

Review

Siddhi Manohar Bagwe¹ / Pravin Popatrao Kale¹ / Lokesh Kumar Bhatt¹ / Kedar S. Prabhavalkar¹

Herbal approach in the treatment of pancytopenia

¹ Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mithibai campus, Vile Parle (W), Mumbai, India, E-mail: pravinpkale@gmail.com

Abstract:

Pancytopenia is a health condition in which there is a reduction in the amount of leucocytes, erythrocytes and thrombocytes. If more than one of the blood cells is low then the condition is called as bacytopenia. The pancytopenic condition is observed in treatment of diseased conditions like thalassemia and hepatitis C. Iatrogenically pancytopenia is caused by some antibiotics and anti-HCV drugs. Medical conditions like aplastic anaemia, lymphoma, copper deficiency, and so forth can also cause pancytopenia. Pancytopenia can in turn decrease the immunity of the person and thereby can be fatal. Current therapies for pancytopenia include bone marrow stimulant drugs, blood transfusion and bone marrow transplant. The current therapies are very excruciating and have long-term side-effects. Therefore, treating these condition using herbal drugs is very important. Herbs like wheatgrass, papaya leaves and garlic are effective in treating single lineage cytopenias. The present review is focused on the potential effects of natural herbs for the treatment of pancytopenia.

Keywords: bone marrow transplant, herbal approach, leucopenia, pancytopenia, papaya leaves

DOI: 10.1515/jcim-2016-0053

Received: June 5, 2016; **Accepted:** October 18, 2016

Introduction

The blood cells are formed in the bone marrow by the process of haematopoiesis, where the multipotent haematopoietic stem cells also called as haemocytoblasts, mature to give a common myeloid progenitor to in turn give erythrocytes, leucocytes and thrombocytes. In pancytopenia, either bone marrow, haemocytoblasts or directly the cells get damaged, so as to cause the condition. Pancytopenia is broadly classified into single lineage pancytopenia and multi-lineage pancytopenia. In single lineage pancytopenia, only one cell type is reduced in the number, whereas in multi-lineage pancytopenia more than one cell type is reduced (Figure 1) [1]. Pancytopenia is majorly caused in the patients suffering from megaloblastic anaemia and aplastic anaemia. The other causes are some viral infections like HIV, HCV. Chemicals like benzene, autoimmune disorders like rheumatoid arthritis, and medicines like methotrexate, chloramphenicol also can cause pancytopenia. The occurrence of pancytopenia lies between the ages of 2 years to 86 years. In India, annually there are 20 % deaths due to improper treatments and due to late diagnosis. The prevalence still remains unknown, due to various causes of pancytopenia. Gestational pancytopenia still remains the major cause of death. Drug-induced and disease-induced pancytopenia also are the leading causes of death. Diagnosis can be done by bone marrow examination, which is done by bone marrow aspiration. Bone marrow aspiration is very excruciating and is generally done by a specialized physician. Also a detailed clinical history is checked to diagnose the disease. The symptoms include tiredness, fatigue, puffiness of face, oedema, lassitude, and reduced ability to perform, i. e. effort intolerance. The clinical observations include reduced number of leucocytes, erythrocytes and thrombocytes in the blood [1]. Due to such painful therapies, an alternative to these therapies should be discovered. Herbal approach is one of the areas from where newer drugs can be found for the treatment of pancytopenia. Currently, bone marrow stimulant drugs like Epoetin alfa (Epogen, Procrit), Filgrastim (Neupogen), Pegfilgrastim (Neulasta), Sargramostim (Leukine, Prokine) are given for the treatment of cytopenia. These are basically DNA recombinant human cell stimulating factors. There are many side-effects related to these therapeutic regimens. Therefore ascertaining some alternate drugs is the need of the day [1].

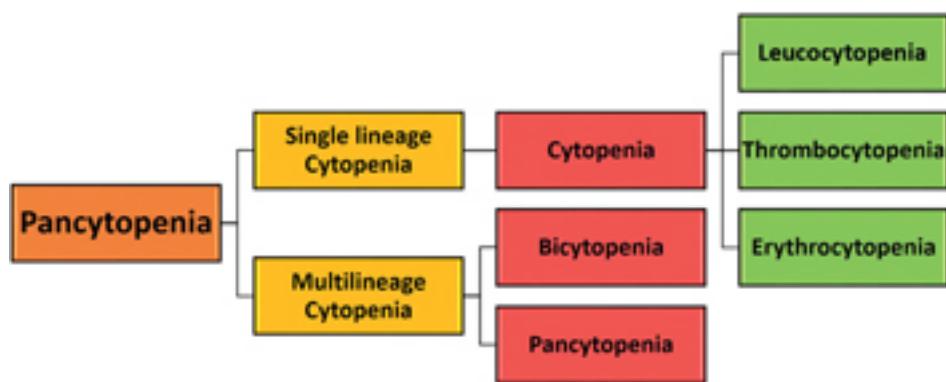


Figure 1: Types of pancytopenia [1].

Causes of pancytopenia (Figure 2)

