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Abstract: When a binary treatment D is possibly endogenous, a binary instrument § is often used to identify
the “effect on compliers.” If covariates X affect both D and an outcome Y, X should be controlled to identify the
“X-conditional complier effect.” However, its nonparametric estimation leads to the well-known dimension
problem. To avoid this problem while capturing the effect heterogeneity, we identify the complier effect
heterogeneous with respect to only the one-dimensional “instrument score” E(S|X) for non-randomized &.
This effect heterogeneity is minimal, in the sense that any other “balancing score” is finer than the instrument
score. We establish two critical “reduced-form models” that are linear in D or &, even though no parametric
assumption is imposed. The models hold for any form of Y (continuous, binary, count, ...). The desired effect is
then estimated using either single index model estimators or an instrumental variable estimator after
applying a power approximation to the effect. Simulation and empirical studies are performed to illustrate
the proposed approaches.
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1 Introduction

A typical treatment effect analysis [1-6] involves a binary treatment D, an outcome Y, and covariates X. If the
potential versions of Y for D = 0,1 are denoted as (Y°, Y1), we can typically find E(Y! - ¥°) or E(Y! - Y%|X)
when D is exogenous. However, the identification of E(Y! - Y?) or E(Y! - YX) is difficult when D is endo-
genous. Suppose a binary instrument variable (IV) § is available for D, which meets some conditions including
§ U (Y° YH|X, with || for independence. Denoting the potential treatments of D for § = 0,1 as (D%, DY), let the
compliers (CP) be those with (D° = 0, D" = 1) [7,8]. For endogenous D, we can identify E(Y! - Y°CP) or
E(Y! - YYCP, X). Note that D{=D°? + (D* - D%&} = § holds for CP.

The instrumental variable estimator (IVE) for Y on D with § as the IV can estimate E(Y! - Y°|CP, X = x)
for a discrete X using only the subpopulation X = x. However, for a high-dimensional X, this subsample
approach runs into the well-known dimension problem as in Frélich [9] who estimated E(Y! - Y?|CP, X)
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nonparametrically. To avoid this problem, Frolich [9] considered conditioning on “instrument score (IS),” but
did not pursue it owing to an efficiency concern. Abadie [10] parametrized a local average response function
(and the IS), and Tan [11] parametrized E(Y|S, X) or E(6|X). Ogburn et al. [12] estimated E(Y! - Y°|CP, X) for
some X € X. Estimators based on a parametrization for Y, as in the work of Ogburn et al. [12], are valid only
for certain types of Y (e.g., cardinal Y).

Treatment effect heterogeneity is an important problem that has been addressed by several researchers
such as Imai and Ratkovic [13] and Kunzel et al. [14]. Athey and Imbens [15] noted the following three
problems: (i) estimating heterogeneous effects, (ii) finding an optimal policy allocating subjects to the treat-
ment or control based on X (e.g., [16,17]), and (iii) low dimensionally representing the effect heterogeneity as in
Athey and Imbens [18]. We address (iii) in this article by representing the effect heterogeneity in a unidimen-
sional manner.

We find the X-heterogeneous effect to recommend D to those who would benefit from D. Consider a fat (V)
reducing drug D. We can search for heterogeneous effects for obese people; however, obesity has many
dimensions. Hence, for simplicity, we often make recommendations based on only the body mass index
(BMI), e.g., “take the drug if BMI = 25.” However, since E(Y' - Y°|BMI) is an average, E(Y' - Y°/BMI, age)
may take considerably different values, leading to different recommendations depending on (BMI, age). We
may further consider (BMI, age, gender), and so on. There exists no limit to augmenting the conditioning set for
a maximal heterogeneity. Instead, we seek a minimal heterogeneity representation.

A potential candidate for the one-dimensional heterogeneity function of X is the propensity score (PS)
E(D|X) when D is exogenous. However, the PS is inappropriate if D is endogenous. Instead, if a binary IV § is
available for D, then the IS Ay = E(6]X) can be used. Since IS is of no use when § is randomized, we focus on
non-randomized IV § and E(Y! - Y°|CP, A) in this article. In a related study, Choi et al. [19] addressed the
randomized IV case by using the “control PS” E(D|§ = 0, X) as a dimension-reducing device, whereas we use
E(D|CP, X) = Ay; this equality is proven below.

The main motivation to condition on Ay among all functions of X is that Ay summarizes the information in
X for the relationship between § and (D°, DY, Y9, Y?) in the sense that

§ 1] @0, pY, o, YHix = § || (D% D, YO, YDAy,

which is proven later. In other words, Ay is a “sufficient statistic” for the parameter capturing the relationship
between § and (D°, DY, YO, Y1), Taking § as the underlying treatment, as in this study, is well rooted in the
literature, particularly in the ratio form “Wald estimator.”

Another attractive property of Ay is that it is a “balancing score” (i.e., § LI X|Ay). If wy is also a balancing
score (§ L X|wy), then wy should be finer than Ay, as Ay = f(wy) for a function f. In this sense, Ay minimally
captures the effect heterogeneity. If there is no problem accepting PS as a minimal dimension-reducing device
because PS is the coarsest balancing score with D || X|PS [20] for exogenous D, then there should be no
problem accepting IS with § || X|IS for endogenous D.

To see how informative Ay is relative to X, note that E(Y! - Y9|CP, Ay) being a non-constant function of Ay
indicates at least the presence of effect heterogeneity. Furthermore, knowing Ay is as good as knowing X for CP
in the sense E(D|CP, X) = IS:

E(D|CP, X) = E(8|CP,X) = E(8|X) = & under & | | (D, D, Y, Y1)|X.

For us, this is the primary advantage (along with the weak requisite assumptions) of the CP effect. The
disadvantages are that it is specific to each IV, it is not a generally interesting effect, the “monotonicity
condition” (D° < D') can be violated in observational data [21], and the CPs are not the policy-relevant
population unless the policy is the same as § [22].

Let 1[A] = 1 if A holds and 0 otherwise. For parameters (8, {y) with B; > 0 and an error term U Ll (8, X),
suppose D =1[0 < Y! - Y°+ BS] and Y! - YO =X'(, - U: D =1 if the “gain” Y! - Y° (plus B;6) from the
treatment is greater than 0, which is plausible. Since D° = 1[0 < Y1 - Y°] and D' = 1[0 < Y! - Y© + ], the
CPs satisfy X'(, < U < X'y + fB;. Then, E(Y! - YCP, X) depends on X only through X'y because
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X' G+ Bs
EX'G-UXG<U<X{+ Bg: X)=X{ - I udE,(W)/{E(X" ¢ + B,s) - R(X'{0)},
X'{x
E, is the distribution function of U. It would be difficult to extend the CP effect to non-CPs, as E(Y! - YO|CP, X)
is nonlinear in X'y, whereas E(Y! - YX) = X'(,.

In the aforementioned example, although Ax captures the effect heterogeneity minimally, it can capture it
“maximally” if E(-|CP, Ax) = E(|CP, X'{y), because E(Y!- YOCP, Ax) = E{E(Y' - Y|CP, X)|CP, Ax}. This can
happen if D is designed to benefit some subjects and & is encouraging them to take D, as both D and § would
be based on the treatment gain Y' - Y° = X'(, - U.

To accomplish the goal of this research, we use two nonparametric reduced forms (RFs):

Y= uw(Ax)D + uy(A) + Uy,  E(Uh|8, Ax) = 0, p,(Ax) = E(Y! - YO|CP, X),

oy
Ho(Ax) = E{(Y" = YO)D + YOAx} - 1, (A)E(D°|Ay),

Y = u(A)P(CPIA)S + p,(Ax) + Uy, E(Ul6, &) = 0, P(CP|A) = E(D' - D°lAy),

2
Uy (Ax) = E{(Y1 = YODO + YAy}, @

where u;, iy, P(CP|Ay), and y, are unknown functions, and (Uy, Us) are error terms. These RFs hold for any Y, as
long asY! - Y° makes sense. For example, for categorical Y, Y' - Y° does not make sense, but Y} - Y}) does for
the dummy variable Y; for category j.

We can estimate Ay = E(5|X) nonparametrically, but to make our approaches practical, we either adopt
the single index assumption Ay = A(X’a) for an unknown function A(-) and parameter a or specify Ay = ®(X’0)
for the N(0, 1) distribution function ®(-) and a parameter . Clearly, the latter strategy is more restrictive than
the former. Considering these aspects, we propose the following three estimators for the Ax -heterogeneous CP
effect.

The first estimator is based on the single index assumption Ay = A(X"a) and

E(YIA&, 8=1) - E(¥V|A&, § = 0) _ u;(&)P(CP|Ay)
EQI. 6 =1) - EQP.6=0) PRIy k) tirom(@)} R

Hence, we can identify u,(Ay) = E(Y! - Y?|CP, ) with the ratio on the left side. However, instead of con-
ditioning on Ay = A(X’a) as in (3), we condition on X’a because estimating A(-) is more challenging than
estimating a.

In our second estimator, we assume that Ay = ®(X’0) to avoid estimating A(:). In this case, conditioning on
Ax = ®(X’0) as in (3) than on X’6 is more advantageous because @(-) is a known function well bounded by
[0, 1]. Because of the assumption Ay = ®(X’8), the assumptions of the second estimator are more restrictive
than those of the first. Both the first and second estimators converge in distribution more slowly than +/N.

The two ratio estimators suffer from the “excessively small denominator” problem: A near-zero denomi-
nator can blow up the ratio. To avoid this, our third estimator applies a power approximation to u,(4y) in (1).
Then, the IVE can estimate y,(Ay) as the slope of D. Although power approximation is a nonparametric method,
we regard the approximation to be exact to make our proposal more practical, and we adopt Ay = ®(X’0) as in
the second estimator. Hence, the third estimator is the most restrictive among our three estimators, but it is
JN-consistent. Because we need only the RF of Ay and not the structural form (SF), i.e., because we only use the
scalar Ay (i.e., X’a or X’8) and not individual elements of a or 6, misspecification problems in Ay = ®(X’6) are
not considerably worrisome.

