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Abstract: A key objective of decomposition analysis is to identify a factor (the “mediator”) contributing to
disparities in an outcome between social groups. In decomposition analysis, a scholarly interest often
centers on estimating how much the disparity (e.g., health disparities between Black women and White
men) would be reduced/remain if we set the mediator (e.g., education) distribution of one social group
equal to another. However, causally identifying disparity reduction and remaining depends on the no
omitted mediator–outcome confounding assumption, which is not empirically testable. Therefore, we
propose a set of sensitivity analyses to assess the robustness of disparity reduction to possible unobserved
confounding. We derived general bias formulas for disparity reduction, which can be used beyond a
particular statistical model and do not require any functional assumptions. Moreover, the same bias formulas
apply with unobserved confoundingmeasured before and after the group status. On the basis of the formulas, we
provide sensitivity analysis techniques based on regression coefficients and R2 values by extending the existing
approaches. The R2-based sensitivity analysis offers a straightforward interpretation of sensitivity parameters and
a standard way to report the robustness of research findings. Although we introduce sensitivity analysis tech-
niques in the context of decomposition analysis, they can be utilized in any mediation setting based on inter-
ventional indirect effects when the exposure is randomized (or conditionally ignorable given covariates).

Keywords: interventional indirect effect, unobserved confounding, disparity reduction, disparity remaining,
robustness value

MSC 2020: 62D20

1 Introduction

Decomposition analysis aims to identify factors that may close the observed gap in social, psychological,
behavioral, or health outcomes between groups defined by social-demographic factors, such as gender/sex,
race/ethnicity, socioeconomic status (SES), etc. Such factors are called “mediators” because they are
believed to lie between the exposure (one’s social position) and the outcomes. Traditional decomposition
analysis based on the difference-in-coefficients approach [1,2] provides a straightforward way to estimate



* Corresponding author: Soojin Park, School of Education, University of California, Riverside, California, United States of
America, e-mail: soojin.park@ucr.edu
Suyeon Kang: Department of Statistics, University of California, Riverside, California, United States of America,
e-mail: skang062@ucr.edu
Chioun Lee: Department of Sociology, University of California, Riverside, California, United States of America,
e-mail: chiounl@ucr.edu
Shujie Ma: Department of Statistics, University of California, Riverside, California, United States of America,
e-mail: shujie.ma@ucr.edu

Journal of Causal Inference 2023; 11: 20220031

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/jci-2022-0031
mailto:soojin.park@ucr.edu
mailto:skang062@ucr.edu
mailto:chiounl@ucr.edu
mailto:shujie.ma@ucr.edu


the degree to which the observed disparity is reduced or remains after controlling for the mediator. How-
ever, the traditional method is limited to a specific statistical model that cannot be readily generalizable to
discrete mediators or outcomes and nonlinear relationships [3]. Recently, several researchers developed
and applied decomposition analysis within the counterfactual framework of causal inference, namely,
“causal decomposition analysis,” that overcomes the limitations of traditional decomposition analysis.
VanderWeele and Ronbinson [4] and Jackson and VanderWeele [5] conceptualized decomposition analysis
within the counterfactual framework, and many articles have appeared on this topic in the past 5
years [6–11].

A central goal of causal decomposition analysis is to estimate the degree to which an observed disparity
would be reduced or remain if we equalize the mediator distribution across social groups. For example, how
much would health disparities decrease if we equalize the education level between Black women andWhite
men? The causal identification of the disparity reduction and remaining hinges on the strong assumption of
no unobserved confounding in the mediator–outcome relationship. One way to assess the robustness of
findings against possible violations of this assumption is to conduct a sensitivity analysis, yet few sensi-
tivity analysis techniques are available in the causal decomposition framework. Previously, Park et al. [10]
developed a preliminary sensitivity analysis that assesses the robustness of disparity reduction and
remaining estimates. However, Park et al. method is restricted to a certain setting that requires conditional
independence between unobserved and observed intermediate confounders (i.e., the effects of social
groups confounding the mediator–outcome relationship). Another limitation is that the interpretation of
the sensitivity parameter is not straightforward since the prevalence difference in an unobserved con-
founder (e.g., being discriminated), comparing individuals in different groups, is conditioned on the med-
iator (e.g., education), which is a descendant of (a variable affected by) the group status.

