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Abstract: There is a long-standing debate in the statistical, epidemiological, and econometric fields as to
whether nonparametric estimation that uses machine learning in model fitting confers any meaningful
advantage over simpler, parametric approaches in finite sample estimation of causal effects. We address
the question: when estimating the effect of a treatment on an outcome, how much does the choice of non-
parametric vs parametric estimation matter? Instead of answering this question with simulations that reflect a
few chosen data scenarios, we propose a novel approach to compare estimators across a large number of data-
generating mechanisms drawn from nonparametric models with semi-informative priors. We apply this
proposed approach and compare the performance of two nonparametric estimators (Bayesian adaptive
regression tree and a targeted minimum loss-based estimator) to two parametric estimators (a logistic regres-
sion-based plug-in estimator and a propensity score estimator) in terms of estimating the average treatment
effect across thousands of data-generating mechanisms. We summarize performance in terms of bias, con-
fidence interval coverage, and mean squared error. We find that the two nonparametric estimators can
substantially reduce bias as compared to the two parametric estimators in large-sample settings characterized
by interactions and nonlinearities while compromising very little in terms of performance even in simple,
small-sample settings.
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1 Introduction

In the past two decades, work emerging from the nonparametric statistics literature has allowed for the
incorporation of machine learning algorithms in estimation while, in many cases, preserving theoretically
valid statistical inference [e.g., 1–4]. A growing faction, though still a subset, of statisticians, epidemiologists,
econometricians, and other applied scientists now take as a given that these nonparametric estimators, if
appropriately applied, are typically superior to parametric estimators, particularly in terms of reducing or
eliminating model misspecification bias, which can be substantial when using an overly simplistic parametric
model in complex settings [e.g., 4–14]. (We note that we use the term “nonparametric estimator” to mean an
estimator where each component of the causal model used in estimation [also called a “nuisance parameter,”
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e.g., an outcome regression] is estimated nonparametrically.) Minimizing all sources of bias is essential,
especially because when bias remains on the same order as standard error, the probability of a corresponding
hypothesis test rejecting the null will tend to one even when no effect is present.

Even so, an attitude of caution and skepticism remains prevalent, with many favoring simpler, parametric
model-based approaches over approaches that are deemed by some to be unnecessarily complex [e.g., 15]. For
example, Little (2013) observes that “Much modern nonparametric and semiparametric statistical theory lives
in the ‘land of asymptotia’ [15].” This is accurate, and few have contributed evidence of the extent to which the
assumption of nonparametric estimator superiority is borne out in real-world, finite-sample analyses, leaving
the debate as to whether nonparametric methods confer any meaningful practical advantage in typical real-
world applications largely unresolved [16].

Both nonparametric and parametric estimation methods generally involve using theory and subject-
matter knowledge to inform the underlying causal model/graph [17] and the variables input into the model
[18]. However, whereas parametric estimation methods would proceed by specifying parametric models (e.g.,
linear regression) for each nuisance parameter, specifying its functional form, interactions, higher-order
variable forms, etc., nonparametric methods would typically involve using data-adaptive methods, such as
machine learning algorithms, in flexibly fitting nuisance parameters.

Statistical theory informs when we would expect parametric versus nonparametric estimators to perform
better in terms of bias. The bias of parametric estimators is a function of how close the parametric regression
model is to the truth. For a simple parametric plug-in estimator (discussed further in Section 3 and Section S1
in the Supplement), bias is a function of how close the parametric outcome model is to the truth. For para-
metric estimators based on the propensity score, bias is a function of how close the treatment model is to the
truth. For example, if the response and/or treatment assignment surfaces are nonlinear, then a parametric
linear regression-based estimator that does not incorporate such nonlinearities would be expected to have
appreciable bias [19]. The bias of nonparametric estimators also depends on how close the nonparametric
regression models are to the truth, but the reliance on correct specification of the regression models is relaxed
in at least one or two respects, depending on the estimator. First, the bias of nonparametric estimators that are
also semi-parametric efficient estimators (e.g., the augmented inverse probability of treatment weighted
[A-IPTW] estimator, the one-step estimator, double/de-biased machine learning estimator, targeted minimum
loss-based estimator [TMLE]) is an integral of a product of two regression errors – e.g., one for the outcome
regression and one for the treatment regression, a property called “double robustness” [20–22]. If the two
errors are small, this product will generally be smaller than the single error involved in the definition of the
parametric estimator bias. We discuss this further in Section S1 in the Supplement and TMLE in more detail in
Section 3. Second, nonparametric estimators use machine learning algorithms in fitting nuisance parameters,
which reduces reliance on correct parametric model specification, and therefore, can improve model fit and
reduce bias even further. Consequently, because correctly specifying parametric models a-priori seems unli-
kely in the absence of clear mechanistic understanding, based on this asymptotic theory, nonparametric
estimators are expected to have less bias, on average, than parametric estimators in very large samples
when an accurate model is important to obtain an unbiased estimate, e.g., in the presence of significant,
complex confounding or censoring [19]. However, asymptotic approximations may be poor in small or even
moderately sized real-world samples that are afflicted by the curse of dimensionality, resulting in bias and
under-coverage of confidence intervals [23]. The sample size at which asymptotic approximations reflect
reality is generally problem dependent and unknown.

