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Abstract: We propose semiparametric and nonparametric methods to estimate conditional interventional
indirect effects in the setting of two discrete mediators whose causal ordering is unknown. Average interven-
tional indirect effects have been shown to decompose an average treatment effect into a direct effect and
interventional indirect effects that quantify effects of hypothetical interventions on mediator distributions. Yet
these effects may be heterogeneous across the covariate distribution. We consider the problem of estimating
these effects at particular points. We propose an influence function-based estimator of the projection of the
conditional effects onto a working model, and show under some conditions that we can achieve root-n
consistent and asymptotically normal estimates. Second, we propose a fully nonparametric approach to
estimation and show the conditions where this approach can achieve oracle rates of convergence. Finally,
we propose a sensitivity analysis that identifies bounds on both the average and conditional effects in the
presence of mediator-outcome confounding. We show that the same methods easily extend to allow estimation
of these bounds. We conclude by examining heterogeneous effects with respect to the effect of COVID-19
vaccinations on depression during February 2021.
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1 Introduction

A goal of causal mediation analysis is to understand the mechanisms through which interventions work.
“Natural effects” most directly pertain to the idea of mechanism [1] and decompose the individual-level
treatment effect into pathways that work directly or via changes in mediator values. However, the identifying
assumptions required to estimate these effects are unenforceable even in randomized experiments. These
effects are also not generally identified in common applied settings that involve multiple mediators unless the
mediators are considered jointly. “Interventional effects” were proposed as alternative causal estimands that
are identifiable under weaker assumptions and in settings with multiple mediators [2,3]. These effects con-
ceptualize hypothetical interventions on the mediator distributions defined at specific covariate values. Unlike
natural effects, these effects are identifiable in a sequentially randomized experiment. While the relationship

* Corresponding author: Max Rubinstein, RAND Corporation, Pittsburgh, PA 15213, United States, e-mail: mrubinstein@rand.org
Zach Branson: Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States,

e-mail: zach@stat.cmu.edu

Edward H. Kennedy: Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States,
e-mail: edward@stat.cmu.edu

8 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

3


https://doi.org/10.1515/jci-2022-0070
mailto:mrubinstein@rand.org
mailto:zach@stat.cmu.edu
mailto:edward@stat.cmu.edu

2 =—— Max Rubinstein et al. DE GRUYTER

between interventional effects and mechanisms acting at an individual level is unclear [1], interventional
effects have gained popularity in applied research over the past several years.

This popularity is also in part because the same statistical functionals yield alternative causal interpreta-
tions that are often of substantive interest. Specifically, under weaker assumptions, these same methods can
quantify disparity reductions achieved via interventions on some possibly mediating factor(s). For example,
Vansteelandt and Daniel [3] analyze disparities in breast-cancer survival among high and low socioeconomic
status (SES) women. They consider a model where SES causes breast-cancer survival via a direct pathway and
via cancer screening and treatment choices, so that SES takes the role of an exposure. They estimate that if low
SES women had the same (conditional) distribution of cancer screening and treatment choices as high SES
women, the observed disparity in breast-cancer survival between high and low SES women would be reduced
by half. This effect requires conceiving of an unspecified hypothetical intervention that could shift the cov-
ariate-stratrum specific distributions of cancer screening and treatment choices among low SES women to
match that of high SES women. However, this intervention does not require conceiving of potential outcomes
with respect to SES, or more generally of the types of controversial counterfactual quantities required to
conceive of natural effects [3].

To date, the literature on interventional effects has primarily focused on estimating average effects. We
instead consider estimating conditional effects across covariates that are possibly continuous. For example,
consider the application from [3]. One natural follow-up question might be how these disparity reductions
change as a function of a woman’s age. Even if the total disparity in cancer survival were constant across age, it
remains possible that age moderates the interventional effects and therefore also the proportion of the
disparity that would be eliminated via such an intervention. These questions pertain to conditional interven-
tional indirect effects (CIIEs). To our knowledge, proposed strategies to estimate the CIIE have been limited to
parametric methods [3,4], and the validity of the inferences are tied to assumptions that the models are
correctly specified.

Our first contribution is to propose methods that allow for flexible nonparametric and machine learning
methods for estimation. Specifically, we consider the setting of a binary intervention and two discrete-valued
mediators whose causal ordering is unknown. We propose two estimation procedures: first, a semiparametric
projection-based approach; second, a fully nonparametric approach. Both procedures are conceptually simple,
and involve a regression of an estimate of the uncentered influence function for the average effect onto the
covariates. However, the semiparametric approach targets a projection of the CIIE onto a parametric model
rather than the CIIE itself. Projection-based estimators have frequently been proposed in the context of
different causal estimands [5-7]. Our proposal extends this idea to this setting, and we show that under
some conditions, root-n consistent and asymptotically normal estimates of the projection parameter are
possible. The second proposal considers a fully nonparametric estimation procedure (a “DR-Learner”) that
targets the CIIE directly, extending results from ref. [8]. While directly targeting the CIIE instead of its projec-
tion may seem preferable, we cannot in general obtain root-n consistent estimates. Even so, we show that we
can obtain oracle rates of convergence in some settings. Both the projection estimator and the DR-Learner
substantially weaken the modeling assumptions used to date in the literature on estimating the CIIE. More-
over, these methods allow the use of flexible nonparametric and machine-learning methods for estimation
while still obtaining relatively fast rates of convergence.

Our methods, like most, require several identifying assumptions, including that the mediator-outcome
relationship is unconfounded. A natural question is whether our estimators are sensitive to violations of this
assumption. We therefore derive bounds on the CIIE while relaxing this assumption and show that we can use
both the projection-based approach and the DR-Learner to estimate these quantities. These methods naturally
extend to allow for estimating bounds on the average effects, and we show that root-n consistent and asymp-
totically normal estimates of these bounds are possible under some conditions. Existing approaches frequently
focus on the natural rather than interventional effects and are often tied to strong parametric modeling
assumptions [9-11]. Moreover, sensitivity analyses for conditional estimands is less seldom discussed (though
see ref. [12]).

Finally, we demonstrate these methods using an application previously considered in ref. [13]. This study
sought to quantify the extent to which COVID-19 vaccines reduced self-reported depression via changes in
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social isolation versus worries about health among the COVID-19 Trends and Impact Survey (CTIS) respondents
in February 2021. The authors only examined effect heterogeneity across discrete subgroups; moreover, they
did not conduct a sensitivity analysis with respect to the interventional effect estimates. We revisit this
analysis and model how the vote share for Joe Biden in the 2020 US presidential election in each respondent’s
county of residence moderated the interventional effects. We then demonstrate our sensitivity analysis for the
average and the CIIEs.

This article proceeds as follows. In Section 2, we review interventional effects, the required identifying
assumptions, and efficient estimation. In Section 3, we introduce the CIIE and propose the projection-based
estimator and the DR-Learner. We establish conditions required for asymptotic normality and root-n consis-
tency of the projection estimator and for obtaining oracle rates of convergence for the DR-Learner. Section 4
contains a simulation study demonstrating that these theoretic properties hold in practice. Section 5 proposes
our sensitivity analysis, Section 6 contains our application, and Section 7 contains a discussion of these results.

2 Review

We define the average interventional effects, the causal assumptions required to tie the causal targets to
observed data, and efficient estimation of the observed data functionals. We largely summarize material
covered in refs [3,14] and refer to those articles for more details. We begin by outlining the setup and notation
that we will use throughout.