If desired, E(Y! - Y?|CP) can be found from u,(Ay). Note that the CPs are identified conditionally on Ay
under § LI (D°, D, Y°, Y1)|Ay and the monotonicity D° < D':

P(D=16=1X) - P(D=1|§ = 0, &) = P(AT or CP|Xy) - P(AT|Ax) = P(CP|Ay),

where AT indicates “always takers” with (D° = 1, D! = 1). Moreover, integrating out Ay renders P(CP). Then,
denoting the distribution of A|B as Fy g, we can obtain
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E(Y' - YO\CP) = [u,(DdByico @) = [1,(DP(CP Iy = DAF;, (/P(CP).

In the remainder of this article, Sections 2 and 3 explain the two ratio estimators and IVE, respectively;
Sections 4 and 5 present simulation and empirical studies, respectively; and Section 6 concludes this article.
Most proofs are presented in the appendix. As usual, we assume independent and identically distributed
observations (6;, D;, X;, ¥;),i = 1,..., N.

2 Ratio approaches

2.1 Identification

Since (2) motivates the ratio estimators, we first prove (2) in Theorem 1, and (1) is proven in the next section. As
preliminaries, we present our assumptions on IV:

@: &|] @D,y YA forall Ay (IV exogeneity),
(ii): DY<DYlx forall iy (Monotonicity), 4)
(iii) : EMD'-DY%A) =0 forall Ay (IVrelevance).

The “IV exclusion restriction” is implicit in the notation (Y?, Y1), because if § directly affected Y, then the
potential responses would be double-indexed by (8, D).
The appendix proves the main heterogeneity-dimension reduction idea:

§ || @, by, Yo, Yhix = 8§ || (D°, DY, YO, YY) A. (5)

Although (4)(i) is enough for our estimators below, bear in mind that “Ay = E(D|CP, X)” noted in the preceding
section to better motivate/interpret Ay requires “§ Ll (D D%, Y9, Y1)|X” which is stronger than (4)(i) as (5)
shows.

The proof for (5) also establishes the “balancing score” property of IS: The distribution of X is the same
across the § = 0,1 groups once Ay is conditioned on. Then, it follows from Theorem 2 of Rosenbaum and Rubin
[20] that Ay is the coarsest balancing score. In other words, a function, e.g., wx, of X is a balancing score (i.e.,
§ U X|wy), iff Ay = f(wy) for some function f(-). In this sense, (&) = E(Y? - Y°|CP, Ax) minimally captures
the CP effect heterogeneity, thereby avoiding the dimension problem in E(Y! - Y°|CP, X).

Theorem 1. Under (4)(i), (4)(ii), and the support-overlap condition 0 < Ay <1, (2) holds for any form of Y as long
as Y' - Y makes sense.

The qualifier “for all Ax” in (4)(i) and (ii) is sufficient but not necessary, because if the conditions
hold only for some values of Ay, then Theorem 1 holds only for those values of Ay for which the CP effect
can still be identified.

2.2 Ratio estimator under single index assumption

Our single index assumption for dimension reduction with an unknown A(-) and a is
A = E(6|1X) = AX'a). (6)
To estimate A(*) and a, we minimize ) ;{§; - L(X/a)}* with respect to (wrt) {L(-), a} as Ichimura [23] did, which

raises identification issues. First, the intercept for X’a is not identified, because A(ay + X’a) can be written as
Ao(X'a), where Ag(*) = Alag + -); i.e., we can identify both {A(*), (ag, @)} and {Aq(-), a} equally well. Second,
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since A(X'a) = A(c - X’a/c) for any ¢ # 0, instead of identifying {A(-), a}, we can identify {A.(*), a/c} equally
well, where A(-) = A(c -). Clearly, the scale and sign of a are not identified.

One approach to overcome the identification problems is to assume a continuous regressor with a non-
zero slope, e.g., the last regressor Xi. Then, divide X'a by ay # 0 to obtain the identified parameter
(m/a, ...,ax-1/ax, 1). If there is no such regressor, then X’a would be discrete, and we would not be able to
trace the entire shape of A(-) with Xa.

Since we further assume a strictly increasing A(*), we can identify the sign of ay. We divide X"a by |ay|
and not by ay to obtain {a/|ax, ...,ax-1/|ax|, sign(ax)}, where sign(ay) = 1if ax > 0, 0if ax = 0, and -1 if ax < 0.
Then, we try both (a/|axl, ...,ax-1/laxl, 1) and (ai/|akl, ...,ax-1/laxl, —1) to select the one that minimizes
Y46 - LX)}

Let S; = X{a, and let G; denote the group with § = j, j = 0, 1. Given kernel K, bandwidth h, and the sample
size Nj for G, and recalling u,(Ay) = E(Y' - Y?|CP, Xx), our first ratio estimator for u,(s) = E(Y! - Y°|CP, S = s)
is

ﬁl(S)E% where d(s) = Gu(s) - do(s),  B(s) = b(s) - Bu(s),
(NhY1Y o KA(Si - $)IWD; 4,
O E—— =49 o, ™

N1 KIS - )/} §()

L TR KAS - MY ps)
bi(s) = . == j=0,L
NP1 e KAS = )Ry ()

The numerator of d;(s) is defined as djq(s), where subscript d refers to D in d;(s), and the numerator of B,»(s) is
defined as bj,(s) for the analogous reason. The common denominator of d;(s) and b;(s) is (s) —? fsj(s), which
is the density of S|(§ = j).

There are six estimators in f[,(s): {doa(S), I3oy(s), Co(s)} and {ayq(s), Bly(s), G(s)}. Computing f,(s) is not
involved, but estimating the asymptotic variance of g,(s) is: it consists of six variances, and six covariances
among {do4(s), 130y(s), ¢o(s)} and {dy4(s), Bly(s), G(s)}. Regarding the selection of h, since only one-dimensional
nonparametric estimators appear in f,(s), it is preferable to select h in practice through “eye-balling” or cross-
validation.

The probability limits of {g;(s), 13,-(3)} and those of {d(s), b(s), 4,(s)} can be seen in

aj(s)=EMDIS=s,8=j), bi(s)=EX|S=s,6=)),

b(s) _ bi(s) ~bo(s) _ E(YIS=5,6=1) - E(Y|S = 5,5 = 0) ®)
als)  a(s) - ap(s) EDIS=s8=1)-ED|S=s8=0)

= 111(3) =

That a in § = X’a has to be estimated can be ignored, as a can be estimated ~/N-consistently. In other
words, a is as good as known for f,(s) that is J/Nh-consistent. This is the reason why we condition on S = X’a
instead of A(X’a). To make conditioning on S = X’a equivalent to that on A(X"a), we require A(*) to be strictly
increasing. In the following, we often write “S = s” or “P = p” in conditioning sets simply as “s” or “p”.

Theorem 2. VNh {i1,(s) = 1 ()} 4 N{0, Z§=1(I/j + 2C))}, where the Vy’s and Cj’s are in (A6)—(A7) of the appendix,
with k = IK (t)%dt and m; = limy.N;/N, and the requisite assumptions are as follows. (i) (4) holds for all
Ax = AX’a) and 0 < Ay < 1; (ii) A(") is strictly increasing and differentiable; (iii) a continuous Xy with ay # 0
exists; (iv) a is interior to a compact parameter space A,; (v) K(-) is symmetric about 0 and twice continuously
differentiable with IK(t)dt =1, the second derivative bounded, and K(t) =0 for |t| > 1; (vi) Nh® - 0 and
NRh**V/(-Inh) - = for an arbitrarily small v > 0 as N — ®; (vii) f5i(s) >0 for j=0,1and s = x’a, with x on
a compact set X; also, fsj(s), E(Yl|s, 8 =), E(D|s, S =j), E(Y?¥s, 8 =), and E(YD|s,§ = j) are three times
continuously differentiable wrt s = x’a, with the third derivatives bounded uniformly on A,.
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In Theorem 2, (i) is assumed to identify a; note that (4)(iii) implies a(s) > 0 in view of (3), because
E(D! - D%)x) = P(CP|X). The strictly increasing A(-) part in (ii) and (iii) is aimed at identifying A(-), and
the differentiability in (ii) pertains to Assumption 4.1 of Ichimura [23, p. 81]. Also, (iv) is a standard assumption
for asymptotic normality. In (v), “K(t) = 0 for |t| > 1” is the same as Assumption 5.6 (4) of Ichimura [23, p. 88].
The conditions for h in (vi) pertain to the +/N-consistency and asymptotic normality of @ in Ichimura’s
Theorem 5.2 [23, p. 94] with his m = o for binary D as the dependent variable. Part of the conditions in
(vii) is used to satisfy Assumptions 5.3-5.5 of Ichimura [23, p. 87].

Although not mentioned in Theorem 2, Assumption 4.2 of Ichimura [23, p. 82] must be introduced if several
components of X are deterministically determined by other components in X. We do not mention this
assumption in our Theorem 2, as the incentive to use such components is weak in single index estimation.
For instance, A(X'a) = (X’a) + (X’a)* means that all squared components of X are used in A(X’a), and thus,
these squared components do not need to be used as part of X.

Theorem 2 and fi,(s) may look daunting, but they can be simply summarized as follows. The first step is the
single index estimation in which {L(-), a} is chosen to minimize };{5; - L(X/a)}>. We use the algorithm pro-
posed by Hastie et al. [24, p. 391], which rapidly converges to a local minimum, if not the global minimum. The
second step is to obtain the six kernel estimators constituting f,(s). Hence, the only complication in our
proposal is estimating the asymptotic variance of fi,(s). Our simulation study will demonstrate that the
asymptotic variance formula works fairly well with N = 500, and very well with N = 5,000.

