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Abstract: Investigating the causal relationship between exposure and time-to-event outcome is an impor-
tant topic in biomedical research. Previous literature has discussed the potential issues of using hazard
ratio (HR) as the marginal causal effect measure due to noncollapsibility. In this article, we advocate using
restricted mean survival time (RMST) difference as a marginal causal effect measure, which is collapsible
and has a simple interpretation as the difference of area under survival curves over a certain time horizon.
To address both measured and unmeasured confounding, a matched design with sensitivity analysis is
proposed. Matching is used to pair similar treated and untreated subjects together, which is generally more
robust than outcome modeling due to potential misspecifications. Our propensity score matched RMST
difference estimator is shown to be asymptotically unbiased, and the corresponding variance estimator is
calculated by accounting for the correlation due to matching. Simulation studies also demonstrate that our
method has adequate empirical performance and outperforms several competing methods used in practice.
To assess the impact of unmeasured confounding, we develop a sensitivity analysis strategy by adapting
the E-value approach to matched data. We apply the proposed method to the Atherosclerosis Risk in
Communities Study (ARIC) to examine the causal effect of smoking on stroke-free survival.

Keywords: confounding bias, marginal effect, noncollapsibility, propensity score matching, sensitivity
analysis
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1 Introduction

1.1 Causal inference for observational survival data

In biomedical studies, time-to-event is a commonly used outcome measure, and the statistical analyses for
such data are usually referred to as survival analysis. Investigating the causal relationship between expo-
sure and the time-to-event outcome is an important topic, with either randomized trials or observational
studies. Causal inference for observational survival data has several challenges. First, since not all subjects
can be observed for the full duration of time to event, the survival data suffer from censoring, which is a
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type of missing data problem. Therefore, standard statistical methods are usually not sufficient to handle
both censoring and the missingness of potential outcomes. Second, the hazard ratio is a popular choice for
measuring the association of survival outcomes between two groups, for convenience and easy interpreta-
tion. However, the hazard ratio is generally not an appropriate marginal causal effect measure due to its
noncollapsibility property [1-3]. Other effect measures need to be considered to warrant valid marginal
causal interpretation for survival data. Third, confounding is a major challenge in observational studies,
which includes both measured and unmeasured confounders. Propensity score adjustments are popular
tools for controlling the observed confounding [4]. But even with successful adjustment of observed con-
founding, observational data are still vulnerable to unmeasured confounding. Thus, appropriate sensitivity
analysis needs to be developed to assess the impact of hidden bias [5].

The issues of using the hazard ratio as a marginal causal effect measure have been discussed exten-
sively in the literature. Greenland et al. [1] pointed out that the hazard ratio has the noncollapsibility
property when the treatment effect is nonzero. Hernan [6] argued that using the hazard ratio as a treatment
effect measure may not have valid causal interpretation even in randomized studies, since the hazard ratio
has a built-in selection bias and may change over time. Martinussen and Vansteelandt [2] studied the
estimation of the treatment effect in the presence of confounders and found that the amount of confounding
due to noncollapsibility in the Cox proportional hazards (PH) model would be very difficult to quantify.
Aalen et al. [7] offered a more theoretical perspective on the conditions under which the hazard has a valid
causal interpretation. They suggested that the hazard function h(t, x, z) must satisfy an additive assump-
tion h(t, x, z) = a(t, z) + b(t, x) to yield a causal interpretation, where a(t, z) is a function of survival time ¢
and treatment assignment z and b(t, x) is a function of survival time t and covariates x. Ni et al. [8] further
illustrated that even under a PH model, the marginal hazard ratio is not a constant, after integrating out
covariates. Thus, a valid and simple-to-use causal effect measure for survival outcomes is highly desirable.

1.2 RMST difference as a marginal causal effect measure

The restricted mean survival time (RMST) has been used in randomized clinical studies to evaluate treat-
ment effects [9,10]. The RMST difference is more advantageous than the hazard ratio as a marginal effect
measure. First, the RMST has an intuitive interpretation as the area under the survival curve over a certain
time horizon. Second, the RMST difference is the difference of truncated mean survival time between two
groups, which is essentially a mean difference. So it is collapsible, meaning that the marginal and condi-
tional effects are compatible. Third, the treatment effect measured by the RMST difference can be asymp-
totically unbiasedly estimated without PH assumption, while the conventional Cox model heavily relies on
such assumption.

To take advantage of the collapsibility of RMST difference, we can construct RMST regression by
including covariates to control for confounding or increase estimation efficiency. Several methods of
regressing RMST on multiple covariates have been developed. Karrison [11] examined the RMST as an
index for comparing survival in two groups and proposed to model the hazard with piece-wise exponential
models assuming covariates have a multiplicative effect on the hazard. Zucker [12] further simplified the
implementation procedure for Karrison’s method and provided an extended version to achieve robustness
against model misspecification. Andersen et al. [13] compared several regression analysis methods of mean
survival time and RMST, and they proposed a regression method based on pseudo-observations. Tian et al.
[14] developed an RMST regression model with adjustment for baseline covariates. They constructed an
estimating equation with the inverse probability of censoring weighting (IPCW) to obtain consistent esti-
mates. Wang and Schaubel [15] modeled the RMST using generalized estimating equation methods, which
allows censoring to depend on both baseline covariates and time-dependent factors.

Although RMST differences have been reported in many randomized clinical studies, there is only
limited discussion of using RMST in observational studies, probably due to the challenge of confounding
adjustment. Propensity score weighting and stratification methods have been explored in the literature.
Zhang and Schaubel [16] derived a double-robust estimator for RMST difference based on the inverse
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probability of treatment weighted (IPTW) estimating equation with augmentation term. To adjust for con-
founding factors, they built three working models for survival time, treatment assignment, and censoring,
then incorporated them into the augmentation term. They assumed the PH assumption in outcome mod-
eling, which might be violated in practice. Conner et al. [17] proposed a weighted method to compare the
adjusted RMST difference directly. Unlike Zhang and Schaubel’s work, Conner et al. estimated the RMST
based on the Kaplan—Meier (KM) estimator rather than the Nelson—Aalen estimator. They adjusted the KM
estimator with IPTW and derived the adjusted RMST by integrating the IPTW-adjusted KM estimator. Ni
et al. [8] proposed a propensity score stratified RMST difference estimation strategy to examine the marginal
causal effect with observational survival data, which can combine stratification with further regression
adjustment. Some existing methods still rely on modeling assumptions, and no matching based method has
been proposed. More importantly, none of them touches on unmeasured confounding assessment, which is
a big issue in observational studies. The matched design provides more flexibility in confounding adjust-
ment. Observed confounding can be controlled via matching and additional regression modeling. Unob-
served confounding can be explored via sensitivity analysis in matched datasets. To address the void of
literature, we propose a matching-based RMST difference estimation strategy, which also facilitates the
implementation of sensitivity analysis for hidden bias.

1.3 A motivating example: atherosclerosis risk in communities (ARIC)

In the United States, stroke is a severe disease that causes serious disability for adults and is a leading cause
of death [18,19]. Several previous studies have shown that smoking is an important risk factor for stroke
[20,21], and even passive smoking could increase the risk of stroke [22]. Although the causal pathway
between smoking and stroke is unclear, Shah and Cole [23] found that the more people smoke, the more
likely they were to have a stroke, and people who quit smoking showed a significantly lower risk of stroke,
which provides some evidence for the causal relationship between smoking and stroke.

The ARIC study [24] is a prospective cohort study conducted in four U.S. communities. Four thousand
adults aged 45-64 years were randomly sampled from each of four U.S. communities, and the final dataset
contains information of 15,792 individuals. After a baseline examination during 1987-1989, subjects were
followed up for the development of incident ischemic stroke, and the first definite or probable hospitalized
stroke. Due to the length of follow-up, not all event times were observed, so the data were subjected to
censoring. One primary outcome is the time to first stroke or death (whichever comes first), and a subject is
censored if the incidence of stroke or death is not observed by the end of the study. We try to answer a
causal question, using this ARIC dataset: how smokers’ stroke-free survival would change had they not
smoked at baseline. Matched design is a natural choice to address this as it is about the causal effect of
those being exposed to smoking, rather than for the entire population.