2.1 Setup and notation

Assume that we observe n i.i.d. samples of observations Z; = (V;, W;, My;, My;, A;, Y;), where Y represents some
outcome of interest (either continuous or discrete), A represents a binary intervention, and M; and M,
represent discrete-valued mediators. Finally, we let[V, W] represent a matrix of either discrete or continuous
covariates, where W may be empty, and which we jointly denote as X. We distinguish between V and W
because we will estimate effects conditional on V = v, which may or may not include all elements of X. Figure 1
illustrates the assumed relationships between the variables, with an arrow indicating a causal pathway.
Importantly, we do not assume that we know the causal relationship between M; and M,.

While this figure helps to motivate the problem, we will primarily rely on potential outcomes notation to
define our assumptions. Specifically, we use Y#™™ to denote potential outcomes under A = a, M; = my, and
M, = my, and Mj“ to denote the counterfactual outcome for the jth mediator under A = a. For any discrete
variable C, we use p(c) as a short hand for P(C = ¢) throughout.

We also define the following functions of the data. Let 77,(X) = p(A = a|X) and p,(M, M, X) denote the
outcome regression E[Y|A = a, X, My, M;]. We denote the joint mediator probabilities as p(M, My|X, A), and
the marginal probabilities as p(M|X, A) and p(M,|X, A). Following the notation in ref. [14], we define the
marginalized outcome models:

X =[V, W] > A > M, > Y
\MQ

Figure 1: Assumed data generating process.
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ya,Ml(MZ? X) = z‘ua(ml’ MZ: X)p(mlla! X)

m
o) = 2 i (my, Mo, X)p(mula, X)p(myla’, X).

nmy,my

These quantities are defined with respect to marginalizing the outcome regression over p(M;j|a, X). We use this
same notation to define quantities marginalized with respect to p(Mj|a’, X) (e.g., #a,M;xMZ’(X ).

We also denote sample averages using P,(Z) and regression estimates as [ ,(Y|X). For possibly random
functions f, we denote ||f||* as the squared L,(P) norm, ff (z)*dP(z). We use the notation a < b to indicate that
a < Cb for some universal constant C. Finally, for any random function f learned on an independent sample of

size n, D{', we let P f (Z) = ff (2)dP(z|D{"). That is, P f (Z) refers to the expected value of this estimated function
conditional on the training sample, noting that for a fixed function f this is equivalent to E(f).

2.2 Interventional effects

We can decompose the average effect 1 = E[Y? - Y] into the sum of the following quantities [3]:

Ve = E Z E[Yamme — yO™Mm X n(ME = my, M = mylX)|, o
my,mp
Yy, = E| ) E[Y™mX{p(M{ = my|X) - p(M{" = maX)}p(My = my|X)|, @
my,my
Yy, = E| 2 E[Y™™|X|{p(Mg = my|X) -~ p(M;" = mylX)}p(M{' = my|X)|, 3)
my,my

Y E[Y™mmX|{p(M{ = my, M = my|X) — p(M{ = my|X)p(M§ = my|X) @
my,my

- [P = my, My = mylX) - p(MY" = myX)p(M5" = malX)]}).

l/)Cov =E

The interventional direct effect (i) represents the contrast in mean potential outcomes when we set
A = a for everyone in the population versus A = a’, while drawing the mediators randomly for each indivi-
dual from their counterfactual joint distribution under A = a’ given subject-specific covariates X. By contrast,
the interventional indirect effect via My(y Ml) holds A fixed at a for all individuals, and considers the average
contrast between giving everyone subject-specific values of M; drawn randomly from the counterfactual
distribution under A = a versus the distribution under A = a’ given covariates X, and simultaneously drawing
M, from the counterfactual distribution under A = a’ given covariates X. The interventional indirect effect
through My(¥,, ) is defined analogously. The covariant effect (Y,,) is the difference between the total effect
and all three of these effects and captures the effect of the dependence of the mediators on each other. This
decomposition also holds switching the role of a and a’: Vansteelandt and Daniel [3] index these estimands by
a to make this distinction, while for conceptual simplicity, we do not. In addition, for the purposes of this
article we focus on effects via M;; however, our proposed methods can be used for any of these estimands.

2.3 Identification

The estimands defined earlier require knowledge about the potential outcomes under each treatment and
mediator value for each subject. However, for any individual, we do not observe all of these quantities. We
therefore make the following identifying assumptions to connect these causal quantities to the observed data
distribution. First, we assume consistency, where for a* € {a, a’} and any (m;, my):
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Assumption 1. (Consistency)

A=a > (My, M) = (M, M§)
A=a,My=m,My=m, = Y= yamim,

Consistency precludes the potential outcomes for any individual from depending on another individual’s
treatment or mediator assignment. We next assume sequential ignorability:

Assumption 2. (Sequential ignorability)

yamm | A|X, 5)
M, ME) L AX, ®)
yemme | (M, My)|(A = a', X). (7

Sequential ignorability consists of three assumptions: equations (5) and (6), or Y-A and M-A ignorability,
state that A is independent of Y™™ and (M{', M§') given X. Equation (7), or Y-M ignorability, states that
(M, My) is independent of yamim given X and A = a’. We next assume positivity:

Assumption 3. (Positivity)

p

min g (X) > e] =1, P
a

min p(my, myla’, X) > s’ =1, €>0. (€]

my,m,a

Equation (8) implies that the propensity scores are bounded away from zero and one and the joint
mediator probabilities are bounded away from zero with probability one." Under these assumptions, we
can write ¢, in terms of the observed data distribution.

Y UX, my, m){p(mylX, @) - p(my|X, a)lp(mylX, a’)

nm,my

Yu, = E = E(ty;,(X)). ©

The functional in (9) reflects other interesting causal parameters under weaker assumptions. For example,
consider the case where (7) holds but (5) and (6) do not. This situation is frequently relevant in cases where we
are using interventional indirect effects to understand disparities and A is an indicator of some subgroup of
interest (e.g., Black versus white individuals). In that case, (9) still targets the causal contrast:

E| Y E[Y™ma, X][p(myla, X) - p(mild, X)|p(mola’, X)|. (10)

m,my

This estimand tells us about how much an intervention on the distribution of M; could reduce an observed
disparity in some outcome of interest [3]. However, in practice, we must carefully consider the relevant
conditioning sets when defining these quantities [15].

2.4 Estimation

Regardless of the targeted causal quantity, (9) reflects a statistical parameter that is a fixed function of the
observed data and we require methods to estimate this quantity. One natural idea would be to estimate each
function in (9) separately, plug them into that same expression, and take the empirical average. If we were to
use correctly specified parametric models to estimate the nuisance functions, the resulting estimate would be

1 Equation (8) is technically stronger than necessary. For example, for any x, we only need that p(my, mg|a, x) > 0 when-
ever p(my, myla’, x) > 0.
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consistent for i, and converge at n~Y/2 rates. Unfortunately, this is unlikely to occur in practice. We could
instead estimate these functions flexibly using nonparametric models; however, the subsequent estimator will
in general inherit the nonparametric rate of convergence of the slowest estimated nuisance function, a rate
generally slower than n~1/2 [16]. A different estimation strategy instead utilizes the so-called influence curve of
(9). Influence curves are important quantities related to statistical functionals that naturally suggest efficient
estimators without parametric modeling assumptions [16].