For our third estimator using (1) under Ay = ®(X’0), let 6 be the probit estimator and 0y be the slope of Xj.
In comparing f1,(s) to the third estimator, we condition on X’d 6] and not on X’d to ensure that the slope of X;
in X'a -Iékl becomes ék as in X’6. To show this aspect, suppose 6y > 0. Then, ax = 1, and thus, the slope of X; in
X’d~|ék| is ék as in X’6. Now, suppose 0 < 0. Then, a; = -1, so that the slope of Xj in X’d-lékl is —|ék| = ék as

in X'0.

2.3 Ratio estimator under the probit IS

The requisite conditions for the preceding ratio estimator and its asymptotic variance are not simple. Our
second ratio estimator is simpler in terms of the requisite conditions and asymptotic variance, although it
requires imposing the probit assumption Ay = ®(X’6). Since  can be estimated /N -consistently by the probit
estimator 6, we treat 6 as known for the second ratio estimator conditioning on ®(X’). Although the assump-
tion Ay = ®(X’0) may appear restrictive, it is not so, because we need only the RF Ay. For instance, suppose
§=1[0 < &(X) + 0(X)¢e], where &é(X) and o(X) # 0 are unknown functions and & ~ N(0,1) [l X. Then,
E(81X) = ®{¢(X)/o(X)}, and we estimate the linearized version X0 = £(X)/a(X) to use only ®(X’0) and not
the individual components of 6.
Under Ay = ©(X’60), the appendix proves that the ratio in (3) with Ay = p is

EB|A = p)

m where B=Y(§-p) and A = D(S - p). 9)

Then, with P; = Ay, our estimator for (9) is

2K{(P; — P)/h}Bi] / 2K{(Pi - p)/WAi| _ 2K{(Pi - p)INB;

&)= 2K{(P; = p)Ih} SK{P - p)hy | LKAP - WAL

the notation fi,(-) is used for our second ratio estimator.
Theorem 3. VNh{ji,(p) - u,(p)} is asymptotically normal with variance

m[ﬂﬁlp){ﬂmm}z + E(B2p){E(A|p)}* - 2E(A|p)E(B|p)E(AB|p)]
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under the following assumptions, where k = JK (t)*dt, and f, is the density of Ax. (i) (4) holds for all Ax = ®(X’0),
and 0 < Ax < 1; (ii) a continuous X; with 6y # 0 exists; (iii) 0 is interior to a compact parameter space Ag; (iv) K(*)
is symmetric about 0 and twice continuously differentiable with IK (t)dt = 1; (v) Nh* - 0 and Nh — © as N — oo;
and i) f,(), E(AlX), E(A*X), E(B|A), E(B*|A), and E(AB|)Ax) are twice continuously differentiable with
E(AX), fi(Ax) > 0 for all .

The aforementioned assumptions are weaker than those in Theorem 2 because single index estimation is
not needed. Moreover, (ii) is not essential, because no continuous covariate means that nonparametric estima-
tion is not needed. If D is exogenous such that § = D, then we can replace A with 1in {i,(p) to obtain the usual
kernel estimator for E(B|p). In this case, the asymptotic variance in Theorem 3 is simplified to kV(B|p)/f,(p).
Note that although we use the same notation X for probit, X should be augmented by the constant 1 for probit.

3 Power approximation approach

3.1 Identification

We apply a power approximation to u;(Ax) = E(Y! - Y°|CP, Ay) in (1) to obtain
E(Y'- YY\CP, Ay) = M'B, M= (LA, .. l)s B =By By > Y=DMB+ () + U (10)
This yields a moment condition E(IV x error) = 0 with the IV (§ - Ax)M:
0 = E[(6 = A)M {uy(A) + Ui}l = E{(6 - A)M (Y - DM'B)}.
With E71(-) denoting {E(-)}™, we solve E{(§ - Ax)M (Y - DM’B)} = 0 for B:
B = E'Y(6 - %x)DMM'}E{(§ - Ax)MY}, E(Y'-YOCP,A)=MpB. an

The main identification finding in this section is Theorem 4.

Theorem 4. Under (4)(i) and (ii), (1) holds for any Y as long as Y' - Y° makes sense. If (4)(iii), 0 < X < 1, and
(&) = E(Y! - YOICP, Ay) = Z{:OB]A" = M'B hold additionally, then B = (By, By, ....B;)" is identified.

The proof for Theorem 4 in the appendix reveals
E{(§ - &x)DMM'} = E{E(D" - D Ax)(1 - Ax)AxMM'}. (12)

Hence, even if E(D' - D°Ay) # 0 only for some values of Ay in (4)(iii), Theorem 4 holds as long as
E{(8§ - Ax)DMM'} is invertible.

3.2 Power approximation estimator

Before estimation, we introduce a modification to ¥ = y,(Ax)D + piy(Ax) + U in (1) in case Ay is misspecified.
When we use § - A as the IV, we can ignore u,(Ay) in the composite error p,(Ax) + Uy, because the IV S — Ay is
orthogonal to t,(Ax). However, Ay may be misspecified in practice, which can result in a bias because the
misspecified § - Ay may be correlated with p,(Ax). Hence, it is better to remove y,(Ax) from the error. To this
end, we use Y — E(Y|Ax) as the outcome variable as follows (see Chernozhukov et al. [25] and Lee [26,27] for
closely related ideas).

Take E(-|Ax) on (1) to obtain E(Y|Ax) = u,(Ax)E(D|Ax) + uy(Ax). Subtract this expression from (1) to remove
Uy(Ax) and obtain



8 —— Goeun Lee et al. DE GRUYTER

Y - E(YIAx) = i(A)D = i (A)E(DIAy) + Us. 13)

We use (13) instead of (1) to implement our IVE, where —u,(Ax)E(D|Ax) + U is the composite error. Accounting
for E(Y|Ax) explicitly in (13) tends to improve the finite sample performance of the following IVE by decreasing
the error term standard deviation (SD) and making the IVE relatively insensitive to misspecifications of Ay.

We present two versions of the power approximation estimator: one conditioned on X’8 and the other
conditioned on ®(X’0). The former estimator is simpler, but the latter estimator is likely to perform better
when X’ is large, thereby causing the power functions of X’ to become even larger to generate outliers. In
contrast, power functions of ®(X’6) become smaller as X’6 becomes large, and thus, no outlier problem arises.

First, we condition on X’6 and apply a power approximation to E(Y|X'6) and u,(X’0) : For some y
parameters and error term U,

Y- WYy =DWp - i (XOED|X'0) + U, where W= {1, X0, ... X6/} and y= @, ...y))"

Using the same J-order power approximation for both W’y and W’f is not necessary, because W’y inY - W’y
can be replaced by ¥ (with J = 0) or even zero. If desired, we can also obtain E(Y! - Y°|CP, Ay = p) from W’B:
Replacing X’0 in W with ®7Y(p) yields

E(Y' - YOICP, X = p) = [1, @7U(p), ...{@ (p)}/]B. 14

Let § be the probit estimator of § on X. Replace X’6 with X’6, and then replace E(Y|X’6) with the ordinary
least-squares estimator (OLS) predicted value W'y, where

y isthe OLSof Y on W = W(9) = {1, X0, ..., (X'6)Y.

Then, we obtain the IVE of ¥ - W) on DW with éW = {§ - ®(X'6)}W as the IV:

4
B = ZéiDiVViI/Vi,] YEWY - WP), &= 6 - dX/0). s)
i i

The appendix proves the next two theorems.

Theorem 5. The IVE in (15) is asymptotically normal with variance Q,:

YN@B - B) 4 N(0,Q1), Q1= E(eDWW )E(nn))E"\(eDWW"),
N, = VeW - E{DVW’'BeWX’ + V(X' O)WX’ - VeVWX'}ng, €=6 - dX'0),
V=Y-Wy-DWB, VW={0,1,2X9),..JX6)7,

and g is the influence function for N (6 - 6). Q; can be consistently estimated with

-1
. 1 N " N A
Q= N ZEiDiVViVVi’ » &= 6 - 9(X/0),
i

-1 1 L
N %’hi’?u

1 N ANy
I ZgiDiVViVVi

A

A 7 a 1 A7 ReTA ’ 7 TONTA ’ 7 A 1 A

i = ViEW; N Y IDVWBEWXL + Vg0 WXy, — Ve VWX g,
K

V=Y - Wy - W/D/B, VW= {0,1,2X/6), ... J(X/6)1Y,

_ 16 - oX0)(x/0)
X/ 01 - oX/0)}

Ng;

-1
1e..| . .
NZsks,; S, where §;
k

Now, we condition on Ay and apply power approximations to E{Y|®(X’8)} and u,{®(X'0)}:

Y- M’y = DM'B - 1 {@X'0)E{D|®(X'0)} + U, M = {1, o(X'0), ..., 2(X'0)}.
Replace E{Y|®(X'0)} with the OLS-predicted value M'j, where
j isthe OLS of Y on M = M(0) = {1, ®(X'0), ..., 0(X'6)Y.
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Obtain the IVE of Y - M'J on DM with &M = {§ - ®(X’§)}M as the IV:
-1

p= 2 EM(Y; - ML) (16)

> DM
i

Theorem 6. The IVE in (16) is asymptotically normal with variance Q:

JN@ - B) ~1N(0,Qy), @, = E"(eDMM)E(n,n))E " (eDMM"),
N, = TeM — E{DVM’BeMX’ + Top(X'O)MX’ - TeVMX'}n,,
[=Y-My-DMB, VM={0,p(X/0),26(X'0), ....]p(X'0) ¥,
-1

‘(:22 -P 92)

-1

1 NP 1 .
= YeDNME | — Y |~ Y EDMM;
Nllell Ngnzlnlegllll

A T any 1 T RA N ’ T 7O\ ’ T a Y A
Ny = Ti&M; - N 2 DKM BEMIX], + Ted (X O)MIX;, — Tué VMK 3,
K

i = Y- My - M{DB, U = {0, ¢(X{6), 20(X{0), ... J(X/0))'Y.

