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Abstract: Understanding the mechanisms of action of interventions is a major general goal of scientific
inquiry. The collection of statistical methods that use data to achieve this goal is referred to as mediation
analysis. Natural direct and indirect effects provide a definition of mediation that matches scientific intuition,
but they are not identified in the presence of time-varying confounding. Interventional effects have been
proposed as a solution to this problem, but existing estimation methods are limited to assuming simple (e.g.,
linear) and unrealistic relations between the mediators, treatments, and confounders. We present an identi-
fication result for interventional effects in a general longitudinal data structure that allows flexibility in the
specification of treatment-outcome, treatment-mediator, and mediator-outcome relationships. Identification
is achieved under the standard no-unmeasured-confounders and positivity assumptions. In this article, we
study semi-parametric efficiency theory for the functional identifying the mediation parameter, including the
non-parametric efficiency bound, and was used to propose non-parametrically efficient estimators.
Implementation of our estimators only relies on the availability of regression algorithms, and the estimators
in a general framework that allows the analyst to use arbitrary regression machinery were developed. The
estimators are doubly robust, </n -consistent, asymptotically Gaussian, under slow convergence rates for the
regression algorithms used. This allows the use of flexible machine learning for regression while permitting
uncertainty quantification through confidence intervals and p-values. A free and open-source R package
implementing the methods is available on GitHub. The proposed estimator to a motivating example from a
trial of two medications for opioid-use disorder was applied, where we estimate the extent to which differ-
ences between the two treatments on risk of opioid use are mediated by craving symptoms.

Keywords: mediation analysis, longitudinal data, sequential double robustness, efficient estimation,
machine learning
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1 Introduction

Mediation analyses are paramount to scientific inquiry, as they provide a way of understanding the
mechanisms through which effects operate [1]. For example, recent mediation analyses have helped to
uncover the types of immune response that coronavirus disease 2019 vaccines trigger in order to prevent
disease [2].
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Multiple methods have been developed for mediation analysis in the setting of a mediator measured at
a single time point, using a counterfactual or potential outcome framework. For example, the natural direct
effect is defined as the effect of exposure/treatment that would have been seen in a hypothetical world
where the effect operating through the mediator is disabled. Conditions for identifiability for the natural
direct effect and its indirect counterpart have been given in [3] and [4].

Though the definition of the natural (in)direct effects is scientifically interesting, their identification
requires assumptions about the real world, which are guaranteed to not hold in many practical situations,
such as with time-varying confounding (cf. recanting witness, [5]). This restriction limits the applicability of
natural direct and indirect effects in practice, as intermediate confounders are expected to be present in
many applications, for example, when the effect of an intervention operates through adherence [6]. Several
methods have been proposed to do away with the cross-world independence assumption and/or the
assumption of no intermediate confounders, for example, partial identification methods [7-9], so-called
separable effects [7,10], and effects defined in terms of stochastic interventions on the exposure [11,12]. In
this article, we tackle this problem focusing on mediation effects defined in terms of contrasts between
counterfactuals in hypothetical worlds in which the treatment is set to some value deterministically,
whereas the mediator is drawn stochastically from its counterfactual distribution under interventions on
treatment [13-15]. Efficient non-parametric estimators that leverage machine learning to alleviate model
misspecification bias have been recently proposed for these parameters [16,17], but they are limited to
single time-point exposures. These effects have been called interventional effects [18].

Mediation analysis methodologies for time-varying exposures and mediators are limited. Non-para-
metric identification formulas for interventional effects in the case of mediators and treatments measured
longitudinally, assuming that the time-dependent covariates are measured either before or after the med-
iator, but not both, are given in refs [18,19]. The authors propose estimation methods that rely on the
unlikely ability to correctly specify parametric models for the distribution of the unobservable counter-
factual outcomes. Similar interventional effects where the mediator is drawn from its counterfactual dis-
tribution conditional on all the past are proposed in ref. [20], together with non-parametric efficient
estimators that rely on data-adaptive regression to alleviate model misspecification bias. However, the
“direct effect” defined in ref. [20] does not capture the pathway from treatment through intermediate
confounder to outcome and is thus not a direct effect in the sense that we are interested in this article.
Similar methods for survival analysis and treatment at a single time point have also been proposed [21].
Marginal structural models for longitudinally measured mediators under treatment at a single time point
and no loss-to-follow-up are proposed in ref. [22]. More recent work includes the development of a 4-way
decomposition of immediate and delayed effects using an infinite time-horizon in a reinforcement learning
framework [23], and other methods considering time-varying mediators but a single exposure at baseline
[21,24-27].

In this article, we develop a general longitudinal causal mediation approach that fills several gaps in
the aforementioned literature. The method we propose satisfies the following: (i) the direct effect is defined
in terms of the effects operating through all the pathways that do not include the mediator at any time point,
(ii) the methods allow for longitudinally measured mediators and treatments, with confounders possibly
measured before and after treatment, (iii) the methods allow the use of data-adaptive regression to alleviate
concerns of model misspecification bias, and (iv) the methods are endowed with formulas to construct
efficient estimators and computation of valid standard errors and confidence intervals, even under the use
of data-adaptive regression. One limitation of prior work remains: our proposed methods can only handle
categorical mediators, and the computational complexity increases with the number of categories.

The remainder of this article is organized as follows. In Section 2, we introduce the parameters of
interest as well as the identification result and some simple estimators; in Section 4, we discuss efficiency
theory for the interventional mediation functional, presenting estimating equations and the efficiency
bound in the non-parametric model; in Section 3, we discuss simple estimators based on inverse probability
weighting and sequential regression, and in Section 5, we discuss the proposed efficient estimator as well as
its asymptotic properties. In Section 6, we present the results of numerical studies, and finally, in Section 7,
we present the results of an illustrative study on estimating the longitudinal effect of initiating treatment for
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opioid-use disorder (OUD) with extended-release naltrexone (XR-NTX) vs buprenorphine-naloxone (BUP-
NX) on risk of illicit opioid use during the fourth week of treatment that operates through the mediator of
craving symptoms, using symptoms of depression and withdrawal as time-varying covariates. We include
weekly measures for each of the first 4 weeks of treatment.

2 Notation and definition of interventional (in)direct effects

Let Xj,..., X, denote a sample of i.i.d. observations with X = (L, A1, Z1, My, Ly, ..., Ar, Zey My Ly = Y) ~ P,
where A; denotes a vector of intervention variables such as treatment and/or loss-to-follow-up, Z; denotes
intermediate confounders, M; denotes a mediator of interest, and L; denotes the time-varying covariates.
The outcome of interest is a variable Y = L,; measured at the end of the study. We let Pf = J fOO)dP(x) for a

given function f(x). We use P, to denote the empirical distribution of X, ..., X, and assume P is an element
of the non-parametric statistical model defined as all continuous densities on X with respect to a dom-

inating measure v. We let E denote the expectation with respect to P, i.e., E{f(X)} = _[ fOOdP(x). We also let

IfII?> denote the L,(P) norm _[f 2(x)dP(x). We use W; = (W, ..., W) to denote the past history of a variable W,

use W; = (W, ...,W;) to denote the future of a variable, and use Hy; = (L;, M;_1, Z¢_1, A;_1) to denote the
history of all variables up until just before A;. The random variables Hz ¢, Hy ¢, and H;  are defined similarly
as Hz; = (A¢, Hat), Hu,t = (Zt, Hz 1), and Hy; = (M;_1, Hy,¢—1). For the complete history and past of a random
variable, we sometimes simplify W, and W, as W. By convention, variables with an index t < 0 are defined
as null, expectations conditioning on a null set are marginal, products of the type Hf;,}bt and ]_[?Zob[ are

equal to one, and sums of the type Zf;,:bt and Zfzobt are equal to zero. We let g, ,(at|ha,/) denote the
probability mass function of A; conditional on Hy; = hs; and assume A; takes values on a finite set. The
function gM,t(mtth,t) is defined similarly, and we also assume that M; takes values on a finite set.
The variables L; and Z; are allowed to take values on any set; i.e., they can be multivariate, continuous, etc.