For example, ref. [14] previously showed that i, has the efficient influence curve ¢(Z; n) - ¥,,, where
the uncentered influence curve ¢(Z; n) takes the following form:

1A = a) {p(Mila, X) - p(M|a’, X)}p(M;la’, X)

sm= (Y - (M, M, X
(p( ’1) na(X) p(Mb MZ: |a) X) b ‘Ua( 1 2 ))
JI(A = a) Jl(A = (1')
) W1y (M, X) = U pppy (XD} = m{#a,Mi(Ml, X) = U papn X} .
1A =a)
+ _ﬂa/(X) (ua,Ml(MZ) X) - .ua,MlxMZ'(X) - (,ua‘er(Mz, X) - ‘ua,Ml'XMZ'(X)))
+ ya,M1><M2’(X) - tua,Ml’XMz'(X)’
and where
’] = [p(Mly MZla; X)7 p(Mlx MZla’, X), ;ua(Ml) Mz, X), ﬂ_'a(X)]_ (12)
By using ¢(Z), we can construct the so-called one-step estimator of i,,.:
IZ’I\‘Z = Pio(Z; D). 13)

This estimator involves estimating n, plugging these estimates into (11) yielding ¢(Z; 4) and taking the
empirical mean. As shown in ref. [14], the following conditions are sufficient for this estimator to yield
root-n consistent and asymptotically normal estimates.

(1) The estimates /j are obtained via sample splitting.

@ lloZ; 1) = o(Z; MIF = 0p(D).
@) (17 = nll = op(n1/%).

Condition (1) can be enforced in the estimation procedure. Condition (2) requires that the mean-squared
error of the estimated influence-function converges in probability to zero at any rate. This would require, for
example, that the propensity scores and their estimates be bounded away from zero and one, the joint
mediator probabilities p(my, my|a, x) and their estimates are bounded away from zero, and that the nuisance
estimates j are consistent at any rate for . Finally, condition (3) holds for a variety of nonparametric
estimators of n under structural assumptions on the underlying nuisance functions: for example, on their
smoothness or sparsity.

Influence function-based estimators can therefore attain n™'/> convergence rates without parametric
modeling assumptions and allowing for nonparametric estimates of the nuisance parameters. Intuitively,
the reason is that we can essentially ignore the nuisance estimation error — assuming that we estimate the
nuisance functions well enough (condition (3)). The asymptotics then follow as if we had an oracle that gave us
the fixed (but unknown) function ¢(Z; n) and we took the average [16]. This remarkable fact occurs because
the error of influence function-based estimators is a function of the product of errors in the nuisance estima-
tion. By contrast, standard methods are in general linear in the nuisance estimation. As a result, influence
function-based estimators can tolerate relatively slow rates of convergence for the nuisance estimates (e.g.
rates achieved by nonparametric methods) while still obtaining faster rates of convergence for the estimand
itself. Analogous to results shown by [8] for estimating the conditional average treatment effect (CATE), we will
next show that we can also leverage ¢(Z; n) to achieve relatively fast rates of convergence when estimating
the CIIE.
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3 Conditional effects

In contrast to the average effects ¢,,, we consider estimating the effect at a given point V = v, recalling that

X = [W, V], so that V is a subset of the covariates X. In a slight abuse of notation,” we define this estimand as
follows:

Yo (V) = E| 2 E[Y X |{p(f = milX) - p(" = mi|X)}p(M5" = molX)|V = v (14)
my,my
Under Assumptions (1)-(3), these parameters are identified in the observed data as follows:
V(W) = E| D (X, my, m){p(mulX, a) - p(mulX, a)}p(mylX, a’)|V = v (15)
my,my

A natural question is how well we can estimate these effects. Noting that
E[o(Z; mIV = v] = ¢, (v),

we can think of an “oracle” influence function-based estimator as providing a benchmark for comparison for
any other CIIE estimate:

Exlo(Z; DIV = v). (16)

Just as the “oracle” estimate of ¢, would be an empirical average of the true influence function, we can think
of (16) as a local average of the true influence function around the point V = v. As long as Assumption 3 holds,
we expect that the rate of convergence of (16) provides a valid, though possibly unachievable, lower bound for
the rate of convergence for any estimator of the CIIE. This follows from noting that the convergence rate of this
estimator is equivalent, up to constants, of replacing u,(X, m;, my) with the potential outcomes Y*™™ in the
expression for ¥,,(X), and regressing this quantity onto V. While the remaining discussion compares our
estimators against the oracle estimate, we expect that the oracle rates provide, in some settings, the best
possible (minimax optimal) rates of convergence.?

At a high level, both ideas we propose — the projection-estimator and the DR-Learner — substitute the
estimated influence function ¢(Z; ) for @(Z; ) into a regression model . A key difference between these
approaches is that the projection-estimator uses a parametric model for the regression and targets a projection
of the CIIE, while the DR-Learner instead uses a nonparametric model and targets the CIIE itself. For either
approach, we show the conditions where the corresponding oracle rates are attainable, analogous to results
derived in [8]. Importantly, the theoretic results assume that the nuisance estimates /j are estimated on an
independent sample from the regression estimate [F,. We therefore refer to this as a “second-stage” regression,
reflecting the ordering of these two procedures. We discuss both procedures more in the following sections.

3.1 Projection estimator

We first consider the case where the second-stage regression estimate [E,(-|V = v) is given by the parametric
model g(v; B), where B is a finite-dimensional parameter that minimizes some loss function. Specifically,

B = arg min E[w(X)£{yy,(X) - g(V: B3l a7

2 The conditioning in the inner expectation is more precisely written as [W, V = v] rather than X.
3 In fact this is true for the proposed projection estimator. We show later that this quantity is estimable at root-n rates in some
settings, as with the average effect. However, this statement is solely conjecture for the proposed DR-Learner.
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Importantly, we need not assume ¥,,(X) = g(V; B) for g(v; B) to represent a meaningful target of inference.
Under no assumptions about ¥,,(X), B represents a population parameter that characterizes a projection of
¥y, (X) onto g(V; B). For simplicity, we focus on the case, where g minimizes the squared-error loss (£(z) = 7%).
The weights w(X) can vary to prioritize different parts of the covariate space when defining the projection,
though in the simplest case, we can take them to be uniform. This projection, while not necessarily repre-
senting the true parameter ¥,,(v), can nevertheless represent a useful summary of this parameter. The
interpretation of parametric models as defining projections is well known, though perhaps underappreciated,
in applied statistics and is frequently used in more general settings when attempting to summarize character-
istics of unknown data-generating processes [17,18].

To estimate this projection, we assume standard regularity conditions and differentiate equation (17) with
respect to B to obtain the following moment condition:

ag(V; B)
CRra

As with the average effects, our estimation approach is again based on the influence curve of ¥ (B;P). This
yields an estimating-equation stated formally in Proposition 1.

wX){Y,,(X) - g(V; pi}| = P(B;P) = 0. (18)

Proposition 1. Under a nonparametric model, the uncentered efficient influence curve for the moment condition
Y(B*) at any fixed B is given by

og(v; B~
o . = E w00z ) - gv: ) (19
This then suggests the estimator § that satisfies:
ag(V; B . R
Py %wm(w; i) - gV Byl =0 (20)

Theorem 1 shows the conditions required to obtain root-n consistent and asymptotically normal parameter
estimates.

Theorem 1. Consider the moment condition E[¢(Z; B, n,)] = 0 evaluated at the true parameters (, n,). Now

consider the estimator f that satisfies P,[¢(Z; B, §)] = 0, where ij is estimated on an independent sample.
Assume that:
— The function class {¢(Z; B, n) : B € RP} is Donsker in 8 for any fixed n.