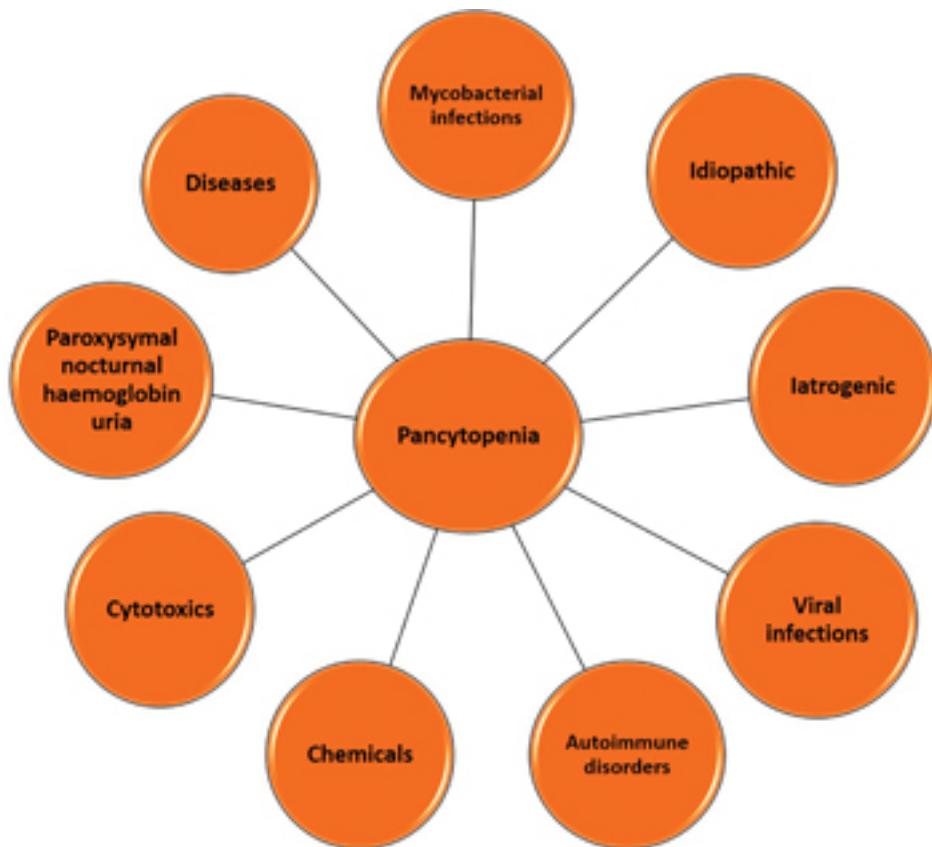


Figure 2: Causes of pancytopenia [2–13].

Causes of pancytopenia can be generally classified into:

1. Idiopathic [2]
2. Iatrogenic [3–5]
3. Disease induced [6–10]
4. Chemical toxicity [11]
5. Drug induced [8, 12, 13]

Idiopathic

Some causes of pancytopenia remain unknown, especially in children [1]. This type of pancytopenia is called idiopathic pancytopenia. Idiopathic Aplastic Anaemia was the common cause of idiopathic type of pancytopenia [2]. Idiopathic type of pancytopenia can be fatal, as the cause of cytopenia is unknown and therefore the patient is unaware of the condition.

Iatrogenic

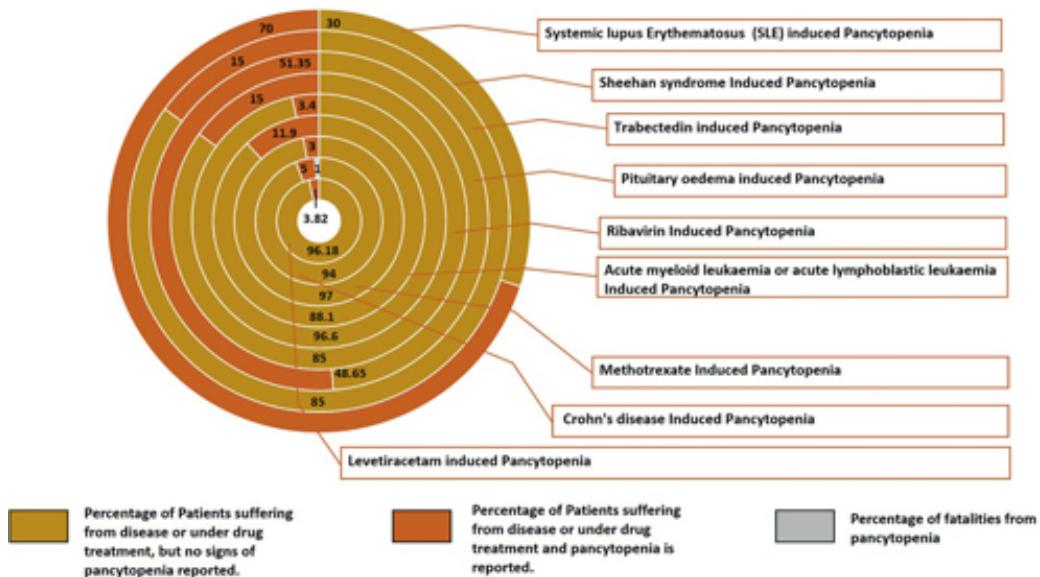
In Iatrogenic type of pancytopenia, the condition occurs because of some another medical treatment or examination. Generally, chemotherapies and radiotherapies cause pancytopenia [3]. Bone marrow suppression and bone marrow transplant can also lead to pancytopenia. Some drug therapies like immunosuppressant therapy of azathioprine in inflammatory bowel diseases can cause pancytopenia [4, 5].

Disease induced

Disease-induced pancytopenia is commonly seen, as the prevalence of disease-induced pancytopenia is more as compared to other causes of pancytopenia. Graves' disease [6], Crohn's disease [7], leukaemia [8], hypersplenism [9], aplastic anaemia [10]. Pancytopenia remains the secondary cause in these types of diseases. The pancytopenia occurs due to immune suppression, autoimmune activity, bone marrow infection or reduction in the haematoblasts.

Chemical toxicity

Chemicals like benzene are haematotoxic and cause toxicity of bone marrow, therefore leading to pancytopenia [11]. It causes acute pancytopenia on consumption and therefore is fatal, if not treated on time. Benzene damages the bone marrow and therefore stops the haematopoiesis and in turn the production of cells, which causes pancytopenia.


Drug induced

Most of the anti-cancer and anti-viral drugs cause pancytopenia, as they directly target the cells. As the infected cells are targeted, the normal cells are also damaged in some proportion, which causes pancytopenia. Methotrexate which is used to treat leukaemia, commonly causes pancytopenia [8, 12]. The interferon and ribavirin therapy which is a therapeutic regimen for the treatment of hepatitis C also causes a severe pancytopenia [13].

Recent cases reported for pancytopenia

- Levetiracetam (Keppra) is an anti-epileptic drug which modulates the neurotransmitter release has shown pancytopenia as one of its side-effects [14]. The prevalence of pancytopenia was 3.82 % with levetiracetam treatment (Figure 3) [15]
- There is a recent case reported for patients with hereditary folate malabsorption to have reversible pancytopenia. Folate malabsorption can be the cause for pancytopenia (Figure 3) [16]. Patients with Crohn's disease had recurrent pancytopenia in 5–3.8 % due to the absorption of 6-mercaptopurine (Figure 3) [4, 7, 17].
- Pancytopenia induced by low dose of methotrexate is widely seen. Out of the patients taking methotrexate, around 3 % of the patients suffer from pancytopenia. This is an example of drug-induced pancytopenia (Figure 3) [12, 18].
- Acute myeloid leukaemia or acute lymphoblastic leukaemia observed with pancytopenia among 11.9 % patients (Figure 3) [19, 20].

