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Abstract: Causal inference methods for treatment effect estimation usually assume independent units.
However, this assumption is often questionable because units may interact, resulting in spillover effects
between them. We develop augmented inverse probability weighting (AIPW) for estimation and inference
of the expected average treatment effect (EATE) with observational data from a single (social) network with
spillover effects. In contrast to overall effects such as the global average treatment effect, the EATE measures,
in expectation and on average over all units, how the outcome of a unit is causally affected by its own
treatment, marginalizing over the spillover effects from other units. We develop cross-fitting theory with
plugin machine learning to obtain a semiparametric treatment effect estimator that converges at the para-
metric rate and asymptotically follows a Gaussian distribution. The asymptotics are developed using the
dependency graph rather than the network graph, which makes explicit that we allow for spillover effects
beyond immediate neighbors in the network. We apply our AIPW method to the Swiss StudentLife Study data
to investigate the effect of hours spent studying on exam performance accounting for the students’ social
network.
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1 Introduction

Classical causal inference approaches for treatment effect estimation with observational data usually assume
independent units. This assumption is part of the common stable unit treatment value assumption (SUTVA) [1].
However, independence is often violated in practice due to interactions among units that lead to so-called
spillover effects. For example, the vaccination against an infectious disease (treatment) of a person (unit) may
not only influence this person’s health status (outcome) but may also protect the health status of other people
the person is interacting with [2,3]. In the presence of spillover effects, standard algorithms fail to separate
correlation from causation, and spurious associations due to network dependence contribute to the replication
crisis [4] and may yield biased causal effect estimators and invalid inference [2,4–8]. New approaches are
required to guarantee valid causal inference from observational data with spillover effects.

We consider the following types of spillover effects: (i) causal effects of other units’ treatments on a given
unit’s outcome, referred to as interference in the literature [5,9], and (ii) causal effects of other units’ covariates
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on a given unit’s treatment or outcome.1 The spillover effects a unit receives are governed by proximity of this
unit to other units in a known undirected network G. The edges of this network represent some kind of
interaction or relationship of the respective units such as friendship, geographical closeness, or shared
department in a company.

In this article, the causal effect of interest and target of inference is the expected average treatment effect
(EATE) [3] in an observational setting. The EATE measures, in expectation and on average over all units, how
the outcome of a unit is causally affected by its own treatment in the presence of spillover effects from other
units. The EATE is the statistical parameter when the question is how, on average for all units, the outcome of a
specific unit is influenced when only its own treatment is altered. In the infectious disease example, the EATE
measures the average expected difference in health status of an individual assigned to the vaccination versus
not, marginalizing over unit-specific covariates and spillover effects of other people. This corresponds to the
medical effect of the vaccine in a person’s body. This interpretation highlights that the EATE is not an estimand
for policy evaluation, where, for example, one is interested in capturing the effect of jointly vaccinating
a sample of the population.

We now formalize the EATE following the study by Sofrygin and van der Laan [10]. For each unit
=i N1, 2,…, , let { }∈W 0, 1i be the dichotomous treatment, Yi be the response, and Ci be the covariates of

unit i. The N units are connected in a fixed undirected network G in which they may exhibit spillover effects
of the two aforementioned types (i) and (ii) from their immediate neighbors and/or units further away. Let PL

N

be the observational distribution of ( )= =O W C Y, ,i i i i N1, … , , where L is the distribution of ( )=W W W, …, N1 given
( )=C C C, …, N1 . Let P

L

N
˜ be the distribution of ( )͠͠ = =O W C Y, ,i i i i N1, … , , where the conditional distribution L

ofW givenC has been replaced by the user-defined distribution L̃. This distribution L̃ describes the intervention
on the treatment vector W that the researcher is interested in. We can then define the EATE as
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where we use the do-notation of Pearl [11] and

( ) ( ) { }= ∈− +L w W W w W W w˜ , …, , , , …, , for 0,1 ,i i i N1 1 1

represents the intervention on the unit-specific treatment Wi (setting it to constant w), but the distribution of
treatments Wj for the other −N 1 units j in the network are left unchanged. In particular, the intervention

( )L w˜
i is independent of C . Thus, ( )θ 1N

0 evaluates a collection of unit-specific distributions, ( ( ) ( ))L L˜ 1 , …, ˜ 1N1 ,
which cannot be rewritten as a single intervention L̃ on the whole treatment vectorW . By denoting the EATE
by θN

0 , it remains implicit that it is defined conditional on a specific network G, while it is explicit that it is a
function of the given sample size N . Consequently, the EATE’s true value can vary depending on the sample
size and the network structure.

To simplify notation, we rewrite the EATE by
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and ( )=− − +W W W W W, …, , , …,i i i N1 1 1 and ( )=− − +C C C C C, …, , , …,i i i N1 1 1 . Thus, the EATE equals the average of the
unit-specific treatment effects θi

0, i.e., the expected difference in outcomes Yi if the treatment was assigned to
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unit i versus if it was retained from unit i. The unit-specific treatment effects may not be the same for all units
because the outcomes may have different distributions conditional on −W i and −C i across units due to the
spillover effects. In the setting without spillover effects, the distribution of Yi does not depend on −W i and −C i,
for each =i N1,…, , and thus, the EATE coincides with the average treatment effect (ATE) if spillover effects are
absent [12,13].

We impose the following key assumption (that is standard in this literature [6,10,14]): the spillover effects
can be summarized by lower-dimensional features, i.e., we will use domain knowledge-informed features that
are arbitrary functions of the network G and the treatment and covariate vectors of all units [15,16]. The
features are assumed to capture all pathways through which spillover effects take place. For example, Cai et al.
[17] and Leung [18] model the purchase of a weather insurance (outcome) of farmers in rural China as
a function of attending a training session (treatment) and the proportion of friends who attend the session
(feature on direct neighbors in the network).

In the following, we will assume a structural equation model (SEM) to impose our assumptions on the
data-generating mechanism of the joint distribution of ( ) =W C Y, ,i i i i N1 … , . The outcome and propensity score
model of the SEM may be highly complex and nonsmooth and include interactions and high-dimensional
variables. We then follow an augmented inverse probability weighting (AIPW) [19] approach to estimate the
EATE θN

0 in the context of this model. We estimate the outcome and propensity score models with arbitrary
machine learning algorithms and plug them into our AIPW estimand identifying θN

0 . These machine learning
estimators may be highly complex and suffer from regularization bias and slow converge rates. However, the
use of sample splitting with cross-fitting [20] allows us to address these issues. Limiting the growth of depen-
dencies between units, our estimator of the EATE is consistent, converges at the N -rate, and asymptotically
follows a Gaussian distribution. This allows us to construct confidence intervals and p-values.

1.1 Our contribution and comparison to literature

Our work is most related to the literature on semiparametric treatment effect estimation and inference with
observational data from a single network. Tchetgen Tchetgen et al. [21] developed a network version of the g-
formula [22] and performed outcome regression, assuming that the data can be represented as a chain graph,
which is a graphical model that is generally incompatible with our SEM approach [23]. An SEM approach is also
used by van der Laan [14], Sofrygin and van der Laan [10], and Ogburn et al. [6]. These works considered a
similar model as we do and proposed semiparametric treatment effect estimation by targeted maximum
likelihood (TMLE) [24–26]. van der Laan [14] and Ogburn et al. [6] primarily considered global effects that
compare two hypothetical interventions on the whole treatment vector. An example of such an effect is the
global average treatment effect (GATE), which contrasts the interventions of treating all units of the population
versus treating no unit of the population. In contrast, we consider the EATE that is the average effect of
assigning the treatment to one unit versus not and integrate out the treatment selections from the other units.
Causal effects like the EATE summarizing the effect of N unit-specific interventions generally cannot be
described using a single intervention on the whole treatment vector, as done for global effects. The behavior
of estimators for the EATE under the wrong independent and identically distributed assumption is studied by
Sävje et al. [3]. Sofrygin and van der Laan [10] mentioned a possible extension to estimate the EATE with TMLE,
but all their results are for global effects such as the GATE. Their theory assumes some kind of a bounded
entropy integral, which is difficult to verify for machine learning methods.

Our contribution includes the following. First, we present a semiparametric, machine learning-based
approach to estimate the EATE with observational data from a single network. Our approach enables per-
forming inference, including confidence intervals and p-values. Particularly, we do not require multiple
disjoint networks. We develop a cross-fitting algorithm under interference and reason in terms of the depen-
dency graph to explicitly allow for different interactions, also specifically ones that are beyond immediate
neighbors in the network. Second, the limiting asymptotic Gaussian distribution and optimal N -convergence
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rate of the EATE estimator are achieved even if the number of ties of a unit may diverge asymptotically. To
reach this optimal convergence rate to estimate global effects, Ogburn et al. [6] need to uniformly bound the
neighborhood size of a unit. Third, our algorithm based on sample splitting is easy to understand and imple-
ment, and the user may choose any machine learning algorithm. Fourth, we analyze the Swiss StudentLife
Study data [27,28] and estimate the effect of study time on the grade point average (GPA) of freshmen students
after their first-year examinations at one of the world’s leading universities.

Outline of this article. Section 2 presents the model assumptions, characterizes the treatment effect
of interest, outlines the procedures for the point estimation of the EATE and estimation of its variance,
and establishes asymptotic results. Section 3 demonstrates our methodological and theoretical developments
in a simulation study and on empirical data of the StudentLife Study.

2 Framework and our network AIPW estimator

2.1 Model formulation

We consider =i N1,…, units interacting in a known undirected network G. For each unit i, we observe
a binary treatment { }∈W 0, 1i , a univariate outcomeYi , and a possibly multivariate vector of observed covariates
Ci that may causally affect Wi and Yi . The outcome Yi may be dichotomous or continuous, and the potentially
multivariate covariates Ci may consist of discrete and continuous components. Irrespective of whether
the outcomes are continuous or dichotomous, we can consider the following SEM with additive error terms
for =i N1,…, :
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where the errors εWi
and εYi

are jointly independent, we have�[ ∣ ] =ε C Z, 0W i ii
and�[ ∣ ] =ε W C X, , 0Y i i ii

, the errors
satisfy the assumptions in the study by Bühlmann [29] (required for the bootstrap variance results in Appendix
F), and the εWi

’s are identically distributed and the εYi
’s are identically distributed (required for the alternative

variance results in Appendix G). We note that the identical distribution of the error terms is only required for
our approach to estimate standard errors. The vector ( )=− − +C C C C C C, , …, , , …,i i i N1 2 1 1 denotes the vector of
covariates of units ≠j i, and −W i is similarly defined. The binary treatments Wi can be thought of as

( ( ))h C ZBernoulli ,i i
0 realizations. A constant h0 corresponds to a Bernoulli experiment. This SEM encodes

the assumption that the covariates Ci and features Xi suffice to control for confounding of the effect of the
treatment on the outcome. The propensity score function ( )⋅ ⋅h ,0 and the outcome model consisting of ( )⋅ ⋅g ,

1

0

and ( )⋅ ⋅g ,
0

0 are fixed but unknown functions that all units share. Nevertheless, the distribution of the responses
may differ across units due to the X -spillover that captures effects from, e.g., a unit’s neighbors’ covariates and
treatment assignments as described next. Because every unit may have a different number of neighbors, the
Xi’s may follow a different distribution across different units, resulting in non-fixed distributions of the
responses across units. Furthermore, the individual equations in (1) have to be understood in a distributional
sense in that, if, e.g., ≡ ≡g g0

1

0

0

0, we have =Y εi Yi
in distribution only.