We formalize the definition of the causal effects using a non-parametric structural equation model
[28]. Specifically, for each time point ¢, we assume the existence of deterministic functions fa ¢, fz.¢» fu.ts
and fi, such that A; = fa ((Ha,t, Un,0)s Zt = f7,0(Hz,t» Uz,0)s My = for,e(Hp,e» Un,e)> and Le = fi ((Hy ¢, Up (). Here,
U= (Uns Uzt, Unye, Uy, Uy s t € {1, ...,T}) is a vector of exogenous variables, with unrestricted joint dis-
tribution. This model can be expressed in the form of a directed acyclic graph (DAG) as in Figure 1. In
this article, we are concerned with the definition and estimation of the causal effect of an intervention on A
onY, as well as its decomposition in terms of the effect through all paths involving the mediator M versus
effects through all other mechanisms that do not involve any component of M. Mediation effects
will be defined in terms of hypothetical interventions where the equations A; = fa:(Ha,, Us,) and
M; = fu,t(Hu,t, Up,e) are removed from the structural model, and the treatment and mediator nodes are
externally assigned as follows. Let M(a) denote the counterfactual mediator vector observed in a hypothe-
tical world where A = a. For a value 171 in the range of M, we also define a counterfactual outcome Y(a, 1)
as the outcome in a hypothetical world, where A = @ and M = ra. These variables are defined in terms of our
assumed NPSEM in the supplementary materials.

TN TN TN
Ly — A —>M—~Ly, V—p Ay—>My—Lz -+ A —>M-—>Y
N/ \ZT/ \ZT /
1 2 -

Figure 1: DAG. For simplicity, the symbol — is used to indicate arrows from all nodes in its left to all nodes in its right.
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Leta* = (af, ...,a})and a@’ = (qj, ...,a}) denote two user-specified values in the range of 4, and let G(a)
denote a random draw from the distribution of the counterfactual variable M(a) conditional on V ¢ L;. We
define the conditional interventional effect as E[Y(a’, G(a")) - Y(a*, G(a*))] and decompose it as

ElY(@', G(a") - Y(a*, G(a)] = E[Y(@', G(a") - Y(a', G(a))] + E[Y(@', G@a") - Y(a*, G(@))].

Indirect effect (through M) Direct effect (not through M)

ey

This is the definition of interventional effect in a longitudinal setting given by ref. [18]. In what follows, we
focus on the identification and estimation of the parameters E[Y(a’, G(a*))] for fixed @', a*, from which we
can obtain the aforementioned effects. In a slight abuse of language, we will also refer to parameters of the
type E[Y (@', G(a*))] as effects.

The aforementioned setup allows for the definition of causal effects for time-to-event outcomes subject
to loss-to-follow-up or censoring as follows. Let A; = (4, A,¢), where 4, ; denotes the exposure at time ¢,
A, is equal to one if the unit remains uncensored at time ¢t + 1 and zero otherwise, and Y = L., denotes the
event-free status at the end of study follow-up. Assume monotone loss-to-follow-up so that 4, ; = 0 implies
Ay = 0 for all k > ¢, in which case all the data for k > t become degenerate. In this case, we could define
the effects as above with a’' = (@4, 1), ...,(d,, 1)) and a* = (@, 1, ...,(@’,, 1), contrasting regimes
where treatment at time ¢ is set to A = al’,t vs Ay = af’, while setting censoring status A,; = 1 as “not
censored” for everyone. This definition of causal effect for time-to-event outcomes in terms of interventional
effects bypasses some (but not all) problems that occur with natural effects due to the fact that a counter-
factual longitudinal mediator may be truncated by death, which may render the counterfactual survival
time undefined [29]. Furthermore, recent work has uncovered limitations of these effects as a tool to unveil
mechanisms [30]. These and other issues related to the interpretation of these direct and indirect effects are
discussed at length elsewhere. Interested readers are encouraged to consult the cited articles.

In what follows, we will use the notation Hy ;, Hy ;, Hy; ., and H; , to refer to the intervened histories of
the variables under an intervention setting A = a'. For example, H; ; = (L¢_1, M_1, Zy_1, A1 = d/_1). The
histories Hy ,, H; ;, Hy,, and Hj , are defined analogously, e.g., Hf ; = (L¢_1, Mi-1, Z¢_1, Ar-1 = @;-4). The fol-
lowing assumptions will be sufficient to prove the identification of the parameter E[Y(a’, G(a*))]:

Assumption 1. (Conditional exchangeability of treatment and mediator) Assume:
() A 1Y@, m)Ls, Mi_y = my_q, Zy_y, Ay = a;_, for all ¢, m,

() M; u Y@, m)|L;, My = my_1, Z;, A; = a/ for all t, m,

(i) A; L M{@"|L¢, Mi_y, Zs_1, Ay = @7, for all t.

Assumption 2. (Positivity of treatment and mediator assignment) Assume:
(i) TTssP(lhy DTT,\PCzslh o) > O implies g, (a/lh),) > 0 for all ¢,
(i) [1._,p(sih p(zslhy s) > O implies I, (melhy () > O for all t and my,
(i) T15_,p{slhi DT p(mslhiy P(zsIh ) > O implies g, ((a/ |k} ) > O for all t and all m,.

Assumptions 1 (i), 1(ii), and 1(iii) together with the assumed DAG in Figure 1 state that Hy ; contains all
the common causes of A; and Y, Hy contains all the common causes of M; and Y, and Hy ; contains all the
common causes of A; and M, respectively. These are the standard assumptions of no-unmeasured con-
founders for the treatment-outcome, mediator-outcome, and treatment-mediator relations. Assumptions
2(i) and 2(ii) allow the identification of E[Y (@', )|V = v] for all /. Assumption 2(i) states that the value a/
has positive probability conditional on values (I, zs_; : s < t) that have themselves a positive conditional
probability of occurring. Assumption 2(ii) states that the value m; has positive probability conditional
on values (I, zs : s < t) that have a positive conditional probability of occurring. Assumption 2(iii) allows
us to identify P(M(a*) = m|V = v) and states that a; has a positive probability conditional on values
(I, ms_1, zs_1 : s < t) that have positive conditional probability of occurring. Under these assumptions,
we have the following identification result.
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Theorem 1. (Identification) Under Assumptions 1 and 2, the interventional effect 68 = E[Y(a', G(a*))] is
identified as follows. Let

T
p@m, v) = Jlr+1 Hp[lt+1|h£,t+l]p[Zt|hé,t]p(lllv)dV(l_s z),

t=1

A7, v) = [ TPl me, 200, JpGv)dvd, 2)
t=1
Then, 0 is identified as 0 = E[}..@(m, V)A(m, V)].

The aforementioned identification theorem result generalizes several identification formulas in the
literature. When 7 =1, Z = &, and V = L,, this identification formula yields (by computing the corre-
sponding contrasts) the identification formula for the natural direct and indirect effects as derived by
ref. [4] under an additional cross-world counterfactual assumption. When 7 = 1 and V = L;, and the con-
founder Z is present, this identification formula yields the identification formula for the interventional
effect described by [15]. If T > 1,V = Lj, and Z; = & for all ¢, 8 in Theorem 1 reduces to Formula (1) in ref. [18].
Ift>1and L; = & fort < 1, 0 in Theorem 1 reduces to the identification results for Figure 5 given in page
926 of [18]. Our result is a particular case of the identification results of ref. [31].

The choice of variable V in defining the effect should be guided by the total effect to decompose. For
instance, if V = L; then it may be the case that the total effect in (1) will be closer to the average treatment
effect E[Y(a') - Y(a*)] compared to V c L,. In what follows, we assume for simplicity in the presentation
that V = &, but the estimators presented can be easily adapted to other cases.

3 Inverse probability weighting and sequential regression

The identification formula in Theorem 1 is a complex functional of the distribution P of the observed data,
and it is therefore hard to estimate. Consider, for example, a plug-in estimation strategy where the relevant
components of the likelihood are estimated and then plugged in the identifying functional. This would
involve finding estimates of the densities of L; and Z; conditional on the past data Hy  and Hz . If L; and Z;
are continuous or multivariate, or if H;; and Hz, are high-dimensional, these densities may be hard to
estimate, complicating the construction of a plug-in estimator. Furthermore, the consistency of such an
estimator would depend on our ability to consistently estimate the densities involved. In general, this
would require the use of flexible estimators that allow automatic selection of non-linearities, interactions,
etc. However, there is no statistical theory that allows the study of the sampling distribution (both asymp-
totic and finite-sample) of such estimator. This results in a lack of a theoretical foundation for the con-
struction of confidence intervals, standard errors, p-values, and other quantities that are often of interest to
quantify the uncertainty of statistical estimates.