- Peg-interferon and ribavirin therapy in the patients suffering from Hepatitis-C causes drastic reduction in the number of blood cells, therefore exacerbating the pancytopenic condition [13]. Peg-interferon and ribavirin therapy related prevalence was 3.4 % (Figure 3) [21].
- Patients with pituitary oedema also tend to suffer from pancytopenia and Panhypopituitarism. It is said that the hormones also play a very important role in the management of pancytopenia [22]. The reported prevalence of pancytopenia in patients with pituitary oedema was 15 % (Figure 3) [23].
- The use of trabectedin in the treatment of prostate and breast cancer was associated with severe cytopenia in 51.35 % patients and death (Figure 3) [24, 25].
- Pancytopenic condition was seen in the patients suffering from methylmalonic acidemia [26].
- Sheehan syndrome or Simmond syndrome is a condition of hypopituitarism caused by necrosis due to blood loss which results in decreased number of blood cells and resultant pancytopenia [27]. The reported prevalence of pancytopenia in patients with Sheehan syndrome or Simmond syndrome was 15 % (Figure 3) [23, 28].
- Systemic lupus erythematosus is an auto-immune disease. Its association with pancytopenia can be due to failure to recognise between self and non-self cells by immune system [29]. The reported prevalence of pancytopenia was 20–70 % depending on the severity (Figure 3) [30].

Figure 3: Prevalence of pancytopenia for recent cases [4, 12, 15, 17, 20, 21, 23, 25, 28, 30].

Current therapies

The current therapies are listed as follows:

1. Bone marrow stimulant drugs [31–35]
2. Blood transfusion [36]
3. Bone marrow transplantation [37–39]
4. Stem cell therapy [40]

Bone marrow stimulant drugs

Bone marrow stimulant drugs are often used in the pancytopenia, as the major therapy. In this therapy, they inject the bone marrow stimulant drugs, which are generally colony-stimulating factors. These colony-stimulating

factors, over-express the levels of cytokines, which in turn increase the colony-forming units and therefore, increasing the cell production [31]. Sargramostim is one of the colony-stimulating factors, which stimulates the hematopoietic progenitor differentiation to monocytes and neutrophils, which increases the neutrophils and therefore, reduces the threat of neutropenia [32]. Sargramostim is produced with the help of yeast, therefore can cause hypersensitivity in patients on chronic use. Filgrastim is another widely used granulocyte colony-stimulating factor which is used for stimulating the differentiation and proliferation of granulocytes. It is a recombinant DNA technology product. The side-effects include mild to severe bone pain, hypersensitivity reactions, ruptured spleen, haemoptysis and alveolar haemorrhage [33]. Epoetin alfa is a synthetically produced human erythropoietin, which is manufactured using DNA recombinant technology [34]. It stimulates the process of erythropoiesis and is used to increase the productions of erythrocytes in the body. The side-effects of epoetin alfa include joint pain, allergic reactions, pulmonary embolism, etc. It can also increase the levels of haemoglobin and haematocrit abnormally to result in dyspnoea and it can be fatal [35]. As it is seen, the side-effects of colony-stimulating factors majorly include joint pain and hypersensitivity. On, chronic use, the side-effects can be more prevalent and the harm caused to the patient will be more. Also, inadequate dosing can be fatal, as it can invariably increase the levels of colonies and in turn lead to anaphylactic shock.

Blood transfusion

Blood transfusion is commonly done for diseases like thalassemia, where the body fails to produce normal erythrocytes due to defect in the haemoglobin. It is genetic and therefore passed through the families. Blood transfusion is done once in 21 days, as the number of blood cells is utilized down the line. Therefore, the pancytopenic condition is observed in the later days after blood transfusion. Patients with thalassemia often are prone to viral diseases like hepatitis C, for which the ribavirin and interferon therapy is given. During this therapy also pancytopenic conditions are observed. Therefore, colony-stimulating factors are given and also the span for which blood is transfused is reduced. This procedure is very painful and as the transfusion is to be done once in 21 days, it is tedious. Also, it can cause opportunistic infections like hepatitis C [36].

Bone marrow transplantation

In bone marrow transplantation, the destroyed or the damaged bone marrow is replaced with the healthy one. The bone marrow transplantation can be autologous, where the stem cells are removed and a radiotherapy or chemotherapy is given to destroy the whole bone marrow, and then the stem cells are injected back to produce normal cells [37]. In the pancytopenic conditions, as the bone marrow transplantation is done, the damaged bone marrow is replaced with a healthy one, therefore normal blood cells are produced. It is very difficult and rare that the patient's stem cells are healthy and therefore the chances of autologous blood transplant are very rare, unless the umbilical cord stem cells are preserved. The other type of transplant is allogeneic stem cell transplantation, where the stem cell of the sibling or the donor with human leucocytes antigen matching is required. Bone marrow transplantation is a very costly procedure and the end stage therapy, where the person can get totally cured if the operation is successful. Some of the patients also suffer from graft vs host disease, where the stem cells from the donor are rejected by the recipient's body and therefore there is the graft rejection which causes hypersensitivity reactions [38, 39].

Stem cell therapy

Stem cell therapy is the use of the stem cells for the treatment of the diseases. Bone marrow transplantation is also a stem cell therapy, which is discussed in detail above. Induced pluripotent stem cells are recently studied to have potential to regenerate human tissues [40]. They also remain in controversy due to potential of human cloning. In the treatment of pancytopenia these stem cells are used so that the body can produce normal cells with the aid of pluripotent stem cells.

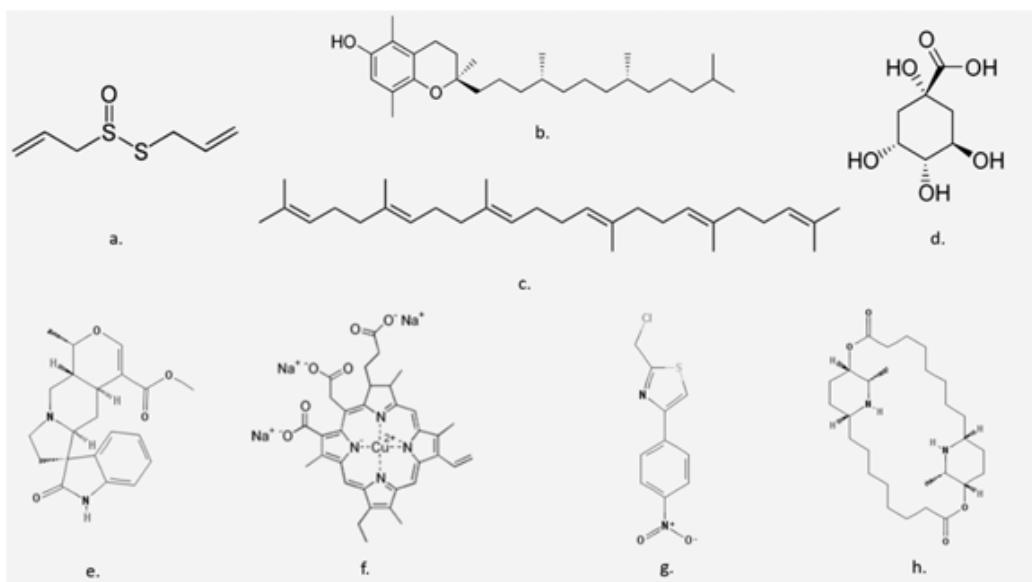
Herbal drugs and the treatment of pancytopenia