The functions f
z

l, [ ]∈l t and f
x

l , [ ]∈l r , which are shared by all units and used to build the Z - and
X -features, are assumed to be known, and their concatenations are assumed to be of fixed dimensions t

and r , respectively. This is analogous to the in-practice considerations in Ogburn et al. [6]. We also allow
for features of further degree neighbors: for example, f

x

1 might capture the fraction of treated units that are a
distance of 2 from a given unit in the network G. Making use of an implied dependency graph gives a more
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transparent formulation (Section 2.3). Since the network G is undirected, our spillover effects are assumed to
be reciprocal, i.e., if unit i receives spillover effects from unit j throughWj and/or Cj, then unit j also receives
spillover effects from unit i through Wi and/or Ci. Example 1 illustrates the construction of 2-dimensional
X -features. Importantly, the X - and Z -features render the unit-level data dependent. In addition, the distribu-
tions of propensity scores and outcomes are not generally identical across units due to distributional differ-
ences of these features.

Example 1. Consider the network in Figure 1, where gray nodes take the treatment and white ones do not.
We choose =r 2 many X -features and discard any influence of Cj in Xi, i.e., ({( )} )[ ] { } =∈f W C G f, ,

x

l
j j j N i x

l
\

({( )} )[ ] { }∈W G,j j N i\ for =l 1, 2. Given a unit i, we choose the first feature in Xi as the fraction of treated neighbors
of unit i and the second feature as the fraction of treated neighbors of neighbors of i. Let us consider unit =i 6

in Figure 1. Its neighbors are the units 2, 5, and 7, and its neighbors of neighbors are the units 1 and 3
(neighbors of unit 2) and unit 8 (neighbor of unit 7), where we exclude =i 6 from its second degree neighbor-
hood by definition. Therefore, we have ( )= ∕ ∕X 1 3, 2 36 because one out of three neighbors is treated and two
out of three neighbors of neighbors are treated. The whole ×9 2 dimensional X -feature matrix is obtained by
applying the same computations to all other units i.

2.2 Treatment effect and identification

Plugging in the outcome equation of the SEM (1), we can rewrite the treatment effect of interest, the EATE, as
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where we obtain that the unit-specific treatment effect of unit i is � [ ( ) ( )]= −θ g C X g C X, ,i C X i i i i
0

, 1

0

0

0

i i
. Particularly,

we assume that given the observable confounders Ci and features Xi, we can replace the do-operator by
respective conditioning. The expectation �C X,i i

over Ci and Xi is with respect to the observational distributions
of Ci and Xi, as defined by the SEM (1). This notation makes explicit that the EATE is conditional on N , whereas
it remains implicit that it is also conditional on the network G. We refer to the study by Ogburn et al. [6]
for a discussion of the interpretation of such conditional effects.

Estimating g
1

0 and g
0

0 by regression machine learning algorithms and plugging them into (2) would not
result in a parametric convergence rate and an asymptotic Gaussian distribution of the so-obtained estimator.
To obtain asymptotic normality with convergence at the N -rate, a centered correction term involving
the propensity score h0 is added to ( ) ( )−g C X g C X, ,i i i i1

0

0

0 , and we can identify the EATE as follows.

Figure 1: Network on nine units where the node label represents the number of a unit. Gray nodes receive the treatment, corresponding
to =W 1i , and white ones do not, corresponding to =W 0i .
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Lemma 2.1. Let [ ]∈i N . Let
( )=S C Z W X Y, , , ,i i i i i i (3)

be the concatenation of the observed variables for unit i. For concatenations ( )=η g g h, ,
1 0
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1
, g

0
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including the aforementioned correction term. For the true nuisance functions ( )=η g g h, ,0

1

0

0

0 0 , we have
�[ ( )] =φ S η θ,i i

0 0 and can consequently identify the EATE (2) by
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i
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The aforementioned expectation is with respect to the law of Si , but we omit it for notational simplicity.

The proof of Lemma 2.1 is provided in Appendix E. Based on this lemma, we will present our estimator of θN

0

in Section 2.4. The true nuisance functions ( )=η g g h, ,0

1

0

0

0 0 are not of statistical interest, but have to be estimated

to build an estimator ofθN

0 , andwewill estimate them using regressionmachine learning algorithms. Suchmachine
learning estimators might suffer from regularization bias and converge slower than at the N -rate. However,
the two correction terms ( )( ( ))∕ −W h C Z Y g C X, ,i i i i i i1

and ( ) ( ( ))( ( ))− ∕ − −W h C Z Y g C X1 1 , ,i i i i i i0
make the score φ

Neyman orthogonal, which counteracts the effect of regularization bias. Moreover, themachine learning estimators
are only required to converge at a moderate rate; please see Section 2.4 for further details.

Scharfstein et al. [30] and Bang and Robins [31] considered a similar score φ for causal effect estimation
and inference under the SUTVA assumption, and their function is based on the influence function for the mean
for missing data from Robins and Rotnitzky [32]. Moreover, it is also used to compute the AIPW estimator
under SUTVA, and our score φ defined in (4) coincides with one of the AIPW approaches under SUTVA if we
omit the X - and Z -spillover features. In this case, we can reformulate φ as
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where �( ) [ ∣ ] ( )= =e C W C h Ci i i i
0 denotes the propensity score, �[ ∣ ] ( )= =Y W C g C X1, ,i i i i i1

0 , and �[ ∣ ]= =Y W C0,i i i

( )g C X,i i0

0 . This equivalence remains true if the true nuisance functions are replaced by their estimators.

2.3 Dependency graph

Depending on the feature functions that are used, if an edge connects two units in the networkG, the units may
be dependent. However, the absence of an edge inG does not necessarily imply independence of the respective
units. Subsequently, we present a second graph where the presence of an edge represents dependence and its
absence independence of the variables of the two respective units. Our theoretical results will be established
based on this so-called dependency graph [3]. Example 2 illustrates the concept.

Definition 1. Dependency graph on Si, [ ]∈i N [3]: the dependency graph ( )=G V E,D D on the unit-level data Si,
[ ]∈i N defined in (3), is an undirected graph on the node set V of the network ( )=G V E, with potentially

larger edge set ED than E . An undirected edge { }i j, between two nodes i and j from V belongs to ED if at least
one of the following two conditions holds: (1) there exists an [ ] { }∈m N i j\ , such thatWm and/or Cm are present
in both Xi and Xj or are present in both Zi and Zj and (2) Wi is present in Xj, or Ci is present in Xj or in Zj, i.e.,
units i and j receive spillover effects from at least one common third unit, or they receive spillover effects from
each other.

Example 2. Consider the chain-shaped network G in Figure 2 on the left. We consider as 1-dimensional
X -spillover effect the fraction of treated direct neighbors in the network G and no Z -spillover. The resulting
dependency graph GD is displayed in the middle of Figure 2. In GD, unit 2 shares an edge with units 1 and 3
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because these units are neighbors of 2 in the network. Unit 2 also shares an edge with 4 in GD because it shares
its neighbor 3 with unit 4. The right-hand of Figure 2 displays the causal directed acyclic graph (DAG) on all
units corresponding to this model, including confounders C . Due to the definition of the X -spillover effect,
we have =X W1 2 and =X W4 3. Consequently, using graphical criteria [33–37], we infer that the unit-level data

( )=S C W X Y, , ,1 1 1 1 1 are independent of ( )=S C W X Y, , ,4 4 4 4 4 .

The dependency graph is a function of the network G as well as the Z -and X -features. Constraining the
growth of the maximal degree of this graph allows us to obtain a CLT result for our treatment effect estimator.

2.4 Estimation procedure and asymptotics

Subsequently, we describe our estimation procedure and its asymptotic properties. We use sample splitting
and cross-fitting to estimate the EATE θN

0 identified by equation (5) as follows. We randomly partition [ ]N into
≥K 2 sets of approximately equal size that we call I I,…, K1 . We split the unit-level data according to this

partition into the sets � { }= ∈SI i i Ik k
, [ ]∈k K . For each [ ]∈k K , we perform the following steps. First,

we estimate the nuisance functions g
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0, g
0

0, and h0 on the complement set of � Ik
, which we define as
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I

0
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. To estimate h0, we use the whole set � Ik

c and regressWi on the confounders Ci and the features Zi,

which yields the estimator ĥ
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c

2. These regressions may be carried out with any machine learning algorithm. We

concatenate these nuisance function estimators into the nuisance parameter estimator ( )=η g g hˆ ˆ , ˆ , ˆI I I I
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on unit-level data Si that is independent of the data that were

used to estimate the nuisance parameter η̂Ik
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. Finally, we estimate the EATE by the cross-fitting estimator
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Figure 2: Network G on four units (left), where the spillover effects come from the treatments of the direct neighbors, which results
in a distance-two dependence, which is displayed in the corresponding dependency graph GD (middle). The underlying causal DAG
is displayed on the right, where arrows due to X -spillover effects are gray.



2 If the treatment is randomized with a known probability, we do not have to estimate the propensity function h0 and set it to
the randomization probability instead.
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that averages over all K folds. The estimator θ̂ converges at the parametric rate, − ∕N 1 2, and follows a Gaussian
distribution asymptotically with limiting variance ∞σ

2 as stated in Theorem 2.2.
The partition I I,…, K1 is random. To alleviate the effect of this randomness, the whole procedure

is repeated a number of B times, and the median of the individual point estimators over the B repetitions
is our final estimator of θN

0 . The asymptotic results for this median estimator remain the same as for θ̂ (see
Chernozhukov et al. [20]). For each repetition [ ]∈b B , we compute a point estimator θ̂b, a variance estimator

∞σ̂ b,

2 (for details, please see Section 2.5), and a p-value p
b
for the two-sided test =H θ: 0N0

0 versus ≠H θ: 0A N

0 .
The B many p-values p p,…,

B1
from the individual repetitions are aggregated according to

( )[ ]= ∈p p2median .b B baggr

0

This aggregation scheme yields a valid overall p-value for the same two-sided test [38]. The corresponding
confidence interval is constructed as

�( ) { ∣ }= ∈ = ≠ >θ θ p H θ θ H θ θ p αCI ˆ of testing : vs : satisfies ,
θ

N A N

θ

aggr 0
0 0

aggr
(8)

where typically =α 0.05. This set contains all values θ for which the null hypothesis =H θ θ: N0
0 cannot

be rejected at level α against the two-sided alternative ≠H θ θ:A N

0 .
Next, we describe how ( )θCI ˆ can easily be computed. Due to the asymptotic result of Theorem 2.2,

the aggregated p-value p
θ

aggr
for �∈θ can be represented as

( ( ∣ ∣))[ ]= − −∈ ∞
−

p N σ θ θ4median 1 Φ ˆ ˆ ,
θ

b B b baggr ,

1

where Φ denotes the cumulative distribution function of a standard Gaussian random variable. Consequently,
we have

( ) ( ∣ ∣)[ ]> ⇔ − ∕ > −−
∈ ∞

−
p α α N σ θ θΦ 1 4 median ˆ ˆ ,

θ
b B b baggr

1
,

1

which can be solved for feasible values of θ using root search. A full description of our method is presented
in Algorithm 1.