=~ 19Z; B, 1) = B(Z: By, ) = 0p(D).
— The map B - P[¢(Z; B, n)] is differentiable at B, uniformly in the true n, with nonsingular derivative matrix
S5 PIOZ; B, MHa=p, = M(By, n), where M(By, 1)) =P M(By, 1o)-
Then
B -B= —M‘l[an - Plo(Z; B()a ’70) + Op(Tln + Top + Top + Typ),
where
Tin = ||1,(My, M, X) = o (My, Ma, X)||[|77(X) = 7a(X))]],
By = ||d,(My, My, X) = u,(My, My, X)||[||p(My, MyJa, X) - p(My, Myla, X))|
+ [[p(Mila, X) - p(Mila, X)|| + [lp(hla’, X) - p(Mela’, X)|| + [lp(hla’, X) - p(Mila’, X)I[],
Tyn = ||171(X) = H(O|[[Ip(MAla, X) = pAla, )| + [[p(dla’, X) = pAdla’, )| + |[p(Mala’, X) = p(Mala’, X1,
Tin = llp(Mala’, X) = p(Mala’, |I[lIp(Mala, X) = p(Mila, X)|| + [lp(Mila’, X) = p(Mala’, |-

Suppose further that Ty, + Top + Tsp + Ty = op(n‘”Z). Then the proposed estimator attains the nonparametric
efficiency bound and is asymptotically normal with

(B - B) »% N(O, ME[pgTIMT). @1)
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This also implies that for any fixed value of V = v:

og(v; B)

25(v; B) )
op '

] ME[p¢TIM T 5

Ji(g(v; B) - g(v; B)) ~¢ Nlo,[

Remark 1. The expression T, + T, + Tz, + Ty, is expressed in terms of separate estimates for the marginal
probability p(Mi|a, X) and the joint probability p(M;, M;|a, X ). However, in practice, the estimate of p(M|a, X)
may come from a marginalized estimate of p(Mj, Ms|a, X); similarly, the estimates of p(Mjla’, X) and
p(Msla’, X) may come from marginalized estimates of p(Mi, Mla’, X). In this case, these estimates of the
marginal probabilities will inherit the same rate of convergence as the estimate of these joint probabilities
evaluated at the worst-case value of m, for p(M;|a, X) (and similarly for p(M|a’, X) and p(M;|a’, X)), allowing
us to simplify the second-order expressions above. Such an estimation approach is reasonable if we believe
that these functions have the same underlying complexity. On the other hand, if we believe that the marginal
probabilities are less complex than the joint probabilities, we may instead wish to estimate each marginal
probability separately.

Theorem 1 illustrates that if we can estimate the components of  (defined in (12)) quickly enough § will be
root-n consistent for f and asymptotically normal. It also implies that we can obtain pointwise confidence
intervals for g(v; §) by using any consistent estimate of the variance of (22) and standard normal quantiles.
One sufficient condition for this to hold would be that we are able to estimate all elements of n at rates of at
least 0,(n"Y/4). This is attainable by many nonparametric regression models under some conditions [19].
Alternatively, we could allow for slower rates for some nuisance components while requiring faster rates
for others. For example, we could allow that||u, - f1,]| = 0,(n"Y/6) and all other components to be estimated at
0,(n"1/3). Regardless, as we saw when reviewing estimating the average effect ¥y, in Section 2.4, these condi-
tions would imply that the regression of ¢(Z; 1) onto g(V; B) is asymptotically equivalent to the oracle
regression of ¢(Z; n) onto g(V; B). Intuitively, this is because the error induced by the nuisance estimation
is decreasing at rates faster than n™'/2, As with estimating ¥y this in turn follows because the bias of Bisa
function of the product of errors in the nuisance estimation, as shown in the statement of Theorem 1.

3.2 DR-Learner

In some applications, we may not be satisfied with a projection and may instead wish to directly estimate
¥y, (v). We propose estimating this quantity using a nonparametric second-stage regression model, which we
call a DR-Learner following [8]. Algorithm 1 provides specific details. We then analyze the DR-Learner and
derive results analogous to those found in ref. [8], giving model-free error bounds for arbitrary first-stage
estimators, which reveal that under some conditions, the DR-Learner is as efficient as an oracle estimator that
regresses ¢(Z; n) onto V directly. Our results are similar to [8]: the primary difference is that we must consider
the sums of products of errors between several more sets of nuisance functions.

Algorithm 1. Let (D{', D) denote two independent samples of n observations of Z;.

— Step 1: Nuisance training. Construct estimates of n using D{*

— Step 2: Pseudo-outcome regression. Construct the pseudo-outcomes ¢(Z; 1j) and regress it onto covariates V
in the test sample Dy, giving

P V) = Efo(Z; DIV = v}, 23)

- Step 3: Cross-fitting (optional). Repeat Steps 1 and 2, swapping the roles of D{* and D;'. Use the average of the
resulting two estimates as a final estimate of ¥, (v).
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Remark 2. In practice, when implementing either the DR-Learner or the projection estimator, one may wish to
use sample-split estimates of ¢(Z; 1j) and regress them onto V using the entire sample, rather than averaging
two separate estimates as suggested in Step 3. However, our results do not provide theoretic guarantees for this
approach.

Proposition 1 from [8] establishes general conditions where the error of a pseudo-outcome regression of f
onto V and an oracle regression of f onto V are asymptotically equivalent. This result relies on an assumption
on the “stability” of the second-stage estimator with respect to a distance measure d and the convergence in
probability of f to f with respect to d. Intuitively, estimator stability requires that the second-stage error
between the pseudo-outcome regression and the oracle estimator converges in probability to the conditional bias
of the pseudo-outcome estimates at a rate determined by root mean square error (RMSE) of the oracle estimator.*
Theorem 2 of ref. [8] shows the conditions for the oracle efficiency of a DR-Learner for the CATE under a direct
application of Proposition 1 from ref. [8], where f is the uncentered influence function for the average treatment
effect (ATE). We use the same approach for the CIIE to obtain analogous results, formalized in Corollary 1.

Corollary 1. Define b'(x) = E{¢(Z) - ¢(Z)|D]", X = x}; in other words, b’ (x) is the conditional bias of the esti-
mated influence function at X = x conditional on the training data. Assume
(1) E, is stable with respect to distance metric d,
2) d(9,¢) 0.
Let § (V) denote an oracle estimator from a regression of the true efficient influence function onto V and

K;(v) denote the oracle RMSE, [E[{l/?Ml(v) = Py, (WI?|M2. Then

~d ~ A *
D (V) = By (v) = EfD’ GOV = v} + 0 (K (). (24)
We provide an expression for 13'(x) in Section B of the supplemental materials. Moreover, 13*(x) < IS(X), where:
B(X) = Tip(x) + Tn(x) + Bp(x) + Tyn(x) (25)

and

Tin(X) = (7a(X) = () 2. (Uy(my, My, X) = fi,(1my, M3, X))

Tn(x) = z (ug(my, my, x) = A,(my, my, X))(p(my, myla, x) — p(my, my|a, x)

+ (p(myla, x) - p(myla, x)) + (p(myla’, x) - p(myla’, x)) + (p(myla’, x) - p(my|a’, x)))
Tn(x) = (a(x) — Ta(X))(p(myla, x) - p(myla, x)) + (p(myla’, x) - p(my|a’, x)) + (p(Myla’, x) - p(mgla’, X))
T(X) = Y (p(mla’, x) - p(myla’, X))((p(myla, x) = pmyla, X)) + p(myla’, x) - p(myla’, x)).

m,mp

Therefore, the DR-Learner is oracle efficient if E{b(X)|V = v} = op(K;(v)).

Remark 3. As with the second-order expression in Theorem 1, the expression for h(x) depends on products of
errors with the marginal mediator probabilities; however, these estimates, as described in Algorithm 1, come
from estimates of the joint mediator probabilities. The error in the marginal probabilities is therefore of the
same order as the sums of the errors in the joint probabilities across the relevant mediator values. As noted in
Remark 1, we may wish to estimate the marginal mediator probabilities separately if we believe that the
underlying complexity of the marginal probabilities is simpler than the joint mediator probabilities, though
such a situation may seem unlikely to occur in practice.