Previous simulation studies comparing performance between parametric and nonparametric estimation
have generally shown that nonparametric estimators incorporating data-adaptive, machine learning algo-
rithms outperform parametric approaches, especially under the data structures enumerated earlier [19,24–26].
However, common critiques of simulation studies are that they (a) are typically designed to illustrate a
difference in performance (or lack thereof), and thereby reflect hand-picked settings that are favorable to
the method of interest; (b) are oversimplified “stylized models of reality”; and (c) may hold little value if the
goal is to make a general statement about the degree to which the choice of nonparametric versus parametric
estimation matters [27–31]. A similar criticism regarding the lack of generalizability can apply to the few
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previous real data analysis examples comparing nonparametric versus parametric estimators, sometimes
finding meaningful differences and other times, not [14,32].

Responding to the critique that simulation-based evaluations of estimator performance have been con-
ducted on oversimplified data too far removed from the complexity of real-world datasets, several groups
recently proposed more comprehensive, yet tailored, evaluations of estimator performance by simulating
datasets that closely mimic an observed dataset in all its complexity (similar to the idea of “plasmode simula-
tion” [33]) [e.g., 27,28,34,35]. This work is premised on the belief that the optimal estimator will differ for
different data scenarios; hence, the focus is on generating simulated data to match a particular observed
dataset. However, by using the same data to both select an estimator and evaluate this estimator, these
approaches are vulnerable to problems with post-selection inference. Given sufficiently large sample sizes,
this problem can be circumvented via sample splitting [36]; however, practitioners can seldom afford to
discard large amounts of data to perform estimator selection.

The current debate about how much the choice of a nonparametric estimator versus a parametric
estimator may matter in the real world asks a more general question than the current literature can answer.
We propose an approach to help answer such a question: what we call a large-scale Monte-Carlo simulation
that instead of considering just a few data-generating mechanisms, summarizes estimator performance across
thousands of data-generating mechanisms within a user-defined data setting. Unlike the plasmode simulation
approaches referenced earlier, ours does not depend on the observed data. We apply this approach, com-
paring several parametric and nonparametric estimators to demonstrate how one can generate broader
evidence of the degree to which choosing among these estimators can impact bias, confidence interval
coverage, and mean squared error (MSE) in finite sample causal effect estimates.

Specifically, in our application of the proposed approach, we consider data-generating distributions
drawn from the following setting: a binary treatment, a binary outcome, five binary covariates, and one
multi-valued covariate. We compare performance in estimating the average treatment effect (ATE, formally
defined in Section 2). We consider: (1) a parametric “plug-in” estimator (also called a “g-computation esti-
mator”), (2) a propensity score estimator that uses a parametric treatment model, (3) a nonparametric “plug-
in” estimator, and (4) a nonparametric efficient estimator.

This article is organized as follows. In Section 2, we introduce notation and the causal estimand we
consider. In Section 3, we describe our proposed large-scale Monte-Carlo simulation for comparing parametric
and nonparametric estimators. Also in this section, we provide the specific parameters that define the space of
data-generating mechanisms we consider in applying the proposed approach, the parametric and nonpara-
metric estimators we compare, and how we quantify and summarize estimator performance in finite samples.
In Section 4, we provide and discuss results. Section 5 concludes.

2 Notation and estimands

For simplicity, in this section, we focus on one component of the ATE contrast – the expected counterfactual
outcome had treatment been set to some value, t, possibly contrary to fact, denoted E( )Y

t , where T denotes
a binary treatment variable, and Y denotes the outcome variable. The ATE would then be denoted
E E( ) ( )−Y Y

1 0 . We assume that the exchangeability assumption holds, ∣⊥⊥Y T X
t for { }∈t 0, 1 , where X denotes

the confounding variables. This assumption is necessary for the causal parameter,E( )Y
t , to be identified from

the observed data, ( )=Z X T Y, , , by the statistical parameter P E E( ) [ ( ∣ )]= =θ Y T t X, , where θ denotes the
statistical parameter, which is a function of the data distribution, P. We let P be an element of the nonpara-
metric statistical model defined as the set of all possible observed data distributions, noting that nonpara-
metric statistical models can be correct. We also assume positivity,P( ∣ )= >T t x 0 for all x in the support of X ,
and for each treatment value in the causal parameter of interest. This is necessary for the statistical parameter
to be well-defined.

We note that P( )θ constitutes the building block for the estimation of common marginal causal effects: the
ATE, identified byE m m{ ( ) ( )}−X X1, 0, ); the relative risk (RR), identified by E m

E m

{ ( )}

{ ( )}

X

X

1,

0,
; and the odds ratio (OR),
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identified by E m E m

E m E m

{ ( )} { ( )}

{ ( )} { ( )}

∕ −
∕ −

X X

X X

1, 1 1,

0, 1 0,
, where m( )t x, represents the true conditional density function (i.e., regres-

sion) E( ∣ )= =Y T t X x, , and where we use subscripts with m( )t x, to denote the estimates of that conditional
density based on a particular statistical model. For example, we use m ( )t x,β̂ to denote an estimate of that

distribution that is a function of fitted parametric regression coefficients, β̂. Similarly, we use subscripts with θ

to denote the estimates of the statistical parameter with the subscript denoting the particular estimator used.
For example, we use θTMLE to denote a TMLE estimate of the parameter P( )θ .