Existing literature mostly used the Cox PH model to analyze the ARIC data. Kwon et al. [25] and Ding
et al. [26] studied the association between smoking status and risk of stroke, using the Cox PH model to
estimate the hazard ratio (HR) of smoking status on the risk of stroke. Thus, the estimated effects were
interpreted as conditional rather than marginal. Moreover, it is possible that some prognostic factors were
not included in the confounder adjusted regression model, which would lead to biased estimates of con-
ditional effects. An analysis with RMST as the effect measure may provide new insight into this research.

In this article, we propose a propensity score matching-based RMST difference estimator and develop a
corresponding sensitivity analysis strategy for assessing the impact due to unmeasured confounding. We
apply this method to the ARIC study to examine the causal effect of smoking on stroke-free survival. The rest
of this article is organized as follows: In Section 2, we set up the notation and assumptions and describe the
proposed RMST estimator with its theoretical properties. In Section 3, we conduct a simulation study to
examine the empirical performance of our proposed method under different scenarios and also compare it
with several commonly used methods in practice. In Section 4, we develop a sensitivity analysis strategy by
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adapting the E-value approach to matched data. In Section 5, we present the analysis results of the ARIC
data. Section 6 concludes this article with some discussions.

2 Method: matched RMST difference estimation

2.1 Notation and assumptions

We follow the potential outcomes framework proposed by Rubin [27] to define the causal effects. In a two-
arm survival analysis study, let A be the treatment assignment indicator (or more generally, the exposure
status), such that A = 1 indicates being exposed to the treatment and A = 0 indicates being exposed to the
control. Let T? denote the potential event time and S%(t) denote the corresponding survival function for a
subject if under treatment value a. The following two assumptions are extensions of commonly used
assumptions for causal inference in observational studies [28].

Assumption 1. Stable unit treatment value assumption (SUTVA). The potential survival times for one
individual in the population do not vary with the treatment assigned to others. There are no different
versions of the specified treatment level.

Assumption 2. Treatment assignment is strongly ignorable given covariates X, that is, (T, T) 1L A|X
and 0 < pr(A =1X) < 1.

The potential restricted event time is defined as Z¢ = min(T?, 1), where 7 is the truncation time point,
which is usually prespecified at the design stage based on clinical relevance and study feasibility. Both T¢
and Z? are subject to censoring by a random variable C. We introduce two additional assumptions for
survival data.

Assumption 3. Censoring is independent of potential survival times and baseline covariates within each
treatment group, that is, C 1L (T°, T)|A and C 1L X|A.

This assumption ensures that we can asymptotically unbiasedly estimate the survival function via the
KM approach within the matched sample. This also implies the conditional independence between cen-
soring and the truncated survival times, Z4.

Assumption 4. The truncation time point is smaller than the largest follow-up time, T < tyax, Where tpax is
the largest follow-up time (event or censored).

Assumption 4 is a technical one to ensure that the prespecified 7 is clinically meaningful, and RMST can
be asymptotically unbiasedly estimated.
Let 62 = I(Z% < C) denote the censoring indicator, and then the observed restricted time is defined as

Y2 = min(Z4, C) = (29)%'C-%, For a subject under treatment value a, the potential outcome of RMST is
defined as u%(t) = E(Z%) = I;S“(t)dt, then the average treatment effect (ATE) on RMST, denoted by As7g,

can be defined as follows:

T

Dare = pi(1) - p°(1) = E(ZY) - E(Z°) = j[Sl(l‘) - S%p)ldt.
0

Then the average treatment effect for the treated (ATT) on RMST, denoted by Aarr, can be defined as follows:



DE GRUYTER Matched design for marginal causal effect on RMST = 5

Aurr =y ((T) = (D) = E(ZY1A =1) = EZO%A = 1) = | [Si1() - SE-1(D)]de,

O C—

which is more meaningful for many observational study applications, where only a portion of the popula-
tion, not everyone, could have been exposed to the treatment. Since Z% = min(T%, 1) and 7 is a fixed
constant, (T°, TY) 1L A|X implies (Z°, Z') 11 A|X, and similar conclusions could be made about assumption
3. Following Theorem 3 in Rosenbaum and Rubin [4], we can establish the strong ignorability based on
propensity score e(X) = P(A = 1|X) for survival outcomes in proposition 1 (proof provided in Appendix A).

Proposition 1. Given Assumptions 1 and 2, we have (T° T') 1L Ale(X), which further implies
(Z°, ZY 11 Ale(X).

2.2 Matched RMST difference estimator

In randomized trials, the marginal causal effect of the treatment on RMST can be asymptotically unbiasedly

estimated [29] by direct contrast of group-specific RMST estimates since confounding effects are eliminated

by design. In observational studies, however, additional adjustments are needed for confounding control.

Propensity score-based approaches are popular for this purpose, which may take the form of matching,

stratification, or weighting [4,30]. Among different propensity score adjustment strategies, matching is a

design tool that selects comparable control units to match with treated units, and it often results in more

robust causal effect estimates as it does not rely on outcome model specification. Usually, matching uses all

treated and a subset of control units, so it estimates the ATT [28].

Our proposed propensity score matched RMST estimation includes the following steps:

(1) Propensity score estimation. The propensity score is defined as the conditional probability of treatment
given a vector of observed covariates [4]. We estimate the propensity score by fitting a logistic regres-
sion on A with X, though other estimation options, either parametric or nonparametric, are also
available [31, 32].

(2) Propensity score matching. We use the optimal matching algorithm by Hansen and Klopfer [33]
to create pair matches without replacement based on the estimated propensity score, and the
unmatched controls will be removed from the matched sample. Matching quality is assessed by
checking the postmatching covariate balance. Any substantial covariate imbalance would lead to a
recalibration of the propensity score model. We will proceed to the next step only after a satisfactory
balance is achieved. Note that matching is used as a design procedure, and the specific propensity
score values are not used in the subsequent estimation process (e.g., not a part of any estimating
equations). So the uncertainty of propensity score estimation is not considered in subsequent ana-
lysis and variance calculation.

(3) Treatment effect estimation. Suppose we obtain n pairs of data through matching, where each pair

contains exactly one treated and one control subject. We estimate the RMST, u(t), by fi(t) = f;ﬁ (tH)d(e),

where § (t) is estimated by the nonparametric KM method. Let §O(t) and S 1(l‘) denote the KM estimates of
survival function for control and treated groups in the matched sample, respectively. On the basis of the
matched sample, our estimator for the averaged treatment effect on the treated (ATT) is

Barr = A1) - pO() = j[s“a) ~ .
0

The following two propositions show that the matched RMST difference estimator is asymptotically
unbiased (both proofs are provided in Appendix A).
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Proposition 2. Given Assumptions 1-4, the RMST estimator based on the KM method given propensity score
e(X) and treatment group A, denoted as Py, IS an asymptotically unbiased estimator for Yy,
given T < tyay.

Proposition 3. Given Assumptions 1-4, Ayrr is asymptotically unbiased.

2.3 Variance estimation

The matching process may introduce correlations between the two subjects in the same pair, as they are

matched on similar propensity scores. Therefore, the variance calculation of Ayrr needs to account for such
correlation:

T T T T
var(Ayrp) = var j $to)dto | + var Iﬁl(tl)dtl ~ 2cov I§0(to)dto, j S'eda |.
0 0 (0] 0

The overall variance has two components, the marginal variance of RMST estimates and their covariance.
For two dependent event times with independent censoring and no competing risk, Murray and Cole [34]
provided closed-form asymptotic covariance formulas for KM survival estimates and corresponding RMST
estimates. To address the dependence structure introduced in the matching process, we adapt their for-
mulas to compute the covariance between the control and treated group RMST estimates in the matched
sample.