Currently, the therapies for the management of pancytopenia are very costly and have various side-effects as listed above. These therapies are very complicated and painful, therefore alternative treatment and newer drugs

is the need of the day. Herbal drugs are the drugs which have a plant origin. Some of the potent drugs which are used today for the treatment of major diseases are isolated from the plants or are either the structural modifications of the compounds which are isolated from the plants. Therefore, newer drugs for the treatment of pancytopenia are necessary. Few plants and herbs are under research for the treatment of pancytopenia. Plants listed in Table 1 are known to increase the blood cell production.

Leucocytopenia

- Garlic [41–46]
- Astragalus [47–53]
- *Uncaria tomentosa* [54–60]


Garlic: *Allium sativum* commonly known as garlic is generally known for its anti-microbial [41] and anti-hyperlipidaemic [42, 43] activity. It is under research for cancer and is meta-analysed for the same [44]. Garlic contains compounds like alliin, allicin, ajoene, diallyl polysulfides, vinylidithiins, S-allylcysteine, and enzymes, saponins and flavonoids [45]. Garlic was reported to be effective in increasing the leucocytes in the body after consumption. Therefore, it was studied and found that allicin [46] (Figure 4) was responsible for the elevation of leucocytes. Sulphydryl compounds are responsible for cell growth and leucopoiesis. Compounds like L-cysteine can induce proliferation of leucocytes. Low –SH had been observed in leucocytopenic conditions. Therefore, the –SH group may be responsible for the activity. Flavonoids are potent anti-oxidants, responsible to decrease oxidative stress. Therefore, decreasing the cell death due to oxidative radical species [47]. The side-effects of allicin are generally regarded as mild and uncommon [48]. Rashes, wheezing and nausea can be seen with people allergic to garlic.

Astragalus: Astragalus is a genus containing 3,000 species. It is currently researched, for its effect in the treatment of cancer [49], hypertension [50], cerebral ischemia [51] and inflammation [52]. Astragalus is also researched for its potential benefits in the treatment in leucocytopenia [53]. Further, the recent studies aim that astragalus polysaccharides promotes the chemotactic ability and differentiation of the bone marrow granulocyte via the L-selectin signalling [54]. It is seen that the astragalus polysaccharides [55] (Figure 4) had increased polymorphonuclear leucocytes significantly than that of granulocyte colony-stimulating factor [54]. Astragalus polysaccharides have also proved to reduce the reactive oxygen species production, which in turn damage the cells and produce leucocytopenia [56]. Astragalus is generally considered safe in adults, but can cause various drug interactions. It may interact with drugs like cyclophosphamide and other immunosuppressant's. Few astragalus species can be neurotoxic, hence thorough identification and characterization needed before consumption [57].

Uncaria tomentosa: Generally known as cat's claw due to its characteristic claw-shaped thorns. They are currently researched for anti-inflammatory [58], anti-oxidant [58], denture stomatitis [59], haemorrhagic cystitis [60] and anti-fungal activity [61]. It has also claimed to have a leucocytopenic activity, especially the elevation of monocytes. The studies conclude that the compound mitraphylline [62] (Figure 4) which is a pentacyclic oxindolic alkaloid found in *Uncaria tomentosa* is responsible for the activation of the monocytes. Also, it regulates the plasticity of the monocytes and in turn of the macrophages [63]. *Uncaria tomentosa* water extracts without indole alkaloids showed significant increase in the levels of all the components of white blood cells [64]. Recently it was found that it also prolonged lymphocyte half-life and increased the number of spleen cells and therefore increases the number of splenic leucocytes. The compound from *Uncaria tomentosa* which was responsible for this activity was quinic acid (Figure 4) [65, 66]. Reported side-effects are headaches, dizziness, and vomiting pertaining to *Uncaria tomentosa*. Its consumption should be avoided during pregnancy as it may act as abortifacient [67].

Table 1: Herbal drugs which can be used for the treatment of pancytopenia [37, 44, 51, 54, 62].

Leucocytopenia	Thrombocytopenia	Erythrocytopenia
Garlic	Papaya leaves	Papaya leaves
Astragalus	wheatgrass	wheatgrass
Cat's claw	Pumpkin	Indian gooseberries
Chlorophyll	Spinach	Fenugreek
Wheatgrass	Indian gooseberries	Spinach

Figure 4: Structure of drugs which may alleviate pancytopenia; a. Allicin (*Allium sativum*), b. Tocopherol (*Cucurbita pepo*), c. Squalene (*Cucurbita pepo*), d. Quinic acid (*Uncaria tomentosa*), e. Mitraphylline (*Uncaria tomentosa*), f. Chlorophyllin – Sodium Copper salt (*Triticum aestivum*), g. Astragalus Polysaccharide (*Astragalus*), h. Carpaine (*Carica papaya*).

Thrombocytopenia

Pumpkin: The biological source of pumpkin is *Cucurbita pepo*. The main components of pumpkin plant are lutein, alpha and beta carotene which generates vitamin A in the body [68]. Compounds like tocopherol [69] and squalene [70] (Figure 4) found in the oil of the seeds of *Cucurbita pepo* are found to contribute to the oxidative stability [71]. The methanolic extract of the *Cucurbita pepo* seeds has found to have decrease the prothrombin time and increase the platelet count [72]. The pumpkin has shown to reduce the bleeding time, as the levels of platelets are increased [73].