To address this problem, an estimator based on the theory of doubly robust unbiased transformations
[32], targeted minimum loss-based estimation [33,34], and double machine learning [35] was proposed.
Concepts in these frameworks will be used to construct estimators that will allow us to use machine
learning to address model misspecification bias, while also achieving asymptotic normality, allowing us
to construct formulas for computation of standard errors, confidence intervals, and p-values. The asymp-
totically normal estimators will be constructed in Section 5. This section focuses on describing the two main
building blocks: an inverse probability weighted estimator and a sequential regression estimator.

3.1 Inverse probability weighted estimation

We start with the description of our proposed estimators by observing that an alternative representation of
the identifying functional allows inverse probability-weighted estimation without reliance on estimating
the conditional density of L; and Z;. Specifically, define the following random variables:



6 —— Ivan Diaz etal. DE GRUYTER

KA¢ = a/}
9:(a/|Ha,e)’

{A¢ = a}
9:(af|Ha,)’

WM = m¢}

Gu(Hy) = L 03
Ao O« (M| i, o)

a,c(Hat) = Gy, ¢(Hy,e, me) =
as well as K, = [T G, Ky = [T_,Ga.r» Hiu = IT,_,Gu,r. Note that we have omitted the dependence on
Hy ¢, Hy ¢, and m;, and we will do so whenever there is no ambiguity. Then, the identifying functionals in
Theorem 1 can also be written as @(r) = E{K} ;H . Y}; A(m) = E{K; M = m}}.

The aforementioned formulas reveal a simple way to construct an estimator of 8 using re-weighting.
First, models for the probability distributions of A; and M; could be constructed, e.g., using flexible
regression or classification methods. Then, these models are used to compute estimates of the weights
K11, Hir, and Ki ;. Then, these weights are used to estimate ¢ and A, where the outer expectations of the
aforementioned display are estimated using empirical means of weighted outcomes Y and I{M = m}. These
estimators of ¢ and A can then be plugged in the formula for . While this estimator is attractive for its
simplicity, it has two major drawbacks. First, it relies on the ability to correctly estimate the treatment and
mediator conditional distributions. If flexible estimators from the regression or classification literature (e.g.,
generalized linear models with ¢ penalties, and random forests) are used to increase the chances of correct
specification, there are no general theoretical results that allow the computation of standard errors of
confidence intervals with correctness guarantees. Furthermore, this estimator is generally inefficient in
the non-parametric model.

Due to the aforementioned issues, the use of the inverse probability-weighted estimator is generally dis-
couraged in practice. However, the weights K and H will be fundamental to construct efficient and asympto-
tically normal estimators in Section 5, and for the construction of the efficiency bound in Section 4.

3.2 Sequential regression representation of the mediational g-computation
formula

The construction of efficient and asymptotically normal estimators in Section 5 will rely on sequential
regression procedures to estimate ¢ and A. Those estimators are motivated by an alternative representation
of 6 in Theorem 1 in the form of sequential regressions, which we present in this section. This approach was
first proposed by Bang and Robins [36] and has become standard in the estimation of total causal effects in
longitudinal studies [34,37].

The sequential regression procedure computes the integrals in Theorem 1 through an alternative
representation that iterates in time starting at the last time point of the study ¢ = 7 + 1 and ending at
t = 0. To start the iteration, set Qz .1 = Y. For fixed values @’ and i, and for t = ,..., 0, recursively define
the random variables

Qr,((Hu i, mi) = E[Qgz,t+1(Ha, 41, Mer)| My = my, Hyp ], )
Qgz,«(Ha,t, m¢) = E[Qp¢«(Hu,e,» me)|Ar = af, Ha ¢, 3

where we note that Q;  is a random variable through its dependence on H), ¢, but that m; is a non-random user-
given value. Likewise, Qz ¢ is a random variable only through its dependence on H, (. To simplify notation, we
will sometimes omit the dependence of the aforementioned functions on Hy ¢, Hy ¢, and m. In the proof of
Proposition 1 (available in the Supplementary Materials), we show that ¢(m) = Qg o(m). The counterfactual
distribution A(r1) may be identified as follows. Let Qu, 7.1 = 1. For t = 1,..., 0, recursively define

Qu,¢(Ha,t, me) = E[KM; = m3Quyp,e1(Ha,e41, MesDIAe = @, Hp el
Then, we have A(m) = Qy,0(11). This leads to the following alternative expression for the mediational g-

computation formula in terms of sequential regressions.

Proposition 1. (Sequential regression representation of the longitudinal mediation g-formula) For 6 defined
in Theorem 1, we have 0 = Y Qq o(1)Qy,o(17).
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We illustrate the aforementioned result for the case 7 = 2 in the supplementary materials. This alter-
native expression of the longitudinal mediation formula allows the construction of an estimator by sequen-
tial regression, estimating the parameters Qg ((m) and Qg () sequentially for ¢t = 7,..., O to obtain an
estimate of Qg o(m), and then estimating Qu (/) sequentially for t = 7,..., 0 to obtain an estimate of
Qur,0(m). The algorithm requires the estimation of sequential regressions as in (2) and (3). There are at
least two alternatives to estimate these sequential regressions. The first is to perform sequential regression
separately for each m in the range of M. The second is to construct a pooled dataset where we pool all values
m in the range of M to obtain the estimates for all i from a single sequential regression procedure. In this
article, we pursue the second approach. In this setup, the values m will play the role of another variable to
be included in the regression algorithms. Specifically, note that estimating Q; ¢(m) for each m would, in
principle, require fitting ]—[;:1],( sets of T sequential regressions as in formula (2), one set of sequential
regressions for each one of the possible values of . This can be computationally prohibitive. For example,
estimating Q; o(r7) in a study with 7 = 5 and a mediator taking on three different values involves 3° = 243
sets of five sequential regressions, each in a dataset of size n. To alleviate computational complexity, we
propose to fit regressions in pooled datasets constructed sequentially from ¢ = 7 tot = 1, where at time point
t, each observation in the dataset at time point ¢ + 1 is repeated J; times. Under this data pooling approach,
estimating Q; o in a study with 7 = 5 and a mediator taking on three different values involves five sequential
regressions, each in datasets of size 3n, 3%n, 3%n, 3%n, and 3°n, respectively, where the predictor set
decreases in size as the dataset increases in size. In this setting, smoothing on the mediator values m
may be carried out through any regression procedure such as a parametric model or a more flexible
regression approach from the machine or statistical learning literature. A detailed algorithm with
pseudo-code for computation of a sequential regression estimator is given in Algorithm S1 in the supple-
mentary materials.

If the pooled sequential regressions are performed within a priori correctly specified parametric models,
then estimators of 6 based on Proposition 1 may be shown to be CAN, and the delta method or the non-
parametric bootstrap may be used to construct confidence intervals. However, positing correct parametric
models for the sequential regressions involved is generally unattainable a priori. This is especially difficult
to do in the longitudinal setting. Even if it was known that the data Z followed a given parametric model,
correctly specifying models for the sequential regressions such that they are congenial with the model
requires specialized models and might be impossible [38]. Furthermore, in most cases, especially with a
large number of variables, the data Z may not be accurately modeled using parametric models and may
require data-adaptive regression (e.g., machine learning) tools that offer flexibility in modeling non-line-
arities and interactions are necessary to attain consistency of the sequential regressions and therefore
consistency of the estimator of 6.

Under model selection or data-adaptive regression, the sampling distribution of the aforementioned
sequential regression estimator is generally unknown, which hinders computation of confidence intervals
and other uncertainty measures. In the next section, we discuss efficiency theory for estimation of 8, which
will allow the use of data-adaptive regression techniques while also allowing the computation of valid
(under assumptions) standard errors and confidence intervals.