Algorithm 1: Estimating the EATE from observational data on networks with spillover effects using plugin
machine learning

Input: N unit-level observations ( )=S W C X Z Y, , , ,i i i i i i from the model (1), network G, feature functions f
x

l ,

[ ]∈l r and f
z

l, [ ]∈l t , corresponding dependency graphGD, natural number K , natural number B, significance

level [ ]∈α 0,1 , machine learning algorithms.
Output: Estimator of the EATE θN

0 and a valid p-value and confidence interval for the two-sided test =H θ: 0N0
0

vs ≠H θ: 0A N

0 .
1 for [ ]∈b B do

2

3

4

5

6

7

�

[ ]

[ ]

( )

( )

∈

− − = ≠
∞

∞

N K I I

k K

g g

h

θ θ

θ

σ

p H θ H θ θ σ

for do

end

Randomly split the index set into sets , …, of approximately equal size.

Compute nuisance function estimators ˆ , ˆ ,

and ˆ with machine learning algorithm and data from .

Compute point estimator of according to 7 , and call it ˆ .

Estimate asymptotic variance of ˆ using the bootstrap procedure described in Section 2.5

or according to Theorem G.1 in Appendix G , and call it ˆ .

Compute p  value for the two  sided test : 0 vs. : 0 using ˆ , ˆ ,

and asymptotic Gaussian approximation.

K

I I

I

I

N b

b

b

b N A N b b

1

1 0

0

,

2

0
0 0

,

2

k

c

k

c

k

c

k

c

8

9 end
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10 Compute ( )[ ]= ∈θ θˆ median ˆ
s B b .

11 Compute aggregated p-value [ ]= ∈p p2medianb B baggr

0 .

12 Compute confidence interval according to (8), call it ( )θCI ˆ .

13 Return θ̂, p
aggr

0 , ( )θCI ˆ .

Before we present our main theorem we mentioned in the construction of confidence intervals earlier, we
present and discuss key assumptions. First, we require that products of machine learning errors decay fast
enough, namely,

‖ ( ) ( )‖ (‖ ( ) ( )‖ ‖ ( ) ( )‖ ‖ ( ) ( )‖ )− ⋅ − + − + −

≪ −

h C Z h C Z g C X g C X g C X g C X h C Z h C Z

N

, ˆ , , ˆ , , ˆ , , ˆ ,i i

I

i i P i i
I

i i P i i
I

i i P i i

I

i i P
0

,2 1

0

1 ,2 0

0

0 ,2
0

,2
k

c

k

c

k

c
k

c

1

2

(see Assumption A4 in the appendix for more details). In particular, the individual error terms may vanish at a
rate smaller than − ∕N 1 4. This is achieved by many machine learning methods under suitable assumptions (see,
for instance, Chernozhukov et al. [20]): ℓ1-penalized and related methods in a variety of sparse models [39–44],
forward selection in sparse models [45], L2-boosting in sparse linear models [46], a class of regression trees and
random forests [47], and neural networks [48]. Second, to ensure enough sparsity in the dependency structure
of the data, the maximal degree dmax in the dependency graph is assumed to grow at most at the rate

( )= ∕d o Nmax
1 4 , which implies that the dependencies are not too far reaching. This assumption allows us to

bound the Wasserstein distance of our (centered and scaled) treatment effect estimator to a standard Gaussian
random variable using Stein’s method [49].

Assumption 1. The maximal degree dmax of a node in the dependency graph satisfies ( )= ∕d o Nmax
1 4 .

Ogburn et al. [6] only required ( )= ∕d o Nmax
1 2 , but achieved a slower convergence rate of their treatment

effect estimator. To recover the N -rate, they require that dmax is bounded by a constant, meaning ( )=d O 1max .
Furthermore, we require that this dependency structure is not too strong moment-wise in the sense that

the variance term given in the following assumption converges.

Assumption 2. Let �{ } ≥N N 1 be a sequence of sets of probability distributions P of the N units. There exists ∞σ
2 ,

possibly depending on �∈P N , satisfying < ≤ ≤ < ∞∞L σ U0
2 with fixed constants L and U , such that for all

�∈P N , we have

( )∑⎜ ⎟
⎛

⎝
⎜

⎛
⎝

⎞
⎠

−
⎞

⎠
⎟ =

→∞ =
∞

N
ψ S θ η σlim Var

1
, , 0,

N
i

N

i i

1

0 0 2 (9)

where ( ) ( )= −ψ S θ η φ S η θ, , ,i i i i

0 0 0 0 is a centered version of φ.

Assuming bounded second moments, ∣ ( ( ) ( ))∣∑ = ψ S θ η ψ S θ ηCov , , , , ,j

N

i i j i1

0 0 0 0 can be bounded, up to constants,
by ( )d i , where ( )d i denotes the degree of node i in the dependency graph. Consequently, we have

( ) ( )∑ ∑⎜ ⎟
⎛
⎝

⎞
⎠

≤ ⋅
= =N

ψ S θ η γ
N

d iVar
1

, ,
1

,

i

N

i i

i

N

1

0 0

1

(10)

where γ denotes some universal constant. Subsequently, we consider two special cases. First, if the maximal
degree of the dependency graph is uniformly bounded by some constant D, we can bound (10) by the constant
γD. Second, assume that the dependency graph has some nodes with finite degree: ( ) ≤d i D for i in some set
S

c

max; the other nodes’ degree ( )d i for ∈i Smax is bounded by ( )= ∕d o Nmax
1 4 with ∣ ∣ ( ) ( )≥ ∕ = ∕S O N d O Nmax max

3 4 .
Then, (10) is also of bounded order ( )O 1 .
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Theorem 2.2. (Asymptotic distribution of θ̂) Assume Assumptions 1 and 2 as well as A3 and A4 stated in the
appendix in Section A. Then, the estimator θ̂ of the EATE θN

0 given in (7) converges at the parametric rate, − ∕N 1 2,
and asymptotically follows a Gaussian distribution, namely,

�( ) ( ) ( )− → → ∞∞
−

N σ θ θ Nˆ 0, 1 ,N

d
1 0 (11)

where ∞σ is characterized in Assumption 2. The convergence in (11) is in fact uniformly over the law
� ( )∈ → ∞P NN .

Please see Section E in the appendix for a proof of Theorem 2.2. The asymptotic variance ∞σ
2 in Theorem 2.2

can be consistently estimated using a bootstrap approach (see Section 2.5). Alternatively, it is possible to
consistently estimate it using a plugin approach (see Theorem G.1 in the next Section G). However, empirical
simulations have revealed that the bootstrap procedure described in the next section performs better.

Our estimator θ̂ is robust in two senses. First, it is N -consistent and asymptotically normal if only the
product property (9) of the machine learning estimators holds. Second, it can be shown that it remains
consistent if either the propensity model or the outcome model is correctly specified. These properties are
also called rate double robustness and model double robustness, respectively [50].

2.5 Bootstrap variance estimator

We use the residual bootstrap as follows to estimate the asymptotic variance. First, we use the estimated
nuisance functions to compute the outcome regression residuals. More precisely, for [ ]∈i N , denote by ( )k i the
index in [ ]K specifying the partition unit i belongs to, namely, ( )∈i Ik i . Then, we estimate the εY ’s by

= ′ − ∑ ′=ε ε εˆ ˆ ˆY Y N j

N

Y

1

1i i j
, where ( ) ( ) ( )

( ) ( )′ = − − −ε Y Wg C X W g C Xˆ ˆ , 1 ˆ ,Y i i

I

i i i

I

i i1 0i

k i

c

k i

c

. Next, we sample confounders { } [ ]∈C*
i i N

with replacement from { } [ ]∈Ci i N , and we sample ε̂*
Yi
with replacement from { } [ ]∈ε̂Y i Ni

. These sampled covariates

and error terms are now propagated through the SEM (1), i.e., we compute ( ( ) ( ))= − −Z f C G f C G* *, , …, *,i z i z

t

i

1 ,

sample ( ( ))( )=W h C Z* Bernoulli ˆ *, *
i

I

i i

k i

c

, compute ( ( ) ( ))= − − − −X f W C G f W C G* *, *, , …, *, *,i x i i x

r

i i

1 , and build =Y *
i

( ) ( ) ( )
( ) ( )− − +W g C X W g C X ε* ˆ *, * 1 * ˆ *, * ˆ*

i

I

i i i

I

i i Y1 0

k i

c

k i

c

i
. Subsequently, we concatenate these values to obtain the boot-

strap datapoints ( )=S C Z W X Y* *, *, *, *, *
i i i i i i , [ ]∈i N . Then, we apply our treatment effect estimation procedure

to the S *
i ’s to obtain a bootstrap estimator θ̂*. This procedure is repeated R many times, and the bootstrap

variance estimator is given by the empirical variance of the θ̂ *
r over [ ]∈r R .

Theorem 2.3. The bootstrap scheme described in Section 2.5 consistently estimates the asymptotic variance (9)
under Assumption A7 stated in the Appendix.

The proof of Theorem 2.3 can be found in Appendix F.

3 Empirical validation

We demonstrate our method in a simulation study and on a real-world dataset. In the simulation study, we
validate the performance of our method on different network structures and compare it to two popular
treatment effect estimators. Then, we investigate the effect of study time on exam performance in the Swiss
StudentLife Study [27,28] taking into account the effect of social ties.
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3.1 Simulation study

We investigate a fairly simple data-generating mechanism with 1-dimensional X -features and no Z -features.
The X -interference effects a unit receives come from an interaction between treatments and control of its
immediate neighbors in the network (we consider Erdős–Rényi and Watts–Strogatz). We compare the per-
formance of our method to two popular off-the-shelf alternative schemes with respect to bias of the point
estimator and coverage and length of respective two-sided confidence intervals: the Hájek estimator and an
inverse propensity weighting estimator. Our aim is to see that these standard estimators may suffer in the
presence of interference and to demonstrate that our easy-to-implement estimator overcomes their
shortcomings.

We first describe the two competitors and then detail the simulation setting and present the results. Our
code is available on GitHub (https://github.com/corinne-rahel/networkAIPW).