4 Simulation study

With N = 500, 5,000, and 10,000 simulation repetitions, our simulation setting is

6=1[0 <m + mX, + ;X3 + £], X, discrete uniform on {-0.5, -0.25, 0, 0.25, 0.5},
X; ~ U[-05,05], &~NQOD|] %X, m=0, m=m=1,
D=10<q+o%+ %+ 16+ yYl, ¥ ~NOD[|E % X),

71=0, B=n=T7=1 Y»=1+X+X3+U, U=e+Y,

e~NOD @ yX%X), Y =Y"+p%+X)+p%+X%)7% p=1

p, = 0,-0.5 (linear, quadratic effect), Y = Y* + (Y - Y%)D, where

Y2 = y? for continuous ¥, and Y?=1[0 < Y¢*] for binary ¥, d=0,1.

Since 7, = ;13 = 1in the § model, X' = X; + X; has the range [-1, 1] owing to the range of (X;, X3). The error
term U in Y is correlated with the error term ¥ in D with Cor(U, ) = 0.71 to ensure that D is endogenous. We
use four simulation designs:

Design1:Y is continuous, and p, = 0 (effectis X'm);
Design 2:Y is continuous, and p, = -0.5 (effectis X'z - 0.5(X'1)%);
Design 3:Y isbinary, and p, = 0 (effect is non-linear in X'rr);

Design 4:Y is binary, and p, = -0.5 (effect is non-linear in X'7r - 0.5(X'm)%).

For the first ratio estimator fi,(s), we can set the slope of X; as -1 or 1, but we set the value only to 1 because the
sign of the slope of X; can be estimated at a rate faster than N/ as only one of the two values is selected. The
lack of consideration of -1 decreases the simulation time by half. With 75 = 1 in the D model, the CP effect is not
zero, but the simulation program crashes when the denominator of /i, and /i, approaches zero. In this case, the
simulation run is abandoned, and the data are redrawn. For K(-) of i, and fi;, we use the simple N (0, 1) kernel.
The bounded quartic kernel is used as well, but then dropped, as the kernel choice does not result in a
significant difference. The bandwidth h is chosen initially by cross-validation for a number of times and
then fixed throughout the simulation repetitions, as doing cross-validation at each simulation run is time-
consuming.

Let X = (X;, X3)" and X, = (1, Xp, X3)’ such that E(6|X) = ®(X,0), although we use sometimes the expres-
sion E(8]X) = ®(X’0) for simplicity. The following tables present
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@®: As) at s=-05, 0, and 0.5 for s = x’d@ (evaluation points);
2): fgp) at p=031=d(-0.5),0.5 = ®(0), and 0.69 = ®(0.5) for p = @(Xﬁlé);

J
(®): wip= Y B0 for J=1,2 at x;,0 = -05,0, and 0.5;
j=0

J
@: B =Y oxu0) for J=1,2 at d(x;,0) = 0.31,05, and 0.69.
j=0

Overall, six estimators are compared at the three evaluation points.

For each entry in each following table, four numbers appear at a given evaluation point: the (i) absolute
bias (|Bias|); (ii) SD; (iii) averaged SD (across 10,000 repetitions) based on the asymptotic variance to be
compared with (ii); and (iv) proportion of the 95% point-wise confidence intervals (CI) capturing the true
value. We do not present the root mean-squared error (RMSE) to save space: in most cases, the absolute bias is
much smaller than the SD, and thus, the RMSE is similar to the SD. The entries with the subscript “avg” indicate
the simple averages across the three evaluation points, which are used as summary measures.

To make s = x’d comparable to p = d>(x+’1(§), wesets = x’d - ég and not x’d, so that the slope of x3 in x’d - 93
becomes 65 as in x;lé. For f1,(s) and fi,(p), we abandon the simulation run when the denominator is smaller
than 0.01. In 10,000 repetitions with N = 500, about 1.67% of the runs are abandoned for fi,(p), but no runs are
abandoned for fi,(s).

Table 1 shows the results for continuous Y with N = 500, where the true effect is linear or quadratic in the
single index X’m. The ratio estimators /i, and ji; perform well for both linear and quadratic effects. /I, tends to
be more biased than fi, but has a smaller SD. Since the bias magnitude is considerably smaller, the difference
in SD dominates that in the bias, and thus, 1, performs better than fi,. The highest performing estimators are

WwiB and m;B. The biases of ;B and ;5 are not large; however, their SDs are very high due to multi-
collinearity problems among the regressors. Moreover, the corresponding asymptotic variance estimates

grossly exaggerate the actual SDs. In terms of SD, ri; does better than ;5. The SDs of most of Ay, iy, WwiB,
and i match closely with the averaged asymptotic SDs, which demonstrates the correctness of their

asymptotic variances. The CI coverage proportion is too small for /1, and i, and too large for Wy B and iy B.
Overall, the ranking in Table 1 can be summarized as follows, with “>” meaning “better than”:

Table 1: Continuous Y |Bias|, SD, Avg.Asy.SD, and CI coverage proportion (N = 500)

Effect Linear Quadratic Effect Linear Quadratic
ﬁl(o.s) 0.056 0.698 0.488 0.83 0.074 0.588 0.447 0.81 ﬁl(osl) 0.018 0.735 0.730 0.89 0.006 0.781 0.765 0.89
ﬁl(O) 0.044 0.364 0.369 0.96 0.067 0.370 0.368 0.96 ﬂl(O}S) 0.121 0.899 0.966 0.94 0.111 0.897 0.940 0.94
fiyos) 0.1141.14 0.782 0.85 0.155 1.1 0.771 0.87 fiyo69) 0.019 1.93 2.88 0.84 0.077 1.86 2.76 0.84
iy pg 0.071 0.73 0.55 0.88 0.099 0.69 0.53 0.88 fiavg 0.053 1.2 1.5 0.89 0.065 1.2 1.5 0.89
Wl'.é(o 5 0.041 0.486 0.503 0.93 0.015 0.486 0.496 0.93 Wéﬁ(os) 0.143 1.70 5.69 0.96 0.180 1.53 5.37 0.96
Wl'.é(o) 0.034 0.345 0.353 0.96 0.118 0.353 0.353 0.96 Wz'/?(o) 0.034 1.16 5.50 0.98 0.011 1.28 6.60 0.98
Wl'ﬁ(o 5 0.027 0.670 0.685 0.98 0.029 0.660 0.680 0.98 Wz'B(os) 0.019 3.08 17.0 0.99 0.008 3.4918.6 1.0
er'gAvg 0.034 0.50 0.51 0.97 0.054 0.50 0.51 0.95 WZ’ﬁAvg 0.065 2.0 9.4 0.98 0.066 2.1 10 0.98
m{ﬁ(o a1 0.053 0.488 0.502 0.95 0.028 0.490 0.497 0.93 ,ﬁéﬁ(w) 0.113 0.694 0.847 0.96 0.133 0.755 0.911 0.96
’ﬁlﬁ(o 5 0.032 0.346 0.354 0.96 0.116 0.354 0.353 0.96 m?ﬁ(o 5) 0.030 0.537 0.746 0.98 0.007 0.545 0.764 0.98
’ﬁfﬁ(o 69) 0.010 0.676 0.689 0.98 0.045 0.668 0.682 0.97 "?lz'ﬁ(o 6) 0.023 1.45 2.46 1.0 0.092 1.49 2.46 1.0
,ﬁ/} 0.032 0.50 0.52 0.97 0.063 0.50 0.51 0.95 ,ﬁzg 0.055 0.90 1.4 0.98 0.077 0.93 1.4 0.98
1FAvg Avg

Avg.Asy.SD: average across 10,000 reps of the asymptotic SD formula in theorems; i, and [;: ratio estimates; W]B & m]ﬁ power-

approximation estimates with J = 1, 2; Avg: simple average across three evaluation points.
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mif = wip > fy > mif > iy > ip. a”)
When N increases to 5,000 in Table 2, all estimators become stable, and the averaged asymptotic SDs are
closely matched with the corresponding simulation SDs. fi, outperforms i, in terms of both the bias and SD.
Wi and iy perform the best when the true effect is linear, but exhibit substantially large biases when the
true effect is quadratic. The performances of 1w;f and ri;§ are satisfactory, even though they were the lowest
performing estimators in Table 1, with N = 500; W;$ and ri;f exhibit the minimum bias under quadratic
effects. 4, is comparable to WZ’B and iy B, and ii; has the largest SDs. The CI coverage proportion is close to 95%,
except when the bias is large for Wy, B and /B under quadratic effects. Overall, the ranking in Table 2 is
mf > oy = if > mif = wip > . )
The findings in Table 3 with binary Y and N = 500 are similar to those in Table 1 except for the CI coverage
that is considerably lower for g,. The ranking (17) still holds for Table 3. When N increases to 5,000 in Table 4,

the asymptotic variance formulas work well, and the large biases of i and W{f (slightly larger than the
biases in Table 3) and resulting low CI coverage are notable. Overall, the ranking in Table 4 can be expressed as
mif = if > ity > hif = wip > ii. (19)

Thus far, we examined the CI coverage at each evaluation point separately. For joint coverage across m
evaluation points, the 95% joint coverage requires that the CI at each point has a higher confidence level.
Solving (1 - a’)™ = 1 - a for @’ with a = 0.05 gives abouta’ = 0.05/m, allowing the confidence band (CB) across
the m points to capture the true effect curve in 95% of the trials. Figure 1 shows 50 CBs randomly selected from
our 10, 000 simulation runs when Y is continuous, the effect is linear, and the sample size is 5,000, usingm = 20
equally spaced evaluation points over p € [0.25, 0.75]. For each estimator, only 1 ~ 3 CBs do not capture the
true line, resulting in a joint coverage of 94 ~ 98%.