4 Efficiency theory

The foundations of our proposed efficient estimation approach are in semi-parametric estimation theory
[e.g., 39-42] and in the theory for doubly robust estimation of causal effects using sequential regression
le.g., 33,34,36,37,43—-47]. Central to this theory is the study of the non-parametric efficient influence func-
tion (EIF) or canonical gradient, which characterizes the efficiency bound of the longitudinal mediation
functional given in Theorem 1 and allows the development of estimators under slow convergence rates for
the nuisance parameters involved [41]. Specifically, our estimators will involve finding von-Mises-type
approximations for the parameters Q; (1), Qz (), and Qu, (1), which can be intuitively understood as
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first-order expansions with second-order error remainder terms. Because the errors in the expansion are
second-order, this will mean that the resulting estimator of § will be consistent and asymptotically normal
at rate n'/2 as long as the second-order error terms converge to zero at rate n'/2, This convergence rate would
be satisfied, for example, if the all regression functions were used for estimation converge at rate n'/4. We
will elaborate on this discussion in Section 5 when we present the asymptotic normality theorems for the
proposed estimators.

Letn ={G}, Gas» Gue» Qzes Quiyes Que s t =1, ..., 7} Fort = 0,..., 7, define

T T
Dr,«(X¢, my) = ZKIHl,sHt,s{QZ,SJrl - Qs+ Z K;+1,sHt,s—1{QL,s - Qzs} + Qpe- (4)
s=t s=t+1
T T
DZ,t(Xt’ r_nt) = ZKIt,sHt,s{QZ,sH - QL,S} + ZK;,SHLS—I{QL,S - QZ,S} + QZ,t (5)
s=t s=t
T s-1
DM,t(Xt, r_nt) = ZKEs(HJl(Mk = mk)){]l(Ms = ms)QM,s+1 - QM,S} + QM,t- (6)
s=t k=t

Whenever necessary, we make explicit the dependence of these functions on rn using notation such as
Dz,«(n) or Dz,«(X;, my; n).

Lemma 1. (von-Mises-type approximation for Qz, Qr, and Qu, ) Let 7j denote an arbitrary value of . For
second-order terms Ry «(n, 17), Rz,«(n, 1), and Ry,«(n, 1), we have the following first-order expansions:

Qr,t = E[Dz,r1(MIM; = my, Hy el + Ry (1, 1),
Qz,: =E[Dy{(MDIA; = at,s Hy ] + Rz,(n, ),

where we let Dz ;,1(f]) = Y. For Hy; such that M;_; = mi,_4, we also have
Qu,c = E[{M; = miDy, 1. 1(DIA¢ = af', Hy 1] + Ry, e, 1),

where we let Dy r.1(f) = 1.

The terms Ry ((n, 17), Rz,+(n, 77), and Ry, «(n, 1) are the second-order error terms involving expectations of

products of errors such as (GM,S - GM,S)(QL,S -Qs), (G;l,s - IA,s)(QZ,s -Qz), and (G*A,s - 1*4,5)(QM,S - Qu,s),
and their explicit form is given in the supplementary materials. This lemma and specifically the second-order
form of these remainder terms have important implications in terms of estimation. Specifically, this lemma
says that for any value j, which could represent an inconsistent estimator, regressing Dy ;.1(if) on Hy,; among
units with M; = m; yields a consistent estimator of Q; ¢, as long as Ry (1, 77) is small. Because Ry ((1, 17) is a
sum of products of errors, it may be reasonable to assume that this term is small for data-adaptive regression
estimators of n. Specifically, in Section 5, consistency and asymptotic normality of the estimators will require
that Ry ¢(17, j) converges to zero in probability at rate n~'/? or faster. The second-order term structure of this
remainder term means that this fast convergence rate can be achieved under slower convergence rates for
each of the components of 7. For example, it will be achievable if all the components of 7 converge in
probability to their correct limits at rate n~'/%, This kind of rate is achievable by several data-adaptive
regression methods, such as ¢, regularization [48], regression trees [49], neural networks [50], or the highly
adaptive lasso [51]. Analogous considerations apply to the estimation of Qz ; and Qyy,¢.

Remark 1. (Generalization to V # @) When V = & (as we have assumed throughout), Lemma 1 can be used to
prove that the function Dy ; is the uncentered EIF of ¢ (). If V is discrete, EIF of ¢(1m, v) will have an additional
term that accounts for conditioning on V. When V is continuous or high-dimensional, ¢(111, v) is not pathwise
differentiable, and EIF does not exist. Nonetheless, the lemma shows that D ; is a doubly robust estimating
function for (i, v) (meaning that the corresponding estimators will have second-order errors, see [32]),
regardless of the dimension of V, which implies that estimators of 6 that use this lemma for estimating
o(m, v) will satisfy an appropriately modified version of the asymptotic properties outlined below.
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An application of the delta method along with Lemma 1 yields the following EIF for the estimation of 6
in the non-parametric model (see the supplementary materials for a proof).

Theorem 2. (EIF for 6) The EIF for 6 in the non-parametric model is given by S(X,n) =
Yme st {Dz,1(X, 5 ) — p()IA(m) + {Du (X, s ) — A(m)kp(m)].

This implies that the non-parametric efficiency bound for the estimation of 8 is Var[S(X, n)] and that an
efficient estimator of 8 will satisfy +/n (é -0)= %ZLIS(X,-, n) + op(1), licensing the construction of Wald-

type confidence intervals and hypothesis tests based on the central limit theorem. In the following section,
we will describe an algorithm to construct such an estimator.

5 Efficient estimation using sequential doubly robust regression

Motivated by Lemma 1, we construct a sequentially doubly robust estimator as follows. Consider pseudo-
outcomes If)Z’M, IjL,t, and If)M,m. The estimation algorithm proceeds sequentially from t =7,..., 1 per-

forming regression of these pseudo-outcomes in datasets D; that pool over values of m;. Specifics of this
sequentially doubly robust estimator are presented in Algorithm 1.

Algorithm 1: Sequentially doubly robust estimator of

1 Dze1 < Y3
2 DM,T+1 <1
3 for t=1,...,1do
4 Di « Diyx My
g Clu — RegressAndPredict(outcome:Iﬁzym, predictors = (m;, Hy,¢), training set
7 = Subset(D;, M; = m;), prediction set = D7);
g 8, — RegressAndPredict(4;, Hyt, D, D7);
10 O, — RegressAndPredict(M;, Hyt, D, D;);
n Ge — HA: = a/}/§,(Ad|Hp,0);
13 Gie — WA = a;3/8,(AlHa, 3
h Gure — MMy = m}/ Gy, (MilHir )3
Dyt < D) using formula (4) and data P73 ;;
Q. — RegressAndPredict(Dy ;, (m;, Hy ), Subset(D}, A; = a}), D});
QMJ — RegressAndPredict(I{M; = mt}f)M,m, (my, Hy ¢), Subset(Df, As = af), DY);
If)m — Dz,(1) using formula (5) and data Dy;
If)M,t «— Du,¢(1) using formula (6) and data D{;

16 end

17 @,(m) — Mean(Dz,(1i, Ly), data = Subset(D], M = 1));
18 A,0m) — Mean(Dy 1(h, L,), data = Subset(D;, M = h));
19§ 3 pmien)

Sequential doubly robust estimators decouple estimation of conditional expectations at time
t from consistent estimation of sequences of estimators at time ¢t + 1,..., 7, thereby achieving extra
robustness to model misspecification. To introduce sequential double robustness, define the data-
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dependent parameters éL,t = E[Dgz,¢+1(DIM; = my, Hy ¢, éZ,t = E[Dy,((M)|A; = at,’ Hp:], and CV)M,t =
E[1{M; = m¢}Dy, r1(IA; = a, Ha¢], where the expectation is with respect to the distribution of X, i.e.,
the estimator 1j is considered fixed. Then, we have the following result.

Lemma 2. (Sequential double robustness) Assume that, at each time point t, we have
() 16}, ~ Glyell = 0p(1) 07 1Qz¢ ~ Qz,ell = 0p(D),

(i) 1Guc = Gl = 0p() 0r Qe = Quell = 0p(1), and

(iti) 1G,¢ = Gl = 0p(1) 0r 1Que = Quill = 0p(D),

then we have § = 0 + op(1), foré defined in Algorithm 1.