Specifically, let T be the event time for a subject from the control group with marginal hazard function
ho(-), and T; be the event time for a subject from the treatment group with marginal hazard function h;(-),
then the event times for a matched pair of control and treated subject can be denoted as (T, Tp). Let Co and C;
be the censoring variables for the control and treated subject, respectively. Then the observed time can be
denoted as T, = min(Tp, C,) for control group with censoring indicator 8, = I(Ty < Co) and T; = min(T;, C;)
for treated group with censoring indicator 6; = I(T; < C;). Then, the joint hazard function is h;(u, v) =
limAu,Av_,oﬁP(u <Ti<u+Mu,v<Ti<v+A,68=1206=1T>u T >v)wherei,j ¢ {0, 1}, and the con-

ditional hazard function is hy;(ulv) = limAuHOﬁP(u <Ti<u+Au, & =1T=2u T >v), where i,j € {0, 1}.
Then, the covariance between two RMSTs can be computed as follows:

b f

T T T T
cov j to)dto, Iﬁl(tl)dtl 1 I Jﬁo(to)ﬁl(tl)jIGOl(u,v)dvdudtodtl
n
[0) 0

0o 00
1 0 N
“n j,[ _[S (tdt _[S ®)dt |Go(u, v)dvdu,
n
00 v u

where Goy(u, v) = o 2820 [y (u, v) — hops(ulv)a(v) = hyo(Viho(w) + ho()hy()]. Detals about the com-

putation of function Gy;(u, v) are included in Appendix C.
For the marginal variances, two methods may be considered:

(1) Murray’s method: The aforementioned covariance formulas can be used to compute the marginal
variance, since the marginal variance of RMST could be written as the covariance with itself, that

is, var( j;s‘(t)dt) - Cov[ [ s, I(:.§(t)dt].

(2) Hosmer’s method: we may also consider the computation method introduced in the study by Hosmer
etal. [35]. Lett < t, <---< tprepresent distinct event times. For each k = 1,..., D, let ¥, be the number of
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surviving units just prior to event time t;, and let di be the number of events at t;. Let S (t) =]_[;‘=1( - %’)

denotes the KM estimate of the survival function at event time t;, and let N; be the number of t; values
that are less than truncation time point 7, and then the RMST is estimated by

T NT R A
[30at = Y st - b0+ 5(en) (7 - ),
0 k=1

and the marginal variance of RMST can be estimated as follows:

T
N; 2
var IS(t)dt -_m Z dAi s
o m_1k=1Yk(Yk_dk)

where A = [ $(0dt = 3,8t — 1) + S(t)(7 ~ t) and m = TYyd

In our simulation studies, we present the variance estimates under Murray’s method since the results from
these two methods turn out to be very close.

3 Simulation studies

3.1 Data generation

To assess the empirical performance of the proposed method, we simulate an observational dataset with

known confounders. Several existing methods for causal inference with survival outcomes are compared.

We generate ten independent baseline covariates denoted by X; to Xjo. Among them, X, X5,..., Xy are

five binary covariates following Bernoulli distribution with parameters 0.2, 0.4, 0.6, 0.8, and 0.5, respec-

tively, and X, X4, ..., Xjo are five continuous covariates following the standard normal distribution. We then

generate potential survival time T' as the outcome under treatment and potential survival time T° as the

outcome under control from Weibull distribution [36]. Specifically, we simulate a uniform random variable
Q on [0,1] and then generate the potential survival time as follows (j = 1, 0):

1

Ti = (_ log(Q) )vi

Aojexp(Byj + X + 1.2X, + 1.4Xe + 1.6X; + 1.6X5 + 1.4Xo + 1.2X10)

>

where A is the treatment indicator and B, is the conditional multiplicative treatment effect on the hazard
function given covariates, and v; and A; are the shape and baseline scale parameters of Weibull distribution
for treatment group j, respectively. When vy = v;, we have the PH model, otherwise the model is nonpro-
portional hazards (NP). The treatment indicator A is generated from Bernoulli distribution with P(4A = 1|X)
defined by the logistic model logit(P(A = 1|X)) = —1.95 + log(1.2)X; + log(1.1)X, + log(1.4)X; + log(1.2)X, +
log(1.6)Xs + log(1.3)Xe + 10g(1.8)X;. Thus, X;, X,, X¢, and X; are true confounders. This setup allows about
20% of the population to be exposed to treatment.

In the simulation, we assume censoring variable C is marginally independent of T% and X over treat-
ment indicator A for simplicity, and C is generated from an exponential distribution with rate parameter y,
which is chosen to create four different levels of censoring. For simplicity, we use the same censoring
variable for both arms in the simulation.

Let T be the prespecified truncation time point, and the observed event time is T = T°(1 — A) + T!A. We
generate the restricted event time Z = min(T, 1) and the observed restricted time Y = min(Z, C) =
min(T, C, 7). The restricted event time Z is censored if the observed time C < Z with censoring status
67 = I(Z < C), otherwise it is noncensored.
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We simulate 500 datasets of sample size 2,500 for each scenario and set the truncation time point 7 to
100. The true RMST difference is determined by calculating the empirical difference between the potential
RMSTSs under treated and control conditions, and we compute both ATT and ATE versions of true RMST
difference to serve as benchmarks for different methods as appropriate. In the jth simulated dataset, we

170
calculate A; = Z?zlz’ Z

and n is the sample size of the treated group (for ATT) or the entire sample (for ATE). Then, the true

marginal effect on RMST is calculated as Ag = ZJS.S?%.

Both PH and NP settings are examined. Under both settings, we set B, to five different values:
0, -0.4, -0.8, —1.2, and -2. For each treatment effect value, we also consider four different levels of cen-
soring rates (CRs), which are 0, 20, 40, and 60%. Detailed parameter setup for PH and NP scenarios in

observational studies are summarized in Table 1.

, where Z# = min(T#, 1) is the potential restricted event time for the ith individual

3.2 Estimation strategies

The proposed method is compared with three existing estimation strategies:

(1) Propensity score matched RMST estimation. This is our proposed method as described in the previous
section, and the propensity score is estimated using the correct model specification. The estimated
treatment effect is compared to the ATT version of the true RMST difference in our simulation.

(2) Conner’s IPTW RMST estimation. This method is proposed by Conner et al. [17], and they estimated
the RMST based on the inverse probability treatment weighting (IPTW) adjusted KM estimator. In our
simulation, we use the ATT version of weight to adjust for observed confounding, so it is compared to
the true ATT RMST difference. The propensity score is estimated using the correct model specification.

(3) Tian’s RMST regression. This method is proposed by Tian et al. [14], which uses the IPCW estimating
equation with identity link function to estimate the treatment effect on RMST with adjustment for
covariates. The estimated treatment effect is compared to ATE version of the true RMST difference.
We consider four different outcome models in Tian’s RMST regression: (1) outcome model using the treatment
indicator only; (2) outcome model using the true covariate set; (3) outcome model using all covariates; and
(4) outcome model using a wrong covariate set. Due to space limitation, only the results of RMST regression
with true covariates are summarized in the following section, which has the best performance among the four
models. An important caveat is that the RMST regression model with the true covariate set does not represent
the true outcome model since the data are generated based on a hazard model.

Table 1: Simulation studies: parameter setup for observational studies scenarios with independent censoring

Vo, Ao) (v1, Ay) B Rate parameter gamma

0% 20% 40% 60%

Nonrandomized PH

(1, exp(=6)) (1, exp(=6)) 0 1.00 x 10°8 0.0051 0.0142 0.0467

(1, exp(=6)) (1, exp(=6)) -0.4 1.00 x 10°8 0.004616 0.0124 0.0345

(1, exp(=6)) (1, exp(-6)) -0.8 1.00 x 1078 0.00421 0.011 0.0272

(1, exp(-6)) (1, exp(-6)) -1.2 1.00 x 1078 0.003872 0.00992 0.0226

(1, exp(-6)) (1, exp(-6)) -2 1.00 x 1078 0.0034 0.0084 0.01731
Nonrandomized nonPH

(1, exp(-=6)) (1, exp(=6)) 0 1.00 x 10°8 0.0051 0.0142 0.0467

(1, exp(=6)) (1.5, 1.23 x 1074) -0.4 1.00 x 10°8 0.003644 0.00904 0.0189

(1, exp(-6)) (1.5,1.23 x 1074 -0.8 1.00 x 1078 0.00343 0.0084 0.01692
(1, exp(-6)) (1.5,1.23 x 107%) -1.2 1.00 x 1078 0.00324 0.00787 0.01542

)

(1, exp(-6)) (1.5,1.23 x 1074 -2 1.00 x 108 0.00295 0.00702 0.01335
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(4) Inverse probability treatment weighting (IPTW) Cox regression. This method estimates f3,. The propensity
score is estimated using the correct model specification. We use the ATT weight to fit a weighted Cox
regression model and regard f, as the truth to calculate the bias and coverage probabilities since there
is no single value true marginal hazard ratio. We consider four different outcome models in the IPTW
Cox regression : (1) outcome model using the treatment indicator only; (2) outcome model using the true
covariate set; (3) outcome model using all covariates; (4) outcome model using a wrong covariate set.
Due to space limitation, only the results of IPTW Cox regression with the true covariate set are sum-
marized in the following section, which has the best performance among the four models. We under-
stand that the results here are not directly comparable to the first three methods, as they are based on
different effect measures. Due to the high popularity of the IPTW Cox model in practice, however, we
think there is some value in presenting the results as a reference.