The Hájek estimator (denoted by “Hajek” in Figure 4) without incorporation of confounders [51] equals

( )

( )
∑

⎛

⎝
⎜ ∑

+
−

∑ −

⎞

⎠
⎟

= = =N

WY

W

W Y

W

1 1

1

.

i

N

i i

N j

N

i

i i

N j

N

i1

1

1

1

1

The parametric convergence rate and asymptotic Gaussian distribution are preserved under X -spillover
effects that equal the fraction of treated neighbors in a randomized experiment [52]. The IPW estimator
[53] has been developed under SUTVA and uses observed confounding by creating a “pseudo-population” in
which the treatment is independent of the confounders [54]. We compute it using sample splitting and cross-
fitting according to

∣ ∣ ( )

( )

( )
∑ ∑ ⎟⎜

⎛
⎝

−
−

−
⎞
⎠= ∈K I

WY

e C

W Y

e C

1 1

ˆ

1

1 ˆ
,

k

K

k i I

i i

I
i

i i

I
i1 k

k

c

k

c

where ê Ik

c

is the fitted propensity score obtained by regressingWi onCi on the data in �∈i Ik

c. In our simulation,
ê Ik

c

coincides with ĥ
Ik

c

because we consider no Z -features. We denote this estimator by “IPW” in Figure 4. These
estimators are not designed for the interference structures we consider, but we would like to investigate the
performance of these off-the-shelf and easy-to-implement estimators, also in comparison with our proposed
method.

We investigate two network structures that govern our interference effects: Erdős–Rényi networks [56]
and Watts–Strogatz networks [57]. Erdős–Rényi networks randomly form edges between units with a fixed
probability and are a simple example of a random mathematical network model. These networks play an
important role as a standard against which to compare more complicated models. Watts–Strogatz networks,

Figure 3: Different network structures on =N 200 units: Erdős–Rényi network (left) where two nodes are connected with probability
∕N3 (every node is connected to three other nodes in expectation); Watts–Strogatz network (right) with a rewiring probability of 0.05,
a 1-dimensional ring-shaped starting lattice where each node is connected to two neighbors on both sides (i.e., every node is connected
to four other nodes), no loops, and no multiple edges. The graphs are generated using the R-package igraph [55].
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also called small-world networks, share two properties with many networks in the real world: a small average
shortest path length and a large clustering coefficient. To construct such a network, the vertices are first
arranged in a regular fashion and linked to a fixed number of their neighbors. Then, some randomly chosen
edges are rewired with a constant rewiring probability. A representative of each network type is provided in
Figure 3. For each of these two network types, we consider one case where the dependency in the network does
not increase with N (denoted by “const” in Figure 4) and one where it increases with N (denoted by N^(1/15)
in Figure 4).

The specific unit-level structural equations (1) we consider are as follows. For each unit [ ]∈i N , we sample
independent and identically distributed confounders ( )C ~ Unif 0,1i from the uniform distribution. The treat-
ment selections Wi are drawn from a Bernoulli distribution with arbitrarily chosen success probability

� � �( )= = + +< ≤ < ≤p p C 0.15 0.5 0.85
i i i C C C0.33 0.33 0.66 0.66i i i

. Let ( )α i denote the neighbors of unit i in the network
(without i itself). Then, we let the 1-dimensional X -features Xi denote the shifted average number of neighbors
assigned to treatment weighted by their confounder, namely,

� �
∣ ( )∣

( )
( )

∑= −
∈

= =X
α i

C
1

,i

j α i

W W j1 0j j

Figure 4: Coverage (fraction of times the true, and in general unknown, θN

0 was inside the confidence interval), log mean length of two-
sided 95% confidence intervals for θN

0 , and mean bias over 1,000 simulation runs for Erdős–Rényi and Watts–Strogatz networks of
different complexities (Erdős–Rényi: expected degree 3 and ∕N3 1 15 for “const” and “N ^ (1/15),” respectively; Watts–Strogatz: before
rewiring, nodes have degree 4 and ∕N4 1 15 for “const” and “N ^ (1/15),” respectively, and the rewiring probability is 0.05). We compare
the performance of our method, netAIPW, with the Hájek and an IPW estimator, indicated by color. The variances of the competitors
are empirical variances over the 1,000 repetitions, whereas we computed confidence intervals for netAIPW according to (8) with =B 1

and 300 bootstrap samples. The shaded regions in the coverage plot represent 95% confidence bands with respect to the 1,000
simulation runs.
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if ( )α i is non-empty, and 0 else. We do not consider Z -features. For real numbers x and c, we consider the
arbitrary functions

� � � � �( ) = + + + +≥ ≥− < ≥− ≥ ≥ <− < ≥− < <−g x c, 1.5 4 0.5 3.5 2.5x c x c x x c x c x c1

0
0.5, 0.2, 0.7 0.2, 0.7 0.5, 0.2 0.5, 0.2 0.5, 0.2

and

� � � �( ) = − + −≥ ≥ ≥ < < ≥ < <g x c, 0.5 0.75 0.25 0.5 ,x c x c x c x c0

0
0.4, 0.2 0.4, 0.2 0.4, 0.2 0.4, 0.2

i.e., the functions g
1

0, g
0

0, and h0 are step functions. For independent and identically distributed error terms

( )− ∕ ∕ε ~ Unif 0.12 2, 0.12 2Yi
, we consider the outcomes ( ) ( ) ( )= + − +Y Wg C X W g C X ε, 1 ,i i i i i i i Y1

0

0

0

i
.

For the sample sizes =N 625, 1,250, 2,500, and 5,000, we perform 1,000 simulation runs redrawing the data
according to the SEM, and consider =B 1, =K 5, and =R 300 bootstrap samples to estimate the variance in
Algorithm 1, i.e., we consider one split per generated dataset and consequently do not aggregate p-values in
these simulations. However, the empirical analysis in Section 3.2 aggregates p-values over 100 datasplits. We
estimate the nuisance functions by random forests consisting of 500 trees with a minimal node size of 5 and
other default parameters using the R-package ranger [58]. To estimate the propensity score, we limit the depth
of the trees to 2. Our results for the Erdős–Rényi and Watts–Strogatz networks are displayed in Figure 4. Two
different panels are used to display the results for different ranges of the bias of the methods. For all network
types and complexities, we observe the following. The IPW estimator incurs some bias as can be expected
because it does not account for network spillover, and even under SUTVA, it is not Neyman orthogonal, which
means we are not allowed to plug in machine learning estimators of nuisance functions. Furthermore, it is
known to have a poor finite-sample performance due to estimated propensity scores ê Ik

c

that may be close to
0 or 1. The Hájek estimator incurs some bias because it does not adjust for observed confounding and assumes
a randomized treatment instead. The bias of our method (denoted by “netAIPW” in Figure 4) decreases as the
sample size increases. As the dependency graph becomes more complex, our method requires more observa-
tions to achieve a small bias because the datasets � Ik

c in (6), which are used to estimate the nuisance functions,
are smaller in denser networks. In terms of coverage, the two competitors perform poorly, whereas our
method guarantees coverage.

Simulation results involving spillover effects from second-degree neighbors and misspecified spillover
effects are presented in Appendix C. Furthermore, for a ( )∕Bernoulli 1 2 treatment assignment and with the
“const” Watts-Strogatz setting presented in the main article, we found that the AIPW approach leads to
variances that are of about a factor of 23 smaller than the ones obtained with IPW. This suggests that AIPW
is helpful in reducing the variance of IPW even in the randomized case.

3.2 Empirical analysis: Swiss StudentLife study data

Subsequently, we estimate the causal effect of study time on academic success of university students with our
newly developed estimator. We quantify this causal effect by the EATE that is the average of the difference in
expected GPA of the final exam had a student studied much versus little, allowing for potential spillover effects
from the student’s friends on the student’s study time. Among the factors that determine academic success are
person-specific traits, such as intelligence [59], willingness to work hard [60], and socioeconomic background
[61]. The Swiss StudentLife Study data [27,28] were collected to investigate the impact of various factors on
academic achievement. It consists of observations from freshmen undergraduate students pursuing a degree
in the natural sciences at a Swiss university. Instead of a university entrance test, these students had to pass a
demanding examination after 1 year of studying. At several time points throughout this year, the students
were asked to fill out questionnaires about their student life, social network, and well-being. The data consist
of three cohorts of students. Cohort 1 was observed in 2016 and cohorts 2 and 3 in 2017. Importantly, for all
three cohorts, the data contain friendship information among the students. We build the corresponding
undirected network by drawing an edge between two students if at least one of them mentioned the other
one as being a friend. We believe that spillover effects arise due to students interacting in this network, and
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thus, we have to control for them when estimating the EATE described earlier. Figure 5 displays the resulting
network consisting of the three cohorts.

GPA (Yi) constitutes our outcome variable and represents the average grade of seven to nine exams,
depending on study programs. It ranges from 1 to 6, with passing grades of 4 or higher. The average GPA
in the data we used was 4.266 with a standard deviation of 0.872. The remaining variables were measured 5 to
6 months before the exam period and correspond to wave four of the Swiss StudentLife Study data. The self-
reported number of hours spent studying per week during the semester (Wi) constitutes the treatment vari-
able. It was dichotomized into studying many ( =W 1i ) and few ( =W 0i ) hours. We considered a setting where

=W 1i corresponds to studying at least 8 hours per week, which is the 20% quantile, and one where =W 1i

corresponds to studying at least 20 hours per week, which is the 80% quantile. We consider spillover effects
from the friends of a student, which are a student’s direct neighbors in the friendship network. We consider
Z -spillover effects that account for the effect of befriended students’ study motivation and stress variables on a
student’s treatment. We do not consider spillover effects on the outcome GPA (no X -features). The Zi-spillover
variable of a student i is a vector of length 6, where each entry corresponds to the average of the following six
variables across the friends of the student: (a) study motivation, measured with the learning objectives
subscale of the SELLMO-ST3 [62]; (b) work avoidance, measured with the work avoidance subscale of the
students version of the SELLMO-ST3; (c) the average of ten perceived stress items [63]; (d, e) two items
specifically on exam related stress; and (f) whether one was perceived as clever by at least one other student.
In addition to these network effects, we control on the unit level (Ci) for the just mentioned variables observed
on an individual unit as well as the cohort number, gender, having Swiss nationality, speaking German, and
the financial situation. From all the data of the three cohorts combined, we only considered individuals for
whom all the mentioned variables, i.e., treatment, outcome, covariates, and Z -spillover variables, are
observed. The final sample consisted of =N 526 individuals: 113 from cohort 1, 119 from cohort 2, and 294
from cohort 3. In our algorithm, we used =S 1,000 sample splits (from which we aggregate p-values as in (2.4))
with =K 10 groups each and random forests consisting of 5,000 trees to learn g

0

0, g
1

0, and h0 whose leaf size was
initially determined by fivefold cross-validation. Also, we used the variance estimator as in Appendix G that
relies on fewer assumptions.