Here, we emphasize that the error terms ||C)Z,[ - éz,[ll, IIOL,, - QL,tII, and IIQM,t - éM,tII only depend on
the consistency of the regression procedure used at time point ¢t and not on the consistency of estimators
at any time point s > t. To illustrate why this is important, consider an alternative estimation strategy in
which the parameters Q; ¢, Qz¢, and Qy,; are estimated directly (i.e., based on (2) and (3)) using flexible
regression techniques, and the estimators of flexible regression techniques, and the estimators of ¢(m)
and A(m) are constructed using a one-step estimator [42] by taking the empirical mean of Dy (X, m; 1)
and Dy (X, m; ). Note that the functions Qp, Qz and Q. are the functions of the sequences
{QLts1s - Qurh {Qz 041, -+, Qzr}, and {Qu,t415 .., Qur 7. It therefore appears that consistent estimation
of these parameters at time t requires consistent estimation of these future sequences. In fact, an analysis
of such a one-step estimator would yield error terms of the form IIQZ,[ — Qgz,¢|. Unlike our error terms (which
are stated in terms of convergence to éz,[), convergence of these error terms would require consistency of
QL,S and CA}Z,M for all s > t. The sequential regression construction using pseudo-outcomes avoids this
problem. This lemma is the result of an application of Lemma 4 in [52]; more discussion on sequential
double robustness may be found in [34,37,53].

5.1 Cross-fitting and asymptotic normality

Although the estimator of Algorithm 1 is sequentially doubly robust, thereby offering protection against
model misspecification, it is not generally asymptotically normal nor efficient. Proving asymptotic nor-
mality and efficiency of this estimator would require the use of regression estimators that output functions
in Donsker classes, which can be roughly understood as functions with bounded complexity [54]. This
would importantly limit the ability to use flexible regression estimators that can further aid to mitigate
model misspecification bias.

To solve the aforementioned problem, we will propose a cross-fitted sequentially doubly robust esti-
mator, which helps to avoid assumptions on the complexity of the regression estimators used [35,55-57].
Cross-fitting will allow us to fully exploit the EIF given in Theorem 2 to construct estimators that are efficient
and CAN under the use of flexible regression algorithms from the statistical and machine learning literature.
These regression estimators are often better than parametric models at capturing the true functional form of
the regression functions, therefore making the error terms Ry o(7], 1), Rz,0(1], 1), and Ry,0(#}, 1) small.

The cross-fitting algorithm is described in Algorithm S2, and the cross-fitted sequential regression
algorithm using pooled datasets are described in Algorithm S3 in the supplementary materials. An R
package implementing the algorithm is available on GitHub, and simulations testing the correctness of
our implementation are given in the supplementary materials

Our proposed cross-fitted estimation algorithm satisfies sequential double robustness in the sense of
Lemma 2. Furthermore, it satisfies the following weak convergence result.

Theorem 3. (Weak convergence of é) Assume that, at each time point t, we have
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3 AI A v _
@ 1Ga, - IA,z” 1Qz,: — Qz.ll = op(n 12y,
(i) 1Gm,¢ — Guell 1QLe — Qrell = 0p(n1/2),
(iti) 1Ga,e — Ghell 1Qu,c = Quell = 0p(n™'/?), and

(iv) P(Gly; < ¢) =P(Gj; < ¢) = P(Gu,¢ < ¢) =1 for some ¢ < co.

Then, we have n (é - 0) » N(0, 0%), where 0% = Var[S(X; n)] is the non-parametric efficiency bound.

Note that the weak convergence of 6 requires a consistent estimation of the sequential regression
functions at the rates stated in the theorem. Data-adaptive regression methods avoid reliance on parametric
assumptions to achieve consistent estimation. Theorem 3 allows the construction of confidence intervals as
6 + z4/26 [/, where 62 is the empirical variance of S(X; 1j) and z, is the quantile of a standard normal
distribution.

The main difference between the construction in Algorithm 1 and Algorithm A3 is the introduction of sample
splitting and the introduction of formulas to compute standard errors. Sample splitting requires careful handling
of the difference training sets (denoted with a 7~ in the algorithm) and prediction sets (denoted with a # in the
algorithm) to ensure that the data for unit i are not used in the training set of regression functions used to make
predictions for that unit. This allows the analysis of the estimators by conditioning on the training sample, and
then “averaging” across training samples to obtain the final result.

6 Numerical studies

In this section, we perform a numerical simulation study with three main narrow but important objectives:

(1) To test the implementation of the algorithms in the R package 1cm and demonstrate that the package
produces correct answer in the sense that the estimator performance matches what is expected from
theory.

(2) To provide an illustration of the performance of the estimator under the practical use case where
machine learning is used for the estimation of the nuisance quantities.

(3) To illustrate the sequential double robustness of the estimator, which allows the algorithm to recover
from inconsistent estimation of the outcome regression.

We achieve these two aims by constructing a Monte Carlo simulation as follows. First, we generate datasets
with T = 2 time points from a distribution with binary A; and Y, and where L;, Z;, and M; are the categorical
variables that can take on three levels each. All probability distributions are the functions of the type

exp(hzt, WBk)
Y, exp(hs By

where W is one of A;, Z;, M;, L;, and Y, and hz[,w is a vector with all main terms and two-way interactions for
hlfv. For A;andY, weset K = 2, and for L;, Z;, and M;, we set K = 3. The coefficients 5, used in the simulation
may be found on GitHub along with all other simulation codes.

In principle, estimation could be carried out using a non-parametric maximum-likelihood estimator (NPMLE)
because the data are categorical. However, the data-generating mechanism consists of 3¢ x 23 = 5,832 categories,
which would imply prohibitive sample sizes to obtain an NPMLE with good properties. We therefore use our
developed estimators to compute estimates of the direct and indirect effects with a’ = 1 and a* = 0, using flexible
regression methods. We generated 1,000 datasets of sizes n € {500, 1,000, 5,000} and applied the estimators
proposed. We then approximated quantities such as bias and coverage probabilities as empirical quantities across
simulated datasets.

To achieve the first objective of this numerical study, all of the estimators of nuisance parameters in n
consist of saturated logistic regression with an ¢ regularization penalty, where the regularization parameter

P(W = k|Hy = hy) = 0.8 x + 0.1,
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Table 1: Simulation results for HAL estimation of nuisance parameters n

n Estimand |Bias| Jn x |Bias| n x Var. n x MSE 95% Cl coverage
500 Direct 0.004 0.080 2.912 2.908 0.96
Indirect 0.004 0.098 0.180 0.189 0.99
Total 0.008 0.178 3.165 3.186 0.95
1,000 Direct 0.002 0.070 2.340 2.337 0.97
Indirect 0.001 0.042 0.111 0.113 0.99
Total 0.001 0.028 2.488 2.481 0.97
5,000 Direct 0.000 0.002 2.129 2.122 0.95
Indirect 0.001 0.056 0.059 0.061 0.95
Total 0.001 0.058 2.204 2.200 0.94

is chosen with cross-validation. This estimator is a particular case of the highly adaptive lasso estimator
(HAL [51]), which has been proven to converge at the rates required by Theorem 3. This implies that under
this estimation strategy, a correct implementation of our estimator should yield bias that converges to zero
at </n-rate, as well as confidence intervals with the nominal coverage. The results of this simulation are
presented in Table 1.

The results in Table 1 illustrate that the bias, indeed, converges to zero at rate /n, as expected. None-
theless, the coverage of the confidence intervals is larger than the nominal value. This is due to the use of a
non-targeted estimator of the variance of the estimator; this phenomenon has been observed before for this
type of estimator (e.g., [58,59]). Alternative variance estimators that alleviate this problem have been
proposed for other contexts [60]; the extension of those estimators to our problem will be the subject of
future work.

To achieve the second objective of illustrating the performance of the methods in a typical setting under
the use of typical data-adaptive regression methods in the statistics and machine learning literature, we fit
the regressions in n with an ensemble method known as the super-learner [61], which builds a combination
of algorithms in a user-supplied list of algorithms. The weights in the combination are chosen using cross-
validation, and the super-learner has been shown to have certain desirable oracle optimality properties
[62]. As candidate learners, we chose two estimators: (i) a logistic or linear (depending on whether the
outcome takes values on {0, 1} or not) regression model with only main terms and (ii) a tree ensemble built
using gradient boosting machines with hyper-parameters tuned using cross-validation. The results are
presented in Table 2 and show good performance of the estimators in terms of both coverage of the
confidence intervals and bias.