Erythrocytopenia

Fenugreek: *Trigonella foenum-graecum* belonging to the family Fabaceae is a semi-arid plant found in the Indian subcontinents. The seeds of *Trigonella foenum-graecum* have proved to have anti-hyperglycaemic [74], anti-neoplastic [75], gastro-protective [76], anti-inflammatory [77], anti-pyretic [77], anti-radical [78] and anti-oxidant effect [78]. *Trigonella foenum-graecum* has also been found to have a role in stimulating the increase of erythrocytes by reducing the oxidative stress on them [79]. It has also been observed that the polyphenol rich extract of *Trigonella foenum-graecum* has proven to reduce the oxidative stress on erythrocytes [80]. The possibility of *Trigonella foenum-graecum* interacting with the cardiovascular drugs is high, therefore concomitant administration of cardiovascular drugs and herbal formulations containing *Trigonella foenum-graecum* should be avoided [81].

Herbal remedies for the treatment of bi-lineage cytopenia

Bi-lineage cytopenia is a type of pancytopenia where the body has either two of the blood cell reduction. The causes still remain the same as that of pancytopenia in general. Oxidative stress and cytotoxic drugs are generally responsible for bi-lineage cytopenias. The treatment is also similar to that of pancytopenia, but a combination therapy of granulocyte stimulating factors and other immunostimulant drugs is given to increase the levels of the blood cells. Related side-effects are also similar to pancytopenia and therefore consideration of alternate herbal approaches is important in its research.

Papaya leaves

Papaya, scientifically known as *Carica papaya*, commonly found in Asia, America and Mexico. In industries, the latex papain found in papaya is used for tenderizing of meat. It is been studied for its anti-tumour [82], immunomodulatory [82], anti-inflammatory [83] and hypo-glycaemic effect [84]. In Asia, the leaves of *Carica papaya* are widely used as a treatment for dengue fever [85]. No proper evidence is still found about its mechanism of action. It is reported that papaya leaves also have increased platelets and erythrocytes in the patients with dengue infection, where the platelets count is reduced. It is said that carpaine [86] (Figure 4) or papain may be responsible for the activity. *Carica papaya* have reported to induce thrombopoietic cytokines by hematopoietic and mesenchymal stem cells [87]. Many papers have reported the effect of the leaves of *Carica papaya* to increase the levels of platelets, but the mechanism of action is still unknown. It is also seen that the aqueous extract boosts the erythropoiesis in the murine models [88]. *Carica papaya* is also studied for its anti-sickling and membrane stabilizing properties of the erythrocytes [89]. It also has anti-oxidant properties, thereby may help in reducing oxidative stress level on the cells. As *Carica papaya* is responsible to elevate the thrombocytes and erythrocytes, it can be used to treat bi-lineage cytopenia.

Herbal remedy for the treatment of pancytopenia

Wheatgrass

Scientifically known as *Triticum aestivum* are the cotyledons of the wheat plant [90]. It contains large amount of iron, phosphorus, magnesium, manganese, copper and zinc [90]. It also has rich source of tocopherols and vitamin E potency. The chlorophyllin present in the wheatgrass has bacteriostatic properties [91]. It also stimulates the production of haemoglobin and erythrocytes in anaemia [92]. Chlorophyllin [93] (Figure 4) administration has shown to increase the abundance of Hematopoietic stem progenitor cell. Also, it is observed that there was activation of pro-survival transcription factors Nrf-2 and NF- κ B, which in turn increased the survival of bone marrow cells. It thereby enhanced the levels of colony-stimulating factors [94–96]. As the survival of bone marrow is increased, it can directly enhance the production of erythrocytes, leucocytes and thrombocytes and benefit in the treatment of pancytopenia. Wheatgrass juice is reported safe [97].

Conclusions

As there is an unmet need in the treatment of pancytopenia, newer therapies with the fewer side-effects and better efficacy are needed. Herbal drugs mentioned above are responsible for treating single lineage pancytopenia. Drugs like chlorophyllin can be possibly used for the treatment of pancytopenia. Other drugs can be used in combination for the treatment. As sulphhydryl compounds are responsible for the cell growth, compounds like S-allylcysteine and alicin can be used for the elevation of leucocytes. Papain may be used for the treatment of thrombocytopenia as it elevates the level of cytokines and also has cell membrane stabilizing properties. Chlorophyllin may be a potential candidate for treating multi-lineage pancytopenia but also specifically the erythrocytopenia. Interestingly, the combination of these compounds particularly having different mechanism and site of action may aid in the alleviation of pancytopenia and therefore, stabilizing the blood levels in the patient. However, further research is required to discover the potential benefits of herbal combinations in the treatment of pancytopenia.