In this study, we propose a set of sensitivity analyses for causal decomposition analysis, consisting of
sensitivity parameters that are easy to interpret without making the restrictive assumption. After introdu-
cing our motivating example using data from Midlife Development in the U.S. (MIDUS) (Section 2), we
review literature on causal decomposition analysis as a statistical framework that identifies contributing
factors to disparities (Section 3). This review highlights how causal decomposition analysis differs from the
related definitions in the causal mediation literature, including natural direct and indirect effects [12,13].
As a result, we show that sensitivity analysis developed for natural indirect effects can assess the robustness
of disparity reduction when no intermediate confounders exist, which is unlikely in many studies that
investigate contributing factors to disparities.

Therefore, we develop a set of sensitivity analyses for disparity reduction and remaining that incorpo-
rate “observed” intermediate confounders. We begin by deriving general bias formulas for disparity reduc-
tion and remaining which are the basis of our proposed sensitivity analyses (Section 4). Since general bias
formulas do not rely on any statistical models, they apply to various situations, including linear and
nonlinear relationships as well as different types of mediator, outcome, or omitted confounder variables.
We show that same bias formulas apply for “unobserved” confounding measured before and after the group
status. Second, we provide simplified bias formulas given linear models specified for the outcome and the
unobserved confounder (Section 5). The simplified bias formulas offer a sensitivity analysis that is straight-
forward to use if the linearity assumption is met. Finally, we reparameterize the regression-based sensitivity
analysis to R2 values (the proportion of variance explained) by extending themethod of Cinelli and Hazlett [14]
(Section 6). A critical advantage of this reparameterization to R2 values is that we can estimate the correct
standard errors with a varying amount of unobserved confounding. Another advantage is to provide a standard
way of reporting the degree to which research findings are robust against the no unobserved confounding
assumption. The standard way is referred to as the “robustness value” (RV) [14], which is the minimum
strength of the confounder on the mediator and outcome, assuming an equal strength, to change research
findings. The RV conveniently summarizes how sensitive the conclusions are to unobserved confounding.

In Section 7, we conclude with a discussion. Our sensitivity analysis is implemented in the “causal.de-
comp” R package. Code to replicate all analyses can be found at https://github.com/soojinpark33/
Sensitivity-Analysis-for-CDA/blob/main/README.md.
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2 Running example

To motivate the concepts and methods that we present, we rely on an epidemiological example; studies
have consistently observed that racial and gender minorities, particularly Black women, show poorer
cardiovascular health (CVH) than other race–gender groups. SES which is a fundamental cause and a
key determinant of access to resources, may operate via many mechanisms to affect multiple disease
outcomes [15], including cardiovascular disease [16]. Educational attainment plays a key role in explaining
racial and gender disparities in health, and education also affects other subsequent SES measures, such as
income and wealth. Therefore, we hypothesize that the observed disparity in CVH between race–gender
groups would decrease if we equalize the education levels between the groups. Causal decomposition
analysis can be used to test this hypothesis.

From the hypothesis, we define four social groups: White men ( =R 0), Black women ( =R 1), Black men
( =R 2), and White women ( =R 3); the mediator is education (M); the outcome is CVH (Y ). One concern is
that education status is not randomized, and the relationship between education and later CVH could be
confounded by various life course factors. Therefore, on the basis of literature [17,18], we identified possible
confounders, such as age (C1), genetic vulnerability (C2), and SES (X1) and adverse experience in child-
hood (X2).

We encode our understanding of data-generation process involving these variables in Figure 1(a). We
assume racial and gendered disparities in CVH arise through childhood abuse (X2) and education (M). We
also assume that these disparities could arise through historical processes that include racism and sexism
[20]. For example, due to historical processes, Blacks are more likely than Whites to be born into a family
with low childhood SES (X1) and suffer from a particular genetic vulnerabilities (C2, parental history of
cardiovascular and metabolic diseases). Age (C1) also interacts with the historical process and in turn affects
all other variables.

However, one may argue that the relationship between education and later CVH could still be con-
founded by unobserved confounders (e.g., discrimination based on race, gender, and social class) even
after controlling for the observed variables. Figure 1(b) shows a scenario in which an unobserved variableU
confounds the relationship between the mediator and the outcome. Depending on a kind of unobserved
variable, it could be measured before, concurrently with, or after the group status. For example, if perceived
discrimination were the unobserved confounder,U would be measured after the group status, as shown in
Figure 1(b). As another example, if an unknown genetic factor that affects later education and CVH were the
unobserved confounder, U would be measured before the group status.

