≤ g1}|X, 0, 0]

p11p00(X)
(p00(X)Q3

2 − p11(X)D3
2) +

D3
2

p11

p11(X)

p00(X)
1{∆Y3 ≤ δ}.

Using similar argument as Lemma B.9 in Callaway and Li (2017) we know that the class

of functions K = {h(W3, δ)|δ ∈ ∆Y3} is a Donsker class. Define p(·) = (p11(·), p00(·)) and

let F∆Y 0
3 |1,1(δ, p(·)) = E

[
(1−Q2)(1−Q3)

p00(X)
p11(X)
p11

1{∆Y3 ≤ δ}
]

be the identified distribution of the

change in untreated potential outcomes for the in-stayers for scores p(·). Then, the pathwise

derivative Γ(δ, p)(p̂− p) exists and is given by

Γ(δ, p)(p̂− p) = E

[
(1−Q2)(1−Q3)

p11

1{∆Y3 ≤ δ}
p2

00(X)
(p00(X)p̂11(X)− p11(X)p̂00(X))

]
,
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which is the limit as h → 0 of
F

∆Y 0
3 |1,1

(δ,p+h(p̂−p))−F
∆Y 0

3 |1,1
(δ,p)

h
. Next, under assumptions in

Proposition 2, we established the following result:

√
n|F∆Y 0

3 |1,1(δ, p̂)− F∆Y 0
3 |1,1(δ, p)− Γ(δ, p)(p̂− p)|∞ = op(1)

Proof. Similar proof to Lemma B.11. in Callaway and Li (2017).

Also, under assumptions in Proposition 2, we know that (see Lemma B.12. in Callaway and

Li, 2017):

sup
δ
|
√
n(F̂∆Y 0

3 |1,1(δ, p̂)− F∆Y 0
3 |1,1(δ, p))−

√
n(

1

n

n∑
i=1

h(Wi3, δ)− F∆Y 0
3 |1,1(δ, p))| = op(1)

Finally we combine all the previous results to show Proposition 2 as follows,

√
n(F̂Y 0

3
(y)− FY 0

3
(y)) =

√
n(φn(F )− φ(F )) + φ

′

F

√
n(F̂ − F ) + op(1)

Where the right side of the equality results from an application of the functional central

limit theorem.

B.2.2 Proof of Proposition 3

Proof. Application of the functional delta method to result in Proposition 2.

B.2.3 Proof of Theorem 2

Proof. The result is guaranteed by the Hadamard differentiability of the quantile map

(Van der Vaart and Wellner 1996, Lemma 3.9.23(ii)) and application of the functional delta

method to result in Proposition 3.
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B.2.4 Proof of Proposition 4

Proof. The result follows from identical reasoning as in Lemma B.13. and Lemma B.14. in

Callaway and Li (2017).
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Appendix C. Identification and Inference for in-movers

Now we turn to the identification of the quantile treatment effect for the in-movers (QTIM).

Before stating the identification result in the next theorem, let us first provide the assump-

tions under which that result is valid.

Assumption 6 (Distributional Difference in Differences)

For all x ∈ Supp(X), for all δ,

F∆Y 0
3 |Q2=0,Q3=1,X=x(δ) = F∆Y 0

3 |Q2=1,Q3=0,X=x(δ).

This assumption postulates that conditional on covariates X, the distribution of the change

in untreated potential outcomes for the in-movers (treatment group) is identical to the dis-

tribution of the change in untreated potential outcomes for the out-movers (control group).

Assumption 7 (Copula Stability Assumption)

C∆Y 0
3 ,Y

0
2 |Q2=0,Q3=1(·, ·) = C∆Y 0

2 ,Y
0
1 |Q2=0,Q3=1(·, ·)

This assumption says that the dependence between the marginal distributions, F∆Y 0
3 |0,1 and

FY 0
2 |0,1 is identical to the dependence between the distribution F∆Y 0

2 |0,1 and FY 0
1 |0,1.

Assumption 8 (Continuity)

∆Y3|10(0), ∆Y2|01(0), Y2|01(0), and Y1|01(0) are compact and each of the associated random

variables are continuously distributed on their support with densities that are bounded above

and away from 0.

Assumption 9 (Overlap)

p01 > 0 and p10(x) > 0 for all x ∈ Supp(X)
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The first part of this assumption states that there is some positive probability that

individuals are in-movers. The second part postulates that for an individual with any value

of covariates x, there is a positive probability that she belongs to the group of out-movers.