Note that neither of the candidates in the super learner estimator used in this simulation contains the
true data-generating mechanisms. However, the candidates in the library are the type of flexible estimators
that we encourage users of our approach to use in practice. Therefore, this table serves as an illustration of
estimator consistency in practical situations where the outcome sequential regressions may be unknown

Table 2: Simulation results for super-learner estimation of nuisance parameters n

n Estimand |Bias| Jn x |Bias| n x Var. n x MSE 95% Cl coverage
500 Direct 0.007 0.159 2.441 2.458 0.97
Indirect 0.000 0.001 0.223 0.223 0.98
Total 0.007 0.157 2.405 2.422 0.98
1,000 Direct 0.003 0.104 2.394 2.397 0.94
Indirect 0.001 0.019 0.136 0.136 0.99
Total 0.003 0.085 2.264 2.264 0.95
5,000 Direct 0.003 0.185 2.071 2.098 0.95
Indirect 0.000 0.025 0.076 0.077 0.96

Total 0.002 0.160 2.040 2.059 0.95
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but are estimated using flexible regression. We caution, however, that performance of confidence intervals
can vary wildly under model misspecification, that our theoretical results do not guarantee correct coverage
under general forms of model misspecification, and that our simulation results for coverage and +/n-bias
should not be taken as indicative of general performance.

To achieve the third objective of illustrating the sequential double robustness of the estimator, we fit the
regressions for the outcome Y using a logistic regression with main terms (inconsistent), the models for A,
and M, using HAL (consistent), the models for L, and Z, using HAL (consistent), and the models for 4; and
M, using logistic regression with main terms (inconsistent). The results in Table 3 illustrate that this
scenario leads to estimators with low large-sample bias (possibly consistent), but higher </n-bias (possibly
not /n-consistent), as predicted by theory. As with the results of Table 2, the correct approximately
coverage observed in this simulation should not be expected in general misspecification situations.

7 Illustrative application

We applied our proposed estimators to a longitudinal mediation question from a comparative effectiveness
trial of XR-NTX vs BUP-NX for the treatment of OUD [63]. Specifically, we were interested in estimating the
extent to which differences in use of illicit opioids during the first month of treatment between the two
medications was due to mediation by self-reported craving of opioids, among those completing the detox-
ification requirement and initiating treatment. This involved estimating the interventional direct effect of
being treated with XR-NTX vs BUP-NX on risk of using illicit opioids during the first 4 weeks of treatment,
not operating through differences in craving of opioids; and the interventional indirect effect of being
treated with XR-NTX vs BUP-NX on risk of using illicit opioids during the first 4 weeks of treatment that
did operate through differences in craving. Patients report less opioid use when on XR-NTX vs BUP-NX (as
well as methadone) [64,65], but the reasons underlying this difference are not well understood. In this
study, patients were randomized to receive XR-NTX or BUP-NX. At time of randomization, a large number
(over 30) of baseline covariates, denoted L; (listed in the supplemental materials), were measured.
Although patient assignment to XR-NTX vs BUP-NX was randomized, we are estimating effects only among
those who initiated treatment. Treatment initiation is not randomized and likely depends on patient char-
acteristics. Initiation is also more difficult for those assigned to XR-NTX, because it requires complete
detoxification [63]. Our adjustment for an extensive set of possibly confounding variables (L) helps address
lack of randomization in the exposure groups. We use 4; = 1to denote initiation with XR-NTX and 4; = O to
denote initiation with BUP-NX. The outcome of this study is opioid use as detected by weekly urine drug
screen or timeline followback interview [66]. We use L; to denote opioid use measured at week t + 1 for
t € {1, 2, 3}, which detects use in the several days prior (via urine drug screen) to week prior (via interview),
and where t represents the number of weeks since randomization. We hypothesized that if XR-NTX reduces

Table 3: Simulation results under misspecification of the outcome regression

n Estimand |Bias| Jn x |Bias| n x Var. n x MSE 95% Cl coverage
500 Direct 0.005 0.104 2.201 2.204 0.96
Indirect 0.000 0.003 0.161 0.160 1.00
Total 0.005 0.107 2.210 2.214 0.98
1,000 Direct 0.001 0.045 2.092 2.087 0.96
Indirect 0.000 0.004 0.117 0.117 0.99
Total 0.001 0.041 2.117 2,111 0.98
5,000 Direct 0.004 0.305 2.049 2.136 0.95
Indirect 0.000 0.001 0.063 0.062 0.98

Total 0.004 0.304 2.031 2.117 0.96
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craving more than BUP-NX, that this could provide a partial explanation of the lower opioid use while on
XR-NTX. We use M; to denote craving during week ¢ + 1 since randomization, fort € {1, 2, 3}. There may also
be differences in depressive symptoms [67] and withdrawal symptoms [68] between the two medications, so
we incorporated measures of each (Hamilton depression scale, subjective opioid withdrawal scale; see
[69,70]), as time-varying confounders. We use Z; to denote these confounders measured during week
t+1forte{l,2, 3}

In addition, patients could drop out of treatment or otherwise be lost to follow-up starting in week 3
after randomization. Importantly, the outcomes L; are always observed, as it is assumed that a patient
who has missing opioid-use data (most likely due to a missed visit) would have been positive for opioid
use [71,72]. For t € {2, 3}, we use A; =1 to denote that a patient’s Z; and M; have been measured, and
we let A; =0 otherwise. Thus, our intervention variable is given by a combination of treatment
and censoring, A ={A;, 4>, A;}. In summary, we can write our observed data for this example as
0= (L, A, Z1, My, Ly, Ay, Zy, My, L3, Az, Z3, M3, Ly).

Note that the assumption of a negative (or positive) outcome for patients loss-to-follow-up may not be
sensible in all applications. In such cases, we encourage the use of a loss-to-follow-up indicator variable
and an intervention on loss-to-follow-up as described in Section 2.

We estimated the interventional direct effect of initiating treatment with XR-NTX vs BUP-NX on illicit
opioid use during week 4 of treatment, not operating through craving, under a hypothetical intervention to
prevent dropout. That is, fora’ = (1, 1, 1) and @* = (0, 1, 1), we estimated E(Y(a’', G(a@*)) - Y(a*, G(a))). We
also estimated the interventional indirect effect of initiating treatment with XR-NTX vs BUP-NX on illicit
opioid use during week 4 of treatment operating through craving, had those who dropped out not dropped
out. That is, we estimated E(Y(a', G(a')) - Y(a', G(a*))). We used an ensemble of machine learning algo-
rithms in fitting the nuisance parameters. The ensemble included an intercept-only model, lasso, multiple
additive regression splines, and extreme gradient boosting. The weights in the ensemble were chosen using
super-learning [61]. We used cross-fitting with fivefolds.

For the interventional direct effect, we estimated that initiating treatment with XR-NTX vs BUP-NX, not
operating through craving, would reduce risk of using illicit opioids during week 4 of treatment by 8.8
percentage points (risk difference: —0.088, 95% CI: —0.129, —0.048). For the interventional indirect effect,
we estimated that initiating treatment with XR-NTX vs BUP-NX, operating through craving, would not
meaningfully decrease risk of using illicit opioids during week 4 of treatment (risk difference: —0.004,
95% CI: —0.019, 0.011). Thus, we conclude that reductions in risk of illicit opioid use during treatment
with XR-NTX vs BUP-NX are not due to differences that operate through the treatments’ effects on craving.

8 Discussion

Our approach generalizes interventional causal effects to allow for high-dimensional time-dependent vari-
ables measured post- and pre-treatment. We present an estimation algorithm that leverages machine
learning to alleviate misspecification bias while retaining statistical properties such as +/n-consistency,
non-parametric efficiency, and asymptotic normality.