(a) (b)

Figure 1: Directed acyclic graph [19]: (a) when no unobserved confounder exists and (b) when unobserved confounderU exists.
Note. (1) Diagram represents the relationship between race and gender intersectional status R, cardiovascular health Y , and
education M, as well as history H, age C1, genetic vulnerability C2, childhood SES X1, and childhood abuse X2. (2) Placing a box
around the conditioning variables implies that a disparity is considered within levels of these variables. (3) Dotted lines
indicate intervening on M given baseline covariates. (4) In figure b, X2 and U are separate nodes but presented together
because the result remains valid irrespective of the direction of causality between X2 and U, or the absence thereof.
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How can we validate our conclusions on disparity reduction and remaining to the possible omission of
unobserved variables? In Section 4, we present a set of sensitivity analyses that applied researchers can use
to validate their findings to possible omitted variables. To proceed, investigators should further clarify
baseline covariates and intermediate confounders, in addition to identifying the group status, the mediator
(education), and the outcome (CVH). Baseline covariates characterize demographics through which CVH or
education differences are considered equitable [8], which are age or genetic vulnerability in our example.
Intermediate confounders represent the effects of race–gender status that confound education and CVH,
which are childhood SES and abuse in the example. We use the following notation to represent baseline
covariates and intermediate confounders. Intermediate confounders are denoted as ( )= X XX ,1 2 , where

�∈x ; baseline covariates are denoted as ( )= C CC ,1 2 , where �∈c .

3 Review and implications on existing sensitivity analyses

This section provides an overview of causal decomposition analysis based on interventional analogues of
natural direct and indirect effects (interventional effects [21,22]). We then compare this approach with the
related definitions in the causal mediation literature, including natural direct and indirect effects. Finally,
we show the conditions under which sensitivity analyses developed for natural indirect effects can be used
to assess the sensitivity of disparity reduction.

3.1 Causal decomposition analysis

Causal decomposition analysis does not contribute to the argument of whether socially defined characteristics
such as race and gender can be given a causal interpretation [5]. Rather, it focuses on estimating a causal effect
of potentially manipulable factors (mediators) in reducing the observed disparity. Therefore, causal decomposi-
tion analysis aims to estimate howmuch the disparity would be reduced by intervening to equalize the mediator
distribution between social groups. In the motivating example, this intervention implies increasing the Black
women’s education to the level of White men among those with the same baseline covariates. To illustrate, we
use the example of comparing Black women (comparison group) andWhite men (reference group). Statistically,
it requires imputing each Black women’s mediator with a randomly drawn value from the mediator distribution
of White men among those with the same level of baseline covariates.

3.1.1 Definitions

Here, we fix the reference group to =R 0 and compare it with different comparison groups =R r, where
{ }∈r 1, 2, 3 . Let

∣ =
Gm R c0, denote a random draw from the mediator distribution ( =M m) of the reference

group ( =R 0) given =C c. Let ( )Y mi denote the potential value of the outcome for individual i under =M m.
Then, [ ( )∣ ]=

∣ =
E Y G R r c,i m R ic0, is the average counterfactual outcome for a comparison group r given base-

line covariates of c, if their education level was set to a random draw from that of the reference group with
baseline covariates of c.

Using this notation, disparity reduction is defined as, given baseline covariates, the difference between
the average CVH of a comparison group and the average counterfactual CVH if their education level was the
same as the reference group among those with the same baseline covariates levels. Formally,

�( ∣ ) [ ∣ ] [ ( )∣ ] { }≡ = − = ∈ ∈
∣ =

δ r r E Y R r E Y G R r rc c c, 0 , , for 1, 2, 3 and .i i i m R ic0, (1)

Likewise, the disparity remaining is defined as, given baseline covariates, the difference between the
average counterfactual CVH of a comparison group after the hypothetical intervention and the average
CVH outcome of the reference group. Formally,
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�( ∣ ) [ ( )∣ ] [ ∣ ] { }≡ = − = ∈ ∈
∣ =

ζ r E Y G R r E Y R rc c c0 , 0 , 0, for 1, 2, 3 and .i m R i i ic0, (2)

The observed disparity is equal to the sum of disparity reduction and disparity remaining due to hypothe-
tically intervening on the mediator as ( ) ( ∣ ) ( ∣ )= +τ r δ r r ζ r, 0 , 0 0 , 0 for { }∈r 1, 2, 3 .