Proposition 5 Under Assumptions 6-9,

FY 0
3 |0,1(y) = E[1{F−1

∆Y 0
3 |1,0

(F∆Y2|0,1(∆Y2)) ≤ y − F−1
Y2|0,1(FY1|0,1(Y1))}|Q2 = 0, Q3 = 1],

where

F∆Y 0
3 |1,0(δ) = E

[
Q2(1−Q3)

p10(X)

p01(X)

p01

1{∆Y3 ≤ δ}
]
, (C1)

and

QTIM(τ) = F−1
Y 1

3 |0,1
(τ)− F−1

Y 0
3 |0,1

(τ).

The proof of Proposition 5 is similar to Theorem 1’s proof and is therefore relegated to

Online Appendix B1.

Next we provide similar results for the in-movers.

Assumption 2.2 (Conditional Copula Stability Assumption)

C∆Y 0
3 ,Y

0
2 |Q2=0,Q3=1,X=x(·, ·) = C∆Y 0

2 ,Y
0
1 |Q2=0,Q3=1,X=x(·, ·)

Lemma 1 Assume that, for all x ∈ Supp(X), the random variables ∆Y 0
3 |1, 0, ∆Y 0

2 |0, 1,

Y 0
2 |0, 1, and Y 0

1 |0, 1 are continuously distributed conditional on x. Under Assumptions 6,

2.2, 8 and 9,

FY 0
3 |0,1,x(y) = E[1{F−1

∆Y 0
3 |0,1,x

(F∆Y2|0,1,x(∆Y2|x)) ≤ y − F−1
Y2|0,1,x(FY1|0,1,x(Y1|x))}|0, 1, x],
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and

QTIM(τ, x) = F−1
Y 1

3 |0,1,x
(τ |x)− F−1

Y 0
3 |0,1,x

(τ |x),

which is identified, with

FY 0
3 |0,1(y) =

∫
Supp(X)

FY 0
3 |0,1,x(y)dF (x|0, 1) and QTIS(τ) = F−1

Y 1
3 |0,1

(τ)− F−1
Y 0

3 |0,1
(τ).
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Appendix D. Background, Data, and Additional Results

for Application

D.1 Background

To be eligible for SNAP benefits, a household needs to clear three means tests: a gross

income test, a net income test, and a resource test. The first two tests require a household to

have a monthly income (gross income test) and a monthly income minus several deductions

(net income test) below different threshold levels depending on the household size. The

resource test requires a household not to have countable resources, such as cash money in

bank accounts, higher than a maximum level2. Once a household clears these tests and is

accepted by a state agency to receive SNAP benefits, it can receive benefits for a specific

period of time, called the certification period (e.g., three months), after which it has to

obtain a re-certification to continue receiving benefits.

These standards of income tests are adjusted once a year in October based on the change

in the cost of living. The allotment amounts are also adjusted each year. The American

Recovery and Reinvestment Act (ARRA), implemented in April 2009, expanded the budget

for SNAP in response to the Great Recession. The main change in the ARRA was to increase

monthly SNAP benefits for the next 5 years3. The maximum benefit level was increased by

13.6%, and as a result, an average 4-person household received an extra $80 in benefits each

month. Because households received, on average, $260 a month before the policy change,

this change was significant. We use this exogenous change in SNAP benefits in our analysis.

2The maximum level is $2,250 for a normal household and $3,500 for a household with an elderly or
disabled member. There are also restrictions on vehicle ownership. The resource test excludes assets such
as a home, lot, and benefits from some other government programs. However, most states eliminated the
resource test for most participants as of 2018.

3Aside from the change in SNAP benefits, it temporarily allowed Able-Body-Adults-Without-Dependents
(ABAWDs) to receive SNAP benefits beyond 3 months in 3 years even without working.
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D.2 Data

New panels in the Consumer Expenditure Quarterly Interview Survey (CEX) are initiated

every month of the year. The CEX follows specific addresses, not specific households, across

quarters. Therefore, if a household moves into a survey participant’s address, the new

household is interviewed from then on to the end of the panel. To mitigate this problem,

we drop a household if it reports an unreasonable change in the age of the reference person

or the number of household members. Furthermore, We drop households (1) without two

pre-treatment periods due to our methodological requirement, and (2) with more than 150%

of the average total expenditure of the treatment group.