When the exposure takes values in a discrete set, like the binary exposure we consider here, the common
marginal causal effects of the ATE, RR, and OR can be nonparametrically estimated, yet with the same
asymptotic properties as if they were parametrically estimated, as long as the dimension of X is fixed [4].

Taking the ATE as an example, this means that it will be possible to find an estimator ATE ̂ such that as the
sample size n grows, ATE ATE( )̂ −n converges to a random variable that is normally distributed with mean
zero and variance equal to the nonparametric efficiency bound. The efficiency bound is the smallest possible
variance attainable by a regular estimator [1]. This means that the normal distribution can be used to

approximate the sampling distribution of the estimator ATE ̂ for finite sample sizes, which allows us to
construct approximately correct confidence intervals and hypothesis tests.

In the next sections, we develop a simulation-based approach to evaluate if and when nonparametric
estimators of P( )θ can be expected to outperform parametric estimators across a range of finite samples under
minimal but reasonable assumptions on the nature of the true data-generating mechanism.

3 A large-scale Monte-Carlo simulation approach to systematically
evaluate the finite sample performance of estimators

We propose the following general method to systematically evaluate and compare the performance of a set of
candidate estimators in finite samples. Our method, which draws on the nonparametric Bayesian literature,
compares the performance across a large number of data distributions within a setting defined based on the
following: the number and type of variables, range of confounding bias, treatment effect heterogeneity, and
degree of nonlinearity.
• For each { }∈j J1, …, , we draw a probability distribution Pj using a minimally informative prior across the
space of distributions (i.e., nonparametric model), � . The minimally informative distribution on � reflects
the fact that investigators often have little knowledge of the data-generating mechanism before seeing the
data. We describe this part of the procedure in more detail in Section 3.1.

• Then, for each of the J data-generating mechanisms, we generate S simulated datasets. So, for each j and s

we have a dataset Dj s, of some finite sample size n from Pj .

• Then, for each of the L estimators being considered, we compute the parameter estimate θ̂l j s, , and the

standard error estimate σ̂l j s, ,

1. Let θ θˆ ,…, ˆ
j s L j s1, , , , denote the parameter estimates and σ σˆ ,…, ˆj s L j s1, , , , denote

the standard error estimates.
• We next compute the performance metrics based on sample averages across the S simulated draws. For
distribution Pj and sample size n, the Monte-Carlo bias, confidence interval coverage, and MSE of a given

estimator θ̂l are



1 We note that BART returns the credible interval – not the standard error estimate.

4  Kara E. Rudolph et al.



B P P

CICov P P

MSE P P

�

( ) ( )

( ) ( )

( ) { ( )}

( )

( )

( )

∑

∑

∑

= −

=
⎧
⎨
⎩

− < < +
⎫
⎬
⎭

= −

=

=

=

S
θ θ

S
θ

cσ

n
θ θ

cσ

n

S
θ θ

1
ˆ ,

1
ˆ

ˆ
ˆ

ˆ
,

1
ˆ ,

l

n

j

s

S

l j s j

l

n

j

s

S

l j s

l j s

j l j s

l j s

l

n

j

s

S

l j s j

1

, ,

1

, ,

, ,

, ,

, ,

1

, ,
2

where c denotes the 97.5th percentile of the standard normal distribution.
• Finally, we summarize the performance across the J data distributions with a probability distribution of
each performance metric (e.g., the bias). Specifically, the bias for estimator l at sample size n is summar-
ized by:

B B P� �(∣ ∣ ) {∣ ( )∣ }
( ) ( )∑> = >

=
b

J
b

1
.l

n

j

J

l

n

j

1

This function can be seen as an approximation of the so-called survival or reliability function, where the
former name is common in the statistics literature and the latter in the engineering literature. We use the
name reliability function, because it is closer to the intended interpretation for each estimation procedure.
Because we consider the sample space of probability distributions as all possible data-generating mechan-
isms (i.e., phenomena under study), the probability distribution can be heuristically interpreted as prob-
abilities across all possible studies.

In contrast to standard simulation studies, which often focus on a few data-generating mechanisms, this
large-scale Monte-Carlo simulation will provide evidence of the behavior of the estimators across many data-
generating mechanisms and, consequently, will be informative for assessing how the estimators perform
across a broader range of problems that may be encountered within the defined data setting, � .

3.1 Specifying and sampling from the space of probability distributions

Our simulations will be restricted to binary treatments and binary outcomes. Although we do allow for non-
binary confounding variables, we restrict to discrete, ordinal variables. These restrictions ensure computa-
tional tractability but generalizations can, in principle, be devised for any data structure. Our models forP will
be characterized by the following user-given, minimally informative priors, representing an analyst’s prior
knowledge of the data generating distribution:
• An integer u representing the number of binary confounding variables.
• An integer h representing the number of nonbinary confounding variables, together with an integer c

denoting the cardinality of the support of each. Without loss of generality, we assume that each is supported
in the set � { ( ) ( ) }= ∕ − ∕ −c c0, 1 1 , 2 1 , …,1 .

• A parameter η that controls the non-linearity of the effect of the non-binary confounding variables in the
data generating process (additional detail later).

• A parameter ρ that controls the smoothness of the effect of the non-binary confounding variables in the data
generating process (additional detail later).