3.3 Performance assessment

We summarize treatment effect estimates from 500 Monte Carlo iterations into four measures: (1) percen-
tage bias (Bias %), which is the bias divided by the true value for nonzero treatment effect scenarios. For the
zero treatment effect scenario, we just report the bias. The bias is computed as the average of 500 treatment
effect estimates minus the truth; (2) coverage probability (CP), which is the proportion of 500 95% con-
fidence (CIs) intervals that cover the truth; (3) model-based standard error (SEM), which is the average of
the 500 estimated standard errors from the model-based formula; and (4) empirical standard error (SEE),
which is the standard error of the 500 point estimates of the treatment effect.

3.4 Results

Simulation results under the PH setting are summarized in Table 2. The proposed matched RMST method
generates unbiased estimates of the target parameters under most scenarios, and the coverage probabilities
are around 95%. For a small effect size (8, = —0.4), the bias is a bit large for a high CR. Conner’s method has
a similar performance, with moderately larger biases. Averaging across all scenarios, bias from Conner’s
method is 65% higher than our method. The results of the IPTW Cox model are mostly good since we use the
correct outcome model. The CP may be a bit lower than the nominal level, sometimes, which may be due to
the underestimated standard error. Tian’s RMST regression method shows a relatively large percentage bias
and lower CP, especially under scenarios with large treatment effects. This is likely due to the incorrect
covariate functional form specification in the model even though we include the right covariate set.

Simulation results under the NP setting are summarized in Table 3. Both our matched RMST method and
Conner’s method have similar performance (with the latter having more bias) as under the PH setting since these
methods do not rely on the PH assumption. Tian’s RMST regression method performs somewhat worse, with a
bigger bias and much lower than ideal coverage probabilities. Because the PH assumption does not hold here,
the IPTW Cox model completely misses the target with large bias and very small coverage probabilities.

4 Sensitivity analysis based on matched design

4.1 An overview of E-value

Propensity score adjustment can only control for observed confounding. Unmeasured confounding is likely
to be present in observational studies since researchers have no control over the treatment assignment.
Thus, sensitivity analysis is important to assess the impact of hidden bias.
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Ding and VanderWeele [37,38] developed a new sensitivity analysis strategy, known as the E-value
method. It assumes a hypothetical unmeasured confounder, U, and provides a lower bound of the strength
of association on the risk ratio scale that U would have both the exposure and the outcome, to explain away
the observed association. Below is a brief review of the conventional E-value method to set the stage for our
sensitivity analysis of RMST difference.

Let A denote a binary exposure and D denote a binary outcome, X is a vector of measured confounders,
and U is a binary unmeasured confounder with levels k = 0, 1. The observed relative risk of exposure A on
the outcome D within stratum of X = x is expressed as follows:

PD=14=1,X=X)
PD=1A=0,X=x)

obs _
RR AD|x —

Then the relative risk of exposure on level k of the unmeasured confounder U within the stratum of X = x is
expressed as follows:

PU=kA=1,X=x)

PU=kA=0,X=x)

RR gy, kix =

Since U is not observed, to facilitate the analysis, we take the maximal relative risk of A on U within stratum
X = x, denoted as RR4pyjx = maxRRay xjx. Similarly, we can define an upper bound for the relative risk
between U and D as RR ypjx = max(RRypja=o,x» RRupja=1,x), where RRypja,x is an upper bound of the relative
risk between U and D in exposed or unexposed group, within stratum X = x. If X and U are sufficient to
control for all confounding effects, the true causal relative risk is

i oPD=14=1,X=x,U=KkPU = kX = x)
Y PD=1A=0,X=x,U=kPU=kKX=x)

true _
RR AD|x —

The relative risk pair (RRay|x, RRyp|x) are used to measure the strength of confounding between the expo-
sure A and the outcome D induced by the confounder U within the stratum of X = x. Even though we cannot
estimate the true relative risk, its ratio with the observed relative risk is bounded by the following quantity,
which is a function of the sensitivity parameters RR 4yx and RRypx:

RROAbDS|X - RRyyix X RRypix
RRYS, ~ RRayjx + RRypx — 1

For given values of RR 4yjx and RRypx, we can identify a range of possible values for the true relative
risk. If the range covers one, the observed significant association would be explained away by the presence
of unmeasured confounding at the given magnitude.

4.2 Sensitivity analysis on RMST difference with matched data

This E-value method can be adapted to conduct sensitivity analysis for our RMST difference estimator in
matched design. There are a series of propositions to justify the theoretical validity of using the E-value for
the RMST difference estimator. In the interest of space, we just illustrate the main idea in this subsection
and present the propositions and their detailed proofs in Appendix B.

Let A be the treatment indicator and Z = min(T, 1) be the RMST outcome, where T is the event time and
T is the truncation time point. Let e(X) be the propensity score and U be a binary unmeasured confounder
with levels k = 0, 1. The relative risk of treatment A on level k of the unmeasured confounder U with a given
propensity score value e(X) = e(x) is defined as follows:

P(U=KkA =1,eX) = e(x))
P(U=kA=0,eX) =e(x))’

RRyy klewx) =

The maximal relative risk of A on U with e(X) = e(x) is RRayjex) = maxiRR4y xjex). We define the expecta-
tions of the RMST outcome Z given U = u and e(X) = e(x) with and without treatment as follows:
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n(w)=EZA=1,U=u,eX) = ex)),
r(uw) = E(Z|A =0, U = u, e(X) = e(x)).

Then, the mean ratios of U on Z with and without treatment with e(X) = e(x) are defined as follows:

max, i (w)
—
min,n(w)

max,ro(u)

MRyzia-0,e(x)=e(x) = ——
Uu

MRuyzja-1,ex)=e(x) =

MRyzjex)=ex) = Max(MRyzja=1,e(x)=e()» MRuz|a=0,e(x)=e(x))-

As shown in proposition 4 in Appendix B, since both unmeasured confounder parameters RRayjecx)=ex) and
MRyzje(x)=e(x) are no less than 1, we can identify the bounding factor as follows:

RR4yjex)=etx) X MRyzjer)=e(x)

BFyje(x)=e(x) = (1)

RRAve(x)=e) + MRuzje0)=e) = 1°
where (RRyyjex)=e(x)» MRuzjex)=e(x)) are prespecified sensitivity analysis parameters. In theory, one can
identify a separate bounding factor for each matched pair and choose the maximal value to facilitate the
calculation. But this could be quite cumbersome in practice. Instead, we follow the idea of using I' in the
conventional Rosenbaum’s sensitivity analysis, which is a prespecified upper bound of the association.
Denote RR4y = maxeu(RRavjex)=e)) and MRyz = maX . (MRyzjex)=eq)), then the maximal bounding factor
can be calculated as follows:

RRAU X MRUZ

BF = ———AU X TRUZ
RRAU + MRUZ -1

)
Because BEF}; is an increasing function of both RR,y and MRy, taking prespecified upper bounds of
both associations leads to an upper bound of bounding factors. In practice, one can identify a range of
possible values for (RR,y, MRy;) and calculate the upper bound of treatment effects for each combination
using the following formulas:
Let ACEY%® denote the true average causal effect. When the treatment effect is positive, we have
1

1 1
ACEYY > ~|1+ —— |[E(ZIA = 1) - =(1 + BF})E(Z|A = 0). 3
Az 2( BF(,;) 214 =1) - -( vEZ| ) 3)

When the treatment effect is negative, we have

1
BF;,

ACESY < %(1 + BEDEZIA =1) - %(1 N )E(ZlA - 0). )

The sensitivity analysis is generally done by checking the behavior of the 95% CI bounds. Since our real
data analysis shows a negative treatment effect, we focus on equation (4) and use a one-sided 95% CI for
illustration purposes. Equation (4) implies that the treatment effect estimate should be bounded by a
function of the bounding factor and the mean survival times from each treatment group. Denote the
right-hand side quantity as right-hand side (RHS). We can calculate the 95% CI for RHS using normal
approximation and denote the upper confidence bound as RHS,;,. Because ACEY%® < RHS, we have
P(ACEY%® < RHS,3) > 0.95. Therefore, we can regard RHS,; as an upper bound for the upper 95% confi-
dence bound of the treatment effect estimate. If this value is less than zero, we would reject the null
hypothesis. Otherwise, we would retain the null.