While this approach allows great flexibility in the data structure and estimation method, some limita-
tions remain. We assume that the mediator is categorical and computational tractability of our proposed
estimator requires that it takes values on a small set. This limitation seems fundamental and hard to
overcome within an interventional effect framework, as all estimators will require the estimation of the
density of the counterfactual variable M(a). We know of no method that can do this non-parametrically in
the case of a continuous or high-dimensional variable M, although recent approaches on the estimation of
counterfactual densities in single time-point settings are promising [73].

In addition, interventional effects have some limitations. First, they do not decompose the average
treatment effect E[Y(a') — Y(a*)]. Second, the interventional indirect effect can be non-zero, even when
there are no paths of thetype A - M — Y in the DAG in Figure 1 [30]. Solving this limitation would require
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a different framework for mediation analysis. We proposed such a framework for single time-point expo-
sures in ref. [74], and future work will include generalizing that framework to the case of time-varying
exposures and mediators.

Acknowledgement: This work was supported through a Patient-Centered Outcomes Research Institute
(PCORI) Project Program Award (ME-2021C2-23636-1C).

Conflict of interest: Prof. Ivan Diaz is a member of the Editorial Board of the Journal of Causal Inference but
was not involved in the review process of this article.

References

[1] Vander Weele TJ. Mediation and mechanism. European | Epidemiol. 2009;24(5):217-24.

[2] Gilbert PB, Montefiori DC, McDermott A, Fong Y, Benkeser DC, Deng W, et al. Immune correlates analysis of the mRNA-1273
COVID-19 vaccine efficacy trial. MedRxiv. 2021.

[3] Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology. 1992;3:143-55.

[4] Pearl). Direct and indirect effects. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence. UAI *01.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 2001. p. 411-20. http://dl.acm.org/citation.cfm?id=647235.
720084.

[5] Avin C, Shpitser |, Pearl ). Identifiability of path-specific effects. In: IJCAI International Joint Conference on Artificial
Intelligence. 2005. p. 357-63.

[6] Rudolph KE, Gimbrone C, Diaz I. Helped into harm: mediation of a housing voucher intervention on mental health and
substance use in boys. Epidemiology. 2021;32(3):336-46.

[7] Robins JM, Richardson TS. Alternative graphical causal models and the identification of direct effects. Causality and
Psychopathology: Finding the Determinants of Disorders and Their Cures. 2010. p. 103-58.

[8] Tchetgen Tchetgen EJ, Phiri K. Bounds for pure direct effect. Epidemiology (Cambridge, Mass). 2014;25(5):775.

[9] Miles CH, Kanki P, Meloni S, Tchetgen Tchetgen EJ. On partial identification of the pure direct effect. 2015. arXiv: http://
arXiv.org/abs/arXiv:150901652.

[10] Stensrud M), Young JG, Didelez V, Robins JM, Hernan MA. Separable effects for causal inference in the presence of
competing events. ] Amer Stat Assoc. 2022;117(537):175-83.

[11] Diaz I, Hejazi NS. Causal mediation analysis for stochastic interventions. J R Stat Soc Ser B (Stat Methodol).
2020;82(3):661-83.

[12] Hejazi NS, Rudolph KE, van der Laan MJ, Diaz I. Nonparametric causal mediation analysis for stochastic interventional (in)
direct effects. 2020. arXiv: http://arXiv.org/abs/arXiv:200906203.

[13] Petersen ML, Sinisi SE, van der Laan MJ. Estimation of direct causal effects. Epidemiology. 2006;17(3):276-84.

[14] van der Laan M), Petersen ML. Direct effect models. Int ) Biostat. 2008;4(1).

[15] Vander Weele TJ, Vansteelandt S, Robins JM. Effect decomposition in the presence of an exposure-induced mediator-
outcome confounder. Epidemiology (Cambridge, Mass). 2014;25(2):300.

[16] Zheng W, van der Laan MJ. Targeted maximum likelihood estimation of natural direct effects. Int ) Biostat. 2012;8(1):1-40.

[17] Diaz |, Hejazi NS, Rudolph KE, van Der Laan M). Nonparametric efficient causal mediation with intermediate confounders.
Biometrika. 2021;108(3):627-41.

[18] Vander Weele TJ, Tchetgen Tchetgen EJ. Mediation analysis with time varying exposures and mediators dl. J R Stat Soc Ser
B Stat Methodol. 2017;79(3):917.

[19] Tai AS, Lin SH, Chu YC, Yu T, Puhan MA, Vander Weele T. Causal mediation analysis with multiple time-varying mediators.
Epidemiology. 2022;34(1):8-19.

[20] Zheng W, van der Laan M. Longitudinal mediation analysis with time-varying mediators and exposures, with application to
survival outcomes. ] Causal Inference. 2017;5(2).

[21] Vansteelandt S, Linder M, Vandenberghe S, Steen J, Madsen J. Mediation analysis of time-to-event endpoints accounting
for repeatedly measured mediators subject to time-varying confounding. Stat Med. 2019;38(24):4828-40.

[22] Mittinty MN, Vansteelandt S. Longitudinal mediation analysis using natural effect models. Amer ] Epidemiol.
2020;189(11):1427-35.

[23] Ge L, Wang J, Shi C, Wu Z, Song R. A reinforcement learning framework for dynamic mediation analysis. 2023. arXiv:
http://arXiv.org/abs/arXiv:230113348.

[24] Loh WW, Moerkerke B, Loeys T, Vansteelandt S. Nonlinear mediation analysis with high-dimensional mediators whose
causal structure is unknown. Biometrics. 2022;78(1):46-59.


http://dl.acm.org/citation.cfm?id=647235.720084
http://dl.acm.org/citation.cfm?id=647235.720084
http://arXiv.org/abs/arXiv:150901652
http://arXiv.org/abs/arXiv:150901652
http://arXiv.org/abs/arXiv:200906203
http://arXiv.org/abs/arXiv:230113348

16

[25]

[26]

[27]

[28]
[29]

[30]
(31]
[32]
[33]
[34]
[35]
[36]
(37]
(38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]
[46]

[47]

(48
[49]

[50]
(51]
(52]
[53]
[54]

(55]
[56

(571

= |van Diaz et al. DE GRUYTER

Tai AS, Lin PH, Huang YT, Lin SH. Path-specific effects in the presence of a survival outcome and causally ordered multiple
mediators with application to genomic data. Stat Meth Med Res. 2022;31(10):1916-33.

Tanner KT, Sharples LD, Daniel RM, Keogh RH. Methods of analysis for survival outcomes with time-updated mediators,
with application to longitudinal disease registry data. Stat Meth Med Res. 2022;31(10):1959-75.

Tai AS, Lin SH. Complete effect decomposition for an arbitrary number of multiple ordered mediators with time-varying
confounders: a method for generalized causal multi-mediation analysis. Stat Meth Med Res. 2023;32(1):100-17.

Pearl ). Causality: models, reasoning, and inference. Cambridge: Cambridge University Press; 2000.

Didelez V. Defining causal mediation with a longitudinal mediator and a survival outcome. Lifetime Data Anal..
2019;25(4):593-610.

Miles CH. On the causal interpretation of randomized interventional indirect effects. 2022. arXiv: http://arXiv.org/abs/
arXiv:220300245.

Richardson TS, Robins JM. Single world intervention graphs (SWIGs): A unification of the counterfactual and graphical
approaches to causality. Center for the Statistics and the Social Sciences, University of Washington Series Working Paper.
2013;128(30):2013.

Rubin D, van der Laan MJ. A doubly robust censoring unbiased transformation. Int | Biostat. 2007;3(1).

van der Laan M), Rose S. Targeted learning: causal inference for observational and experimental data. New York:
Springer; 2011.

Luedtke AR, Sofrygin O, van der Laan MJ, Carone M. Sequential double robustness in right-censored longitudinal models.
2017. arXiv: http://arXiv.org/abs/arXiv:170502459.

Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, et al. Double/debiased machine learning for
treatment and structural parameters. Econometr ). 2018;21(1):C1-68.

Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models. Biometrics.
2005;61(4):962-73.

Rotnitzky A, Robins J, Babino L. On the multiply robust estimation of the mean of the g-functional. 2017. arXiv: http://
arXiv.org/abs/arXiv:170508582.