• An interaction order k (additional detail later).
• A boolean value { }∈hte TRUE, FALSE indicating whether there is treatment effect heterogeneity, meaning
that the effect of the treatment on the outcome varies by the level of one or more confounding variables.

• A positive number q bounding the treatment probabilities as

P

P�

( )

( ∣ ){ }

=
= =

≤
∈ ∈

T t

T t X x
qmax ,

t x0,1 ,

where � is the support of X .
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• A real number b representing the desired confounding bias:E E E m m( ∣ ) ( ∣ ) { ( ) ( )}= − = − −Y T Y T X X1 0 1, 0, .

Our sampling scheme proceeds by first sampling P( )=X x , then P( ∣ )= =T X x1 , and finally
P( ∣ )= = =Y T t X x1 , . Note that the vector X takes values on the set � �{ }= ×0, 1 u u, which has cardinality

× c2u h. In the first step, we sample the vector P �{ ( ) }= ∈X x x: using a Dirichlet uniform distribution in
[ ] ×0, 1 c2

u h

. The Dirichlet distribution is used as it is the most commonly used prior distribution for categorical
data and will allow us to explore many possible covariate distributions. Other distributions could be used that
would induce more or less correlation among the covariates; see Dunson and Xing (2009) for distributions over
the space of multivariate, categorical data [37].

3.1.1 Sampling treatment probabilities

Let ( )=X X X,bin num represent the partitioning of binary and non-binary confounding variables. Treatment
probabilities are generated using a linear probability model where we consider:
• interactions up to k -th order for Xbin and
• interactions of each of the aforementioned terms with a non-linear transformation of Xnum.

Let { ( ) { } }= = ∈ ∑ ≤L l l l l l k, …, : 0, 1 ;u j j j1 . For instance, when =u 3 and =k 2, {( ) ( ) ( )=L 0, 0, 0 , 1, 0, 0 , 0, 1, 0 ,

( ) ( ) ( ) ( )}0, 0, 1 , 1, 1, 0 , 1, 0, 1 , 0, 1, 1 . Note that this set has cardinality ∣ ∣ = ∑ ⎛
⎝

⎞
⎠=L

j

k u

j0 . Mathematically, the model

takes the form P g( ∣ ) ( )= = =T X x x α1 ; , where

g( ) { ( )}∑ ∏= +
∈ =

x α α α f x x; .

l L

l l l

j

u

j

l

0, 1, num

1

bin,

j

For example, when =u 2 and =k 1,

g( ) ( ) ( ) ( )= + + + +x α α α f x α x f x α x α x f x; .0,1 1,1 1 num 0,2 bin,1 2 num 0,3 bin,1 1,3 bin,1 3 num

The parameters ( )α α f, ,l l l0, 1, are sampled as follows. First, each ( )f x
l num is sampled from a Gaussian

process with linear mean ⊤
γ xnum and covariance function equal to:

( ) { ∣∣ ∣∣ }= − −K x x η ρ x x, exp ,i j i jnum, num, num, num,
2

where each coefficient in γ is independently drawn from a standard normal distribution. Then, the vector of
coefficients {( ) }∈α α l L, :l l0, 1, is sampled uniformly from a convex polytope defined by the following linear
constraints for all �∈x :

g

g

g P

g

g P

g

( )

( )

( ) ( )

( )

{ ( )} ( )

( )

∑

∑

≥
≤

≥
=

≥
− =

−

x α

x α

q

x α X x

x α

q

x α X x

x α

1 ; ,

0 ; ,

;

;
,

1 ;

1 ;
,

x

x

where the first two constraints ensure that g( )x α; is a well-defined probability. The third and fourth con-
straints prevent near-positivity violations governed by the parameter q, i.e., they ensure the conditional
probability of each treatment level given each covariate value is not too small relative to the marginal
probability of that treatment level. Note that the third and fourth constraints are linear; e.g., the third
constraint can be rewritten as g P g( ) ( ) ( )∑ = − × ≤x X x q x α; 0.

x The aforementioned sampling is performed
using the volesti R package [38].

Once a vector {( ) }∈α α l L, :l l0, 1, is sampled, it is checked for whether it can possibly yield a desired
confounding bias b, the details of which are given in the following. If not, the current draw is rejected.
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The confounding bias for a given distribution is equal to:

P

P
P P P( )

( )

( )
{ ( ∣ ) ( )} ( ∣ )∑ ∑= −

=
=

= = − = = = =C t
X x

T t
T t X x T t Y T t X x2 1 1 , ,

t x

(1)

so we must ensure that P( )=X x and P( ∣ )= =T t X x are such that it is possible to find values
P( ∣ )≤ = = = ≤Y T t X x0 1 , 1 such that =C b. This occurs if ≤ ≤C b Clow high , where

P

P
P P

P

P
P P

P

P
P P

P

P
P P

( )
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{ ( ∣ ) ( )}
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X x
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X x
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T X x T

max
1

1 1 , 0

min
0

0 0 , 0 ,

min
1

1 1 , 0

max
0

0 0 , 0 .

x

x

x

x

high

low

If ≤ ≤C b Clow high is false, we reject the current draw of P �{ ( ) }= ∈X x x: and {( ) }∈f α α l L, , :
l l l0, 1, and

repeat the process until ≤ ≤C b Clow high . If this condition is not achievable after 1,000 iterations, this is an
indicator that the initial conditions may be infeasible. In this case, the algorithm fails and does not return a
sampled distribution.