4.3 Interpreting the sensitivity analysis

For an unmeasured confounding with a prespecified magnitude of associations (RR,y, MRy;), the bounding
factor BF}; can be computed by equation (2). For a positive treatment effect based on the observed data, we
can compute a lower bound for the lower 95% confidence bound of the treatment effect estimate by
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equation (3). A positive lower bound indicates that there is still a positive treatment effect with an unmea-
sured confounding effect of magnitude (RR,y, MRyz). A nonpositive lower bound indicates that the positive
treatment effect could be explained away by the unmeasured confounding of magnitude (RR,y, MRyy). For
a negative treatment effect based on the observed data, we can compute an upper bound for the upper 95%
confidence bound of the treatment effect estimate by equation (4) as described earlier, and similar inter-
pretations can be made. A negative upper bound indicates that there is still a negative treatment effect with
an unmeasured confounding effect of magnitude (RR,y, MRyz). A nonnegative upper bound indicates that
the negative treatment effect could be explained away by the unmeasured confounding of magnitude
(RRay, MRyy). A detailed numerical example is presented in Section 5.

5 Real data example

In this section, we apply our proposed method to the ARIC data [24] to examine the causal effect of baseline
smoking on stroke-free survival. Incident ischemic stroke events or death, the primary outcome, are iden-
tified through December 31, 2011. After excluding a small portion of subjects with missing values in the
variables of interest, the total sample size used in the analysis is 14,549. The event time is defined as the
follow-up time (in months) for the first incident stroke or death, whichever comes first, and a subject is
censored if neither incident stroke nor death is observed during the study. There are 5,345 events, corre-
sponding to a 63.3% CR. Given the length of follow-up, we choose 240 months as the truncation time 7 for
the RMST calculation. Exposure is defined as the smoking status at baseline. There are 3,832 (26.3%) current
smokers at baseline. Eight important baseline covariates are included in the propensity score model: race
(black, white), gender (male, female), age (44—66 years), body mass index (BMI) (14.2-65.9), diabetes (1 = yes,
0 = no), high-density lipoprotein (HDL) (10-163 mg/dL), low-density lipoprotein (LDL) (0-504.6 mg/dL), and
hypertension (1 = yes, 0 = no). Table 4 summarizes these variables by baseline smoking status.

We first fit a logistic regression model on baseline smoking status using the eight covariates to estimate
the propensity score. Then, we conduct a 1-1 optimal pair matching without replacement for all subjects,
which results in 3,832 pairs and unmatched nonsmokers being removed from the matched sample. The
covariates balance is measured by the standardized mean difference, and Figure 1 shows the covariates
balance of ARIC data before and after propensity score matching, which indicates our matching achieves
very good covariates balance.

For comparison purposes, the analysis results of the proposed method, Tian’s RMST regression, and the
IPTW Cox regression are all reported in Table 5. All methods show significant evidence of a harmful effect of
smoking on the risk of incident ischemic stroke or death. This conclusion agrees with previous findings in
the literature. The matched RMST analysis suggests an average reduction of 22.3 stroke-free survival months
for baseline smokers had they not smoked at the baseline. Tian’s RMST regression method provides similar
results as our proposed method in this dataset. The IPTW Cox regression measures the treatment effect on

Table 4: Real data example: summary statistics of covariates by baseline smoking status in ARIC study

Non-current smoker (10,717) Current smoker (3,832)
Race, n (%) of white 8,161 (76.2%) 2,730 (71.2%)
Gender, n (%) of female 5,957 (55.6%) 2,003 (52.3%)
Age, mean (SD) 54.4 (5.8) 53.7 (5.7)
BMI, mean (SD) 28.1(5.4) 26.3 (5.0)
Diabetes, n (%) 1,044 (9.7%) 333 (8.7%)
HDL (mmol/L), mean (SD) 52.6 (16.8) 49.6 (17.3)
LDL (mmol/L), mean (SD) 137.6 (38.9) 138.6 (40.4)

Hypertension, n (%) 3,783 (35.3%) 1,225 (32.0%)
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Figure 1: Real data example: covariates balance checking.

Table 5: Real data example: ARIC data analysis results

Method
®  Unmatched
A PS_Matched

Estimate SE 95% Cl (one-sided)
Matched RMST -22.266 1.380 (=00, —19.996]
Tian’s RMST regression -22.666 1.129 (—o0, —20.809]
IPTW cox (HR) 2.173 0.066 [2.068, o0)

For the matched RMST method and Tian’s RMST regression method, the 95% Cl bound is the upper bound. For the IPTW Cox
method, the 95% Cl bound is the lower bound.

the hazard ratio scale, which is not directly comparable to RMST differences. The estimated HR of 2.2
implies that smoking increases the hazard of incident ischemic stroke or death.

All the aforementioned analyses assume the ignorable treatment assignment. However, for such a large
observational study, unmeasured confounding is likely to be present, especially given that we are only able

level

(-20, -15)

(15, -10]

(10,-5)
s
M os
B s
W o1
W 520
B .2

Figure 2: Sensitivity analysis: contour plot of 95% Cl upper bounds of the treatment effect upper bound. The solid curve

represents value 0.
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to control a small number of factors. Therefore, it is important to assess how the observed causal effect may
change in the presence of hidden bias. A sensitivity analysis, as described in Section 4.2, is carried out for
different possible impacts of U on the exposure and the outcome.

We calculate the upper bound of the upper 95% confidence bound of estimated treatment effects by
exploring different combinations of (RR4y, MRyz), where both values are larger than 1. For illustrative
purposes, we focus on a range of values between 1.15 and 1.75 to create a contour plot in Figure 2. Different
gray scales reflect different upper bound values of the upper 95% confidence bound of the treatment effect,
with the lighter color indicating smaller values and the darker color indicating larger values. The solid curve
in the middle of the plot is when the upper bound of the upper 95% confidence bound of the treatment effect
is zero.

For the area below this threshold, the upper bound of the upper 95% confidence bound of the treatment
effect is still negative, implying a true negative causal effect even in the presence of unmeasured con-
founding. For the area above this threshold, the upper bound of the upper 95% confidence bound of the
treatment effect becomes positive, implying the initial negative treatment effect can be explained away by
the presence of unmeasured confounding.

In the real data analysis, we observe a negative treatment effect of —22.266 months with 95% confidence
interval (CI) as (—oo0, —19.996] based on our proposed matched RMST method. We also estimate that
E(Z]A =1) =195.379 with SD = 1.087 and E(Z]A = 0) = 217.646 with SD = 0.834, and the covariance

between these two RMSTs is —0.014. For example, with RR4y = 1.4 and MRy = 1.45, we can calculate
1.4 x 1.45

the bounding factor as follows: BF}; = Taiias 1

= 1.097, then following equation (4), RHS can be calculated

as ACELY < (1 +1.097) * 195.379 - %(1 + ﬁ) « 217.646 = ~3.169 = RHS. The variance of RHS is

expressed as follows:

2 2
Var(RHS) =[1(1 ; 1.097)] 1087 + [1(1 b )] . 0.8342
2 2" " Too7
_2. [1(1 i1 097)] - [1(1 + L)] (~0.014) = 1.962
2 ’ 2 1.097 ' T

The 95% one-sided CI is (-0, —3.169 + 1.64 * /1.962] = (—co, —0.872]. Since the upper 95% confi-
dence bound is still less than zero, we would reject the null hypothesis of no causal effect. This is robust to
unmeasured confounding with the magnitude of impact up to RRyy = 1.4 and MRy = 1.45.