We estimated the EATE with two different definitions for =W 1i , defined by a study time of either at least 8
or 20 h per week, corresponding to the 20 and 80% quantiles, respectively, and Table 1 displays the results.
Table 1(a) displays our estimated EATE with =W 1i representing a weekly study time of at least 8 h. Our EATE
estimator is positive and significant. On average, students received a 0.362 points higher GPA had they studied
at least 8 h per week compared to studying less. Consequently, a significantly higher GPA can be achieved by
studying more. If we apply the same procedure but exclude the Z -spillover covariates (no spillover), the EATE
estimator is higher and also significant. Table 1(b) displays our results with =W 1i representing a weekly study

Figure 5: Friendship networks per cohort with black dots representing =W 1i and a weekly study time of at least 8 h, white for =W 0i ,
and a weekly study time of less than 8 hours, and a bigger node size represents a higher GPA.



3 This is a scale to assess learning and achievement motivation, and the subscale consists of eight items measured on a 5-point
Likert-scale from 1 (“completely disagree”) to 5 (“completely agree”).
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time of at least 20 hours. Our EATE estimator is positive but not significant anymore. Hence, our results suggest
that GPA is not significantly higher had a student studied at least 20 h per week compared to studying less.
Without spillover, the treatment effect is significant. In both cases in Table 1, the estimate of the EATE is higher
under the assumption of no spillover effects, compared to the estimator that allows for possible Z -spillover
effects. This potentially relevant difference highlights the importance of not a priori ruling out spillover effects.
Overall, the model including spillover effects seems more realistic than the one excluding them. Finally, when
interpreting the results, it is important to recall that study time captures the learning time during the semester.
There is an additional 8-week lecture-free preparation period, and our study time does not reflect this pre-
paration time. Consequently, our results only describe the EATE of study time during the semester on GPA.

4 Conclusion

Causal inference with observational data usually assumes independent units. However, having independent
observations is often questionable, and so-called spillover effects among units are common in practice. Our
aim was to develop point estimation and asymptotic inference for the expected average treatment effect
(EATE) with observational data from a single (social) network. We would like to point out the hardness of
this problem: we consider treatment effect estimation on data with increasing dependence among units, where
the data-generating mechanism can be highly nonlinear and include confounders. We use an augmented
inverse probability weighting (AIPW) principle and account for spillover effects that we capture by features,
which are functions of the known network and the treatment and covariate vectors. There may be several
features, and one feature may capture spillover effects from different units than another feature; these units
might be direct neighbors to compute one feature and neighbors of neighbors to compute another feature. We
consider the dependency graph to pose assumptions on these features in our asymptotic theory. Units may
interact beyond their direct neighborhoods, interactions may become increasingly complex as the sample size
increases, and we consider arbitrary networks. Using ideas of double machine learning [20], we develop
a cross-fitting algorithm under interference that allows us to estimate the nuisance components of our model
by arbitrary machine learning algorithms. Although we employ machine learning algorithms, our EATE
estimator converges at the N -rate and asymptotically follows a Gaussian distribution, which allows us to
perform inference.

In a simulation study, we demonstrated that commonly employed methods for treatment effect estimation
suffer from the presence of spillover effects, whereas our method could account for the complex dependence
structures in the data so that the bias vanished with increasing sample size and coverage was guaranteed. In
the Swiss StudentLife Study, we investigated the EATE of study time on the GPA of university examinations,
accounting for spillover effects due to friendship relations. Omitting this spillover may lead to biased results
due to spurious association.

Table 1: EATE and 95% confidence intervals for θN

0 for different settings with different control groups, namely, studying less than 8 (a)
or less than 20 (b) hours per week

Spillover EATE 95% CI for θN
0

(a) =W 1i if studied at least 8 h per week (20% quantile)
Yes 0.362 [0.283, 0.442]
No 0.451 [0.364, 0.528]
(b) =W 1i if studied at least 20 h per week (80% quantile)
Yes 0.078 [ ]−0.096, 0.252

No 0.163 [ ]0.011, 0.311
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In this work, we focused on estimating the EATE. Other effects may be estimated in a similar manner,
for instance, the global average treatment effect (GATE) where all units are jointly intervened on. We develop
an estimator of the GATE in Appendix H.
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Appendix A

A1 Assumptions and additional definitions

We consider the following notation. We denote by [ ]N the set { }N1, 2, …, . We add the probability law as
a subscript to the probability operator � and the expectation operator � whenever we want to emphasize
the corresponding dependence. We denote the ( )L Pp -norm by ‖ ‖⋅ P p, and the Euclidean or operator norm
by ∣ ∣⋅ , depending on the context. We implicitly assume that given expectations and conditional expectations exist.

We denote by →
d

convergence in distribution. The symbol ⊥⊥ denotes independence of random variables.
We observe N units according to the structural equations (1) that are connected by an underlying network.

For each unit [ ]∈i N , we concatenate ( )=S W C X Z Y, , , ,i i i i i i that are relevant for unit i. For notational simpli-
city, we abbreviate ( )=D C X,i i i and ( )=U C Z,i i i for [ ]∈i N .

Let the number of sample splits ≥K 2 be a fixed integer independent of N . We assume that ≥N K holds.
Consider a partition I I,…, K1 of [ ]N . We assume that all sets I I,…, K1 are of equal cardinality n. We make this
assumption for the sake of notational simplicity, but our results hold without it.

Let { } ≥δN N K and { } ≥ΔN N K be two sequences of non-negative numbers that converge to 0 as → ∞N .
Let �{ } ≥N N 1 be a sequence of sets of probability distributions P of the N units.

For completeness, we recall the following two assumptions from the main text. Assumption A1 limits
the growth rate of the maximal degree of a node in the dependency graph. Assumption A2 characterizes the
asymptotic variance in Theorem G.1 as the limit of the population variance on the N units.

Assumption A1. The maximal degree dmax of a node in the dependency graph satisfies ( )= ∕d o Nmax
1 4 .

Assumption A2. Let �{ } ≥N N 1 be a sequence of sets of probability distributions P of the N units. There exists

∞σ
2, possibly depending on �∈P N , satisfying < ≤ ≤ < ∞∞L σ U0

2 with fixed constants L U, , such that for all
�∈P N , we have

( )∑⎜ ⎟
⎛

⎝
⎜

⎛
⎝

⎞
⎠

−
⎞

⎠
⎟ =

→∞ =
∞

N
ψ S θ η σlim Var

1
, , 0,

N
i

N

i i

1

0 0 2 (A1)

where ( ) ( )= −ψ S θ η φ S η θ, , ,i i i i

0 0 0 0 is a centered version of φ.

We make the following additional sets of assumptions. Assumption A3 recalls that we use the model (1)
and specifies regularity assumptions on the involved random variables. Assumptions 3.2 and 3.3 ensure that
the random variables are integrable enough. Assumption 3.4 ensures that the true underlying function h0 of
the treatment selection model is bounded away from 0 and 1, which allows us to divide by h0 and − h1 0.

Assumption A3. Let ≥p 4. For all N , all [ ]∈i N , all �∈P N , and all [ ]∈k K , we have the following:
3.1 The structural equations (1) hold, where the treatment { }∈W 0, 1i is binary.
3.2 There is a finite real constant C1 independent of P satisfying ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖+ + +W C X Zi P p i P p i P p i P p, , , ,

‖ ‖+ ≤Y Ci P p, 1.

3.3 There is a finite real constant C2 independent of P such that we have ‖ ‖ ‖ ( )‖+ +∞ ∞Y g Di P i P, 1

0
,

‖ ( )‖ ‖ ( )‖+ ≤∞ ∞g D h U Ci P i P0

0
,

0
, 2.

3.4 There is a finite real constant C3 independent of P such that ( ( ) )≤ ≤ − =P C h U C1 1i3
0

3 holds.
3.5 There is a finite real constant C4 such that we have ∣ ∣ ≤θ Ci

0
4.

Assumption A4 characterizes the realization set of the nuisance functions and the − ∕N 1 2 convergence rate
of products of the machine learning errors from estimating the nuisance functions g

1

0, g
0

0, and h0.
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Assumption A4. Consider the ≥p 4 from Assumption A3. For all ≥N K and all �∈P N , consider a nuisance
function realization set � such that the following conditions hold:
4.1 The set � consists of P-integrable functions ( )=η g g h, ,

1 0
whose pth moment exists and whose

‖ ‖⋅ ∞P, -norm is in fact uniformly bounded, and � contains ( )=η g g h, ,0

1

0

0

0 0 . Furthermore, there is a finite
real constant C5 such that for all [ ]∈i N and all elements �( )= ∈η g g h, ,

0 1
, we have

‖ ( ) ( )‖ (‖ ( ) ( )‖ ‖ ( ) ( )‖ ‖ ( ) ( )‖ )− ⋅ − + − + − ≤ −h W h W g D g D g D g D h W h W δ N .i i P i i P i i P i i P N
0

,2 1

0

1 ,2 0

0

0 ,2
0

,2

1

2

4.2 Assumption 3.4 also holds with h0 replaced by h.
4.3 Let κ be the largest real number such that for all [ ]∈i N and all �∈η , we have

‖ ( ) ( )‖ ‖ ( ) ( )‖ ‖ ( ) ( )‖− + − + − ≲ −h W h W g D g D g D g D δ N ,i i P i i P i i P N
κ0

,2 1

0

1 ,2 0

0

0 ,2

i.e., κ represents the slowest convergence rate of our machine learners. Then, there is a finite real constant
C6 such that ≤−d N Cκ

max
2

6 holds, where dmax denotes the maximal degree of the dependency graph.
4.4 For all [ ]∈k K , the nuisance parameter estimate �( )=η ηˆ ˆI I

I
k

c

k

c

k

c belongs to the nuisance function realiza-
tion set � with P-probability no less than − Δ1 N .

Assumption A5 and A6 are only required to establish that our plugin estimator of the asymptotic variance
is consistent in Appendix G. (However, please recall that we recommend using the bootstrap procedure
presented in Section 2.5 unless the sample size is large). They are not required to establish the asymptotic
Gaussian distribution of our plugin machine learning estimator. Assumption A5 characterizes the order of
the minimal size of the sets � d for ≥d 0. These sets are required to contain a sufficient number of units such
that the degree-specific treatment effects θd

0 for ≥d 0 can be estimated at a fast enough rate. These estimators
are required to give a consistent estimator of the asymptotic variance ∞σ

2 .

Assumption A5. For ≥d 0, the order of �∣ ∣d is at least ∕N 3 4, denoted by ( )∕Ω N 3 4 according to the
Bachmann–Landau notation [64].

Assumption A6 specifies that all individual machine learning estimators of the nuisance functions con-
verge at a rate faster than − ∕N 1 4.

Assumption A6. The slowest convergence rate κ in Assumption 4.3 satisfies ≥ ∕κ 1 4.