3.1.2 Sampling the outcome mechanism

Outcomes are also generated using a linear probability model: P m( ∣ ) ( )= = = =Y T t X x t x1 , ,λ β, , where

m ( ) { ( )} { ( )}∑ ∑= + + +
∈ ∈

t x t λ λ h x x β β w x x, ˜ ˜ ,λ β

l L

l l l l

l L

l l l l, 0, 1, num 0, 1, num

if there is treatment effect heterogeneity, and

m ( ) { ( )}= + +t x tλ β β w x x, ˜ ,λ β l l l l, 0, 1, num

if there is no treatment effect heterogeneity, where = ∏ =x xl̃ j

u

j

l

1 bin,

j to simplify notation. The functions ( )h xl num

and ( )w xl num are drawn from Gaussian processes as mentioned earlier. The confounding bias for a given
distribution is equal to:

P

P
P P P( )

( )

( )
{ ( ∣ ) ( )} ( ∣ )∑ ∑= −

=
=

= = − = × = = =C t
X x

T t
T t X x T t Y T t X x2 1 1 ,

t x

(2)

and is linear in the coefficients { { } }∈ ∈λ β t l L, : 0, 1 ,t l t l, ,
. So, for a tolerance tol, we can draw the coefficients

from a uniform distribution in the polytope defined by the following linear constraints:

m

m

( )

( )

( )

( )

≥
≤

+ ≥
− ≤

t x λ β

t x λ β

b C λ β

b C λ β

1 , ; , ,

0 , ; , ,

tol , ,

tol , ,

where ( )C λ β, denotes equation (2) with P( ∣ )= = =T T t X x1 , replaced by m( )t x λ β, ; , .

3.2 Application of the large-scale Monte-Carlo simulation approach

We define the data setting, � , from which we sample data-generating distributions as follows. In addition to
one binary treatment and one binary outcome, we considered five binary covariates ( =u 5) and one numerical
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covariate ( =h 1) with cardinality 100. We considered interactions between covariates of order { }=k 1, 2, 3 . We
considered distributions both with and without treatment effect heterogeneity ( { }∈hte TRUE, FALSE ), and
limiting the treatment probabilities as being ≥0.001 ( =q 1,000). The parameter, η, controlling the nonlinearity
of the numerical confounder was sampled from a uniform distribution ( )U 0.1, 10 ; the parameter, ρ, that
controls the smoothness of this numerical confounder was sampled from a uniform distribution ( )U 0.1, 10 .
These ranges for η and ρ were chosen to result in some complex nonlinearities in the nuisance functions, but
not to a degree that we felt most would consider to be unreasonable. Figure S1 shows how nonlinearity/
smoothness in the propensity score can be varied by changing these values of η and ρ; we include the values of
up to 100 for illustration. Finally, the parameter, b, that controls the confounding bias was sampled from a
uniform distribution ( )−U 0.3, 0.3 .

Within this defined setting, and for each combination of k and indicator of treatment effect heterogeneity,
we sampled =J 500 distinct data-generating distributions, resulting in × × =3 2 500 3, 000 distributions.
For each of these 3,000 distributions, we then sampled =S 250 data sets for each of the sample sizes

{ }∈N 100, 500,1,000 . Figure S2 shows the Monte-Carlo simulation error – the distribution of the maximum
Monte-Carlo biases, variances, and MSEs by sample size. Table 1 reports the averages and standard deviations
of these maximum errors, providing evidence that =S 250 was a sufficient number of draws. However,
approximately 21% of the 2,250,000 data sets (3,000 unique distributions × 3 sample sizes × 250 data sets =

2,250,000 data sets) we attempted to sample did not satisfy our propensity score and confounding bias con-
straints after 1,000 iterations. The final number of data sets was 1,773,000.

For each data set, we then estimated the ATE using =L 4 types of parametric and nonparametric
estimators.

(1) First, we considered a parametric plug-in estimator (also called a g-computation estimator) based on
fitting a model for m( )t x, . We considered two implementations of this estimator: (1) logistic regression with
only main effect terms and (2) logistic regression including all treatment × covariate interactions. For each
subject =i n1,…, , the predicted outcomem ( )t X,β iˆ is computed in a hypothetical world where treatment is set
to =T ti for everyone. Then, the parametric plug-in estimate of the statistical parameter, θ, is given by

m ( )= ∑ =θ t Xˆ ˆ , .
n i

n

β isub

1

1 ˆ We make several notes about our consideration of these parametric plug-in estimators.
First, although many would consider the main-terms-only model overly simplistic, it represents the approach
of much current epidemiologic, medical, and social science research [e.g., 39–45]. Second, much of this
research actually reports a conditional treatment effect estimate based on a coefficient of this main-terms
parametric outcome regression model [e.g., 39–42,44,45], but to target the same parameter across estimators,
we choose to include the marginal parametric plug-in regression estimator instead of the conditional para-
metric regression estimator.