For small-to-moderate deviations from the ignorability assumption (RRyy < 1.43 and MRy, < 1.43), a
harmful effect still holds, as the upper bound of the 95% confidence bound of the treatment effect is below
the solid zero-curve. For moderate-to-large deviations, the 95% CI upper bound of the treatment effect
upper bound may exceed zero, indicating a possibility of a null effect. For example, at (1.5, 1.5), the upper
bound of the estimated treatment effect is 2.036 and the upper bound of the 95% confidence bound of the
treatment effect is 4.345, which indicates that the harmful treatment effect could be totally explained away
by the unmeasured confounding of magnitude (RR,y, MRyz) = (1.5, 1.5). Overall, our sensitivity analysis
indicates that the observed significant causal effect is moderately robust to hidden bias.

6 Discussion

In this article, we adopt the RMST difference as a marginal causal effect measure for survival data, since it is
collapsible and has an easy interpretation. We develop a matching-based RMST difference estimator that is
asymptotically unbiased and does not rely on the PH assumption. But this does not rule out the use of
hazard in causal analysis with survival data. As pointed out by Aalen et al. [7], the hazard function h(t, x, z)
may have a valid causal interpretation, if it satisfies some additive structural constraint.

An interesting practical issue with RMST is the choice of 7. The common practice is to prespecify the
truncation time at the study design stage or to make the decision independent of the observed outcomes. It



DE GRUYTER Matched design for marginal causal effect on RMST = 17

is usually determined based on content expertise, for example, an important clinical time point for the
disease under study. Kim et al. [39] picked a truncation time of 5 years for the Placement of Aortic
Transcatheter Valves (PARTNER) trial as they were interested in the effect of transcatheter aortic valve
replacement procedure versus routine medical treatment on preventing death in 5 years. Recently, Tian
et al. [40] provided a more thorough discussion on the empirical choice of time window in RMST. They also
showed that under a mild condition on the censoring distribution, one could make inferences about the
RMST up to 7, where 7 could be equal to the largest follow-up time (either observed or censored) in the
study. With such choices, RMST incorporates all available information.

One limitation of our work is that the proposed nonparametric estimator may not be easily extended to more
complex matching designs, such as 1-k or full matching designs. This is because we need to compute the
covariance to account for the correlation in matched sets. But the covariance calculation relies on the assump-
tion of equal sample sizes in both groups [34]. Therefore, the covariance formula can not be applied directly to
other matching designs. One strategy to relax this limitation is to consider fitting a parametric RMST regression
model after matching. This could be more advantageous if we have a good idea about the outcome model
specification, as it may correct residual confounding bias not captured by matching. This adds more flexibility to
postmatching inference, as it can lead to more robust or efficient semiparametric strategies by combining
matching with regression models [41]. It also makes our method more attractive in practice than Conner’s
method as the latter solely relies on KM estimation of survival functions and cannot include regression models.
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Appendix
A Theoretical results in Section 2

We will prove the propositions and related lemmas in Section 2.

Proposition Al. Given Assumptions 1-2, we have (T° T") 1L Ale(X), which further implies
(2%, ZY) 1L Ale(X).

Proof. It is equivalent to show P{A = 1|T%, T?, e(X)} = P{A = 1|e(X)}.
By Theorem 2 in Rosenbaum and Rubin [4], we have P(A = 1le(X)) = E{fe(X)|e(X)} = e(X), then it is
equivalent to show P{A = 1|T%, T?, e(X)} = e(X). We have
P{A = 1T, T°, e(X)} = E{P(A = 1|T%, T°, X)|T?, T°, e(X)}
= E{P(A = 1|1X)|T, T°, e(X)}(by strongly ignorability)
= E{e(X)|TY, T?, e(X)} = e(X) = P{A = 1le(X)}.

Thus, we have (T°, TY) 11 Ale(X) for 0 < pr(4 = 1je(X)) < 1. Since Z4 = min(T4, 1) and T is a fixed con-
stant, the aforementioned conditional independence also implies (Z°, Z1) 1L Ale(X). O

Lemma Al. Given Assumptions 1-3, (T', T°) 11 A holds marginally in the matched sample under the pro-
pensity score matching design.

Proof. By Assumption 2, we have (T, T°) 1L Ale(X), where 0 < P(A = 1|e(X)) < 1. Let M denotes the
matching structure, and €); denotes the set of propensity scores in the matched sample. Then, we have
the following equation by matching on propensity score e(X) with a constant treatment to control allocation
ratio 1 : k (k = 1 for pair matching),

P(A = 1le(X)) = ——, forall e(X) € ey.
k+1

Thus, e(X) 1L A holds in the matched sample, i.e., fyy(e(X)|A) = fyu(e(X)). Consider the joint density of T!
and TP conditional on A in the matched sample, which is denoted as f(T?, T°/A), we have

FuCT', TOUA) = [ F(T, TO1A, eCOYin(e()lAIeCH)
= '[ f(TY, TOA, e(X))fu(e(X))de(X) [matched by constant allocation ratio]
= I f(TY, TOe(X))fu(e(X))de(X) [by Assumption 2]

M

= fu(T", T).

Since fy(T1, TOA) = fu(T", T®) implies (T?, T%) 1L A in the matched sample, (T?, T°) 1L A holds marginally
in the matched sample. O

Lemma A2. Let §E(X), A(t) denotes the KM survival function estimator given propensity score e(X) and treat-
ment indicator A. For a fixed truncation time T,

T
nlim IET[ge(X),A(t) — Secxy,a(D)]dt = 0,
0

Proof. Define T = min(T, C) and mmex) 4(t) = P(T > t) € (0, 1), then[1 — mex A(t)]" is a nonnegative function
that increases as t increases. By Lemma 3.2.1 in the study by Fleming and Harrington [29], we know:



DE GRUYTER Matched design for marginal causal effect on RMST =— 21

j ErlSeco.a(t) — Secoa(®)]dt < f [1 — S a®I1 — Moo A O

T
j [1 - MTex), a1t < T[1 = Moy, a(T)I".
0
Since 7 > 0 is a fixed constant and 1 — m,x),a(7) € (0, 1), we have
lim fET ec0(®) = Seca(OIE < Tim 71 = 7AD" =

Therefore, we have limn_)ooj0 ET[ge(X), A(E) = Sex),a(t)]dt = 0. O

Proposition A2. Given Assumptions 1-4, the RMST estimator based on the KM method given propensity score
e(X) and treatment group A, denoted as ﬁe(x), A IS an asymptotically unbiased estimator for U,y 4
given T < tyax.

Proof. First, we will show that §e(x), a(t) is asymptotically unbiased for any time T < tyx. Let ¢;’s be i.i.d
event times ranking from small to large, and Y; is the number of people at risk at event time ¢;. Let d; be the
number of event at event time ¢;, then we have the following definition.

1, ift<t given e(X) and A

Seqn.alt) = Hy’%d', if , < t given e(X) and A.

tist i

Let Ae(x), aw) = ZM 4 he the Nelson—Aalen estimator for the cumulative hazard function Aex),a(u) given
e(X) and A. Accordmg to Theorem 3.2.3 in the study by Fleming and Harrington [29], we have the following
equation if S.xy,4(t) > O:

t

Sewx).at) Se.a(U) |
——— - 1=— | ———d{Aex),a(W) — Aoy, a(W)},
Se),a(t) g Sex),a(w) e e
. Se0).A(T)Se0.4(T) = Sexy,a(t)
E[Sex),a(t) = Sex),a(t)] = E| Iir<s e, AT ety 4 e a0}
Sex),a(T)

Based on Lemma 3.2.1 in the study by Fleming and Harrington [29], the bias E| [§e(x), A(t) — Secx),a(t)] will
converge to zero as sample sizen — oo. Thus, §e(x), a(t) is asymptotically unbiased given t < tyay. Similarly,
§e(x), a=0(t) is also asymptotically unbiased given t < tpax-

Second, we will show that ﬁe(x), 4 is an asymptotically unbiased estimator given 7 < tpa. Since

ET(ﬁe(X), DE ET[ Igﬁe(x),A(t)dt] and §e(x),A(t) is a positive bounded function between O and 1 when

t € [0, 7], then we have
T T
ET[ Ilge(X),A(t)ldt = ET[ J—SAe(X),A(t)dt < T < 00.
0 0

By Fubini’s theorem,
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T T
Er Ige(X),A(t)dt = IET[ge(X),A(t)]df .
0 0
By Proposition A2 and Lemma A2, we have the following for fixed truncated time 7.