A caveat on the qualification variable Qit in the data is that the CEX has a variable

concerning whether a household received SNAP benefits in the previous 12 months, not

in the interviewed quarter. Therefore, I treat a household receiving SNAP benefits in the

previous 12 months as a SNAP participant in the quarter. In addition, information on

SNAP participation in the second and third quarters is imputed from information in the first

quarter. Therefore, a household is defined as in-movers (or out-movers) if it participates in

SNAP in the first quarter, but not in the fourth quarter (or not participating in SNAP in

the first quarter, but participating in the program in the final quarter).

Finally, we choose our final sample in the following way. We used the coarsened exact

matching method in order to obtain a better control group (Iacus, King, and Porro 2011).

The method balances observable variables between treatment and control groups by coars-

ening specific demographic variables into categories and then matching households. The

observable variables include the family size, the average age of head of household, the race

of the reference person, marital status, income before taxes, and working status.

There is a data-driven reason why we choose out-stayers as our control group. Figures D1

and D2 show the average and the distribution of the change in the food-at-home expenditure

share during the pre-treatment periods. Figure D1 shows that the trend of the average

outcome variable for in-stayers is the closest to the trend for out-stayers. The distributions

17



of these groups are also close to each other, as shown in Figure D2. Table D1 shows the

result of the Kolmogorov-Smirnov tests on the equality of conditional distributions (from

panels 2 to 7 of Table D1) as well as unconditional distributions (in panel 1 of Table D1).

The distributions are conditioned with respect to marital status, race (i.e., white or not),

and the discretized version of covariates such as education, total expenditure, family size,

and age, respectively. In almost all cases, we cannot reject the null hypothesis of equality

of both conditional distributions. These results support that the out-stayers are the best

control group.

Figure D1: Trend in the average food expenditure share at home
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Note: The figure shows the average food expenditure share at home for each
group of households, normalizing that in t = 1. Treatment, i.e., an increase in
SNAP benefits is in t = 3. The dotted line is a trend for out-movers, the dashed
line is that for in-movers, the long-dashed line is that for out-stayers, and the
solid line is that for in-stayers.
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Figure D2: CDF of the change in food expenditure share at home between t = 1 and t = 2
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Note: The figure shows a cumulative distribution function of a change in food
expenditure share at home for each group. The dotted line is a trend for out-
movers, the dashed line is that for in-movers, the long-dashed line is that for
out-stayers, and the solid line is that for in-stayers.
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Table D1: Kolmogorov-Smirnov tests on the equality of distributions

High/Large/Yes Low/Small/No

(1) (2) (3) (4) (5) (6)
Difference p-value # sample Difference p-value # sample

Unconditional
In-stayer vs out-stayer 0.138 0.005 2,347
In-stayer vs in-mover 0.110 0.645 232 - - -
In-stayer vs out-mover 0.146 0.307 229

Conditional on each variable
Conditional on education
In-stayer vs out-stayer 0.207 0.517 740 0.121 0.035 1,607

Conditional on total expenditure
In-stayer vs out-stayer 0.143 0.477 1,216 0.151 0.009 1,131

Conditional on family size
In-stayer vs out-stayer 0.156 0.042 758 0.159 0.043 1,589

Conditional on age
In-stayer vs out-stayer 0.118 0.353 1,131 0.170 0.008 1,216

Conditional on marital status
In-stayer vs out-stayer 0.124 0.606 1,054 0.184 0.001 1,293

Conditional on white
In-stayer vs out-stayer 0.121 0.071 1,914 0.205 0.053 433

Note: The top panel shows the Kolmogorov-Smirnov (KS) test for the equality of unconditional distributions, for in-stayers vs.
out-stayers, in-stayers vs. in-movers, and in-stayers vs. out-movers respectively. Panels 2 to 7 are the KS tests conditional on
each variable. The first three columns of them show the KS test for the sub-group of a high (or large, or dummy variable being
1) conditioning variable. The last three columns show the KS test for sub-group of a low (or small or dummy variable being 0)
conditioning variable. For example, the first column of panel 2 shows the difference in the distribution of food expenditure share
between in-stayers and out-movers for sub-groups with a high education level. Similarly, the fourth column of panel 2 shows the
difference in the distribution of food expenditure share between in-stayers and out-movers for sub-groups with a low education
level.
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The summary statistics of our final sample are reported in Table D2. There is substantial

under-reporting in SNAP participation status in the CEX. The SNAP participation rate is

7.2%, while the rates calculated from other administrative data are 12.8%, 13.5%, and 14.5%

in 2007, 2008, and 2009, respectively. This under-reporting implies that our control groups

include some SNAP participants, leading to a potential underestimation of the effect of

increases in SNAP benefits on food expenditure shares.