Dukes O, Martinussen T, Tchetgen Tchetgen EJ, Vansteelandt S. On doubly robust estimation of the hazard difference.
Biometrics. 2019;75(1):100-9.

vonMises R. On the asymptotic distribution of differentiable statistical functions. Ann Math Stat. 1947;18(3):309-48.
van der Vaart AW. Asymptotic statistics. Cambridge: Cambridge University Press; 1998.

Robins J, Li L, Tchetgen Tchetgen E, van der Vaart AW. Quadratic semiparametric von mises calculus. Metrika.
2009;69(2-3):227-47.

Bickel PJ, Klaassen CA, Ritov Y, Wellner JA. Efficient and adaptive estimation for semiparametric models. Berlin: Springer-
Verlag; 1997.

Robins JM. Robust estimation in sequentially ignorable missing data and causal inference models. In: Proceedings of the
American Statistical Association. 2000.

Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed.
J Amer Stat Assoc. 1994 September;89(427):846-66.

van der Laan M), Robins JM. Unified methods for censored longitudinal data and causality. New York: Springer; 2003.
van der Laan M), Rubin D. Targeted maximum likelihood learning. Int | Biostat. 2006;2(1). https://doi.org/10.2202/1557-
4679.1043.

van der Laan M), Rose S. Targeted learning in data science: causal inference for complex longitudinal studies. New York:
Springer; 2018.

Bickel P, Ritov Y, Tsybakov AB. Simultaneous analysis of Lasso and Dantzig selector. Ann Stat. 2009;37(4):1705-32.
Wager S, Walther G. Adaptive concentration of regression trees, with application to random forests. 2015. arXiv: http://
arXiv.org/abs/arXiv:150306388.

Chen X, White H. Improved rates and asymptotic normality for nonparametric neural network estimators. IEEE Trans Inform
Theory. 1999;45(2):682-91.

Benkeser D, van der Laan M. The highly adaptive lasso estimator. In: 2016 IEEE International Conference on Data Science
and Advanced Analytics (DSAA). IEEE; 2016. p. 689-96.

Diaz I, Williams N, Hoffman KL, Schenck EJ. Nonparametric causal effects based on longitudinal modified treatment
policies. ] Amer Stat Assoc. 2021:1-16.

Diaz I, Hoffman KL, Hejazi NS. Causal survival analysis under competing risks using longitudinal modified treatment
policies. 2022. arXiv: http://arXiv.org/abs/arXiv:220203513.

van der Vaart AW, Wellner JA. Weak convergence and empirical processes. New York: Springer-Verlag; 1996.

Bickel P). On adaptive estimation. Ann Stat. 1982;10(3):647-71.

Klaassen CA. Consistent estimation of the influence function of locally asymptotically linear estimators. Ann Stat.
1987;15(4):1548-62.

Zheng W, van der Laan MJ. Cross-validated targeted minimum-loss-based estimation. In: Targeted learning. New York:
Springer; 2011. p. 459-74.


http://arXiv.org/abs/arXiv:220300245
http://arXiv.org/abs/arXiv:220300245
http://arXiv.org/abs/arXiv:170502459
http://arXiv.org/abs/arXiv:170508582
http://arXiv.org/abs/arXiv:170508582
https://doi.org/10.2202/1557-4679.1043
https://doi.org/10.2202/1557-4679.1043
http://arXiv.org/abs/arXiv:150306388
http://arXiv.org/abs/arXiv:150306388
http://arXiv.org/abs/arXiv:220203513

DE GRUYTER Efficient and flexible mediation analysis =—— 17

(58]

(59]

(60]

(61]
(62]

[63]

(64

[65]

(66]
[67]

[69

(70]

(71]

(72]

Benkeser D, Carone M, Laan MVD, Gilbert P. Doubly robust nonparametric inference on the average treatment effect.
Biometrika. 2017;104(4):863-80.

Balzer L, Ahern J, Galea S, van der Laan M. Estimating effects with rare outcomes and high dimensional covariates:
knowledge is power. Epidemiol Meth. 2016;5(1):1-18.

Tran L, Petersen M, Schwab ], van der Laan MJ. Robust variance estimation and inference for causal effect estimation.
2018. arXiv: http://arXiv.org/abs/arXiv:181003030.

van der Laan MJ, Polley E, Hubbard A. Super learner. Stat Appl Genetics Molecular Biol. 2007;6(25):25.

van der Laan M), Dudoit S, van der Vaart AW. The cross-validated adaptive epsilon-net estimator. In: Division of bios-
tatistics. Berkeley: University of California; 2004.

Lee JD, Nunes Jr EV, Novo P, Bachrach K, Bailey GL, Bhatt S, et al. Comparative effectiveness of extended-release
naltrexone versus buprenorphine-naloxone for opioid relapse prevention (X: BOT): a multicentre, open-label, randomised
controlled trial. Lancet. 2018;391(10118):309-18.

Greiner MG, Shulman M, Choo TH, Scodes J, Pavlicova M, Campbell AN, et al. Naturalistic follow-up after a trial of
medications for opioid use disorder: Medication status, opioid use, and relapse. ] Substance Abuse Treatment.
2021;131:108447.

Solli KK, Latif ZeH, Opheim A, Krajci P, Sharma-Haase K, Benth JS, et al. Effectiveness, safety and feasibility of extended-
release naltrexone for opioid dependence: a 9-month follow-up to a 3-month randomized trial. Addiction.
2018;113(10):1840-9.

Sobell L, Sobell M. Alcohol timeline followback users’ manual. Toronto, Canada: Addiction Research Foundation; 1995.
Rudolph KE, Diaz I, Hejazi NS, van der Laan M), Luo SX, Shulman M, et al. Explaining differential effects of medication for
opioid use disorder using a novel approach incorporating mediating variables. Addiction. 2021;116(8):2094-103.
SAMHSA. Medications for opioid use disorder for healthcare and addiction professionals, policymakers, patients, and
families: treatment improvement protocol TIP 63. 2021. https://store.samhsa.gov/sites/default/files/SAMHSA_Digital_
Download/PEP21-02-01-002.pdf.

Hamilton M. The Hamilton depression scale-accelerator or break on antidepressant drug discovery. Psychiatry.
1960;23:56-62.

Cooper ZD, Johnson KW, Pavlicova M, Glass A, Vosburg SK, Sullivan MA, et al. The effects of ibudilast, a glial activation
inhibitor, on opioid withdrawal symptoms in opioid-dependent volunteers. Addiction Biol. 2016;21(4):895-903.

Hser YI, Evans E, Huang D, Weiss R, Saxon A, Carroll KM, et al. Long-term outcomes after randomization to buprenorphine/
naloxone versus methadone in a multi-site trial. Addiction. 2016;111(4):695-705.

Weiss RD, Potter JS, Griffin ML, Provost SE, Fitzmaurice GM, McDermott KA, et al. Long-term outcomes from the national
drug abuse treatment clinical trials network prescription opioid addiction treatment study. Drug Alcohol Depend.
2015;150:112-9.

Kennedy EH, Balakrishnan S, Wasserman L. Semiparametric counterfactual density estimation. 2021. arXiv: http://arXiv.
org/abs/arXiv:210212034.

Diaz I. Causal influence, causal effects, and path analysis in the presence of intermediate confounding. 2022. arXiv:
http://arXiv.org/abs/arXiv:220508000.


http://arXiv.org/abs/arXiv:181003030
https://store.samhsa.gov/sites/default/files/SAMHSA_Digital_Download/PEP21-02-01-002.pdf
https://store.samhsa.gov/sites/default/files/SAMHSA_Digital_Download/PEP21-02-01-002.pdf
http://arXiv.org/abs/arXiv:210212034
http://arXiv.org/abs/arXiv:210212034
http://arXiv.org/abs/arXiv:220508000

	1 Introduction
	2 Notation and definition of interventional (in)direct effects
	3 Inverse probability weighting and sequential regression
	3.1 Inverse probability weighted estimation
	3.2 Sequential regression representation of the mediational g-computation formula

	4 Efficiency theory
	5 Efficient estimation using sequential doubly robust regression
	5.1 Cross-fitting and asymptotic normality

	6 Numerical studies
	7 Illustrative application
	8 Discussion
	Acknowledgement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