Overall, there exist trade-offs among the bias, SD, CI coverage, ease in implementation, and closeness of
the asymptotic variance formula to the actual variance. We note that /i, performs reasonably well overall,
whereas fi; exhibits a low performance. However, considering the trade-offs, we recommend the use of
(B, m;B) for small samples and (0,8, r;f) for large samples, which are particularly easy to implement
with only probit and OLS.

Table 2: Continuous Y': |Biasl, SD, Avg.Asy.SD, and CI coverage proportion (N = 5,000)

Effect Linear Quadratic Effect Linear Quadratic

ﬁ1(05) 0.007 0.165 0.152 0.91 0.019 0.165 0.154 0.90 Hy031) 0.031 0.231 0.233 0.94 0.033 0.230 0.234 0.92
!11(0) 0.015 0.126 0.129 0.96 0.030 0.127 0.130 0.95 s 0.019 0.246 0.257 0.95 0.011 0.244 0.259 0.95
;a1(05) 0.026 0.265 0.244 0.91 0.037 0.259 0.240 0.91 Hi0.69) 0.027 0.621 0.682 0.91 0.054 0.631 0.689 0.92
ﬁ1Avg 0.016 0.19 0.18 0.93 0.029 0.18 0.18 0.92 AﬂlAvg 0.026 0.37 0.39 0.93 0.032 0.37 0.39 0.93
W{ﬁ(o,S) 0.007 0.142 0.142 0.95 0.013 0.138 0.139 0.85 Wéﬁ(o.S) 0.011 0.145 0.147 0.95 0.010 0.145 0.149 0.95
w{ﬁ(o) 0.003 0.101 0.101 0.95 0.081 0.101 0.102 0.86 Wéﬁ(g) 0.005 0.141 0.150 0.95 0.003 0.132 0.142 0.95
W{ﬁ(o,s) 0.001 0.201 0.199 0.96 0.075 0.197 0.198 0.83 Wéﬁ(o.s) 0.018 0.361 0.362 0.97 0.001 0.312 0.329 0.98
W{BAvg 0.004 0.15 0.15 0.95 0.056 0.15 0.15 0.85 WéﬁAvg 0.011 0.22 0.22 0.96 0.005 0.20 0.21 0.96
mlrﬁ(om) 0.018 0.142 0.142 0.95 0.002 0.138 0.140 0.84 mZ’B(OSl) 0.022 0.141 0.142 0.96 0.033 0.145 0.146 0.95
ml'B(o.s) 0.003 0.101 0.101 0.95 0.081 0.101 0.102 0.85 mz'ﬁ(o's) 0.001 0.129 0.133 0.95 0.005 0.128 0.134 0.96
ml’ﬁ(o.ea) 0.012 0.201 0.199 0.95 0.085 0.196 0.197 0.83 mz’ﬁ(o.e‘g) 0.012 0.283 0.281 0.97 0.009 0.278 0.276 0.98
m{'gAvg 0.011 0.15 0.15 0.95 0.056 0.15 0.15 0.84 mZ'BAvg 0.012 0.18 0.19 0.96 0.015 0.18 0.19 0.96
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Table 3: Binary Y: |Biasl, SD, Avg.Asy.SD, and CI coverage proportion (N = 500)

Effect Linear Quadratic Effect Linear Quadratic

‘111(0.5) 0.029 0.373 0.274 0.83 0.020 0.359 0.269 0.82 ﬂ1(0,31) 0.051 0.578 0.627 0.92 0.019 0.552 0.602 0.92

.a1(0) 0.024 0.149 0.145 0.95 0.034 0.149 0.147 0.94 !11(0‘5) 0.133 0.564 0.626 0.97 0.158 0.589 0.649 0.97

‘111(0.5) 0.026 0.214 0.176 0.68 0.027 0.215 0.179 0.71 ﬂl(oeg) 0.098 0.869 1.37 0.86 0.108 0.856 1.40 0.86

ﬁ1Avg 0.026 0.25 0.20 0.82 0.027 0.24 0.20 0.82 ﬂlAvg 0.094 0.67 0.87 0.92 0.095 0.67 0.89 0.91

W{B 0.013 0.225 0.227 0.93 0.028 0.226 0.226 0.90 Wzﬂ 0.091 1.50 3.96 0.96 0.052 0.621 2.54 0.94
(05) (0.5)

W{B(o) 0.059 0.121 0.124 0.94 0.083 0.123 0.126 0.91 Wz'ﬁ(g) 0.001 0.481 2.63 0.97 0.013 0.450 2.98 0.97

W{B 0.030 0.184 0.195 0.98 0.049 0.182 0.198 0.97 Wzﬂ 0.007 1.17 8.37 0.99 0.027 1.11 8.90 0.99
(05) (0.5)

WiBrg 0.034 0.18 0.18 0.95 0.053 0.18 0.18 0.93 Wabg 0.0331.15.0 0.97 0.0310.73 4.8 0.97

mB 0.008 0.228 0.229 0.93 0.023 0.229 0.229 0.90 mZg 0.047 0.377 0.382 0.96 0.038 0.350 0.369 0.95

1P(0.31) (031)

m{B 0.058 0.121 0.123 0.94 0.082 0.123 0.126 0.91 mzﬁ 0.004 0.192 0.250 0.98 0.010 0.190 0.242 0.98
(0.5) (0.5)

rﬁ{ﬁ 0.036 0.185 0.194 0.98 0.056 0.182 0.196 0.97 mzﬁ 0.005 0.314 0.542 0.99 0.003 0.300 0.526 0.99
(0.69) (0.69)

m{B 0.034 0.18 0.18 0.95 0.054 0.18 0.18 0.92 mzﬁ 0.019 0.30 0.39 0.97 0.017 0.28 0.38 0.97
Avg Avg

Table 4: Binary Y: |Bias|, SD, Avg.Asy.SD, and CI coverage proportion (N = 5,000)

Effect Linear Quadratic Effect Linear Quadratic

fyos) 0.002 0.096 0.092 0.90 0.005 0.099 0.094 0.90 fyo 3y 0.004 0.170 0.190 0.96 0.001 0.176 0.193 0.96
fh) 0.009 0.053 0.053 0.94 0.011 0.053 0.053 0.93 fios) 0.010 0.152 0.168 0.97 0.012 0.152 0.169 0.97
fyos) 0.008 0.061 0.058 0.89 0.003 0.062 0.060 0.89 fso.69) 0.056 0.313 0.351 0.95 0.051 0.310 0.351 0.95
Liavg 0.006 0.070 0.068 0.91 0.006 0.072 0.069 0.91 fiavg 0.023 0.21 0.24 0.96 0.022 0.21 0.24 0.96
Wl'ﬁ(o,s) 0.025 0.066 0.066 0.85 0.035 0.066 0.066 0.68 W?ﬁ(o.s) 0.014 0.072 0.072 0.95 0.019 0.071 0.073 0.92
W{ﬁ(o) 0.046 0.036 0.036 0.71 0.068 0.037 0.037 0.45 Wz'/é(o) 0.009 0.048 0.049 0.95 0.014 0.048 0.048 0.93
er'g(o‘s) 0.044 0.058 0.057 0.61 0.073 0.059 0.059 0.32 W?ﬁ(o.s) 0.008 0.059 0.061 0.98 0.015 0.055 0.057 0.98
WfBAvg 0.038 0.054 0.053 0.72 0.058 0.054 0.054 0.48 WéBAvg 0.010 0.060 0.061 0.96 0.016 0.058 0.060 0.94
,ﬁ{/;(m) 0.021 0.067 0.067 0.84 0.031 0.066 0.067 0.66 rﬁz'/;(o.al) 0.004 0.074 0.073 0.95 0.006 0.073 0.074 0.93
,ﬁ{ﬁ(o‘s) 0.046 0.036 0.036 0.70 0.068 0.037 0.037 0.44 ,ﬁéﬁ(o's) 0.005 0.048 0.049 0.95 0.007 0.049 0.050 0.95
m{ﬁ(oﬁg) 0.047 0.057 0.056 0.59 0.077 0.057 0.058 0.30 ,ﬁzﬁ(oﬁg) 0.003 0.056 0.057 0.98 0.010 0.052 0.058 0.98
,ﬁ{ﬁAvg 0.038 0.053 0.053 0.71 0.058 0.053 0.054 0.47 ,ﬁzfﬁAvg 0.004 0.059 0.060 0.96 0.008 0.058 0.061 0.95

5 Empirical analysis

Our empirical analysis is for the effects of 401(k) retirement programs D on savings Y. Many studies have
investigated whether contributions to tax-deferred retirement plans increase savings or simply crowd out
other types of savings [10,28-32]. Since D is correlated with unobserved individual preferences for savings,
Abadie [10] used the eligibility § for 401(k) programs as an IV for D to overcome the endogeneity problem.
Because the eligibility for the programs is exogenously set, § is unlikely to be correlated with the pre-
ferences for savings once we control for X such as the income. The IV exclusion restriction is plausible for §, as
§ is likely to affect savings only through the income. Since only the eligible persons can apply for a 401(k)
account, monotonicity holds trivially, and the IV relevance condition is verified by the OLS of D on (8, X).
We use the same data as those used by Poterba et al. [29] and Abadie [10], derived from the Survey of
Income and Program Participation for 1991. The observation unit is a household, and the sample is restricted to
households with at least one member employed. Table 5 presents the sample mean (SD) of the variables, where
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Figure 1: True effect curve and 50 CBs for continuous Y with linear effect and N = 5,000.

Y is the net financial assets in $1,000. X consists of the household income in $1,000 (Inc), age, marital status
(Mar), and household size (Hsize). N; is the group size for D = d. 39% of the households are eligible for the
401(k) programs (§ = 1), and 72% = 100 x (0.28/0.39) of them have D = 1.