T T
HILHJO Er(floxy a) = Beyn = ’}Lfilo Er '[ge(X),A(t)dt - Ise(X),A(t)dt
0 0

n—oo

T T
~ lim IET[Se(X),A(t)]dt - Ise(x),A(t)dt (by Fubini’s theorem)
0 0

n—oo

T
- lim j ErlSuca(0) — Secoa(®)}dt
0

< lim 7[1 - 7ex0),a(T)]" = 0.

n—oo

Therefore, Iy, 4 is an asymptotically unbiased estimator for p,y) , When 7 < fmax. O

Lemma A3. For a fixed truncation time point T < tyax,
T

lim | E;[S*A(t) - SA@)]dt = o.

0

Proof. Let T = min(T, C) and n(t) = P(T > t) € (0, 1), then [1 — (t)]" is a nonnegative function, which
increases as t increases. Let my(t) denotes the function 71(t) for treatment indicator A. By Lemma 3.2.1 in
the study by Fleming and Harrington [29], we have

T

JET[gA(t) - SA(t)]dt < I[l - SAD[1 - m(t)]"dt < I[l - m®)]"dt < 7[1 — m()]".
0 0 0

Since T > 0 is a fixed constant and 1 — (1) € (0, 1), we have
T

lim | E[$%(t) - SA@®)]de < lim 71 - m()]" = 0. O

0
Proposition A3. Given Assumptions 1-4, Aprr = JZ [Sl(t) - .§0(t)]dt is asymptotically unbiased.

Proof. Since the estimated survival function S(¢) € (0, 1) and “gﬁ(t)dt ‘ € (0, 1), we also satisfy the fol-
lowing conditions to use Fubini’s theorem:

(1) Eeoo{Erl [ Seon. a8} < Eegn{Er(0} = 7 < 00

@) EE(X)|:j|§e(X),A(t)|dt:| <T< 00
0
0 Ef[[5" 0} <7< oo

Thus, we can apply Fubini’s theorem three times to interchange the expectation of e(X) as follows:
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T T
Eexyy ET Ige(X),A=1(t)dt - Er Ige(X),A=0(t)dt
0 0

E

~

T T
1 Eex) Ige(X),Azl(t dt | = Eexy J-ge(X),Azo(f )dt
0 0

E

~

T T
) j EuolSec a1()1de jEe<x>[§e<x>,A:o(t>]dt
0 0

E

~

J jgl(t)dt - jﬁo(t)dt
0 0

T T
IET[Sl(t)]dt - IET[§O(t)]dt.
0 0

By Lemma A3, we have

T T
lim Eoxyy Er Jge(X),Azl(t)dt -Er Ige(X),A:O(t)dt
n—.oo

0 0

T T

lim | E[$'®O)dt - tim | Er[S°(e)]de

n—oo

0 0

[ Erdsionde - [Erlseonde =, - o
0 0

Therefore, our proposed propensity score matched RMST estimator is asymptotically unbiased when trun-
cation time point 7 < ftpax- O

B Theoretical results in Section 4
B.1 Proofs of propositions about conditional effect

We define the expectations of the RMST outcome Z = min(T, 7). The following propositions are proved
within each propensity score value e(X) = e(x).

Proposition A4. For binary unmeasured confounder U= 0,1, we have RRypyjex)=e) 21 and
MRyzjex)=ex) = 1.

Proof. By definition, we have MRyzja-1,ex)=ex) = 1 and MRuyzja-0,e(x)=etx) = 1, then MRuyzjex)=e(x) =
max(MRUZ‘Aﬂ,e(X):e(X), MRUZ|A=O,E(X)=€(X)) > 1. Assume RRAUIe(X) = man:O’lRRAU’k‘e(X) <1, then it lmplles that

P{U=0|A=1,e(X) = e(x)) < P(U = 0]A =0, e(X) = e(x)),
PU=1A=1,eX) =ex))<PU =1|A = 0, e(X) = e(x)).
This further implies that 1=P(U=0J|A=1,e(X) =e(x)) + PU=1A =1,e(X) = e(x)) < P(U=0]A =0,

e(X) =e(x)) + P(U=1A =0, e(X) = e(x)) =1, which is not true. Thus, we have proved by contradiction
that RRAUIe(X):e(x) > 1. O
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Proposition A5.

MRz MRz MRz
CMR,z+ = < BFy, CMRy; = < BFy, CMRyy = < BFy.
A7 MRy ~ MRy T MR T

Proof. First, let f = P(A = 1), then we have

JrF@w  flraFdw + 1 - ) rF(dw)

MRtrue — — (Al)
Y [nF@y)  f[r@Fdw) + (- £) [re)F(ds)
f[r@Fi(du) | rQF(du) ™
= X
@) + (1 - /) [r@Fdy)  [r@Fd)
(1 - ) [ ro(wFo(du) [ rGFy(dw
. x : (A3)
f[rp@F(du) + (1 - ) [r@Fodw) [ r@)Fy(du)
Letw = ff PeOR(Y € [0, 1], then we have
f [ ro@Fi(dw) + (1 = £) [ ro(u)Fo(du)
true _ Tue _ true, 1 _ w 1-w
MR;7° = wMRY% + (1 — w)MR,7%; MRy, ~ CMRy + MRy,
Second, we have
MRSY J"l(“)F (dw) Irl(”)F AW  wy maxgro() + (1 — wy) mingro(w)
CMRaz* = true = - s
MR7YE Iro(u)F (du) Jro(u)Fl(du) wo max,fo(u) + (1 - wo) min,ro(w)
where = LA g, - e,
Define I = %{‘), then
o [l - minroGoIF(dw () - min)IRRsu()Fo(dw) "
Wo [ [ro(u) - minyro(u)]Fo(du) [ Irow) = minyro(u)]Fo(du)
maxRR4y(u) [ [ro(u) — mingro(w)]Fo(dw)
< = RRyy. (A5)

[ [row) = minyro(u)]Fo(du)

Write wg = %, then

[max,1o(u) — minyrp(u)w; + min,rp(u)

CMRZZ = . N .
[max,ro(u) — min, (W) ]wIT + min,ro(u)

IfT > 1, CMR}, is increasing in w; according to Lemma A.1 in the Appendix of Ding and VanderWeele
[37], then the maximum attains at w; = 1, and we have
' x MRyzja-0 - RRay x MRyzja-0
r+ MRUZlA:O -1 RRAU + MRUZlA:O -1

CMR}, <

If ' <1, CMR}; is nonincreasing in w; according to Lemma A.l1 in the Appendix of Ding and
VanderWeele [37], then the maximum attains at w; = 0, and we have

RR4y x MRyzja-0

CMR), <1< .
RR4y + MRyzja=0 - 1

1 w 1-w
by CMRsz ~ CMRy;+  CMRpz-’ we have

1 1
CMR,, ~ BFy

Similarly,

, CMRy; < BEy. (|
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To study the average causal effect of the exposure on the difference scale, we need the following
definitions:
— Define my = E(Z|A = 0) and m; = E(Z|A = 1), then the observed mean difference of exposure on the
outcome is m; — myg.
— The average causal effect of the exposure on the outcome for exposed is

ACEte = IE(ZlA ~ 1, U = wF(du) - JE(ZlA = 0, U = wF(du) = m - Iro(u)Fl(du).

— The average causal effect of the exposure on the outcome for unexposed is expressed as follows:
ACEe JE(Z|A — 1, U = wFy(du) - JE(Z|A =0, U = u)Fo(du) = Irl(u)Fo(du) _ my

— The average causal effect of the exposure on the outcome for whole population is

ACE!Y — f E(ZIA =1, U = u)F(du) - jE(ZlA ~ 0, U = u)F(du) = FACEU + (1 — f)ACELe,

AZ*

Proposition A6. For nonnegative outcomes and ACESY > 0, the lower bounds for the average causal effects
are expressed as follows:

ACEYYe > my — mg x BFy; ACEYS® > my/BFy — mo;

ACESS® > (my — mo x BFy)[f + (1 - fYBFy] = (BiFlu - mo)[f x BFy + (1 - f).