Acknowledgement

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Bhatnagar SK, Chandra J, Narayan S, Sharma S, Singh V, Dutta AK. Pancytopenia in children: etiological profile. *J Trop Pediatr*. 2005;51:236–239.
2. Santra G, Das BK. A cross-sectional study of the clinical profile and aetiological spectrum of pancytopenia in a tertiary care centre. *Singapore Med J*. 2010;51:806–812.
3. Naseem S, Varma N, Das R, Ahluwalia J, Sachdeva MU, Marwaha RK. Pediatric patients with bycytopenia/pancytopenia: review of etiologies and clinico-hematological profile at a tertiary center. *Indian J Pathol Microbiol*. 2011;54:75–80.
4. Connell WR, Kamm MA, Ritchie JK, Lennard-Jones JE. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. *Gut*. 1993;34:1081–1085.
5. Anstey A, Lennard L, Mayou SC, Kirby JD. Pancytopenia related to azathioprine—an enzyme deficiency caused by a common genetic polymorphism: a review. *J R Soc Med*. 1992;85:752–756.
6. Watanabe N, Narimatsu H, Noh JY, Yamaguchi T, Kobayashi K, Kami M, et al. Antithyroid drug-induced hematopoietic damage: a retrospective cohort study of agranulocytosis and pancytopenia involving 50,385 patients with Graves' disease. *J Clin Endocrinol Metab*. 2012;97:E49–E53.
7. Kahn A, Boroff ES, Martin KA, Northfelt DW, Heigh RI. Factitious disorder in Crohn's disease: recurrent pancytopenia caused by surreptitious ingestion of 6-mercaptopurine. *Case Rep Gastroenterol*. 2015;9:137–141.
8. Keung YK, Keung LW, Hong-Lung Hu E. A case of recurrent pancytopenia in a patient with acute promyelocytic leukemia on maintenance chemotherapy and concomitant methyltetrahydrofolate reductase and thiopurine S-methyltransferase mutation-review of literature. *J Oncol Pharm Pract*. 2016;22:548–551.
9. Doshi D, Shah AN, Somani S, Jain A, Jivarajani H, Kothari P. Study of clinical and aetiological profile of 100 patients of pancytopenia at a tertiary care centre in India. *Hematology*. 2012;17:100–105.
10. Gayathri BN, Rao KS. Pancytopenia: a clinico hematological study. *J Lab Physicians*. 2011;3:15–20.
11. Wang L, He X, Bi Y, Ma Q. Stem cell and benzene-induced malignancy and hematotoxicity. *Chem Res Toxicol*. 2012;25:1303–1315.
12. Gonzalez-Ibarra F, Eivaz-Mohammadi S, Surapaneni S, Alsaadi H, Syed AK, Badin S, et al. Methotrexate induced pancytopenia. *Case Rep Rheumatol*. 2014;2014:679580.
13. Lens S, Calleja JL, Campillo A, Carrión JA, Broquetas T, Perello C, et al. Aplastic anemia and severe pancytopenia during treatment with peg-interferon, ribavirin and telaprevir for chronic hepatitis C. *World J Gastroenterol*. 2015;21:5421–5426.
14. Alzahrani T, Kay D, Alqahtani SA, Makke Y, Lesky L, Koubeissi MZ. Levetiracetam-induced pancytopenia. *Epilepsy Behav Case Rep*. 2015;4:45–47.
15. Sahaya K, Goyal MK, Sarwal A, Singh NN. Levetiracetam-induced thrombocytopenia among inpatients: A retrospective study. *Epilepsia*. 2010;51:2492–2495.
16. Erlacher M, Grünert SC, Cseh A, Steinfeld R, Salzer U, Lausch E, et al. Reversible pancytopenia and immunodeficiency in a patient with hereditary folate malabsorption. *Pediatr Blood Cancer*. 2015;62:1091–1094.
17. O'Donoghue DP, Dawson AM, Powell-Tuck J, Bown RL, Lennard-Jones JE. Double-blind withdrawal trial of azathioprine as maintenance treatment for Crohn's disease. *The Lancet* 1978 Nov. 4;312:955–957.
18. Liu H, Liu F, Zhang M, Yan W, Sang H. Combined acute interstitial pneumonitis and pancytopenia induced by low-dose methotrexate in a hemodialysis patient treated for bullous pemphigoid. *An Bras Dermatol*. 2015;90:43–45.
19. Srivastava S, Patil P, Ghorpade KG, Manghani P. Acute myeloid leukemia presenting as pancytopenia-a rare case. *Int J Med Sci Public Health*. 2016;5:370–372.
20. Jain A, Naniwadekar M. An etiological reappraisal of pancytopenia-largest series reported to date from a single tertiary care teaching hospital. *BMC Blood Disorders*. 2013;13:1.
21. Yu M, Dai CY, Lee LP, Hsieh MY, Hou NJ, Huang JF, et al. Outcome of chronic hepatitis C patients who required early termination of pegylated interferon-alpha plus ribavirin combination therapy. *Antivir Ther*. 2006;11:1015.
22. Lang D, Mead JS, Sykes DB. Hormones and the bone marrow: panhypopituitarism and pancytopenia in a man with a pituitary adenoma. *J Gen Intern Med*. 2015;30:692–696.
23. Shivaprasad C. Sheehan's syndrome: Newer advances. *Indian J Endocrinol Metabol*. 2011;15:S203–S207.
24. Schack LH, Mouritsen LS, Elowsson C, Krarup-Hansen A, Safwat A. The Danish experience with trabectedin treatment for metastatic sarcoma: importance of hyponatremia. *Acta Oncol*. 2015;54:34–40.
25. Malla S, Banda S, Bansal D, Gudala K. Trabectedin related muscular and other adverse effects; data from public version of the FDA adverse event reporting system. *Int J Med Pharm Sci*. 2013;3:11–17.
26. MacFarland S, Hartung H. Pancytopenia in a patient with methylmalonic aciduria. *Blood*. 2015;125:1840.
27. Demir MV, Yaylaci S, Demir TÖ, Temiz T, Genç AB. A rare cause of pancytopenia: Sheehan's syndrome. *Med J DY Patil Univ*. 2015;8:265–266.
28. Dodhy MA, Altaf S, Amir R. Pancytopenia due to Sheehan's syndrome. *Int J Pathol*. 2013;11:21–23.
29. Ahmed A, Chana J, McNally J, Sampson R. E95. An unusual cause of pancytopenia in a patient with systemic lupus erythematosus. *Rheumatology*. 2015;54:i204.
30. Estes D, Christian CL. The natural history of systemic lupus erythematosus by prospective analysis. *Medicine*. 1971;50:85–96. Mar 1;.

31. Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and emergency hematopoiesis. *Cytokine*. 2008;42:277–288.
32. Waller EK. The role of sargramostim (rhGM-CSF) as immunotherapy. *Oncologist*. 2007;12:22–26.
33. Leung M, Florendo J, Kano J, Marr-Del Monte T, Higgins B, Myers R, et al. A modified filgrastim regimen does not reduce pain burden compared to pegfilgrastim in women receiving chemotherapy for non-metastatic breast cancer. *Support Care Cancer*. 2015;23:1669–1677.
34. Stefania S, Walsh G. Directory of approved biopharmaceutical products. Boca Raton: CRC Press; 2004.
35. Singbartl G. Adverse events of erythropoietin in long-term and in acute/short-term treatment. *Clin Investig*. 1994;72:S36–S43.
36. Chassé M, McIntyre L, Tinmouth A, Acker J, English SW, Knoll G, et al. Clinical effects of blood donor characteristics in transfusion recipients: protocol of a framework to study the blood donor–recipient continuum. *BMJ Open*. 2015;5:e007412.
37. Yair R, Martelli M. Bone marrow transplantation. U.S. Patent No. 5,806,529. 15 Sep. 1998.
38. Kanda J, Ikegami K, Fuji S, Fukuda T, Kurokawa M, Ogawa H. The impact of HLA mismatch only in the host-versus-graft direction on the outcome of related hematopoietic stem cell transplantation for patients with hla-homozygous haplotypes: a retrospective analysis of the JSHCT HLA working group study. *Biol Blood Marrow Transplant*. 2015;21:S159–S160.
39. Gloster HM, Gebauer LE, Mistur RL. Graft-versus-host disease. Absolute dermatology review. Heidelberg: Springer International Publishing; 2016:129–131.
40. Wertheim JA, Leventhal JR. Clinical implications of basic science discoveries: induced pluripotent stem cell therapy in transplantation—a potential role for immunologic tolerance. *Am J Transplant*. 2015;15:887–890.
41. Moghadam FJ, Navidifar T, Amin M. Antibacterial activity of garlic (*Allium sativum* L.) on multi-drug resistant helicobacter pylori isolated from gastric biopsies. *Int J Enteric Pathog*. 2014;2:e16749.
42. Ebrahimi T, Behdad B, Abbasi MA, Rabati RG, Fayyaz AF, Behnood V, et al. High doses of garlic extract significantly attenuated the ratio of serum LDL to HDL level in rat-fed with hypercholesterolemia diet. *Diagn Pathol*. 2015;10:74.
43. Ha AW, Ying T, Kim WK. The effects of black garlic (*Allium sativum*) extracts on lipid metabolism in rats fed a high fat diet. *Nutr Res Pract*. 2015;9:30–36.
44. Nicastro HL, Ross SA, Milner JA. Garlic and onions: their cancer prevention properties. *Cancer Prev Res (Phila)*. 2015;8:181–189.
45. Srivastava S, Pathak PH. Changes in WBC differential count pattern in male albino rats treated with garlic (*allium sativum*) extract. *Int J Pharm Sci Res*. 2012;3:1716.
46. National Center for Biotechnology Information. PubChem Compound Database; CID=65036. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/65036#section=Top>. Accessed: 6 Oct 2016.
47. Ilić DP, Stojanović S, Najman S, Nikolić VD, Stanojević LP, Tačić A, et al. Biological evaluation of synthesized allicin and its transformation products obtained by microwaves in methanol: antioxidant activity and effect on cell growth. *Biotechnol Biotechnol Equip*. 2015;29:189–194.
48. Tattelman E. Health effects of garlic. *Am Fam Physician*. 2005;72:103–106.
49. Wang S, Tang L, Chen F. Astragaloside III from *Astragalus membranaceus* antagonizes breast cancer growth. *Afr J Tradit Complement Altern Med*. 2015;12:183–186.
50. Li N, Zhai X, Wang Q, Zhang X, Zhao F, Wang X, et al. Effects of Mongolia astragalus on early cardiac and nephritic function in patients of hypertension with metabolic syndrome. *J Hypertens*. 2015;33:e191.
51. Huang XP, Ding H, Wang B, Qiu YY, Tang YH, Zeng R, et al. Effects of the main active components combinations of *Astragalus* and *Panax notoginseng* on energy metabolism in brain tissues after cerebral ischemia-reperfusion in mice. *Pharmacogn Mag*. 2015;11:732–739.
52. Luo T, Qin J, Liu M, Luo J, Ding F, Wang M, et al. *Astragalus* polysaccharide attenuates lipopolysaccharide-induced inflammatory responses in microglial cells: regulation of protein kinase B and nuclear factor- κ B signaling. *Inflamm Res*. 2015;64:205–212.
53. Weng XS. Treatment of leucopenia with pure *Astragalus* preparation—an analysis of 115 leucopenic cases. *Zhongguo Zhong Xi Yi Jie He Za Zhi*. 1995;15:462–464.
54. Zhang PP, Meng ZT, Wang LC, Guo LM, Li K. *Astragalus* polysaccharide promotes the release of mature granulocytes through the L-selectin signaling pathway. *Chin Med*. 2015;10:17.
55. National Center for Biotechnology Information. PubChem Compound Database; CID=2782115. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/2782115>. Accessed 6 Oct 2016.
56. Abuelsaad AS. Supplementation with *Astragalus* polysaccharides alters *Aeromonas*-induced tissue-specific cellular immune response. *Microb Pathog*. 2014;66:48–56.
57. NIH National Centre for Complementary and Integrative Health. *Astragalus*. Available at: <https://nccih.nih.gov/health/astragalus>. Accessed: 14 Sept 2016.
58. Sandoval M, Okuhama NN, Zhang XJ, Condezo LA, Lao J, Angeles' FM, et al. Anti-inflammatory and antioxidant activities of cat's claw (*Uncaria tomentosa* and *Uncaria guianensis*) are independent of their alkaloid content. *Phytomedicine*. 2002;9:325–337.
59. Tay LY, Dos Santos FA, Jorge JH. *Uncaria tomentosa* gel against denture stomatitis: clinical report. *J Prosthodont*. 2015;24:594–597.
60. Dietrich F, Pietrobon Martins J, Kaiser S, Madeira Silva RB, Rockenbach L, Albano Edelweiss MI, et al. The quinovic acid glycosides purified fraction from *Uncaria tomentosa* protects against hemorrhagic cystitis induced by cyclophosphamide in mice. *PLoS One*. 2015;10:e0131882.
61. Moraes RC, Lana AJD, Kaiser S, Carvalho AR, de Oliveira LFS, Fuentefria AM, et al. Antifungal activity of *Uncaria tomentosa* (Willd.) DC against resistant non-albicans *Candida* isolates. *Ind Crops Prod*. 2015;69:7–14.
62. National Center for Biotechnology Information. PubChem Compound Database; CID=94160. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/94160>. Accessed: 6 Oct 2016.
63. Montserrat-de la Paz S, de la Puerta R, Fernandez-Arche A, Quilez AM, Muriana FJ, Garcia-Gimenez MD, et al. Pharmacological effects of mitraphylline from *Uncaria tomentosa* in primary human monocytes: skew toward M2 macrophages. *J Ethnopharmacol*. 2015;170:128–135.
64. Sheng Y, Pero RW, Wagner H. Treatment of chemotherapy-induced leukopenia in a rat model with aqueous extract from *Uncaria tomentosa*. *Phytomedicine*. 2000;7:137–143.

65. National Center for Biotechnology Information. PubChem Compound Database; CID=6508. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/6508>. Accessed: 6 Oct 2016.

66. Akesson C, Lindgren H, Pero RW, Leanderson T, Ivars F, et al. Quinic acid is a biologically active component of the *Uncaria tomentosa* extract C-Med 100®. *Int Immunopharmacol.* 2005;5:219–229.

67. NIH National Centre for Complementary and Integrative Health. Cat's Claw. Available at: <https://nccih.nih.gov/health/catclaw>. Accessed: 14 Sept 2016.

68. Van Arnum SD. Vitamin A. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc., 2000.

69. National Center for Biotechnology Information. PubChem Compound Database; CID=14985. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/14985>. Accessed: 6 Oct 2016.