Table D2: Summary Statistics on households in the first period

Mean Treatment Group Control Group Difference
Infra-marginal Extra-marginal

Food exp. share at home 23.14 19.16 14.16 -7.43
Food exp. at home 448.91 452.32 579.13 -128.90
Food exp. away from home 70.36 109.49 280.38 -194.83
Total expenditure 2146.56 2799.18 4973.71 -2573.78
Family size 2.80 3.09 2.21 0.70
Head ages 50.55 45.02 52.62 -4.22
Urban 0.92 0.94 0.92 0.004
White 0.70 0.71 0.82 -0.12
Black 0.27 0.27 0.12 0.15
Married 0.23 0.23 0.46 -0.23
Working 0.38 0.56 0.68 -0.23
Male head 0.21 0.27 0.46 -0.23
Households 104 66 2,177

Note: The table shows summary statistics for infra-marginal households in the treatment group (column 2), those for
extra-marginal households in the treatment group (column 3), those in the control group (column 4), and the difference
in averages between the treatment and control groups. Households in the treatment group are divided into two groups
depending on the relationship between food expenditure at home and SNAP allotments.

D.3 Comparison with Existing Studies

While many studies in the literature focus on the ATT, to our knowledge, Valizadeh and

Smith (2020) are the only studies that analyze the heterogeneous impact of additional SNAP

benefits on food expenditure. One of their findings (Figure A2 in the Online Appendix of

their 2019 paper) is that the positive treatment effect (i.e., an increase in food expenditure

share due to the additional SNAP benefit) is larger for higher quantiles of the distribution of
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food expenditure for the inframarginal households. A similar result can be replicated with

their method using our data in Table D3.

While the positive relationship between the treatment effects and the percentile in the

distribution is the same as our results, the magnitude of their estimates seems to be larger

in each percentile than ours. This distinction can be due to differences in identification

approaches. Valizadeh and Smith (2020) use a non-additive fixed-effect quantile regression,

and thus their identification comes from a variation within a household over time. Therefore,

it could be vulnerable to measurement errors and time-varying unobserved shocks that are

correlated with both treatment and food expenditure during policy changes.

The ARRA of 2009 was a package of several policies, such as unemployment benefits

and temporary welfare payments (TANF and WIC). Therefore, relying on within-variation

might contaminate their estimates. On the other hand, our identification comes from a

comparison of SNAP households with those having similar characteristics in the control

group. Because the control group also has similar household characteristics as the treatment

group, unobserved time-varying shocks could be canceled out.

Beatty and Tuttle (2015) use a linear DID approach for the same exogenous policy

changes as ours. Their ATT is 0.72 in their main specification (Table 4 in their paper),

which is different from the ATT obtained from our methodology, 2.27. One reason could be

that they focus on inframarginal SNAP recipients, i.e., households whose food expenditure

is larger than SNAP benefits, while we include both inframarginal and extramarginal SNAP

recipients in our sample. Once we focus on inframarginal SNAP recipients as our treatment

group, the ATT becomes 1.93, as reported in Table D4. Another reason for the difference in

s could be our methodological requirement. Our methodology requires, at least, three-period

panel data with two pre-treatment periods. Once we regress a linear DID without requiring

two periods before treatment, the ATT declines to 1.47.
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Table D3: Quantile treatment effects using Powell’s (2020) method

With covariates

Expenditure: Share food at home

Quantile Estimate s.e.
10 2.21 (0.77)
20 1.28 (0.65)
30 0.95 (0.74)
40 2.68 (0.83)
50 1.25 (0.69)
60 5.99 (1.51)
70 5.21 (0.95)
80 7.72 (3.41)
90 5.85 (1.03)

Note: The table shows the quantile treatment
effects for each quantile when they are esti-
mated by a non-additive fixed-effect quantile
regression approach in Powell (2020). STATA
code qregpd is available in Powell (2020).

D.4 Additional Results

Figure D3 and Table D4 show the results when focusing only on inframarginal SNAP house-

holds. They provide a positive relationship between the increment of the food expenditure

share and a percentile in the food expenditure share distribution even within the sample of

inframarginal participants.