Figure A1: Coverage (fraction of times the true, and in general unknown, θN

0 was inside the confidence interval), log mean length of two-sided
95% confidence intervals for θN

0 , and mean bias over 1,000 simulation runs for the “const” Erdős–Rényi network as in Section 3.1, except for the
average degree of 2.5. We compare the performance of our method, netAIPW, with the Hájek and an IPW estimator, indicated by color, for
correctly and incorrectly specifying the spillover effects from second-degree neighbors. The variance of the competitors are empirical variances
over the 1,000 repetitions, whereas we computed confidence intervals for netAIPW according to (8) with =B 1 and 300 bootstrap samples.
The shaded regions in the coverage plot represent 95% confidence bands with respect to the 1,000 simulation runs.
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B Network effects in the social sciences

We consider models related to spillover effects. However, another notion of spillover effects has prevailed
within the social science networks literature, namely, social influence effects. In this appendix, we describe
social influence effects and how their modeling differs from our approach. Whereas spillover effects represent
new covariates on the unit level that are built from variables of other units along network paths, social
influence effects mostly concern effects that a specific variable Aj of neighboring units has on Ai of the ith
unit. In the statistics literature, this is called contagion [65,66]. In the social sciences, there are two important
models to investigate social influence/contagion processes: the autologistic actor attribute model (ALAAM;
Robins et al. [67], Daraganova and Robins [68]) and the stochastic actor-oriented model (SAOM; Snijders [69],
Snijders et al. [70], Steglich et al. [71]). Both models aim at estimating the degree to which a variable Ai of a
focal individual is associated with the values of its neighbors’ values of A. Whereas ALAAMs only considers
cross-sectional data, SAOMs additionally allow estimating longitudinal social influence effects.

In contrast, the spillover features that we consider summarize variables from neighboring units. They
represent a new variable that is used for the treatment or outcome regression models. For example, in our
empirical analysis, we consider the spillover effect of study motivation of unit i’s neighbors on the learning
hours of unit i. We do not consider spillover from the learning hours of unit i’s neighbors on unit i’s own
learning hours (i.e. social influence/contagion). Instead, we model such associations of the individual units’
learning hours by constructing features from other variables and units that act as observed confounders.
Moreover, we are not interested in estimating the effect as such of, say, other units’ study motivation on the
learning hours of unit i. However, this is possible with ALAAMs and SAOMs. We are not interested
in estimating spillover as such, but we consider spillover as a tool to control for spurious associations due
to the network structure to estimate treatment effects.

C Additional simulation results

First, we present simulation results involving spillover effects from second-degree neighbors and misspecified
spillover effects. We consider the same data-generating mechanism and estimation framework as in Section 3.1
apart from the following change: the “neighborhood” ( )α i defining Xi contains all second-degree neighbors of
unit i, i.e., all units that are a distance 2 away from unit i in the network (neighbors of neighbors). For
incorrectly specified spillover effects, we assumed that ( )α i contains the direct neighbors of unit i instead.
We consider an Erdős–Rényi network as in Section 3.1 except that the average degree of a unit is now 2.5. The
results are displayed in Figure A1. Our method, netAIPW, does not seem to suffer much from the misspecified

Figure A2: Simulated maximal degree of the dependency graph from second-degree spillover on Erdős–Rényi networks with
an expected degree of either 2.5 (“const”) or ∕N2.5 1 15 (“N ^ (1/15)”) divided by ∕N 1 4, averaged over 1,000 simulation runs.
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spillover effects in terms of coverage, whereas the other methods do. In general, we observed that it is
advantageous to include spillover effects even if they are not entirely correctly specified.

Next, we present networks and different kinds of spillover effects to show when Assumption A2 holds and
when it fails to hold. We consider the same second-degree spillover effects and Erdős–Rényi network
as mentioned earlier in this section. The “const” network has an expected degree of 2.5, and the “N^(1/15)”
one has an expected degree of ∕N2.5 1 15 in Figure A2. The maximal degree, divided by ∕N 1 4 of the dependency
graph of the “const” network, decreases with N , whereas the respective quantity increases with N for the non-
constant-degree network, i.e., only the constant-degree network satisfies Assumption A2. The non-constant-
degree network implies a dependency graph that is “too dense” to satisfy this assumption. We would like to
remark that satisfying Assumption A2 is an interplay of the underlying network and the chosen spillover
effects because they determine the dependency graph, and hence its maximal degree, together. A given net-
work might lead to a dependency graph satisfying Assumption A2 with one kind of spillover effects (e.g., only
from neighbors), whereas the same network might lead to a dependency graph violating this assumption with
another kind of spillover effects (e.g., also including second-degree neighbors, i.e., neighbors of neighbors).

D Supplementary lemmata

In this section, we prove two results on conditional independence relationships of the variables from our
model. We argue for the DAG of our model (1) and use graphical criteria [33–37,72,73]. We denote the direct
causes of Wi by ( )Wpa i , the parents of Wi . Analogously, we denote the parents of Yi by ( )Ypa i ; please see for
instance Lauritzen [33]. We assume that ( )Wpa i consists of Ci and the variables used to compute the spillover
feature Zi and that ( )Ypa i consists of Wi , Ci, and the variables used to compute the spillover feature Xi.

Lemma D.1. Let [ ]∈i N , and let ( )∉C Ypaj i . Then, we have ∣ ( )⊥⊥Y C Ypai j i .

Proof of Lemma D.1. The parents ofYi are a valid adjustment set [35]. BecauseYi has no descendants, the claim
follows. □

Lemma D.2. Let [ ]∈i N , and let ( )∉C Wpaj i . Then, we have ∣ ( )⊥⊥W C Wpai j i . Furthermore, for ≠j i,
we have ∣ ( )⊥⊥W W Wpai j i .

Proof of Lemma D.2. The parents of Wi are a valid adjustment set [35]. The treatment variable Wi has no
descendants apart from outcomes Y , which are colliders on any path fromWi to Cj orWj, and thus, the empty
set blocks these paths. Consequently, the two claims follow. □

E Proof of Theorem 2.2

Proof of Lemma 2.1. Let [ ]∈i N . We have
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due to Lemma D.1 and because �[ ∣ ( )] =ε Ypa 0Y ii
holds by assumption. Analogous computations for

�[( ) ( ( ))( ( ))]− ∕ − −W h U Y g D1 1i i i i
0
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0 conclude the proof. □

The following lemma shows that the score function φ is Neyman orthogonal in the sense that its Gateaux
derivative vanishes [20].

Lemma E.1. (Neyman orthogonality) Assume that the assumptions of Theorem 2.2 hold. Let �∈η ,
and let [ ]∈i N . Then, we have
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We evaluate this expression at =r 0 and obtain

�

�

∣ [ ( ( ))]

( ( ) ( )) ( ( ) ( ))

( )
( ( ) ( ))

( ( ))
( ( ))( ( ) ( ))

( )
( ( ) ( ))

( ( ))
( ( ))( ( ) ( ))

⎜ ⎟

⎜ ⎟

∂
∂

+ −

=
⎡
⎣⎢

− − −

− ⎛
⎝

+ ⎞
⎠

− − − −

+ ⎛
⎝

−
−

⎞
⎠

− −
−

−
− −

⎤
⎦⎥

=

=
r

φ S η r η η

g D g D g D g D

ε

h U
g D g D

W

h U
Y g D h U h U

ε

h U
g D g D

W

h U
Y g D h U h U

,

1

1
1

1

1
0

r i

i i i i

W

i

i i

i

i

i i i i

W

i

i i

i

i

i i i i

0
0 0

1 0 1

0

0

0

0 1 1

0

0 2 1

0 0

0 0 0

0

0 2 0

0 0

i

i

Treatment effect estimation on network data using machine learning  23



due to (A2) and because
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holds due to Lemma D.2 and because we assumed �[ ∣ ( )]ε WpaW ii
= 0, and similarly, for
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. □

The following lemma bounds the second directional derivative of the score function. Its proof uses that
products of the errors of the machine learners are of a smaller order than − ∕N 1 2.

Lemma E.2. (Product property) Assume the assumptions of Theorem 2.2 hold. Let ( )∈r 0, 1 , let �∈η ,
and let [ ]∈i N . Then, we have
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Proof of Lemma E.2. We use the first directional derivative we derived in (A3) to compute the second
directional derivative
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Due to Hölder’s inequality and Assumptions 3.1, 3.3, 3.4, and 4.1, we have
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Due to Assumption 4.1, both summands mentioned earlier are bounded by − ∕δ NN
1 2, and hence, we conclude the

proof. □

The following lemma describes how we apply Stein’s method [74] to obtain the asymptotic Gaussian
distribution of our estimator although the data are highly dependent.
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Lemma E.3. (Asymptotic distribution with Stein’s method) Assume the assumptions of Theorem 2.2 hold.
Denote by
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By assumption, we have ( )= ∕d o Nmax
1 4 . Thus, we have ( )⋅ =∕ − ∕d o N

Nmax

3 2 1
1 8 and ( )⋅ =d o 1

Nmax

2 1 . Because the

terms �[ ( )]ψ S θ η, ,i i
4 0 0 and �[∣ ( )∣ ]ψ S θ η, ,i i

0 0 3 are uniformly bounded over all [ ]∈i N and because → ∞σ σN as
→ ∞N according to Assumption A2, the Wasserstein distance in (A4) is of order ( )o 1 . Consequently, we infer

the statement of the lemma. □

Lemma E.4. (Vanishing covariance due to sparse dependency graph) Assume the assumptions of Theorem 2.2
hold. Let [ ]∈k K , and recall that ∣ ∣=n Ik holds. Then, we have
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Let [ ]∈i N . The nuisance parameter estimator η̂Ik

c

belongs to � with P-probability at least − Δ1 N
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with P-probability at least − Δ1 N .
Subsequently, we bound the summands in (A5). Due to (A6), we have
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where ED denotes the edge set of the dependency graph, because the Si with ∈i Ik are independent of data in
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where the last bound holds due to Assumption 4.3. Consequently, we have
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with P-probability at least − Δ1 N , and we infer the statement of the lemma based on Chernozhukov
et al. [20, Lemma 6.1]. □

Lemma E.5. (Taylor expansion) Assume the assumptions of Theorem 2.2 hold. Let [ ]∈k K . We have
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k

at 0 and obtain

( ) ( ) ( ) ( )= + ′ + ″f f f f r1 0 0
1

2
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k k k k

for some ( )∈r̃ 0, 1 . Thus, we have
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Due to the definition of f
k
, we have ( ) =f 0 0

k
. Due to Neyman orthogonality that we established in

Lemma E.1, we have ( )′ =f 0 0
k

. Due to the product property that we established in Lemma E.2, we have

∣ ( )∣( ) ″ ≲∈
− ∕f r δ Nsup

r k N0,1
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2

1 2 with P-probability at least − Δ1 N because η̂Ik

c
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at least − Δ1 N . Consequently, we have
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with P-probability at least − Δ1 N . We infer the statement of the lemma based on Chernozhukov et al.
[20, Lemma 6.1]. □
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Proof of Theorem 2.2. We have
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because the disjoint sets Ik are of equal size n, so that we have =N nK . Let [ ]∈k K . We have
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due to Hölder’s inequality and Lemmas E.4 and E.5. Because K is a constant independent of N , we have

( ( ) ( )) ( )∑ ∑ − =
= ∈K n

ψ S θ η ψ S θ η o
1 1

, , ˆ , , 1 .

k

K

i I

i i
I

i i P

1

0 0 0

k

k

c

Due to Lemma E.3, we have �( ) ( )∑ →⋅ = ψ S θ η, , 0,1
N σ i

N

i i

d1

1

0 0

N

as → ∞N . Due to Assumption A2, we therefore
have
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as → ∞N . Consequently, we have �( ) ( )− →∞
−

N σ θ θˆ 0,1N

d
1 0 as claimed. □

F Bootstrap variance estimator

We use the following assumption to establish the consistency of the bootstrap variance estimator. It is a high-
level assumption, and we will not verify it in terms of the model (1); yet, assuming some form of continuity
(as below) seems to be essentially necessary for the bootstrap to be consistent.