Before we examine the effect estimates in Table 6, we explain the steps implemented for facilitating the

comparison of the estimators. Recall that i, and M;f are conditioned on Ay, whereas /i, and W/ are condi-
tioned on the linear indices. Although (14) is used to make W]ﬁ comparable to fi;, and M]E, the same step
cannot be implemented for g, because the single index for g, does not include an intercept. The only way to
make g, comparable to (fi,, W]B M;p) is to condition 2, on A(X'@), instead of X'd. However, since A(X'd) is
J/Nh-consistent, this modification requires the derivation of its asymptotic distribution anew, which is pro-
hibitively complicated. Hence, we use bootstrapping (300 bootstrap repetitions) to do inference for /I, condi-
tioned on A(X’@). If a comparison with the other estimators is not required, conditioning 4, on X"a is adequate.

For the estimation, first, both age and age? are used as regressors in the probit of § on X for M]E Notably,

the use of age? introduces certain difficulties for i, because using a functionally dependent regressor in f,
requires a complex identification assumption, as mentioned in relation to Theorem 2. Second, for K(-) of f,
and ji;, we use the simple N (0, 1) kernel. The bounded quartic kernel is not used because the estimators crash
if there are no observations around several evaluation points. According to our simulation study, the choice of
the two kernels does not considerably affect the results. Third, the bandwidth h is set as hy € [1,2] in

h= hoSD(iX)N‘1/5 through “eye-balling”; the bandwidth for A() is the rule-of-thumb bandwidth h, =

Table 5: Mean (SD) of variables (N = 9,275; N, = 2,562, N, = 6,713)

Pooled D=1 D=0 Pooled D=1 D=0
Y 19.1 (64) 38.5 (79.3) 11.7 (055.3) Inc 39.3 (24.1) 49.8 (26.8) 35.2 (21.6)
Age 41.1 (10.3) 41.5 (9.65) 41.9 (10.0)
D 0.28 1 0 Mar 0.63 0.69 0.60
6 0.39 1 0.16 Hsize 2.89 (1.53) 2.92 (1.47) 2.87 (1.55)

Y: Net financial assets in $1,000; Inc: family income; Mar: marital status; Hsize: family size.
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Table 6: Complier effects for financial assets in $1,000 (N = 9,275)

p=X: 0.2 (SE) 0.3 (SE) 0.4 (SE) 0.5 (SE) 0.6 (SE)
iy 4.37 (4.16) 4.56 (4.94) 9.11 (6.61) *15.9 (6.60) 217 (15.0)
i 5.77 (4.12) *4.69 (2.85) **16.9 (3.04) **29.4 (5.52) *33.2 (13.1)
Wwip 6.38 (11.3) ¥8.24 (4.80) *9.82 (1.70) *113 (6.42) 12.8 (11.6)

W,p 769 (30.7) *5.64 (2.30) *14.7 (8.86) *21.3 (6.70) *26.1 (10.6)
MB 5.76 (8.51) *7.69 (3.92) **9.62 (1.67) *11.6 (5.88) 13.5 (10.5)

M, 5.11 (18.7) **5.96 (1.90) “14.7 (6.44) **21.0 (4.40) *25.0 (10.9)

%, +11%, 5%, 10% significance levels; i, & fi;: 1st & 2nd ratio estimators; W]ﬁ & M]B power-approximation estimators conditioned on
X'6 & d(X'0).

SD{A(X’@)}N15, Fourth, for W]B and M]ﬁ we set J = 1,2, and thus, six estimators are compared, as in our
simulation study. The comparison is performed over Ay € [0.2, 0.6], which contains most iX values.

For A(X’d) in f,, Inc, Age, and Mar are the significant variables, whereas Inc, Age, and Hsize are the
significant variables for dJ(X’é), with the standard error (SE) in ().

Inc Age Age? Mar Hsize

@inAQra) " 0.046 (0.011) ' 0.055(0.018)  *-0.002 (0.001) *-0.20 (0.055)  —0.034 (0.028)
§ind(xd) 0.014(0.001)  *0.039(0.005  **-0.001(0.000)  0.019 (0.037) **~0.034 (0.011)

In the results of (q, é), the intercept is omitted, and ** and * denote the 1% and 5% significance levels,
respectively. To make & and 6 comparable, we normalize @ with |Gysize| and then multiply @ by Onsizel, as
explained at the end of Section 2.2. Income and age appear to be the two main variables driving the variation
in IS.

In Table 6, all estimators show increasing effects of D across p € [0.2, 0.6], which become significant for
p = 0.3, except for fi,. Recalling § = 0.4, the effect on CPs at p = 0.4 is 9-17, and the effect based on W, B and
M, B is 14.7 ($14,700). Recall that W, and M, § achieve the highest performance in our simulation study with
large samples.

Table 6 shows no significant difference between g, and f, at p = 0.2, 0.3; however, the estimates become
much different for p > 0.4. For a given J, W;f and M;B are similar, but (W; B, ;) differ much from

(W,B, M, ). With J =1, the effect increases gradually from about 6 at p = 0.2 to about 13 at p = 0.6, but it
becomes insignificant as p increases further. With | = 2, the effect increases dramatically from -8 ~ -5 to
25 ~ 26 and is significant even at p = 0.6. As p increases, W, and M, § deviate from {, that uses the same IS.

Figure 2 shows fi,, fi,, W,f3, and M, § over 90% of the support points of IS. We omit W; § and M; §, as | = 2is
preferable over J =1 in large samples. In Figure 2, fi,, W,5, and M, show more or less monotonically
increasing effects as p increases, whereas i, is quadratic: fI; increases up to 36 at p = 0.58 and then decreases
sharply to 6 at p = 0.67. However, this decline is implausible, which might be due to the “boundary problem” in
kernel estimators. Overall, recalling the BMI example in the introduction, we can state that the 401(k) plan
effect on the savings is positive for those with IS greater than approximately 0.3.

It is puzzling why , yields considerably different results from M, B, even though both estimators use
Ax = ®(X’0). For this, note that kernel estimation is a local nonparametric method, whereas power approx-
imation is global. Hence, the former approach is superior when the focus is on an evaluation point, whereas
the latter approach is superior when the focus is on the shape of a curve. In the former, observations far from
the evaluation point are irrelevant, whereas all observations are relevant for all evaluation points in the latter.
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The benefits of the global nonparametric approach versus the local approach can be further highlighted.
The inverted matrix for M, § is essentially E{E(D! - D°|Ax)(1 — Ax)AxMM’} as (12) shows, whereas the denomi-
nator of jI, is essentially E(D' - D) = P(CP|X) as (3) shows. Consequently, if P(CP|Ay) approaches zero at
some Ay, {i; would suffer, whereas M, 8 would suffer less because it uses the averaged version of P(CP|Ay).

To examine how informative E(Y! - Y9|CP, Xy) is, Figure 3 shows the plots of E(Y! - YO|CP, Inc;) versus
In; for alli = 1,..., N. The first row is for /i, and i, and the second row is for W, and M, . Figure 3, which is
based on the income, reveals increasing patterns similar to those shown in Figure 2. This trend suggests that
the Ax-heterogeneous effect in Figure 2 is mostly driven by the income. We also tried other covariates, but
could not find any informative pattern. In practice, our estimators can be tried initially, and if effect hetero-
geneity is found, then a more extensive analysis with X can be performed.

The effect of a covariate can be found using the graph for W’ (Figure 2). For example, when X, increases
by one unit at X’0 = s (i.e, at W = (1,5, ...,s/)B), W’B increases by 8, times {0, 1, 2(X’9), ...,J(X’0)’ 1B, and
this effect can be found in Figure 2 by moving to the right from (1, s, ...,s/ )B by 92 40,1, 2(X’é), wer] (X’é)f _1}[3
and then comparing the values of the graph at the two positions.

Specifically, when the income increases by one unit ($1,000) at the mean of X 6= -0.287, the IS ®(X ’é)
hardly changes from 0.39, as the change is only from 0.387 to 0.392. Then, because ;,c = 0.014, W, increases by

0.014 x {0,1, —0.574}B = 0.53. Hence, the effect of the increase in the income of $1,000 on Y is an increase of
$530 for the CPs with the IS of approximately 0.39. This value is considerably smaller than the “naive income

effect” observed in Table 5: the mean group difference of Y divided by the mean group difference of the income
is (38.5 - 11.7)/(49.8 — 35.2) = 1.84.

6 Conclusion

For a binary treatment D, an outcome Y, and covariates X, denoting the potential responses as (Y°, Y?) for
D = 0,1, the treatment effect heterogeneity (i.e., E(Y! - Y°X) not being a constant) is a rule rather than an
exception. However, when X is high-dimensional, the nonparametric estimation of E(Y! - Y9 X) runs into the
well-known dimension problem. In the PS literature, E(Y! - Y°/PS) has been estimated instead to overcome
the dimension problem under the D-exogeneity “D | (Y9, Y1)|X.”

When D is endogenous/confounded, however, PS matching and other estimators requiring D-exogeneity
cannot be used, and at least a binary instrument (e.g., §) is needed to overcome the problem. In this article,
defining the potential treatments (D% D) for § = 0,1 and “CP” as those with (D° = 0, D! = 1), we showed that
the role played by PS for exogenous D can be played by the “IS” Ay = E(6|X) for endogenous D with a non-
randomized §. The IS becomes PS for exogenous D because § = D.

The dimension reduction achieved by PS for exogenous D cannot be realized by an arbitrary function of X.
Similarly, the dimension reduction achieved by IS for endogenous D cannot be realized by an arbitrary
function of X. By identifying and estimating E(Y! - Y°|CP, Ax) conditioned only on the scalar Ay, we capture
the effect heterogeneity while avoiding the dimension problem. The heterogeneity captured by Ay is minimal,
in the sense that Ay is the “coarsest balancing score” (§ Ll X|Ax). Since the endogenous D becomes exogenous for
CPs because D = & , and since it is likely that D = 1 when Y - Y is positive, the IS with D = § can capture the
effect heterogeneity well.