One interesting implication of Corollary 1 is that the rate of convergence is a function of the cardinality of
the joint mediator values k. We can eliminate this dependence by invoking the following assumption:

4 We provide the formal definition of stability in Section A of the supplemental materials.
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Assumption 4. The smoothed product of errors between mediator probabilities and/or the outcome model are
of the same order for any values of (m;, my). For example, for any (my, m{) and (m,, my),

E{(p(mila, X) = plmala, X))(p(mola’, X) = p(myla’, X))V = v} = 0,(ay)
and

Ed(p(mila, X) = p(m{la, X))(p(ms|a’, X) = p(mz|a’, X))V = v} = op(an).

Assumption 4 would be reasonable if we do not believe the functional form of the mediator probabilities
or outcome models varies in underlying complexity across different values of the mediators.

We next consider the form of the second-stage regression [ ,. Proposition 2 from [8] implies that when [,
is a linear smoother of the form >,w;(v; V")f(Z;) and 2;|wi(v; V™)| = Op(ay), and b(x) can be expressed in the
form of by(x)by(x), then

EfBCOIV = v} = Op(@nl|Billw,2l1B2llw,2),

where

1/2
Cwi(v; VI

|2
> Iwi(v; V)] If(Zo

flhw,z = lZ

Corollary 2 applies this result to Corollary 1.

Corollary 2. Assume the conditions of Corollary 1 and that E, is a minimax optimal linear smoother with
Yiwi(v; V| = Op(1). Notice that

bx) = 2 B(0B(x0),
J
where j indexes all of the error products in (25). Therefore,

E D" XOIV = v} s ) bn(X)bip(X)|V = vi.

J

By Proposition 2 of [8], we then obtain that

EBCOIV = v} = Y Op(l1Bjllw 2l Bj2llw2) = m;taxop(||l3ﬂ||w,z||sz||w,z).
j

To make Corollary 2 concrete, consider the case, where K,(v) = n™?. This result implies that when the
second-stage regression estimator is a linear smoother, the DR-learner will achieve the corresponding oracle
rate when, for example, all of nuisance errors are at least 0,(n"%2) in the |-||,y,» norm. More generally, the DR-
Learner is oracle efficient as long as the highest order error product in (25) is op(n™?) in this same norm.
Whether these rates are actually attainable in a given application depends on the underlying complexity of the
nuisance functions.

4 Simulations

We verify that the expected performance of these estimation strategies corresponds with the theory outlined
above using a simulation study. First, we outline the data-generating process; second, we demonstrate the
performance of our proposed approaches on samples of size n = 1,000 when estimating the nuisance func-
tions using SuperLearner [20]; finally, we compare the convergence rates of the DR-Learner versus a plugin
approach while controlling the convergence rates of the nuisance estimation.
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Figure 2: Simulation: selected nuisance functions. Nuisance function specifications for simulation study.

4.1 Setup

To illustrate our proposed approach, we conduct a simulation study with a one-dimensional covariate X (so
that V = X). Figure 2 illustrates the simulated nuisance functions as a function of X. One aspect of this setup is
that the outcome models and the propensity score models have complexity unlikely to be fully captured by
simple generalized linear models, motivating our use of nonparametric methods. A second aspect is that the
implied function ¥, (X), illustrated in Figure 3, is less complex than these functions. We provide all details
about the data-generating processes for our simulations, including the functions illustrated in Figure 2, in
Section C of the supplemental materials. All code for the simulation studies is available online at https://github.
com/mrubinst757/ciie.

Figure 3 also illustrates the implied curves of ¥, (X) and ¥(X), as well as the curves for the proportion
mediated via each mediator (e.g., ¥,,(X)/¢(X)). The effects are entirely mediated via M; and M,,° and the
proportion mediated via M; increases with X.

4.2 Estimation: SuperLearner

We evaluate the performance of each estimator across 1,000 simulations on test samples of size 1000. To
estimate the nuisance parameters we use SuperLearner, using both the “SL.glm” and “SL.ranger” libraries.®
These model our nuisance functions as a weighted combination of predictions from logistic regression and
random forests models. After estimating the nuisance parameters using samples of size 1,000, we use a
separate test sample to estimate the DR-Learner and projection estimators. We then predict the points at
X=0and X = 2.

While we expect both estimates to be consistent, the mean square error at each point should differ by
constants: this is due to differing inverse weights in the expression for ¢(Z). Figure 1 in Section C of the
supplemental materials illustrates the maximum possible inverse weight as a function of X: at X = 0, the
maximum weight is lowest, while at X = 2, the maximum weight is highest. These two points arguably reflect

5 In addition, the covariant effects due to the dependence of the mediators on each other is close to zero throughout.
6 In practice, it is desirable to use as many libraries as possible when running SuperLearner; however, for the sake of computation
time, we only use these two libraries for our simulation study.
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Figure 3: Estimands. Total effects, indirect effects, and proportion mediated as a function of X.

Table 1: Projection estimators: simulation performance, n = 1,000 (averaged over 1,000 simulations)

Point Strategy Projection Truth Bias Std RMSE Coverage
0 Plugin Linear 0.07 0.00 0.03 0.03 3.10

2 Plugin Linear 0.11 0.04 0.02 0.04 1.00

0 Plugin Quadratic 0.07 0.00 0.03 0.03 3.10

2 Plugin Quadratic 0N 0.04 0.02 0.05 0.80

0 Efficient Linear 0.07 0.00 0.06 0.06 95.50

2 Efficient Linear 0.11 0.00 0.08 0.08 93.80

0 Efficient Quadratic 0.07 0.00 0.06 0.06 95.10

2 Efficient Quadratic 0.11 0.00 0.10 0.10 93.50

the easiest and hardest parts of the covariate space to estimate, with the point where X = 2 reflecting a “worst-
case scenario” in our simulation. As long as our assumptions hold, these weights do not affect the asymptotic
results. However, they can affect their performance in finite samples, with higher variance estimates where
the inverse weights are large. In addition, confidence intervals may have undercoverage, since their validity is
also based on asymptotic approximations. Consequently, we expect the simulations to show better results
when estimating the CIIE at X = 0 compared to X = 2, also with possibly better coverage in these regions. More
generally, this comparison highlights a key limitation of our proposed approach: in an actual sample, it may be
challenging to estimate conditional effects where the inverse weights are extreme.

Table 1 considers the projection estimates and displays the bias, RMSE, and confidence interval coverage
associated with our proposed approach (“Efficient”) and with a plugin approach that regresses plugin esti-
mates of ¢, (x) on the same model. Specifically, the plugin estimates involve estimating each component in the
expression for ¢,,(x) and regressing these estimates, rather than estimates of ¢(Z; n), onto g(X; B). We
predict the projection at the points X € {0, 2} using either a linear or quadratic projection. While the plugin
estimator has lower RMSE, the confidence interval coverage is close to zero. This reflects that the bias
associated with the nuisance estimation does not converge quickly enough to zero, and we therefore cannot
ignore the estimation error in the second-stage regression when conducting inference. By contrast, we obtain
close to nominal coverage rates for the efficient estimator. Finally, as expected, the point X = 0 is easier to
estimate than X = 2, reflected by the fact that the RMSE is higher for estimates at X = 2 than X = 0.
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Table 2: Nonparametric estimators: simulation performance, n = 1,000 (averaged over 1,000 simulations)

Point Strategy Truth Bias Std RMSE Coverage
0 DR-Learner 0.07 0.00 0.08 0.08 94.3

0 Plugin 0.07 0.00 0.03 0.03 —

2 DR-Learner 0.Mm 0.00 0.1 0Mm 92.6

2 Plugin 0.1 0.04 0.03 0.05 —

Table 2 displays analogous results when using the DR-Learner to target the true CIIE rather than its
projection.” We use smoothing splines with the default tuning parameters for the second-stage regression,®
and use the variance estimates from the smoothing matrix and assume that the distribution of the estimates is
asymptotically normal to generate confidence intervals. Table 2 shows that this procedure yields approxi-
mately nominal coverage rates.