(2) We also considered a parametric inverse probability of treatment weighting (IPTW) estimator with
weights determined using the covariate balancing propensity score (CBPS), which optimizes the balance of
covariates across the treatment and control groups [46]. For each subject =i n1,…, , let the inverse weight be

denoted g P( ) ( ∣ )= = =T t X T t X, ˆ
α i iˆ

. Then, the estimate g ( )
= ∑- =

=
θ Y .

n i

n T t

t X
iIPTW CBPS

1

1 ˆ ,
α iˆ

Parametric propensity score
estimators are popular in applied research, particularly in medical research [e.g., 12,47,48], despite their
inefficiencies [49]. The CBPS estimator is one of the best-performing propensity-score-based estimators in
finite samples and is robust to mild misspecification of the parametric model [46].

(3) Third, we considered a nonparametric plug-in estimator: Bayesian adaptive regression tree (BART,
[3,50]), where BART is used as a model for ( )m t x, within a plug-in estimator, and posterior samples are drawn

Table 1: Average (and standard deviation) of the distributions of the maximumMonte-Carlo error among the five considered estimators

n Bias Variance MSE

100 0.0063 (0.0006) 0.0009 (0.0002) 0.0014 (0.0007)
500 0.0027 (0.0003) 0.0002 (0.0000) 0.0004 (0.0003)
1,000 0.0019 (0.0002) 0.0001 (0.0000) 0.0003 (0.0002)
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(additional detail is given in Section S1). We chose BART due to its excellent performance in recent data
analysis competitions that has shown this type of estimator to work well in a wide range of settings [19].
The general BART model is given by ( ) ( )= ∑ =m t x g t x T M, , ; , ,

m

M

m mBART 1 where Tm represents a decision tree
structure for tree m, while Mm corresponds to the predictions in the terminal nodes for tree m. The prior
distribution for Tm encourages shallow decision trees, while the prior distribution for Mm enforces shrinkage
so that overfitting does not occur for a large number of trees and that each tree is a weak-learner in the sense
that it does not explain the full outcome regression on its own. One can then proceed with inference in a
standard way using the posterior mean of θ BART as a point estimator, and the relevant quantiles of the
posterior distribution to construct credible intervals. For more details on the prior specification, or recent
improvements to the original BART prior, we point readers to Hill et al. [51].

(4) Finally, we considered a nonparametric efficient estimator: TMLE [2,52], using machine learning for
fitting nuisance parameters. Frequentist nonparametric efficient estimators – TMLE [5,52], double/ debiased
machine learning [4], augmented inverse probability-weighted estimators [22], and other one-step bias-correc-
tion estimators [53] – rely on the estimation of both the treatment regression and outcome regression. Under
regularity conditions, it can be shown that if the estimators of both the treatment and outcome regressions
converge to the true functions in P( )L2 -norm at ∕

n
1 4-rate, then these estimators are “doubly robust” [5]. When

both models are consistent, these estimators are asymptotically normal and semiparametric efficient, and the
asymptotic variance can be consistently estimated by the sample variance of the efficient influence function
[2,4]. Additional details are given in Section S1 of the Supplement. To fit the treatment and outcome regres-
sions, we use an ensemble learner called Super Learner [54] with a library of estimators consisting of main-
effects generalized linear models, BART [50], light gradient-boosting machine [55], and multivariate adaptive
regression splines [56]. As recommended, we used a cross-fitted TMLE (using 10-folds for the cross-fitting and,
within those, 5-folds for the Super Learner cross-validation), which typically results in better finite sample
performance due to avoidance of the Donkser class condition required for asymptotic normality [4,57,58].

4 Results

We stratify results by each estimator, the three sample sizes, and by complexity of the data-generating
mechanism. To vary complexity, we examine (a) no interactions between variables and no treatment effect
heterogeneity, (b) treatment effect heterogeneity but no interactions between variables, (c) up to third-order
interactions between variables and no treatment effect heterogeneity, and (d) up to third-order interactions
and treatment effect heterogeneity. We also stratify results by degree of practical violations of the positivity
assumption.

We see in Figures 1 and 2 that at least one, and often, both of the nonparametric estimators, BART and CV-
TMLE, perform better than the parametric estimators in terms of both bias and MSE. The one exception is for
the smallest sample size of =N 100 and the simplest two data-generating mechanisms that do not have any
interactions between variables, the parametric plug-in estimators perform similar to TMLE in terms of bias
(Figure 1(a) and (b)), and BART performs relatively worse. In terms of MSE, however, at least one of the
nonparametric estimators performs best across all settings (Figure 2), with BART dominating in all cases when

=N 100 and performing at least close to the best in all other scenarios. We also include a figure summarizing
variance in this simulation study in Figure S3, and note that in general, BART has the smallest variance and CV-
TMLE has the largest.