70. National Center for Biotechnology Information. PubChem Compound Database; CID=638072. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/638072>. Accessed: 6 Oct 2016.

71. Naziri E, Mitić MN, Tsimidou MZ. Contribution of tocopherols and squalene to the oxidative stability of cold-pressed pumpkin seed oil (*Cucurbita pepo* L.). *Eur J Lipid Sci Technol.* 2016;118:898–905.

72. Adepoju GKA, Adebajo AA. Effect of consumption of *Cucurbita pepo* seeds on haematological and biochemical parameters. *Afr J Pharm Pharmacol.* 2011;5:18–22.

73. Abdel-Barry JA, Abdel-Hassan IA, Al-Hakiem MH. Hypoglycaemic and antihyperglycaemic effects of *Trigonella foenum-graecum* leaf in normal and alloxan induced diabetic rats. *J Ethnopharmacol.* 1997;58:149–155.

74. Gupta A, Gupta R, Lal B. Effect of *Trigonella foenum-graecum* (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: A double blind placebo controlled study. *J Assoc Physicians India.* 2001;49:1057–1061.

75. Sur P, Das M, Gomes A, Vedasironmoni JR, Sahu NP, Banerjee S, et al. *Trigonella foenum graecum* (fenugreek) seed extract as an antineoplastic agent. *Phytother Res.* 2001;15:257–259.

76. Pandian RS, Anuradha CV, Viswanathan P. Gastroprotective effect of fenugreek seeds (*Trigonella foenum graecum*) on experimental gastric ulcer in rats. *J Ethnopharmacol.* 2002;81:393–397.

77. Ahmadiani A, Javan M, Semnanian S, Barat E, Kamalinejad M. Anti-inflammatory and antipyretic effects of *Trigonella foenum-graecum* leaves extract in the rat. *J Ethnopharmacol.* 2001;75:283–286.

78. Kaviarasan S, Naik GH, Gangabhirathi R, Anuradha CV. In vitro studies on antiradical and antioxidant activities of fenugreek (*Trigonella foenum graecum*) seeds. *Food Chem.* 2007;103:31–37.

79. Suboh SM, Bilto YY, Aburjai TA. Protective effects of selected medicinal plants against protein degradation, lipid peroxidation and deformability loss of oxidatively stressed human erythrocytes. *Phytother Res.* 2004;18:280–284.

80. Kaviarasan S, Vijayalakshmi K, Anuradha CV. Polyphenol-rich extract of fenugreek seeds protect erythrocytes from oxidative damage. *Plant Foods Hum Nutr.* 2004;59:143–147.

81. Izzo Angelo A, et al. Cardiovascular pharmacotherapy and herbal medicines: the risk of drug interaction. *Int J Cardiol.* 2005;1–14. 98.

82. Otsuki N, Dang NH, Kumagai E, Kondo A, Iwata S, Morimoto C. Aqueous extract of *Carica papaya* leaves exhibits anti-tumor activity and immunomodulatory effects. *J Ethnopharmacol.* 2010;127:760–767.

83. Owoyele BV, Adebukola OM, Funmilayo AA, Soladoye AO. Anti-inflammatory activities of ethanolic extract of *Carica papaya* leaves. *Inflammopharmacology.* 2008;16:168–173.

84. Juárez-Rojop IE, Díaz-Zagoya JC, Ble-Castillo JL, Miranda-Osorio PH, Castell-Rodríguez AE, Tovilla-Zárate CA, et al. Hypoglycemic effect of *Carica papaya* leaves in streptozotocin-induced diabetic rats. *BMC Complement Altern Med.* 2012;12:236.

85. Ahmad N, Fazal H, Ayaz M, Abbasi BH, Mohammad Fazal L. Dengue fever treatment with *Carica papaya* leaves extracts. *Asian Pac J Trop Biomed.* 2011;1:330–333.

86. National Center for Biotechnology Information. PubChem Compound Database; CID=442630. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/442630>. Accessed: 6 Oct 2016.

87. Aziz J, Abu Kasim NL, Abu Kasim NH, Haque N, Rahman MT. *Carica papaya* induces in vitro thrombopoietic cytokines secretion by mesenchymal stem cells and haematopoietic cells. *BMC Complement Altern Med.* 2015;15:215.

88. Dharmarathna SL, Wickramasinghe S, Waduge RN, Rajapakse RP, Kularatne SA. Does *Carica papaya* leaf-extract increase the platelet count? An experimental study in a murine model. *Asian Pac J Trop Biomed.* 2013;3:720–724.

89. Imaga NOA, Gbenle GO, Okochi VI, Akanbi SO, Edeoghon SO, Oigbochie V, et al. Antisickling property of *Carica papaya* leaf extract. *Afr J Biochem Res.* 2009;3:102–106.

90. Singh N, Verma P, Pandey BR. Therapeutic potential of organic *Triticum aestivum* linn. (wheatgrass) in prevention and treatment of chronic diseases: An overview. *Int J Pharm Sci Drug Res.* 2012;4:10–14.

91. Oliveira Gabriele Rocha, et al. Bactericidal Performance of Chlorophyllin-Copper Hydrotalcite Compounds. *Water Air Soil Pollution.* 2015;226:1–12.

92. Shakya Garima, et al. Protective role of wheatgrass on oxidative stress in streptozotocin induced type 2 diabetic rats. *Int J Pharm Pharm Sci.* 2012;4:415.

93. Suryavanshi S, Sharma D, Checker R, Thoh M, Gota V, Sandur SK, et al. Amelioration of radiation-induced hematopoietic syndrome by an antioxidant chlorophyllin through increased stem cell activity and modulation of hematopoiesis. *Free Radic Biol Med.* 2015;85:56–70.

94. National Center for Biotechnology Information. PubChem Compound Database; CID=108006. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/108006#section=Top>. Accessed: 6 Oct 2016.

95. Yin LM, Jiang HF, Wang X, Qian XD, Gao RL, Lin XJ, et al. Effects of sodium copper chlorophyllin on mesenchymal stem cell function in aplastic anemia mice. *Chin J Integr Med.* 2013;19:360–366.

96. Suryavanshi S, Sharma D, Checker R, Santosh KS, Sainis KB. Radioprotection against radiation induced bone marrow syndrome by a semi-synthetic derivative of chlorophyll. *India: Soc Free Radic Res.* 2014;45:45103191.

97. Padalia Swati, et al. Multitude potential of wheatgrass juice (Green Blood): an overview. *Chron Young Sci.* 2010;1:23.