As with the projection approach, the corresponding plugin approach has lower RMSE than the DR-
Learner. This is likely a function of the inverse-probability weights associated with the DR-Learner, which
could cause this result for a fixed sample size.

4.3 Estimation: convergence rates

We conclude by examining the convergence rates of the DR-Learner versus a plugin estimator by specifying
the convergence rates of the nuisance estimation. Roughly, we add N(C/n% C/n??) to the true values of the
nuisance parameters on the logistic scale to simulate estimates. By using these results, we construct “esti-
mated” influence functions and regress them onto X using smoothing splines. In contrast to the simulation
study above, we use these simulations to estimate the integrated mean square error across the entire domain
of X. Figure 4 displays the results.

The y-axis displays the RMSE of each estimator scaled by /n, while the x-axis displays the sample sizes.
The top left panel considers the case where we set @ = 0.5 for all nuisance parameters. The other panels
instead set a = 0.1 for the function indicated in the panel title. As expected, when all nuisance functions are
estimated at the same rate, the plugin estimator converges at the same rate as the DR-Learner. However, once
one of the nuisance functions is estimated slowly, the plugin estimator converges more slowly (illustrated by
the diverging green lines), while the DR-Learner appears to attain the oracle rates of convergence in all
settings. We again observe that despite the slower convergence rates, the plugin estimator has lower RMSE
than either the DR-Learner or oracle estimators in some settings.

In Section C of the supplemental materials, we present additional results where we estimate the CIIE as a
proportion of the corresponding CATE. We outline two general approaches to this problem: first, where we
estimate the CIIE and the CATE and take the ratio of these estimates; second, where we derive the influence
function for the mean of the ratio and regress this onto V (this is similar to ref. [6], who consider estimating a
conditional risk-ratio). Our simulations show that this quantity is quite difficult to estimate well due to the high
variance of the estimators, although we are able to construct confidence intervals with approximately nominal
coverage rates using either approach.

7 Because the implied curves are relatively easy to approximate using a linear or quadratic model, we see that the “Truth” column
in Table 2 is identical to the “Truth” column in Table 1. In fact, these are only identical rounded to the second decimal place, but this
illustrates that the projections are good approximations to the true quantities in our simulation.

8 The tuning parameters are chosen by default using generalized cross-validation. We technically should account for postselection
inference; however, this does not seem to make a difference in practice in our simulations.
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Figure 4: Convergence of DR-Learner versus plugin and oracle estimators. Scaled RMSE of each estimation strategy as a function of
sample size. “Slow” nuisance function is estimated O,(n'/1°) rates, remaining at 0,(n'/?) rates.

5 Sensitivity analysis

We next consider estimating ¥,,(v) when the assumption that the potential outcomes Y%™"™ are independent
of the mediators given the covariates and that A = a does not hold. This might occur, for example, if there
were a posttreatment confounder L that occurs prior to M but after A; or, a pre-treatment confounder U that
affects the Y-M relationship but not the A-M or A-Y relationships. We first outline a general sensitivity
framework to generate bounds on the conditional or average effects while specifying the degree of these
types of violations, where our approach builds from ref. [21]. We extend the projection estimator and DR-
Learner to estimate bounds on the conditional effects, though our proposed method naturally also suggests
influence function based estimators of the bounds on the average effects. These analyses can help an analyst
assess how much inferences may change given a specified degree of confounding. We first briefly introduce
additional assumptions and notation to ease exposition.

5.1 Setup and notation

First, we assume for simplicity that V = X; that is, that the conditioning set is identical to the observed
confounders, so that our target estimand is ¥, (x). Second, to construct a bound for ,, (x), it will be helpful

to write ¥, (X) = ¥y ,(X) = ¥y, (X), where:

Yr )= 2 E[Y™Ma, x][p(mula, x)]p(mala’, x)

my,my

Vppe )= 2 E[Y™™|a, x][p(mila’, x)]p(msla’, X).

my,my
Third, for any (m{, my, my, my), we let
E[Y™™lmy, mj, a,x] = 5, . (m{, m3, X).
Assuming that Y-M ignorability holds when it does not, we define the biased target of our estimator of i, (x):

D300 = U 00 = P (W) = 3 e (my, my, X)[p(myla, x) = p(myla’, x)]p(mola’, X).

m,mp
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Finally, to reduce notation, we let (-) indicate the arguments (my, my, x).
While we focus the remaining discussion on the case where V = X, all of these results also hold at a point
V = v by averaging the relevant quantities over the distribution p(W|V = v), recalling that X = [V, W].

5.2 Sensitivity framework

The bias 1, (X) = ¥,,(x) occurs because for any (my, my, x), in general E[Y™™|a, x] # u,(-). We first consider
this bias of the outcome regression. Proposition 2 shows that we can bound this bias as a function of u,(-) and a
sensitivity parameter 7. We consider a general framework where the meaning of 7 changes based on the
chosen sensitivity analysis; however, we describe the interpretation of this parameter under each assumption
below.

Proposition 2. Assume that we know some functions b(-;7) and b,(-; T) parameterized by T such that for every
(m17 my, X):

bu(; gy T) 2 gy o (M # My, My # Mg, X) = 1) 2 Bi(5 g, T)
This implies the following bounds:
bul*; wy, Tl = p(mu, myfa, x)] 2 E[Y™™a, x| = p,() 2 bil5 p,, TI[1 = p(my, myla, x)].

Different assumptions on the selection process can motivate different functions b; and b,. For example, let
T(my, my, x) € [0, 1]. Consider the following three assumptions for any (m;{ # m;) and (m; # my):

TC) 2 gy, (M4 Mg, X) = 1)1, (26)
() + O = 7O 2 gy (M, M3, X) 2 (1= Tt (), @7
@A = 7)) 2 P, (e M3, X) () 2 (1 = 7()). (28)

Under Assumption 26, 7 bounds the absolute value of the difference between the regression functions
ya‘mlmz(ml’ ,my, x) and u,(-) for each level of (m;, my, x). Under assumption 28, 7 parameterizes deviations of

these same regression functions on the risk-ratio scale: below by 1 - 7, and above by ﬁ.g Finally, the meaning
of 7 changes for the upper and lower bound under assumption 27. First, the lower bound is equivalent to the
lower bound in assumption 28, and 7 retains an equivalent meaning in this case. However, the upper bound
instead specifies that (1 - ,ua‘mlmz(m{, my, x))/(1 - U,(-)) = (1 - 7(-)). Under this assumption, 7 parameterizes
the risk ratio of the regression function when the event ¥ did not occur.'® We discuss the trade offs between
these assumptions in greater detail below.

While these assumptions provide bounds on the true outcome model, they imply, but are not equivalent
to, bounds on ¥, (x). Proposition 3 provides a generic form of these bounds.