We also estimate the impact of additional SNAP benefits on the food-away-from-home

expenditure share, including eating at restaurants and ordering fast food. Because SNAP

benefits can be used only for food prepared at home, we do not expect SNAP participants

to increase this share. Figures D4 and D5 show the results. These figures do not provide

any noticeable patterns and therefore imply that additional SNAP benefits are not fungible

(not the same as extra cash).
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Table D4: Quantile treatment effects for inframarginal households

With covariates Without covariates

Expenditure: Share food at home Share food at home

Quantile Estimate s.e. Estimate s.e
10 1.27 (2.39) 0.73 (2.29)
20 -1.68 (1.83) -1.70 (1.75)
30 -1.27 (1.95) -2.42 (1.73)
40 0.36 (2.03) -0.30 (1.77)
50 3.05 (2.13) 2.09 (2.08)
60 3.77 (2.03) 3.88 (1.88)
70 4.31 (2.65) 4.37 (2.87)
80 7.78 (3.43) 7.70 (3.73)
90 8.36 (7.58) 6.28 (7.51)
ATE 1.93 (1.42) 1.69 (1.39)

Note: The table shows the QTIS and their standard errors from the
10th to 90th percentiles when we focus our treatment group on infra-
marginal SNAP households. The first two columns show the results
when using the share of food expenditure consumed at home as the
outcome variable and controlling for covariates. Columns 3 and 4 show
those when using the share of food expenditure at home as the out-
come variable without covariates. The standard errors in parentheses
are calculated by the bootstrap with 300 iterations.

24



Figure D3: QTT on food expenditure share at home (inframarginal):
ATT 1.93 [1.42]

0.2 0.4 0.6 0.8

−
10

−
5

0
5

10
15

20
25

Share food at home: w/ covs. constant & infra1

tau

Q
T

E

Note: The figure provides estimates of the QTIS with covari-
ates on the effect of an increase in SNAP benefits on food
expenditure level at home, for the group of infra-marginal
households. The solid line denotes the estimate for each
quantile measured on the horizontal axis. The black dotted
line is a 95% confidence interval calculated by the bootstrap
with 300 iterations. The red dashed horizontal line is the
average treatment effect.

D.5 Checking the Empirical Validity of Assumptions

We have already discussed the empirical validity of the first assumption using the Kolmogorov-

Smirnov tests in Section D1. The second assumption, the CSA, requires that the dependence

between (i) the distribution of the change in the untreated potential outcomes for the treated

(i.e., ∆Y03|Q3 = 1) and (ii) the distribution of the initial untreated outcome for the treated

group (i.e., Y02|Q3 = 1) remains stable over time. The validity of this assumption could be

especially concerning because our analysis includes the periods during the Great Recession.

If SNAP households with large food-at-home expenditure shares in the initial period have

larger increases in the share before the Great Recession, but the relationship does not hold
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Figure D4: QTT on food expenditure share away from home:
ATT 0.02 [0.56]
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Note: The figure provides estimates of the QTIS with covari-
ates on the effect of an increase in SNAP benefits on food
expenditure share away from home. The solid line denotes
the estimate for each quantile measured on the horizontal
axis. The black dotted line is a 95% confidence interval cal-
culated by the bootstrap with 300 iterations. The red dashed
horizontal line is the average treatment effect.

during the Recession, then the assumption is violated.

The validity of the CSA is assessed by the test of Kendall’s Tau (a standard depen-

dence measure that depends only on the copula), as suggested by Callaway and Li (2019).

Kendall’s Tau for the change in the food expenditure share at home and the initial level

of the food expenditure share for treated households must be constant over time during

the pre-treatment period. Because each household is recorded in the sample for at most

four periods in our data and most households have two pre-treatment periods, we calculate

Kendall’s Tau for the change in the food expenditure share at home from the 1st to 2nd

periods and the expenditure share in the 1st period for the treated households. The stability

of Kendall’s Tau over the pre-treatment is further checked by using another sample of house-
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Figure D5: QTT on food expenditure away from home:
ATT 13.98 [10.90]
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Note: The figure provides estimates of the QTIS with covari-
ates on the effect of an increase in SNAP benefits on food
expenditure level away from home. The solid line denotes
the estimate for each quantile measured on the horizontal
axis. The black dotted line is a 95% confidence interval cal-
culated by the bootstrap with 300 iterations. The red dashed
horizontal line is the average treatment effect.

holds from the 1st to 2nd periods from 2004 to 2006 (rather than 2007 to 2010, which is used

in our main analysis). As illustrated in Figure D6, Kendall’s Tau varies little over time and

is approximately -0.3. Figure D7 shows the same Kendall’s Tau for the placebo sample of

households but also calculates the same statistics from the 2nd to 3rd periods (the second

plot in the figure) and from the 3rd to 4th periods (the third plot in the figure). Again, the

measure changes slightly over the periods, thus indirectly supporting the CSA even without

conditioning on covariates.