Assumption A7. To make the dependence of ∞σ
2 in (9) on the law of the response error terms εY , the law of

the covariates C , the nuisance functions η0, and the network G, we introduce the functional

( ) ( )∑⎜ ⎟=
⎛
⎝

⎞
⎠∞

→∞ =
σ P P η G

N
ψ S θ η, , ; lim Var

1
, , ,ε C

N
i

N

i i

2 0

1

0 0

which can be represented as

( ) ( )∑⎜ ⎟=
⎛
⎝

⎞
⎠∞

→∞ =
σ P P η G

N
φ S η, , ; lim Var

1
, ,ε C

N
i

N

i
2 0

1

0

due to ( ) ( )= −ψ S θ η φ S η θ, , ,i i i i

0 0 0 0 and because the θi

0’s are non-random.
We assume that ( )∞σ P P η G, , ;ε C

2 0 is continuous with respect to Mallows’ distance ( )⋅ ⋅d ,2 in the first
and second argument and with respect to ‖ ‖⋅ P,2 in the third argument.
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Proof of Theorem 2.3. The bootstrap variance relies on the same dependency structure induced by
the network as ∞σ

2 and can be represented by

( ) ( )∑⎜ ⎟=
⎛
⎝

⎞
⎠∞

→∞ =
σ P P η G

N
ψ S θ ηˆ , ˆ , ˆ; lim Var *

1
*, ˆ , ˆ ,ε C

N
i

N

i i

2
ˆ

1

0

where the construction of S *
i is described in Section 2.5. Similarly, we can rewrite this bootstrap variance

as
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i
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1

Due to Assumption 3.1 and [76], we have ( ) →d P Pˆ , 0C C

P

2 , where ( )⋅ ⋅d ,2 denotes Mallows’ distance. Furthermore,

due to ‖ ‖− →ε εˆ 0Y Y P

P

,2 , we also have ( ) →d P Pˆ , 0ε ε

P

2 ˆ (see [76] and [29, Lemma 5.4]). Due to ‖ ‖− →η ηˆ 0I
P

P
0

,2
k

c

for [ ]∈k K , we obtain
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N
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i

N

i

P

1 1

0

which consequently establishes consistency of the bootstrap variance. □

G Consistent plugin variance estimator

An alternative to the bootstrap variance estimator can be constructed as described below. We do not recom-
mend this estimator unless the sample size is large relative to the network connectivity, but its consistency can
be derived under different and more explicit conditions than in (A7).

The challenge is that the unit-level effects θi

0 for [ ]∈i N are not all equal. This is because the unit-level data
points Si are typically not identically distributed. The difference in distributions originates from the X - and
Z -features that generally depend on a varying number of other units. If two unit-level data points Si and Sj

have the same distribution, then their unit-level treatment effects θi

0 and θj

0 coincide. If enough of these unit-
level treatment effects coincide, we can use the corresponding unit-level data to estimate them. Subsequently,
we describe this procedure.

We partition [ ]N into sets � d for ≥d 0 such that all unit-level data points Si for �∈i d have the same
distribution. Provided that the sets � d are large enough, we can consistently estimate the corresponding θd

0 for
≥d 0 by

�
�

∣ ∣
( )( )∑=

∈
θ φ S ηˆ

1
, ˆ ,d

d i

i
I

d

k i

c

(A7)

where ( )k i denotes the index in [ ]K such that ( )∈i Ik i . The convergence rate of these estimators is at least − ∕N 1 4

(see Lemma G.3 in Section G.1 in the appendix). To achieve this rate, we require that the sets � d contain at
least of order ∕N 3 4 many indices (see Assumption A5 in Section A in the appendix). The parametric conver-
gence rate cannot be achieved in general because � d is of smaller size than N , but the corresponding units
may have the maximal dmax many ties in the network.

Subsequently, we characterize a situation in which the index d corresponds to the degree in the depen-
dency graph GD. This is the case if two unit-level data points Si and Sj have the same distribution if and only if
the units i and j have the same degree in GD. We assume, given a unit i and some [ ] { }∈m N i\ , that (1) if Cm is
part of Zi, then Cm is also part of Xi, and vice versa; and (2) ifWm is part of Xi, then Cm is part of Xi and Zi and
vice versa. Consequently, if two units ≠i j have the same degree in the dependency graph, then their X - and
their Z -features are computed using the same number of random variables. Hence, Xi and Xj as well as Zi

and Zj are identically distributed, and therefore, Si and Sj have the same distribution. Thus, the sets � d form
partition of the units according to their degree in the dependency graph, i.e., � { [ ] ( ) }= ∈ =i N d i d:d for
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≥d 0, where ( )d i denotes the degree of i in the dependency graph. There are ( )+ = ∕d o N1max
1 4 many such

sets, and each of them is required to be of size at least of order ∕N 3 4 in Lemma G.3. This is feasible because
there are N units in total. Provided that the machine learning estimators of the nuisance functions converge at
a rate faster than ∕N 1 4 as specified by Assumption A6 in the appendix, we have the following consistent
estimator of the asymptotic variance given in Theorem G.1. Algorithm 1 summarizes the whole procedure
of point estimation and inference for the EATE where the variance is estimated as given in Theorem G.1.
Nevertheless, this estimation scheme can be extended to general sets � d.

Theorem G.1. Denote by ( )=G V E,D D the dependency graph on Si, [ ]∈i N . For a unit [ ]∈i N , denote by ( )d i its
degree in GD and by ( )k i the number in [ ]K such that ( )∈S Ii k i . In addition to the assumptions made in Theorem
2.2, also assume that Assumptions A5 and A6 stated in Section A in the appendix hold. Based on φ defined in (4),
we define the score function ( ) ( )= −ψ S θ η φ S η θ, , ,i i for some general �∈θ and the nuisance function triple

( )=η g g h, ,
1 0

. Then,

( ) ( ) ( )( )

{ }

( ) ( )
( ) ( ) ( )∑ ∑+

= ∈N
ψ S θ η

N
ψ S θ η ψ S θ η

1
, ˆ , ˆ

2
, ˆ , ˆ , ˆ , ˆ
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i d i
I

i j E

i d i
I

j d j
I

1

2

,

k i

c

D

k i

c

k j

c

is a consistent estimator of the asymptotic variance ∞σ
2 in Theorem 2.2.

G.1 Proof of Theorem G.1

Lemma G.2. Assume the assumptions of Theorem G.1 hold. Let [ ]∈i N . There exists a finite real constant
C7 independent of i such that ‖ ( )‖( ) ≤ψ S θ η C, ,i d i P

0 0
,4 7 holds. Consequently, for [ ]∈i j m r N, , , , we can also bound

the following terms by finite uniform constants:
• ‖ ( )‖( )ψ S θ η, ,i d i P

0 0
,2,

• ( ( ))φ S ηVar ,i
0 ,

• ( ( ))( )ψ S θ ηVar , ,i d i
2 0 0 ,

• ( ( ) ( ))φ S η φ S ηCov , , ,i j
0 0 ,

• ( ( ) ( ))( ) ( )ψ S θ η ψ S θ ηVar , , , ,i d i j d j

0 0 0 0 ,

• ( ( ) ( ) ( ) ( ))( ) ( ) ( ) ( )ψ S θ η ψ S θ η ψ S θ η ψ S θ ηCov , , , , , , , , ,i d i j d j m d m r d r

0 0 0 0 0 0 0 0 .

Moreover, we have ( ) ( )=φ S η O, 1i P
2 0 . Furthermore, we have ( ) ( )( )

( ) =ψ S θ η O, , ˆ 1i d i
I

P
2 0

k i

c

.

Proof of Lemma G.2. We have
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,4 0

0
,4 0

,4

1

0
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0
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0

0
,
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(A8)

All individual summands in the aforementioned decomposition are bounded by a finite real constant inde-
pendent of i due to Assumption A3. Therefore, there exists a finite real constant C7 independent of i such that
‖ ( )‖ ≤ψ S θ η C, ,i i P

0 0
,4 7 holds.

The other terms in the statement of the present lemma are bounded as well by finite real constants
independent of [ ]∈i j m r N, , , due to Hölder’s inequality.

Moreover, we have ( ) ( )=ψ S η O, 1i P
2 0 because ‖ ( )‖ψ S η,i P

2 0
,2 is bounded by a constant that is independent

of i.
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Furthermore, with P-probability at least − Δ1 N , we have

� ��

� �

[ ( )∣ ] [ ( )] ‖ ( )‖( ) ( ) ( )
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2
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c
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The term ‖ ( )‖( )ψ S θ η, ,i d i P

0

,2

2 is bounded by a real constant that is independent of i and η because the derivation
in (A8) also holds with η0 replaced by �∈η due to Assumption A4. □

Lemma G.3. (Convergence rate of unit-level effect estimators) Assume the assumptions of Theorem G.1 hold. Let
≥d 0, and assume that all assumptions of Section A in the appendix hold. Then, we have ( )− = − ∕θ θ o Nˆ

d d P
0 1 4 ,

where θ̂d is as in (A7).