Proposition 3. Consider assumptions (26)—(28) and a sensitivity parameter t(x) that is valid for any value of
(my, my) at the point X = x. All[b;, b,] implied by these assumptions can be expressed as follows:

(b1, bul = [(cto () + 8)fy (700), (Cubte () + tf, (T()]

for constants (c;, ¢y, t;, ty) € {0, 1}* and functions f, and f,. At a point X = x, this yields the following bounds
on Py, (x):

9 Often a sensitivity parameter I', which equals i, is used instead in this framework. We choose 7 here to maintain consistency
with the other two possible approaches.
10 This bound can be used when Y is binary, but more generally when Y is bounded and rescaled to fall within zero and one.
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U6 ) =[P, + Py LOOf, (Deu = Yy o COf (DI + tufi(T) = t1f(T)
- f,(©) Y [eutta(ma, my, X) + t]p(my, myla, X)p(myla, x)p(myla’, x)
my,my (29)

i

+ (D) Y lap(my, my, x) + tlp(my, myla, X)p(myla’, x)p(myla’, x)
my,my

UG T) = [U,00 + By L0Of (Dt = Py o COF (Dheu + 6f(T) = tufi(T)

- fi(T) Y [ewg(my, my, x) + tlp(my, myla, x)p(myla, x)p(mla’, x)
my,my (30)

+ £,(D) Y [ty (my, my, x) + t,]p(my, mola, X)p(myla’, x)p(mo|a’, x) .

nmy,my

Remark 4. If we desired bounds at the point V = v, we could choose a 7 valid for any realization of W at the
point V = v and average these expressions over the conditional distribution of W given V = v. If we desired
bounds on the average effect, we could choose a 7 valid for all (x, m;, m;) and marginalize the aforementioned
expressions over the entire covariate distribution.

The assumptions outlined in equations (26)—(28) yield different bounds. While (26) is perhaps most intui-
tive, for a given 7, the widths of the implied bounds on ¢,, in equations (29) and (30) are twice as large as those
from (27) and are thus perhaps less useful in practice than the others. Comparing the assumptions in equations
(27) and (28) is difficult: for a fixed 7, the scale of the confounding for the upper bounds of #t;mlmz in
these equations is simply different. One benefit of (28) is that it only requires reasoning about the risk
ratio .. (m{, my, X)/i,(-). By contrast, (27) requires additional reasoning about the risk ratio bias in
the estimates that the event Y did not occur, demanding more thought from the user. On the other hand,
when using a binary outcome, equation (28) may result in an upper bound on ya'mlmz greater than one, while
equation (27), and the resulting bound on y,, (x), will always respect the parameter space. Finally, for a fixed
value of 7, it is unclear whether the bounds yielded by equations (27) or (28) will be wider. However, for fixed
(my, my, x), the upper bound on ya‘mlmz in (28) will always be larger than the bounds in (27) when u,(-) = 0.5.
Heuristically, we may therefore expect the bounds yielded by (28) to be narrower than those from (27) when u,
tends to be small across values of (my, my, x). As a final point, the bound given by (27) is only useful for binary
outcomes, or bounded outcomes rescaled to fall within 0 and 1, so that the sensitivity analysis given by (28) is
more general.

Finally, we can extend this general approach in several ways. For example, Assumptions (26)—(28) yield
similar bounds for ¥, , Yy, and Yy, by averaging over the relevant distributions. We discuss these extensions
in Section E of the supplemental materials. We could also specify 7 as a function that varies across (m;y, my, x)
to arrive at a slightly different expression for the bounds. However, specifying this function would be challen-
ging in practice.

5.3 Illustration

Figure 5 uses simulated data to illustrate the estimand, the biased target, and the bounds as a function of x
choosing 7 = 0.1 under (27) and 7 = 0.15 under (28). These parameters reflect the true maximal values of 7
guaranteed to hold under these assumptions in our simulation. We obtain biased estimates for our outcome
model based on (27) and a parameter 7 that varies between 0.1 * {1/3, 2/3, 1} depending on the value of x. We
describe the selection process in greater detail in Section C.4 of the supplemental materials. The upper and
lower bounds are depicted in purple and red, while the orange and green lines reflect lﬁMi(X) and ¥, (x),
respectively. As x increases, the bounds given by (28) are at first narrower and eventually wider than the
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bounds given by (27). This is generally expected as the values of u,(my, my, x) tend to increase with x (see
Figure 3 in Section C of the supplemental materials). These bounds are also quite conservative: assuming (27),
the bounds are only guaranteed to hold for all x for 7 = 0.1. However, even 7 = 0.02 provides valid upper and
lower bounds across the entire domain in our simulation. Of course, the gap between the value of 7 guaranteed
to hold and the minimum 7 that actually does may be smaller for other data distributions; however, it does
suggest that these bounds may be conservative in practice.

5.4 Alternative approach

Tchetgen and Shpitser [22] and VanderWeele and Chiba [23] considered similar approaches for bounds on
natural effects under the assumption that M—A and Y-A ignorability holds but that Y-M ignorability does not.
Both proposals assume a known selection function that holds with equality rather than inequality. We could
modify our proposed approach in a similar spirit. For example, we could assume that for all (m{ # my),
(mg # my):

g, (5 5, X) = (1, g, X) = f(D)[cptg(my, my, X) + t].
We could then recover y,,(x) (and any averages of it) exactly as follows:

Y3, 00 = 0 OML + f (D] = € Y wy(my, my, X)p(my, myla, x)[ p(myla, x) = p(myla’, x)|p(myla’, X)

my,my
= tf (1) Y p(my, mola, )[p(mula, x) = p(mla’, X)|p(mala’, ).
my,my
While such an assumption would allow us to point identify §,,(x), the concept requires knowledge about a
selection function that we are unlikely to have. Despite the conservative inferences, we therefore prefer our
proposed approach.

5.5 Estimation

We extend all of the aforementioned methods to estimate the bounds on ¢, (v). Theorem 3 in Section A.2 of the

supplemental materials provides the expressions for the influence functions of the bounds on the average
effect ;. Equipped with this expression, we can again use a projection estimator or the DR-Learner to
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Figure 5: Bounds on CIIE. Target estimand in green, biased target of inference in orange. Purple and red lines reflect upper and lower
bounds that differ in terms of 7 specification.
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estimate the bounds." Intuitively, these approaches share the property that the upper bound on the conver-
gence rates in the estimation is governed by the products of errors in the nuisance estimation. Corollaries 3
and 4 in Section A.2 of the supplemental materials give formal statements of these results using the lower
bound as an example, although we can derive an upper bound analogously. We also provide expressions for
the influence function for the bounds of ¥, Yy, and Py, in Section E of the supplemental materials and
conjecture that results analogous to Corollaries 3 and 4 can be derived for these estimands. Finally, for a fixed
7, Theorem 4 in Section A.2 of the supplemental materials establishes the conditions where the one-step
estimator for the bounds on the average effects is root-n consistent and asymptotically normal. We illustrate
this estimation procedure in the application in Section 6.

6 Application

To demonstrate these methods, we revisit the data and application considered in [13], who examined the effect
of COVID-19 vaccinations on depression, social isolation, and worries about health during February 2021 using
the CTIS. The Delphi group at Carnegie Mellon University conducted the CTIS from April 2020 through June
2022 in collaboration with the Facebook Data for Good group [24]. By using these data, Rubinstein et al. [13]
posit a model that COVID-19 vaccinations affect depression via a direct path, social isolation, and worries about
health. By using the decomposition from ref. [3], they found that pathways via social isolation were more
important than pathways via worries about health in explaining the effect of COVID-19 vaccinations on
depression. We refer to that article for details on the data and the limitations of this analysis. While this
study examined effect heterogeneity, the authors only examined heterogeneity within discrete subgroups and
primarily focused on the outcomes analysis. Moreover, the authors did not find substantial effect heteroge-
neity with respect to the mediation analysis among the specified subgroups.

We examine the decomposition of the total effect within the following subset of CTIS respondents:
employed, non-Hispanic, White respondents aged 25-54 years, with at least a college degree, no chronic health
conditions, who work outside the home, and who had previously received an influenza vaccination. This
included a total of 13,764 individuals. Table 3 displays the average effect estimates using influence function-
based estimators, where the nuisance parameters were estimated using 20 stacked XGBoost models with
different hyperparameter settings on the full dataset. While restricted to a much smaller subgroup, these
results are qualitatively comparable to the average estimates in ref. [13].