We can also check the validity of the DDID Assumption by performing a placebo test

while assuming the other assumptions hold. Ideally, we want to test the assumption by

estimating the QTIS during the pre-treatment periods if the panel is long enough. However,
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Figure D6: Kendall’s Tau

-.5
-.4

5
-.4

-.3
5

-.3
-.2

5
Ke

nd
al

l's
 ta

u

Periods 1-2: 2004-06 sample Periods 1-2: 2007-10 sample

Out-sample placebo In-sample placebo
CIs

Note: The figure shows Kendall’s tau for the pre-treatment period. The left
Kendall’s tau (denoted a circle) is calculated for the dependence between the
distribution of the share of food-expenditure-at-home in the first period and
that for a change in share from the first to second periods, using a sample
of households in the CEX during 2004-06. The right Kendall’s tau (denoted
a circle) is calculated for the same dependence using the same sample of
households as the main analysis, but during the pre-treatment period. A
range of a vertical line corresponds to a 95% confidence interval.

each household in the CEX is recorded, at most, only for 4 quarters and the QTIS requires

two periods before treatment, and thus the placebo experiment cannot be implemented using

our main sample. Therefore, we construct another sample of households using the 2004-2006

CEX and implement the same quantile estimation. SNAP recipients face a marginal adjust-

ment of SNAP benefits in the 4th quarter of each year and the changes in the benefits are

therefore used as a quasi-placebo experiment (the increase in the maximum SNAP benefits

was at most 2.4% in October 2006, while that in April 2009 was 13.6%). Figures D8 and

D9 show the estimates of the QTIS with the placebo sample of households. While the lower

quantiles have statistically significant negative effects, most of the QTISs are statistically

insignificant, supporting the fact that all four assumptions potentially hold jointly.

The final assumption to check is the overlap assumption. It requires that (i) there is a
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Figure D7: Kendall’s Tau for different quarters
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Note: The figure shows Kendall’s tau for the pre-treatment period. The
very left and right statistics show the same as those in Figure 11. The
second left Kendall’s tau (denoted a circle) is calculated for the dependence
between the distribution of the share of food-expenditure-share-at-home in
the second period and that for a change in share from the second to third
periods during 2004-06. The second right Kendall’s tau (denoted a circle)
is calculated for the same dependence over third and fourth periods during
2004-06. A range of a vertical line corresponds to a 95% confidence interval.

positive probability for a household to be in-stayers and (ii) there is a positive probability

for a household with any covariates x to be out-stayers. While the former condition is true

in our sample, the latter is indirectly tested by checking the existence of out-stayers for a

range of covariates in our data. The results are shown in Tables D5 and D6. For most of

the combinations of covariates, there are positive out-stayers, supporting the second part of

the overlap assumption.

29



Figure D8: QTT on the share of food expenditure at home (Placebo):
ATT -1.65 [s.e. 2.18]
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Note: The figure provides a placebo estimate of the QTIS
with covariates on the effect of an increase in SNAP bene-
fits on food expenditure share at home. The sample period
used here is from 2004-06, rather than 2007-10 when there
were actual large increases in SNAP benefits. The solid line
denotes the estimate for each quantile measured on the hor-
izontal axis. The black dotted line is a 95% confidence in-
terval calculated by the bootstrap with 300 iterations. The
red dashed horizontal line is the average treatment effect.
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Figure D9: QTT on the share of food expenditure at home (Placebo, no covariates):
ATT 0.82 [s.e. 0.90]
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Note: The figure provides a placebo estimate of the QTIS
without covariates on the effect of an increase in SNAP ben-
efits on food expenditure share at home. The sample period
used here is from 2004-06, rather than 2007-10 when there
were actual large increases in SNAP benefits. The solid line
denotes the estimate for each quantile measured on the hor-
izontal axis. The black dotted line is a 95% confidence in-
terval calculated by the bootstrap with 300 iterations. The
red dashed horizontal line is the average treatment effect.
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Table D5: Number of observations in each group