We proposed three estimators for E(Y! - Y|CP, Ay), motivated by two critical RF equations that are linear
in either D or 8, even though no explicit linearity assumption is imposed. The equations and our three
estimators hold for any form of Y (continuous, binary, count, ...), as long as Y! - Y° makes sense. The three
estimators require progressively more restrictive assumptions to enhance their applicability.

The first estimator is a kernel nonparametric estimator based on a single index estimator for Ay that
enables the use of an unknown link function. The second estimator is the same as the first estimator, except for
the assumption of the probit link for Ay. The third estimator is an IVE formulated after approximating
E(Y! - YO|CP, A) with a power function of ). Since we take the power approximation to be exact, the third
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estimator is ~/N-consistent, whereas the first two estimators converge at a slower rate. Among the three
estimators, we recommend the third estimator because it is easy to implement with only OLS and probit,
numerically stable, and not subject to the “excessively small denominator problem” inherent in the first two
ratio estimators.

We presented an empirical illustration for the effects of 401(k) retirement programs (D) on savings (Y)
with the eligibility § for the programs as the IV. Our main finding is that the households with the IS greater
than approximately 0.3 would increase their savings due to D, whereas those with the IS smaller than 0.3
would not. This kind of finding could be useful when D is a drug whose administration is self-selected by
individuals (and is thus endogenous). If there exists an education/encouragement § based on X for the possible
benefits of the drug, we can find an analogous cutoff to prepare an easy-to-follow guideline that the drug
would benefit those with the IS greater than the cutoff.
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Appendix
A Proofs

A.1 Proof for (5) and balancing score property of IS

Proof. Under § || (D°, DY, YO, Y1)|X, observe

E((SlDO) Dl) YO) Yl: AX) = E{E((SlDO, Dl’ YO; Yl) X) | DO! Dl; YO’ Yl; AX}
= E{E(5|X) | DO) Dl: YOa Yl: AX} = E(/\X|DO, Dl: YO; Yl: AX) = AX = E(CSMX)
The first and last expressions prove that § is mean-independent of (D°, DY, Y9, Y') given Ay, but since § is

binary, the mean-independence is the same as (4)(i) to prove (5).
IS Ax = E(8]X) is a balancing score because, for any fixed t,

E(S1[X < t]|Ax) = E{E(S1[X < t]|X) | Ax} = E{E(SIX)1[X < t] | Ax} = AxP(X < t|Ax) = E(S8|Ax)- P(X < t|Ay),
take E(-|Ax) on Ay = E(6|X) to see Ay = E(S|Ay). Dividing the first and last expressions with E(6|Ay), for which

0 < A < 1is assumed, gives P(X < t|§ = 1, Ax) = P(X < t|Ax). Since the class of sets {X < ¢, t€ (real space)} is a
“probability determining class,” the distribution of X is the same across the § = 0,1 groups given Ay. O

A.2 Proof for Theorem 1 regarding (2)

Proof. With D = (D! - D%§ + DY, due to (4)(@) and (ii), we have

ED|S, &) = E(D - D8, )8 + E(DY|8, A)
= E(D! - D%A¢)§ + E(D°Ay)
= p(D! = 1, D° = 0A¢)S + E(D%y)
= P(CP|Ax)8 + E(D°|A).

(A1)

The first and last expressions reveal that E(D°|Ay) is the Ay-conditional intercept, and P(CP|Ax) is the Ay-con-
ditional slope of § to show the effect of § on D given Ay.
Take E(:|8, &) on ¥ = (Y1 - YO){(D* - D%)§ + D% + Y due to (4)(@) and (ii),

E(Y|8, &) = E[(Y! - YO{(D! - D")& + D}|8, Ax] + E(Y"|8, Ax)
= E{(Y1 - YO)(D! - DY), A}S + E{(Y1 - YO)DO + YO8, A}
= E{(Y! - YO)(D! - DY)|Ac}S + E{(Y = YO)DO + YA} (A2)
= E(Y! - Y9|CP, Ax)P(CP|Ax)S + E{(Y! = YO)DO + Y3}
= 1,(Ax)P(CP |Ax)S + E{(Y' - YO)DO + YO|A,}.

Define U, = Y - E(Y|8, Ax) © E(Y|6, A&x) = Y - U, = E(Uy)6, Ax) = 0 to rewrite the first and last expressions of
(A2) as (2). O

A.3 Proof for Theorem 2 (first ratio estimator)

Proof. Under the assumptions in Theorem 2, 4 is N-consistent [23, Theorem 5.2]. Hence, using @ in f,(s) is as
good as using a, and thus, the following deals with the asymptotic distribution for g,(s) with a known.
(1) Linearization

The linearization of fi,(s) to be used is
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b(s) _ b(s) __ b(s)

{@(s) - als)} + ——{b(s) - b(s)}+0p[%]

ats) a(s)  a(s)? a(s)
a(()) [a1(s) — ai(s) — {do(s) — ag(s)}] + ﬂ[{bl(s) = bi($)} - {ho(s) — bo(s)}]

1
ol
suppress 0,{(Nh)™/%} henceforth. Apply this linearization also to d;(s) and B'(s):

aja(s)  aa(s) _ ajals)
&) ols) ()2{1() c(s)} +

by(s) by(s) __by(s)
i(s) ¢i(s) c(s )2{ Gi(s) = ¢i(s)} +

ai(s) - ai(s) =

—{d;a(s) - aj(s)},

()

bi(s) - by(s) = ——{bjy(s) = by(s)}

()

where

2 K{(Si = $)IWID;,  aju(s) = E(DIs, § = j)fy;(s),

i€G;

djq(s) = Nh

by (s) = N, EZGK’{(S - $)IY;,  by(s) = E(Yls, & = )f;(),

&(s) = m ieZG]_K {(Si = )/}, ¢(s) = f ().
Substitute the linearizations for d;(s) - a;(s) and Bj(s) - bi(s) into (A3) to obtain
bs) _ bs) __bs)
aGs) a(s) a(s)z

- - 6O} + 1) - @)+ 02()2)

clé)z) {6s) - a()} +

{€o(s) — co(8)}

- ——{doa(s) — apa($)}| + ——{b1y(s) - byy(s)}

C()

b
Oz()z {o(s) = co(8)} -

a(s)
——{boy(s) - bOy(s)}]

()

()

Rewrite the preceding display by collecting terms, and then multiply by v Nh:

acs) a(s)

_b(s) 1 JNi{aia(s) — aa(s)} . b(s) 1 Noh{doa(s) - aoa(s)}
a(s)? a(s) N a(s)* co(s) JTo

. INiR {Dyy(s) = biy(s)} 11 ol {Dy(s) = boy(s)}
a(s) a(s) JT a(s) co(s) JTo

NLOXYONES byy(s)| YN {a(s) - a(s)}
as? a(s?  as) a(s)?| N

56 awls) 1 by©)| JRohién(s) - )}
a(s)® cofs?  als) co(s)? | Ny

(A3)

(A4)

The right side has six terms, which gives six asymptotic variances. Also, the three terms sharing the same
subscript 1 are correlated with each other to give three covariances, and the three terms sharing the same
subscript 0 also give three covariances. Hence, the asymptotic variance of vNh{fl,(s) — u,(s)} consists of 12

terms. We present some preliminaries next, and then turn to the 12 terms.
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(2) Preliminaries with x = IK(t)Zdt
With IK (t)tdt = 0 and the twice continuous differentiability of E(Y|s, §) and fsl-(s),

1k
h

S - 1 (t-
[ s]yw = jt= IEK[th]E(Ylt, 8 = j)fy (Dt

E
h

= IK(V)E(Yls + hv, § =j)fs]-(s + hv)dv = E(Y]s, § =j)fsj(s) + O(h%);

- I%K[I_TSIZE(YZH, 8 = fs;(H)dt

Y
E[lK[¥] Y6 = j

=jk@yﬂy%+hu6=n@@+hmm=50ﬂ&6=n@@x+oma

Analogous expressions hold when Y is replaced by D or YD. Observe (E%(:) = {E(-)})

Ly fsims)y - fifSislns |- Ly | LSy afifSs - |
NjiEZGth[ h ]Yl EhK[ e NjieZGj T T e s e e [
1_(S 1. (s :
s i .
E ZK[—h ]Y—EEK[ - ]Y|6—]’ 16 =
1 _(S-sY 1 (S-s
= E|l—3 215 =il - E4= _
Eth[ 3 ]YIS jl|-E hK[ - ]Y|6 ]’

WE(Y?s, § = j)fgi(s) k + O(h) = {E(Y1s, § = [)fg;(s) + O(hH)}-

Hence, invoking the Lindeberg CLT for triangular arrays,

LpfSi=s —d N{O, E(¥2s, § = )fy(s)K}.

L

]m5=4

ZEK[S"_S]Yi—E

Nh
An analogous result holds with Y replaced by D, and the asymptotic covariance between the two normalized
sums with Y and D is
1 (S-s) . .
E EK P YD|S = ji = E(YDs, § = j)f;(s)k + O(h?). (A5)

(3) Variances
Because of
INh{Gja(s) - aja($)} —¢ N{0, E(DIs, 8 = j)f;(s)K},

the variance of the first and second terms in (A4) is, respectively,
b(s)? 1 b(s)? 1
E(D|s, 6 =1 SK = ED|s,§ =Dk = W,
OROL st = oy fa(S)m @l e=h *6)
b(s)? 1 b(s)? 1
ED|s,§ =0 SK = ED|s,§ =0k = V.
as) asym YsolK = 4y oo ) w=r

Because of
JNR{Dy(s) = by(s)} —¢ N{O, E(Y¥s, & = j)f;(s)K},

the variance of the third and fourth terms in (A4) is, respectively,
E(Y?s, 8§ = Dk =

1 1 26 8 = 1
oG aGsym 190 = Wa 9k =20 for(S)m

11
a(s)> CO(S)ZnoE(Yzls’ 8= Ofso(S)k = a(s)? fyo(s)mo

E(YYs,§ = 0)k = V.
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Because of \/Njh{G(s) - cj(s)}—>dN {0, fsj(s)K}, the variance of the fifth and sixth terms is, respectively,

b(s) ai(s) 1 by(s) 2 ) b(s) og(s) 1 bys) 2, ]
a(s)? a(s)?  a(s) a(s)? ;1}051(3)'( =V o are) —feo(S)Kk = V.

a(s)® co(s)*  a(s) co(s)*| mo
(4) Covariances

For the covariance between the first and third terms, we need the expected value of the product between
JNh{a(s) — a1a(s)} and /Nih {Bly(s) — by(s)}, where only the overlapping N; terms are non-zero whose
expected value is E(YD[s, § = 1)f;,(s)k as (A5) shows. Hence, the desired covariance is

bs) 11 1 ) __bie) 1
a(s)* a(s) a(s) Cl(s)nlE(YDls’a D ()% a(s)? fo, (s)m

For the covariance between the first and fifth terms, we need the expected value of the product between
JNth{a14(s) — aia(s)} and Nih{&(s) - a(s)}, where only the overlapping N; terms are non-zero whose
expected value is E(D|s, § = 1)f;, (s)k. Hence, the desired covariance is

E(YD|s,§ = Dk = C,.