We next compare whether the interventional effects differed among those who live in counties where
Trump led Biden by 50 percentage points in the 2020 election (“Trump counties”), and those where Biden led
Trump by 50 percentage points (“Biden counties”). By limiting our sample to the subgroup defined earlier,
effect heterogeneity across the Biden vote share may proxy for how social factors may moderate the mediated
effects.”” Specifically, we hypothesize that these relatively educated, vaccine-accepting, and health conscious
respondents who live in Trump-voting counties may have lower total effects than those who live in Biden areas
due to the added stress of living in areas that generally took relatively fewer COVID precautions. We similarly
hypothesize that the effects via worries about health might be lower in Trump-voting counties than Biden-
voting counties for this same reason. Figure 6 displays the results using both the DR-Learner and projection
estimators at these two points, where we use a simple linear model for the projection."” Figure 4 in Section D of
the supplemental materials display the entire estimated curves.

11 Moreover, the choice of 7 need only be valid across the domain of x where the weights w(v; V") in the second-stage regression
are nonzero.

12 Since we are unable to fully control for socio-demographic variables, this variable may also pick up on these moderating
influence of these omitted factors that vary with the Biden vote share.

13 While we use sample-splitting to estimate / and construct influence function value estimates, we run the second-stage regres-
sion on the entire sample instead of averaging two separate estimates.
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Table 3: Average effect estimates on CTIS subset in February 2021, N = 13,764

Estimand Estimate Lower 95% CI Upper 95% CI
Total effect 4.61 6.10 312
IIE - M1 1.86 245 1.28
IIE - M2 0.46 0.71 0.20
IIE - Cov 0.08 0.15 0.30
IDE 2.37 3.81 0.92

The total effect estimates are comparable in the Trump counties relative to Biden counties; however, the
projection estimates are slightly lower in Trump relative to Biden counties, while the DR-Learner suggests that
these effects may be slightly higher." On the other hand, the effects via worries about health and social
isolation are nearly identical for both the projection-estimator and DR-Learner. As shown in Figure 4 in
Section D of the supplemental materials, the chosen smoothing parameter ends up essentially fitting a linear
model for all functions other than the total effect. Regardless, the point estimates are consistent with our
expectations, where effects via worries about health are lower in Trump counties relative to Biden counties.
Meanwhile, effects via isolation appear slightly larger in Trump counties relative to Biden counties. However,
all observed differences in these effects are small relative to the uncertainty estimates, and we are unable to
draw statistically significant conclusions.

6.1 Sensitivity analysis

We conduct a sensitivity analysis for ¢, both on average and as a function of Biden’s vote share. Figure 7
displays the results assuming (28) and where the conditional bounds are estimated using the DR-Learner.
We find that that our average effect estimates are robust to a 7 as large as 0.05, where 7 parameterizes the
deviations of the unobserved counterfactual regression function to the observed regression function on the
risk ratio scale (equation (28)). In other words, if this ratio were less than 0.95 (1 — 0.05), or greater than 1.05

(ﬁ) for any value of (x, my, my), our bounds would include a null effect. Our conditional effect estimates are
less robust, in part due to the greater uncertainty estimates. For example, our estimates for Trump counties is
robust only up to 7 of 0.01 and for Biden counties is robust to 7 of 0.03.

As a point of comparison, if we assumed that no unmeasured confounding held conditional on X, but we
failed to control for any covariates, across all values of (m;, m,), we would calculate a maximal 7 = 0.95. To be

precise, we estimate that:

1 S [E[lemzlA =a,M; +my, M, # mz]
1-095 [E[lemzlA =a,M; =my, M, = Mz]
_E[E[Y|A = a, My = my, M, = my, X]]

= > (1 - 0.95),
E[Y]|A = a, My = my, My = M) ( )

where the equality holds via assuming no unmeasured confounding conditional on X and consistency.
Therefore, a set of unmeasured confounders with comparable association with the potential outcome regres-
sion would easily explain away our estimated effects, as we find that we would be unable to rule out a null
effect at 7 = 0.05. In other words, our significant effect would disappear if there were some unmeasured
confounder U that were at least approximately 5% (0.05 / 0.95) as associative with the outcome as our entire
observed covariate set. However, this comparison might be best thought of as a “worst-case scenario,” as we

14 The uncertainty estimates for the proportion mediated are obtained via the delta method, and the DR-Learner uncertainty
estimates are only valid assuming positive dependence between the errors in the models. The uncertainty estimates for the DR-
Learner also do not account for postselection inference and are therefore likely to be anti-conservative.
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Figure 6: Application results. Conditional total, indirect, and direct effects in Biden (Pct Dem Lead = 50) versus Trump (Pct Dem Lead = 50)
counties.
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Figure 7: Bounds for application. Bounds for average and conditional interventional indirect effects via social isolation as a function of 7.

estimate 7 using all measured confounders and our covariate set is quite rich. Interesting future work would
be to estimate different values of 7 under different covariate subsets to obtain possibly less conservative
ranges of 7. Sensitivity results for the remaining parameters are available in Section D of the supplemental
materials.

7 Discussion

We propose two methods for estimating conditional average interventional indirect effects: a semiparametric
projection-based approach and a fully nonparametric approach. These procedures are conceptually simple:
regress an estimate of the uncentered influence function for the average parameter onto the desired covari-
ates. The projection-based estimator uses a parametric regression model and therefore targets a projection of
the CIIE, while the DR-Learner uses a fully nonparametric model for this regression, and therefore targets the
CIIE itself. Our primary contribution is to establish the conditions where the convergence rates of these
estimators are equivalent to that of an oracle regression of the true influence function onto these same models.
As with estimating the CATE, the error of these estimators is a function of the product of errors in the nuisance
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estimation. However, unlike the CATE, we must consider the sums of several products of nuisance functions,
which is in general a function of the cardinality of the joint mediators. While our discussion focused primarily
on estimating the effect via M, this approach can be extended to estimate other interventional effects,
mediated effects, and likely a broad class of causal estimands.

As a second contribution, we propose a sensitivity analysis for the conditional effects that allows for
mediator-outcome confounding. While the resulting bounds may be quite wide in practice, they make only
weak assumptions on the underlying confounding mechanisms. Moreover, if one is willing to make stronger
assumptions on the selection mechanism, more narrow bounds can be obtained using a slight variant of our
approach. We propose a general approach to estimating these bounds using the projection estimators or DR-
Learner, where our results are again not tied to any particular estimation method. Our methods also easily
extend to estimating bounds on the average effects, allowing for root-n consistent and asymptotically normal
estimates under some standard conditions.

Our proposed methods have several limitations: first, we only consider two discrete mediators and a
binary treatment. However, we could broaden this general approach for more complex settings. For example,
we could likely allow for several mediators by regressing the corresponding influence functions derived by
[14] onto V. Similarly, we could likely extend our results to allow for continuous mediators. This would require
additional assumptions, including, for example, the boundedness of the joint mediator density. A complete
treatment of this topic would be an interesting area for future research. On the other hand, allowing for a
continuous treatment would be a more challenging problem as the causal estimands themselves would have to
be redefined, and an influence-function for the average effect does not exist. A second limitation of our
proposed method is that our sensitivity analysis provides bounds that may be conservative. This is in part
a function of the fact that the methods we considered are all with respect to worst-case scenarios that may
occur infrequently in practice. A third limitation is that we do not study any number of other possible
nonparametric estimation methods, such as an extension of the R-Learner proposed by ref. [25]. Finally, we
do not explore the minimax optimal rates for CIIE estimation or propose estimators that might achieve these
rates. Valuable future work could explore any of these questions.
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