Family Size

1 2 3 4 5 6 7 8 9

Family income L H L H L H L H L H L H L H L H L H

Not work
Not urban

out-stayer 1,106 252 442 474 71 73 24 26 6 6 1 3 0 4 0 0 0 0
in-stayer 45 3 21 6 15 5 3 5 0 0 0 0 0 0 0 0 0 0

Urban
out-stayer 76 12 58 47 6 2 0 0 0 0 0 0 0 0 0 0 0 0
in-stayer 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Work
Not urban

out-stayer 890 719 517 1,075 254 579 202 602 70 266 32 75 10 28 0 11 0 3
in-stayer 12 0 32 3 37 6 1 11 7 5 6 6 3 1 0 0 0 0

Urban
out-stayer 53 34 52 66 32 86 15 56 0 19 8 8 0 0 0 0 3 1
in-stayer 3 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: The table shows the number of observations in our final sample for each subgroup. The odd columns, denoted “L”, are a group of households with
low income. The even columns, denoted “H”, are a group of households with high income. The first two columns report the number of observations for
single households, the next two columns are that for two-person households, the fifth and sixth columns are that for three-person households, and so on.
Each row divides the entire sample by working status, living area (urban or not urban), and their qualification status over time. Therefore, the fifth row
shows, for example, the number of observations in non-urban living and SNAP-disqualified households whose heads work.
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Table D6: Number of observations in each group 2

Marriage status

No Yes

Family income L H L H

Not white
Male

out-stayer 268 59 196 110
in-stayer 12 0 10 0

Female
out-stayer 451 140 187 49
in-stayer 55 2 20 0

White
Male

out-stayer 1,130 376 1,362 416
in-stayer 29 0 20 0

Female
out-stayer 1,165 470 1,299 335
in-stayer 53 8 32 4

Note: The table shows the number of observations in our final sam-
ple for each subgroup defined differently from the last table. The odd
columns, denoted “L”, are a group of households with low income. The
even columns, denoted “H”, are a group of households with high income.
The first two columns report the number of observations for households
without married members and the next two columns are that for house-
holds with married members. Each row divides the entire sample by race
(white nor not), male or female, and their qualification status over time.
Therefore, the fifth row shows, for example, the number of observations
in SNAP-disqualified households with white male heads.
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Appendix E. Robustness Check

We check the robustness of our method by using an alternative approach by Athey and

Imbens (2006)4. Their identifying assumptions are:

Assumption 10.1: In the absence of treatment, the outcome is Y 0
t = h(U, t), where U is

the unobserved characteristics.

Assumption 10.2: The production function h(u, t) is strictly increasing in u

Assumption 10.3: The distribution of u is independent of time conditional on the treat-

ment: U ⊥ t|Q

Assumption 10.4: Supp(U |Q = 1) ⊆ Supp(U |Q = 0)

Under Assumptions 10.1-10.4, the counterfactual distribution is identified and the treat-

ment effect on the treated for τ -th quantile is:

∆(τ) = Ex[F−1
Y |Qt=1,T=t,X(τ)]− Ex[FY |Qt=1,T=2,X(FY |Qt=0,T=2,X(FY |Qt=0,T=t,X(τ)))]︸ ︷︷ ︸

Counterfactual distribution

.

Using this identification strategy with the propensity score re-weighting, Figure E1 shows

the cumulative distribution function and the counterfactual cumulative distribution function

for the treated. Figure E2 shows the treatment effect on the treated, which is constructed

by the difference between the cumulative distribution function and the counterfactual cumu-

lative distribution function. The 95% confidence intervals are derived using the bootstrap

with 300 iterations.

Figures E3 and E4 show the results when using the log food expenditure at home as the

4We use a STATA code by Garlick (2017).
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Figure E1: Distributions in changes-in-changes: food expenditure share
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Note: The figure provides the share of food expenditure at home in each
quantile for treated and counterfactual constructed using the change-in-
changes method by Athey and Imbens (2006). The red dashed line is for
the counterfactual and the solid blue line is for the treated group.

outcome variable.
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Figure E2: Treatment effect in changes-in-changes: food expenditure share

0
20

40
60

Sh
ar

e 
fo

od
 s

ha
re

0 20 40 60 80 100
Quantiles

Treatment effect Pointwise 95% CI

Reweighted quantile treatment effects

Note: The figure provides estimates of the change-in-changes approach by
Athey and Imbens (2006) on the effect of an increase in SNAP benefits on
food expenditure share at home. The solid line denotes the estimate for
each quantile measured on the horizontal axis. The black dotted line is
a 95% confidence interval calculated by the bootstrap with 300 iterations.
The red dashed horizontal line is the average treatment effect.