Proof of Lemma G.3. Let ≥d 0. Due to the definition of θ̂d given in (A7) and Lemma 2.1, we have
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(A9)

Subsequently, we show that the two sets of summands in (A9) are of order ( )o 1P . We start with the first set
of summands. Let �∈i d. With P-probability at least − Δ1 N , we have

� �[( ( ) ( )) ∣ ]( ) − ≲ −φ S η φ S η δ N, ˆ , ,i
I

i I N
κ0 2k i

c

k

c

due to equation (A6). Hence, we have ∣ ( ) ( )∣ ( )( ) − = −φ S η φ S η O δ N, ˆ ,i
I

i P N
κ0k i

c

based on Chernozhukov et al.
[20, Lemma 6.1]. Consequently, we have
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because we have ≥ ∕κ 1 4 by Assumption A6. Next, we show that the second set of summands in (A9) is of order
( )o 1P . Let >ε 0. We have
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because ( ( ))φ S ηVar ,i
0 and ( ( ) ( ))φ S η φ S ηCov , , ,i i

0 0 are bounded by constants uniformly over i due to Lemma
G.2, and because ( ( ) ( ))φ S η φ S ηCov , , ,i i

0 0 does not equal 0 only if �{ } ∈ ∩i j E, D d

2 , where ED denotes the edge set
of the dependency graph. There are �∣ ∣d many nodes in � d, and each node has a maximal degree of dmax.
Thus, we have � �∣ ∣ ∣ ∣∩ ≤ ∕E d1 2D d d

2
max. Due to ( )= ∕d o Nmax

1 4 and �∣ ∣ ( )= ∕Ω Nd
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to Assumptions A1 and A5, we obtain
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□
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Lemma G.4. (Consistent variance estimator part I) Assume the assumptions of Theorem G.1 hold. We have
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Proof of Lemma G.4. We have
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(A10)

We bound the three sets of summands in (A10) individually. The first set of summands can be expressed as
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We have
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because the function � �∋ ↦ ∈x x2 is continuous and due to equation (A6). Indeed, let >ε 0. Because the
function � �∋ ↦ ∈x x2 is continuous, there exists >δ 0 such that if ∣ ( ) ( )∣( ) − <φ S η φ S η δ, ˆ ,i

I
i

0k i

c
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with P-probability at least − Δ1 N , and we infer (A11) due to (A6). The estimator ( )θ̂d i is a consistent estimator of
( )θd i

0 due to Lemma G.3, and ( )θd i

0 is bounded independent of i due to Assumption 3.5. Moreover, we have
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due to (A6) and Chernozhukov et al. [20, Lemma 6.1]. Consequently, we have

( ( ) ( )) ( )( )
( )∑ − =

=N
θ φ S η φ S η o

2
ˆ , ˆ , 1 ,

i

N

d i i
I

i P

1

0k i

c

due to Hölder’s inequality. Hence, the first set of summands in (A10) is of order ( )o 1P . The second set
of summand in (A10) can be decomposed as
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We have ∣ ( ( ) )∣ ( )( ) ( )
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N i
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2
0 2 due to Lemma G.3. Lemma G.2 bounds ( )φ S η,i

2 0 in probability.
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Consequently, the second set of summands in (A10) is of order ( )o 1P . Finally, we bound the third set of
summands in (A10). Let >ε 0. We have

�( ( ) [ ( )])

( ( )) ( ( ) ( ))

( ( ) ( ))

( )

( ) ( )

( )
[ ] { }

( ) ( )

∑

∑ ∑

⎛

⎝
⎜ − >

⎞

⎠
⎟

≤
⎛

⎝
⎜ +

⎞

⎠
⎟

≤ +

=

=

= ∈ ∈

P
N

ψ S θ η ψ S θ η ε

ε N
ψ S θ η ψ S θ η ψ S θ η

ε N
NO Nd O

o

1
, , , ,

1
Var , , Cov , , , , ,

1
1 1

1

i

N

i d i i d i

i

N

i d i

i j N i j E

i d i j d j

1

2 0 0 2 0 0

2

2

2 2

1

2 0 0

, , ,

2 0 0 2 0 0

2 2 max

D

because ( ( ))( )ψ S θ ηVar , ,i d i
2 0 0 and ( ( ) ( ))( ) ( )ψ S θ η ψ S θ ηCov , , , , ,i d i j d j

2 0 0 2 0 0 are bounded uniformly over i and j by
Lemma G.2, because ( ( ) ( ))( ) ( )ψ S θ η ψ S θ ηCov , , , , ,i d i j d j

2 0 0 2 0 0 does not vanish only if { } ∈i j E, D, and because
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1 4 by Assumption A1. Consequently, also the third set of summands in (A10) is of order ( )o 1P ,
and we have established the statement of the present lemma. □

Lemma G.5. (Consistent variance estimator part II) Assume the assumptions of Theorem G.1 hold. Denote by ED

the edge set of the dependency graph. We have
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Subsequently, we bound the three sets of summands in (A12) individually. We start by bounding the first set
of summands. We have
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due to Hölder’s inequality, Lemma G.3, Lemma G.2, and Assumption A1. Moreover, we have
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due to Hölder’s inequality, Lemma G.3, and Assumption A1. Consequently, the first set of summands in (A12) is
of order ( )o 1P . We proceed to bound the second set of summands in (A12). Let { } ∈i j E, D. Due to the construc-
tion of �
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c . Moreover, the variablesWi , Ci, Yi , and the variables used to compute Xi also cannot
belong to �
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with P-probability at least − Δ1 N due to Hölder’s inequality. Because all terms mentioned earlier are uni-
formly bounded due to Lemma G.2, we infer that the second set of summands in (A12) is of order ( )o 1P based on
Chernozhukov et al. [20, Lemma 6.1]. Finally, we bound the third set of summands in (A12). Let >ε 0. We have
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Due to Lemma G.2, the variance and covariance terms in (A13) are uniformly bounded by constants. Further-
more, the covariance terms do only not equal 0 if Si depends on Sm or Sr, or if Sj depends on Sm or Sr. In order
to better describe these dependency relationships, we build a graph on the edge set of the dependency graph.
We consider the graph ( )′ = ′ ′G V E, with ′ =V ED and such that an edge {{ } { }} ∈ ′i j m r E, , , if and only if at least
one of { }i m, , { }i r, , { }j m, , { }j r, belongs to ED. Consequently, {{ } { }} ∈ ′i j m r E, , , if and only if ( ) ( )⊥⊥S S S S, ̸ ,i j m r , in
which case the covariance term in (A13) corresponding to { }i j, and { }m r, does not vanish. Furthermore, we
have ∣ ∣ ∣ ∣′ = ∕ ′E E d1 2 D max, where ′dmax denotes the maximal degree of a node in ′G . We have ′ ≤d d2max max.
Consequently, we have
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due to Assumption A1. Therefore, we have established the statement of the present lemma because we have
verified that all three sets of summands in (A12) are of order ( )o 1P . □

Proof of Theorem G.1. The proof follows from Lemmas G.4 and G.5. □

H Extension to estimate global effects

So far, we focused on the EATE. We intervened on each individual unit and left the treatment selections of
the other units as they were.

Subsequently, we consider another type of treatment effect where we assess the effect of a single inter-
vention that intervenes on all subjects simultaneously. Instead of the EATE in (2), we subsequently consider
the GATE with respect to the binary vector { }∈π 0,1 N of treatment selections
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1 (A14)

where ( )=W W W, …, N1 denotes the complete vector of treatment selections of all units. In practice, the most
common choice is where all components of π equal 1, i.e., the treatment effect comes from comparing the
situation where all units are assigned to the treatment versus where no-one gets the treatment.

We use the same definition for Si, [ ]∈i N as before and denote the dependency graph on Si, [ ]∈i N by
( )=G V E,D D . Furthermore, we let ( ) { [ ] { } } { }= ∈ ∈ ∪α i j N i j E i: , D for [ ]∈i N denote the nodes that share an

edge with i in the dependency graph together with i itself. For some real number �∈ξ and a nuisance
function triple ( )=η g g h, ,

1 0
, consider the score function
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In contrast to the score that we used for the EATE, this score includes additional factors
( )

W
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j j
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1

1 ,

j
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for units j that share an edge with i in the dependency graph. With the GATE, when we globally intervene on
all treatment selections at the same time, this also influences the Xi that are present in g

1
and g

0
. In the score

(A15), the “correction terms” ( )( ( ))( ) ( )
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if i and the units from which it receives spillover effects have the same observed treatment selection.
Let us denote by
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denotes the feature vector where Wj is replaced by πj, and
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denotes the feature vector where Wj is replaced by − π1 j. The features Zi

π and −
Zi

π1 are defined analogously.
Similar to Lemma 2.1, it can be shown that�[ ( )] =ψ S ξ η, , 0i i

0 0 holds, which lets us identify the global treatment
effect ξN

0 by
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To estimate ξN

0 , we apply the same procedure as for the ATE. The only difference is that when we evaluate
the machine learning estimates, we do not use the observed treatment selections, but instead insert the
respective components of π and − π1 . However, we insert the actually observed treatment selections in

the product terms ( ) ( )
∏ ∈j α i

W

h C Z,

j

j j

and ( ) ( )
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−
−j α i

W

h C Z

1

1 ,

j

j j

. This gives the estimator ξ̂ . Analogously to Theorem 2.2

for the EATE, also the GATE with respect to π converges at the parametric rate and follows a Gaussian
distribution asymptotically.

Theorem H.1. (Asymptotic distribution of ξ̂ ) Assume Assumption A3 (with θ replaced by ξ ), 1, and A4 in the
appendix in Section A hold. Furthermore, assume that there exists a finite real constant L such that ∣ ( )∣ ≤α i L

holds for all [ ]∈i N .
Then, the estimator ξ̂ of the GATE with respect to { }∈π 0,1 N , ξN

0 , satisfies

�( ) ( )− → ∞N ξ ξ σˆ 0, ,N

d
0

where ∞σ is characterized in Assumption A2with theψ in (A15). The convergence in (H.1) is in fact uniformly over
the law P of the observations.

This theorem requires that the number of spillover effects a unit receives is bounded. Theorem 2.2 that
establishes the parametric convergence rate and asymptotic Gaussian distribution of the EATE estimator did
not require such an assumption. The reason is that ( )h C Z,i i

0 represents the conditional expectation ofWi given
Ci and Zi and consequently a probability taking values in the interval ( )0,1 . If we allowed ∣ ( )∣α i to grow with N ,

the products ( ) ( )
∏ ∈j α i

W

h C Z,

j

j j

and ( ) ( )
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−
−j α i

W

h C Z

1

1 ,

j

j j

would diverge.

To estimate ∞σ
2 in Theorem H.1, we can apply the procedure described in Section G, where we replaceψ, φ,

and the point estimators by the respective new quantities. Also an analog of Theorem G.1 holds, but where we
assume the setting of Theorem H.1 holds and that �∣ ∣ → ∞d as → ∞N for all ≥d 0. In particular, we do not
require Assumptions A5 and A6 formulated in the appendix in Section A. Furthermore, to prove consistency of
the variance estimator, it is sufficient to establish that the degree-specific causal effect estimators ξ̂d, which are
defined analogously to θ̂d, are consistent. In particular, they are not required to converge at a particular rate.

Also van der Laan [14], Sofrygin and van der Laan [10], and Ogburn et al. [6] consider semiparametric
estimation of the GATE using TMLE. They also require a uniform bound of the number of spillover effects
a unit receives to achieve the parametric convergence rate of their estimator.
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