The largest separation between the parametric versus nonparametric reliability curves in Figures 1 and 2
occurs for sample sizes { }∈N 500,1,000 and in the more complex settings of variable interactions and possibly
treatment effect heterogeneity. For example, in the most complex setting with =N 1,000 (Figure 1(d)), the
nonparametric estimators result in absolute bias >0.1 in 0% of data distributions, but the parametric estima-
tors result in absolute bias >0.1 in 11.1 and 13.3% of data distributions for the parametric main-terms plug-in
estimator and IPTW estimator, respectively. This result was anticipated, because in larger sample sizes, the
asymptotic advantages of nonparametric estimators to model complexity and nonlinearities may take hold.
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Figure 1: Reliability function for the absolute bias of each of the four estimators (parametric IPTW, parametric plug-in [g-computation: (i)
main terms only and (ii) including treatment–covariate interactions (TCI)], nonparametric plug-in [BART], and nonparametric efficient
estimator [CV-TMLE]) when considering data-generating mechanisms characterized by one binary treatment, one binary outcome, five
binary covariates, one numeric covariate, and various levels of model complexity. (a) No treatment effect heterogeneity, no interactions,
(b) treatment effect heterogeneity, no interactions, (c) no treatment effect heterogeneity, up to three-way interactions, and (d) treatment
effect heterogeneity, up to three-way interactions.
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Figure 2: Reliability function for the absolute MSE of each of the four estimators (parametric IPTW, parametric plug-in [g-computation: (i)
main terms only and (ii) including treatment–covariate interactions (TCI)], nonparametric plug-in [BART], and nonparametric efficient
estimator [CV-TMLE]) when considering data-generating mechanisms characterized by one binary treatment, one binary outcome, five
binary covariates, one numeric covariate, and various levels of model complexity: (a) no treatment effect heterogeneity, no interactions,
(b) treatment effect heterogeneity, no interactions, (c) no treatment effect heterogeneity, up to three-way interactions, (d) treatment
effect heterogeneity, up to three-way interactions.
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We also stratify by degree of practical positivity violations in Figures S4 and S5. We categorize practical
positivity violations as follows: “minimal violations” are those in which the minimum (across all iterations)
predicted conditional probabilities of treatment ≥0.02; “moderate violations” are those in which the minimum
predicted conditional probabilities of treatment <0.02 but ≥0.01; and “severe violations” are those in which the
minimum predicted conditional probabilities of treatment <0.01. Although estimator performance degrades
slightly in the presence of severe positivity violations, particularly for the IPTW estimator, the relative
performance of the estimators remains the same.

In terms of 95% confidence interval (CI) coverage (Table 2), we see that all estimators perform well for
sample size =N 1,000 in the simplest scenarios without interactions, with slight over-coverage by IPTW and
BART. However, with more complexity in terms of interactions, coverage suffers for the parametric estimators,
particularly with increasing sample size; in contrast, the nonparametric BART and CV-TMLE estimators con-
tinue to attain at least the nominal coverage rate. We show in Table S1 the importance of using cross-fitting in
attaining nominal coverage for TMLE when using data-adaptive regression estimators for asymptotic nor-
mality [4,57,58]. Interestingly, BART tends to over-estimate uncertainty leading to coverage above the 95%
level. This is not generally expected to hold for BART, though potentially this could be addressed using
improvements to the BART prior, such as the SoftBART prior [59], which is better suited to many realistic
data-generating processes and has better asymptotic properties.

5 Discussion

We proposed a large-scale Monte-Carlo simulation method to bring more comprehensive evidence to the
debate [16] as to whether nonparametric estimators that use data-adaptive machine learning algorithms in

Table 2: Median (interquartile range) values of the 95% CI coverage distributions across all estimators and sample sizes. Int =
interaction, HTE = treatment effect heterogeneity, TCI = treatment-covariate interactions