36



Figure E3: Distributions in changes-in-changes: log food expenditure
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Note: The figure provides the value of log food expenditure at home in
each quantile for treated and counterfactual constructed using the change-
in-changes method by Athey and Imbens (2006). The red dashed line is for
the counterfactual and the solid blue line is for the treated group.
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Figure E4: Treatment effect in changes-in-changes: log food expenditure
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Note: The figure provides estimates of the change-in-changes approach by
Athey and Imbens (2006) on the effect of an increase in SNAP benefits on
log food expenditure at home. The solid line denotes the estimate for each
quantile measured on the horizontal axis. The black dotted line is a 95%
confidence interval calculated by the bootstrap with 300 iterations. The
red dashed horizontal line is the average treatment effect.
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Appendix F. Untreated Moving Effects

This section provides a way to quantify the potential bias due to untreated moving effects

in the context of a linear DID model, following Lee and Kim (2014). Consider the following

linear model:

Y 0
t = βt + βqQt + β

′

wWt + Vt, and Y 1
t = βdQ2 + βm(1−Q2) + Y 0

t ,

where Wt = (C
′
, X

′
t)
′

is composed of time-invariant and time-variant covariates, and Vt =

δ + ut is an error term of time-invariant and time-variant elements. The average treatment

effect in this specification is different between the in-movers and in-stayers. Let t = 3 be

a period with an increase in SNAP benefits, and t = 2 is the period before. Therefore, the

treatment variable is Dt = 1{t = 3} × Qt (i.e., the increase in SNAP benefits happens for

households in the treatment group at period 0). Combining these equations gives

Yt = {βdQ2 + βm(1−Q2)}Dt + βt + βqQt + β
′

wWt + Vt,

Finally, by taking the difference between t = 3 and t = 2, the regression equation becomes

∆Y3 = ∆β3 + βdQ2Q3 + βm(1−Q2)Q3 + βq∆Q3 + β
′

w∆W3 + ∆u3, (F1)

∆Y3 is the difference in the outcome variable Yt between periods t = 3 and t = 2. βd is the

treatment effect on in-stayers (i.e., units with Q2 = 1 and Q3 = 1), βm is the treatment

effect on in-movers (i.e., units with Q2 = 0 and Q3 = 1), and βq is the untreated moving

effects (i.e., units with Q2 = 0 and Q3 = 1 or Q2 = 1 and Q3 = 0).

Estimation results are reported in Table F1. There are three things to note here. First,

the average treatment effect on in-stayers is positive and statistically significant for the

food-at-home expenditure share, but not significant for the food-away-from-home expendi-

ture share. These are consistent with the results of the linear DID regression presented
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above. Second, the average treatment effect on in-movers, captured by βm, is statistically

insignificant but positive for all regressions. Third, the untreated moving effects are negative

and statistically insignificant. The negative signs are plausible because the sample periods

are mainly during the Great Recession. These results show different effects of the increases

in SNAP benefits between in-stayers and in-movers, and therefore suggest the importance

of separating them.

Table F1: Linear DID: untreated moving effects

(1) (2) (3) (4)
VARIABLES ∆(Share food home) ∆(Share food away) ∆(Food home) ∆(Food away)
βd 3.053*** 0.336 69.49** 36.36

(0.595) (0.424) (28.35) (24.43)
βm 0.558 1.405 44.35 43.79

(2.542) (1.811) (121.1) (104.4)
βq -1.169 -0.398 -25.30 -13.09

(1.799) (1.282) (85.73) (73.89)
Observations 2,467 2,467 2,467 2,467
R-squared 0.117 0.009 0.051 0.037

Note: The table shows the estimation results from equation (F1). The first column shows the results using a
change in food expenditure share at home as the outcome variable, and the second column shows the results
using a change in food expenditure share away from home as the outcome variable. The third column shows the
results when using a change in food expenditure at home as the outcome variable, and the final column shows the
same results but using a change in food expenditure away from home as the outcome variable. Standard errors
are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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