1
—E(D|s, § = Dk = C,.
m

_b(s) | b(s) ma(s) 1 Dby(s)
a(s)*|a(s)* a(s)*  a(s) a(s)®

Analogously, for the covariance between the third and fifth terms, we need the expected value of the product
between /Nih {Bly(s) = by(s)} and /Nih{G(s) - ¢(s)}, where only the overlapping N; terms are non-zero
whose expected value is E(Y[s, § = 1)f;,(s)k. Hence, the desired covariance is

1
—E(Y|s, 8 =Dk = Cs.

a(s) ~a) a()?|m

1 | b(s) aa(s) 1 by(s)
a(s)* a(s)*  a(s) a(s)?

As for the three covariance terms involving the three terms with the subscript 0, the terms analogous to C;,
G, and G; are, respectively,

b(s) v =
o TPk 8= Ok = Gy
b(s) | b(s) aea(s) 1 boy(s)| 1 e =
Ta(s)? |a)? (s a(s) CO(S)Z]HOE(D|S’ bTOKEG (A7)
1 b(s) aoa(s) 1 boy(s)| 1 v
@® [aP es? ~ a® eowp m %070 .

A.4 Proof for (9)

Proof. Take E(:|Ay) on Ax = E(8]X) to see Ay = E(S|Ay), which implies p = E(6|Ax = p). Now, rewrite the ratio in
(3 at Ay = p as:

E(Y8|Ax = p)IE(SlAx = p) = [E{Y(1 - &)lAx = p}/{l - E(6|A = p)}
E(DélAx = p)/E(S|Ax = p) = [E{D(1 = 8)|Ax = p}A1 - E(SlAx = p)}]
_ E[Y(@/p) - Y{1 - &)/A-p)} A = p]
E[D(8/p) - Di(1 - 8&)/(1 - p)} 1A = p]
_ E[{Ys( - p) - YA - $)p3/ipA - p)iiA = p]
E[{D5(1 - p) - D(1 - 8)p}{p(1 - p)}iAx = pl
_ _E{Y6A-p) - YA - 8plix =p; _ E{Y(S - p)lA = p}
E{DS(1-p)-DA-6)p A& =p} E{DES - pl = p}




DE GRUYTER Minimally capturing heterogeneous complier effect of endogenous treatment = 23

A.5 Proof for Theorem 3 (second ratio estimator)

Proof. Define d(p) and B(p) so that fI,(p) = 13(p)/d(p):
q = L u . h = i u .
a(p) = Nth . ]A and b(p) = Nth[ n ]B,.

Also, define their estimands: a(p) = E(A|p)f,(p) and b(p) = E(B|p)f,(p). The linearization analogous to (A3)
holds to give

1

VA a(p)

VNR{b(p) - b(p)} + 0,(D).

bp)  b(p)| _ b(p) .
acp) a(p)] a(p)z\/N_h{a(p) a(p)} +

The asymptotic variance from the two terms on the right side is

b(p)” b(p)

a(5)4E(A2IP) + a(p)zE(lep) - za(;’)gE(ABlp) -k, (p)

) E4(Alp)ﬁ(p)4E(A P )+E2(Alp)ﬁ(p)2E(B P) 2153(A|p)ﬁ(p)3E(ABlp ()
_EBP) ooy L pogapy g EEP)
Fapy, ) EAP * oy EEI) 2 gy oy EABIPE

= ; 2 2 2 2 _
(o E ) EAIPENBIP) + EGFPEXAIp) - 2EAIDEBIPIEABIP)): g

A.6 Proof for Theorem 4

Proof. With y,(Ax) defined in (1), rewrite the E(Y|6, Ax) equation in (A2) as:

E(Y18, &) = i(A)P(CPIA)S + o) + py(A)E(D°|Ay)
= 1, (A0D + y(Ax) + 1 (A){P(CP|Ax)S + E(D°|Ay) - D}.

Define { = Y - E(Y|6, &) < E(Y|8, &) = Y - { = E({|8, A) = 0 to have

Y = iy(A0)D + uo(e) + iy (A)P(CP|A¢)S + E(D°|Ay) = D} + ¢
= 1 AOD + po() + Uy, Up = uy(A){P(CPIA)S + E(D°|Ax) - D} + .

(A8)

E(U48, &) = 0, as E(]6, A¢) = 0 and E(D|8, A) = P(CP|A)8 + E(D"}y) in (AL).
Define (D° = 1, D! = 1) as “always takers,” and (D° = 0, D! = 0) as “never takers”; (4)(ii) rules out “defiers”
(D® =1, D! = 0). With D = (1 - §)D° + D'§, we have
Cov(8, D|Ay) = E(8D|Ax) - AE(D|Ay)

= E(8DYAx) - AcE{(1 - 8)D° + D§|Ag}
= E(8D"Ax)(1 - A) = E{(1 - §)D°|Ax}Ax
=P =116 = 1, A)A(1 = A¢) = P(D° = 1|8 = 0, A)(1 - A
= {P(always taker, complier |Ay) — P(always taker, defier |Ax)}(1 - Ax)Ax
= P(complier [Ax)(1 - Ax)Ax = E(D* - D%\ Ax)(1 — Ax)Ax > 0 (defiers ruled out).

Using the first and last expressions gives

E{(S - Ax)DMM’} = E{Cov(8, D|Ax)MM’} = E{E(D* - DAy)(1 - Ax)Ax MM}, O
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A.7 Proof for Theorem 5

Proof. Let 6 be the true value in the parameter space Ag whose generic element is a. Define

ow (0)

W) = {1, (X'0), (X'0), ...(X'0)’Y so that =VW-X.

The IV for DW(H) is éW(6), and the IVE ﬁ satisfies
%gm(é, B.7)=0, m(ab,g)={Y - W(a)g - DW(ayb}Hs - ®(X'a)}W(a),
where a isjor G,Ab is for B, and g is for y. Taylor-expand the moment condition (times +/N) around g to obtain,
for some f € (B, B),
0= Im@.pp) %ZWW(B ) (89)
Solve this for VN (B - B) and then further Taylor-expand m(6, B, y) around m(6, B, y):

om0, B, y)
b’

am(e B y)

JN(B - B) = -E™

fz 0.8, + LD NG - o)
(A10)

E{ WNG = p)| + 0p(D) =4 N(O, ),

where

om(6, B, y)
ab

om(b, B, y)
ag/ ’1}7)

I3

“E(mn))- E™Y

am(o, B,
m( ﬁy)’7

n=m(,B,y) +E o’

gt E

and (ng, qﬁ) are the influence functions for (6, y).
Asm(a,b,g) ={Y - W(a)'g - DW(a)b}{$ - ®(X’a)}W(a) and 0W(6)/0a” = VWX,

am(e,
% ~(VW'y + DYW'B)eWX’ - VO(X'O)WX’ + VEVWX',
IMOLY) _ _epyyr, CMOLY) oy

o’ ’ o’ ‘

E{om(6, B, y)/0g’} = 0 due to E(¢]X) = E(§ - A&|X) = 0. As for E{om(0, 8, y)/da’}, we have E(VW’yeWX") = 0
Hence, the asymptotic variance is

EeDWW)E(n,n,)E"(eDWW"), 1, = VeW - E{DVW'BeWX’ + Vo(X'O)WX' - VeVWX '}y .1

A.8 Proof for Theorem 6

Proof. The proof for Theorem 6 is almost the same as that for Theorem 5. Define

M(6)
oa’

M(0) = {1, D(X'0), D(X'0)?, ..., DX 0) Y so that 2 =VM - X

The IV for DM is éM, and the IVE § satisfies
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%Zm(é, B.7) =0, m(a,b,g)=1{Y - M(a)yg - DM(a)b}{s - (X a)}M(a).

(A9) and (A10) hold with (8, §) and (2, n,) replaced by (8, 7) and

_,|om(, B, y) _4|om(@, B, y)
— 1 . n. -1
%= ab’ ECn;n,) E ab |
_ om0, B, y) om(6, B, y)
nsz(G’B) V) +E aa/ ’]é +E ag/ }7:

and 1; is the influence function for y.
With m(a, b, g) = {Y - M(a)'g - DM(a)'b}{§ - ®(X'a)}M(a),

a 0’ b
% =-(VM'y + DVM'B)eMX’ - To(X'0)MX’ + TeVMX’,
w = _SDMM, w = _SMMI

ab, ’ ag/ .

E{om(0, B, y)/dg’} = 0 and E(VM'yeMX’) = 0, and the asymptotic variance is
E7(eDMM")E(n,n,)E}(eDMM’), 1, = TeM - E{DVM’'BeMX’ + T$p(X'0)MX’ — TeVMX'}n; .
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