N IPTW G comp. G comp. w/TCI BART TMLE CV-TMLE

No int., no HTE
100 0.96 (0.95, 0.98) 0.93 (0.92, 0.94) 0.90 (0.88, 0.92) 1.00 (0.99, 1.00) 0.82 (0.80, 0.85) 0.97 (0.96, 0.98)
500 0.96 (0.95, 0.98) 0.94 (0.94, 0.96) 0.94 (0.93, 0.95) 0.99 (0.98, 0.99) 0.92 (0.90, 0.93) 0.96 (0.95, 0.96)
1,000 0.96 (0.94, 0.98) 0.95 (0.93, 0.96) 0.94 (0.93, 0.96) 0.98 (0.98, 0.99) 0.93 (0.92, 0.94) 0.95 (0.94, 0.96)
No int., HTE
100 0.96 (0.95, 0.98) 0.92 (0.91, 0.94) 0.90 (0.88, 0.92) 1.00 (0.99, 1.00) 0.83 (0.80, 0.85) 0.97 (0.96, 0.98)
500 0.96 (0.95, 0.98) 0.94 (0.93, 0.95) 0.94 (0.92, 0.95) 0.98 (0.97, 0.99) 0.91 (0.90, 0.93) 0.96 (0.95, 0.96)
1,000 0.96 (0.94, 0.98) 0.94 (0.92, 0.95) 0.94 (0.92, 0.95) 0.98 (0.97, 0.99) 0.93 (0.91, 0.94) 0.96 (0.94, 0.96)
Two-way int., no HTE
100 0.93 (0.83, 0.96) 0.91 (0.80, 0.93) 0.88 (0.77, 0.91) 0.99 (0.98, 1.00) 0.78 (0.71, 0.81) 0.96 (0.93, 0.97)
500 0.86 (0.38, 0.95) 0.87 (0.37, 0.94) 0.88 (0.36, 0.94) 0.98 (0.98, 0.99) 0.89 (0.87, 0.91) 0.95 (0.94, 0.96)
1,000 0.74 (0.10, 0.94) 0.80 (0.11, 0.93) 0.80 (0.11, 0.93) 0.98 (0.98, 0.99) 0.91 (0.90, 0.92) 0.95 (0.94, 0.96)
Two-way int., HTE
100 0.94 (0.87, 0.96) 0.91 (0.85, 0.94) 0.88 (0.83, 0.91) 0.99 (0.98, 1.00) 0.79 (0.73, 0.83) 0.96 (0.94, 0.97)
500 0.88 (0.48, 0.95) 0.89 (0.52, 0.94) 0.88 (0.52, 0.94) 0.98 (0.97, 0.99) 0.89 (0.87, 0.90) 0.95 (0.94, 0.96)
1,000 0.80 (0.17, 0.94) 0.83 (0.22, 0.93) 0.83 (0.22, 0.93) 0.98 (0.97, 0.98) 0.91 (0.90, 0.92) 0.95 (0.94, 0.96)
Three-way int., no HTE
100 0.91 (0.77, 0.95) 0.89 (0.76, 0.93) 0.86 (0.72, 0.90) 0.99 (0.97, 1.00) 0.76 (0.65, 0.81) 0.96 (0.91, 0.97)
500 0.70 (0.20, 0.94) 0.74 (0.22, 0.94) 0.76 (0.19, 0.93) 0.98 (0.96, 0.99) 0.87 (0.80, 0.89) 0.94 (0.90, 0.96)
1,000 0.47 (0.02, 0.93) 0.55 (0.03, 0.93) 0.55 (0.02, 0.92) 0.98 (0.97, 0.99) 0.89 (0.86, 0.91) 0.94 (0.91, 0.96)
Three-way int., HTE
100 0.92 (0.84, 0.95) 0.90 (0.82, 0.93) 0.88 (0.80, 0.91) 0.99 (0.96, 1.00) 0.78 (0.70, 0.82) 0.96 (0.93, 0.97)
500 0.82 (0.38, 0.94) 0.84 (0.42, 0.94) 0.82 (0.41, 0.93) 0.98 (0.96, 0.98) 0.87 (0.82, 0.90) 0.94 (0.90, 0.96)
1,000 0.66 (0.10, 0.93) 0.70 (0.13, 0.93) 0.72 (0.12, 0.93) 0.98 (0.97, 0.98) 0.90 (0.87, 0.92) 0.94 (0.92, 0.96)
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fitting nuisance parameters confer any meaningful advantage over simpler parametric methods in real-world
finite sample analyses. Previously, others contributed finite sample evidence in favor of one estimator or class
of estimators over another by conducting simulation studies across a smaller, more bespoke set of data-
generating processes [19,24,25,27,28], which may not be representative of performance in general. Conse-
quently, our proposed large-scale approach greatly expands the number of data-generating mechanisms
considered from a small few to thousands within a data setting that a user can define based on some minimal
knowledge about observed variables in their data (but without the need to first look at their data), thereby
likely resulting in more generalizable – and thus, informative – evidence of estimator performance in finite
samples where asymptotic properties learned from theoretical results may not provide good approximations.

We applied our proposed approach to compare the performance of two nonparametric estimators, BART
and CV-TMLE, to two parametric estimators, an outcome regression-based plug-in estimator and IPTW, in
finite samples of sizes =N 100, 500, and 1,000 and across different degrees of model complexity. Corroborating
findings from previous, smaller-scale simulation studies [19,24–26], in our application of the proposed
approach, we found that even in small samples, nonparametric estimators nearly always outperform the
parametric estimators in terms of bias and MSE. However, the advantage of nonparametric estimation atte-
nuated with decreasing sample size and decreasing complexity, and in the simplest data-generating mechan-
isms and samples of =N 100, the parametric plug-in estimator performed similar to the nonparametric
efficient estimator in terms of bias and between the nonparametric estimators in terms of MSE.

Even though our results were learned from 1,773,000 data sets across 3,000 data-generating mechanisms,
the space of data-generating mechanisms we considered was nonetheless limited. In particular, we only
considered settings with a binary treatment, a binary outcome, and six confounding variables, only one of
which was multi-valued. It is certainly possible that our conclusions would differ for more complex settings. In
future work, we will develop a software tool for running simulations with user-specified outcome and cov-
ariate types and covariate dimensions. This way, users would be able to compare estimator performances over
a space of data-generating mechanisms that are likely to contain the probability distribution corresponding to
their real-world data sampling setting or a close approximation thereof. Such future work could be further
extended to accommodate longitudinal data as well as common data complexities such as missing data,
measurement error, and selection bias.

Finally, although we have shown that the choice of nonparametric vs parametric estimator may matter –
in some cases more than others – all estimators are limited by the data input. Unmeasured variables and
variables measured with error are significant and near-ubiquitous limitations that can thwart accurate causal
effect estimation and inference. A relatively recent high-profile and high-stakes example involved data errors
leading to inaccurate algorithmic predictions in the criminal justice system that resulted in unintended parole
denials [60,61]. We can work to improve the estimation step of answering research questions, but the accuracy
of our answers will be limited by the weakest link, highlighting the importance of theory, subject matter
knowledge, identification, and data quality, in addition to estimation.

In this article, we have focused on strengthening the estimation link. Our results show that in the large
space of settings we have considered, this can be accomplished by employing nonparametric estimators
grounded in asymptotic theory to substantially reduce bias in large-sample settings with interactions and
nonlinearities while compromising very little in terms of performance even in simple, small-sample settings.
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