Proof. From the data, we can identify
my = f E(ZIA =1, U = wF(du) = Irl(u)Fl(du) — E(ZIA = 1);
mo = J E(ZIA = 0, U = u)Fo(du) = fro(u)Fo(du) _ E(ZIA = 0).
The counterfactual probabilities are not identifiable:
E(Z(1) = 1]A = 0) = IE(Z C 1A =1, U = u)Fo(du) = J-rl(u)Fo(du);
E(Z(0) = 1]A = 1) = IE(Z “1]4 = 0, U = w)F(du) = Iro(u)Fl(du).

First, by Proposition A5, we have

m  JnAR@w)  [h@F@w [ [r@Fdw) Mg,
EZM=14=0) [nwF(dy) [k / [rnwF(dy) MR

= CMR,z- < BFy.

Thus, we have E(Z(1 = 1)|A = 0) > BiFU

Second, by Proposition A5 again, we have

EZ©0)=14A=1) _ fro(u)Fl(du)
Mo [ ro(u)Fo(dur)

Thus, we have E(Z(0) = 1]A = 1) < myBFy.
By definition of ACE and the inequalities derived earlier, we have

= CMRyz+ < BFy.

ACETe = m; - Iro(u)Fl(du) > m - mo X BFy;

ACEYYe = Jrl(u)FO(du) - mg > my/BFy — mg;
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ACEY = f- ACEYY% + (1 - f)ACEY*

> f(my - moBFy) + (1 - f)(ﬂ - mo)

BF,
=(m - mo x BFy)[f + (1 - fYBFy]
:(BiFlU—mo)[fxBFU+(l—f)]. O

Proposition A7. For nonnegative outcomes with ACESY < 0, we have

ACEtS < myBFy — mo;  ACEZY® < my — 0.,
BFy

ACEJY* < (mBFy - mo)(f+ 13;[{) = (m1 - Bm—;;)(fBFU +1-1).

Proof. Define A = 1 — A. By applying Proposition A6 we have
ACEYY > E(Z|A = 1) - E(Z|A = 0) x BFy;
ACEe > E(Z|A = 1YBFy - E(Z|A = 0);
ACE'ue > (E(Z|A = 1) - E(ZIA = 0) x BFy)[f + (1 - fYBFy]
~ (E(ZM =1

BE, - E(Z|A :0))[f>< BFy + (1 - f)].

Because ACEUYS = —~ACEYYS, ACEUYe = —ACEYY, and ACEYY = —ACEYY°, and we also have E(Z|A = 0) =

E(Z]JA =1) = my and E(Z|A = 1) = E(Z]A = 0) = mo. Then we have

ACEtS < myBFy — mo;  ACEZY® < my — 20,
BFy
ACES%® < (mBFy — mo) f+1_f = fmy - O \fBRy +1-f). O
BFy BFy

B.2 Proofs of propositions about the marginal effect

To make the bounding factor hold for all propensity score values, we consider the maximum value of BFy
across all values of propensity score e(X), which is defined as BFj; = maX)(BFyjex)=e(x))-

Proposition A8. For nonnegative outcomes and ACES} > 0, we have

ACEYYs > my — mo x BFy; ACEYRY > my/BFj; — mo;

m
BE};

ACEZY® > (my — mo x BF))[f + (1 - fYBFj] = ( - mo)[f>< BFy + (1 - f)].

For nonnegative outcomes and ACES¥ < 0, we have

ACEYYs < mBFj; — mo;
mo .
BF};’

l—f mo
ACEYY® < (mBE}, - m + ={m - —|(/BF} +1-f).
AZ ( 1 U 0)(f BFE) ( 1 BF{})(fB U f)

t
ACEZS <my -
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Proof. We will start from showing the results for nonnegative outcomes and ACES} > 0. First, we have

. [rewr@s [ e / () Fo(ch)
1 _

EzM) =14 =0) jrl(u)Fo(du) ro(u)Fo(du) To(u)Fo(du)

MR "

= MRtffe = CMRyz- < BFy < BF;.
m m
Thus, we have E(Z(1=1)|[A=0) > BF1U > BF1U

F(ds
Second, we Lknow that EzO=114=D _ I ro0OR(Y = CMRy;+ < BFy < BF;, then we have
mo | G Fo(du)

E(Z(0) =1]A =1) < moBFy < moBFf;
By definition of ACE and the inequalities derived earlier, we have

ACET = m; — jro(u)Fl(du) > my —mo x BFy;

AZ* =
ACESe = j nWFo(du) — mo > my/BEy — mo;

ACEYY = f- ACEUSS + (1 - f)ACEYS

> f(m — meBFy) + (1 _f)(BF )
U
=(m - mo x BFp)[f + (1 - fYBFy]

:( o mo)[fx BF; + (1 -f)].

B'Fy

Similarly, we can prove the inequalities hold for nonnegative outcomes and ACE}Y < 0. O

Proposition A9. In the matched sample, we have the following inequality for nonnegative outcomes and
ACEObS

ACEUYe > ;( )E(Z|A =1) - —(1 + BFp)E(Z|A = 0).

BF;

In the matched sample, we have the following inequality for nonnegative outcomes and ACESY < 0:

ACEtrue < _(1 + BFE(ZIA=1) - =|1+ — |[E(Z]A = 0).
2 BFU

Proof. In the matched sample, we have f= P(A = 1le(X) = e(x)) = 0.5. For nonnegative outcomes and
ACES% > 0, we have LHS = ACESY® = ¥, ACE®, ) _ocoP(e(X) = e(x)) and

RHS = Z(ml - mOBFL*,)( f+ 13;{ )P(e(X) =e(x))
e(x) U
1 1 1
== - =BF; =
(2 2 U) oGo) BFy )
+ (% - %BFZ}) Y MoP(e(X) = e(x)) — ) moP(e(X) = e(x))
e(x) e(x)

1 1
- E( B )E(Z|A 1) - —(1 + BF))E(Z|A = 0).

Thus, we have ACE}Y® > (1 + —)E(Z|A =1) - (1 + BF)E(Z|A = 0).
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For ACEY < 0, we have LHS = ACE}}® = ¥, ACE}5fe(x)_eryP(e(X) = e(x)) and

RHS = Z(mlBF{} - mo)(f P f )P(e(X) = e(x))
e(x) BFU

) 11 B
= e%)(mlBFU — mo)(z + E)P(e(X) = e(X))

2" BR;

e(x) e(x)
1
BE};

- %(1 + BF)E(ZIA = 1) - %(1 + )E(Z|A - 0).

Thus, we have ACESY® < 1(1 + BF))E(ZIA = 1) - ;(1 + %)E(ZlA _ 0).
U

C Estimation of Gj(u, v) in Section 2

- 1(1 + i)[BFz; Y mPe(X) = e(x) - Y moP(e(X) = e(x)]

DE GRUYTER

To compute the variance of RMSTs, one difficulty is to estimate the function G;(u, v) based on data. Follow
the notations in the study by Murray and Cole [34], we need to transform the function G;(u, v) into the
counting process notation system. Suppose we have n matched pairs, then let i, j denote the groups and
k =1,..., ndenotes the kth pair. Let Uy be the censoring random variable corresponding to survival time T,
and the censored survival time is Xy = min(Ty, Uy) with censoring status Ay = I(Ty < Uy). Then we have

the following definitions:

1) YW = Y I(xx > w) and Y;(v) = Y} _I(xx > v);

) Yj(u,v) = Y J(k = u, X = v);

() dNi(w) = Y;_J(u < Xz < u + Au, Ay = 1), where Au — 0;
(4) dNj(v) = Y _I(v < Xz < v + Av, Ay = 1), where Av — 0

(5) dNy(u,v) = ZZzll(u < X <u+ DM, v < X5 <V + Av, Ay = 1, A = 1), where Au — 0 and Av — 0;

(6) dN;(ulv) = Zzzll(u < Xj < u + Au, X3 = v, Ay = 1), where Au — 0;

(7) dN;;(vlu) = ZZ:II(V < X <V + A, Xg = u, Ay = 1), where Av — 0;

(8) The Gii(u, v) could be estimated by the following formula, and we set Au =0 and Av =0 in real
computation. The corresponding R code could be found in our supplementary materials.

6y vy = n 0V [N ) NN AN dN)

dN;(wdN;(v)

YY) | Yu,v) Yi(u, v)Y;(v) Y;(u, v)Yi(u)

Y(wY;(v)
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