3.1.2 Identification assumptions and results

Defining disparity reduction and remaining requires an unobservable quantity, i.e., [ ( )∣ ]=
∣ =

E Y G R r c,i m R ic0, ,
which is an inherent problem of causal inference [23]. Therefore, we invoke the following assumptions to
identify disparity reduction and disparity remaining.
– A1: Conditional independence: ( ) ∣⊥ = = =Y m M R r X x C c, , ,i i i i i for all � �{ }∈ ∈ ∈r mx0, 1, 2, 3 , ,

and �∈c . There is no omitted confounding in the mediator–outcome relationship given the race–gender
status and measured confounders (X and C).

– A2: Positivity: ( ∣ )< = = <P M m R r x c0 , , 1i i or all � �{ }∈ ∈ ∈r mx0, 1, 2, 3 , , and �∈c . The condi-
tional probability of m for a comparison group is positive given measured confounders.

– A3: Consistency: if =M mi , then ( )=Y Y mi i for all �∈m , where ( )Y mi is the potential value of the
outcome for individual i under =M m. Consistency states that the observed outcome under the exposure
history is the same as the potential outcome after setting the exposure to that level.

These three assumptions are all strong, and the plausibility of the assumptions depends on the context
of the study. This study aims to address the possible violation of conditional independence.

Given the assumptions, the disparity reduction and remaining are nonparametrically identified as
follows:

( ∣ ) [ ∣ ] [ ∣ ] ( ∣ ) ( ∣ )

( ∣ ) [ ∣ ] ( ∣ ) ( ∣ ) [ ∣ ]

∑

∑

= = − = = =

= = = = − =

δ r r E Y R r E Y R r m P R r P m R

ζ r E Y R r m P R r P m R E Y R

c x c x c c

x c x c c c

, 0 , , , , , 0, and

0 , 0 , , , , 0, 0, ,

i i
m

i i i i

m
i i i i i i

x

x

,

,

(3)

where � �{ }∈ ∈ ∈r x m1, 2, 3 , , 1, and �∈c .

3.1.3 Estimation

If the assumptions hold, there are many ways to estimate disparity reduction and disparity remain-
ing including regression-based estimators [5,24]¹, weighting-based estimators [8], imputation-based esti-
mators [10,25]², and doubly robust estimators [11]. Although limited due to its modeling assumptions,
regression-based methods are perhaps the most straightforward way to estimate disparity reduction and
remaining. Consider the following models fitted to the intermediate confounders, mediator, and outcome as
follows:

( )∑= + + +X γ γ I r γ εC ,i
r

r i c i x i, (4)

( )∑= + + +M α α I r α εC , andi
r

r i c i m i, (5)

( )∑= + + + + +Y β β I r β β M β εX C ,i
r

r i x i m i c i y i, (6)



1 Regression-based estimators refer to a method utilizing regression coefficients directly, such as the difference in coefficients
and product of coefficients.
2 Imputation-based estimators refer to a method that predicts or imputes counterfactual outcome values.
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where { }∈r 1, 2, 3 . Under these models, disparity reduction is estimated as ( ∣ ) =δ r r α βˆ , 0 ˆ ˆr m; disparity
remaining is estimated as ( ∣ ) = +ζ r β β γˆ 0 , 0 ˆ ˆ ˆr x r, where Â indicates a consistent estimator of parameter A.
Note that this regression-based estimator hinges on the functional form assumptions made in the models
shown in equations (4)–(6). If the interaction effect exists between the social group and the mediator, one
should include the interaction term in the outcome model as follows:

( ) ( )∑ ∑= + + + + + +Y β β I r β β M β I r M β εX C .i
r

r i x i m i
r

rm i i c i y i, (7)

Then, the disparity reduction is estimated as ( ∣ ) ( )= +δ r r α β βˆ , 0 ˆ ˆ ˆr m rm ; disparity remaining is estimated as
( ∣ ) ( [ ])= + + +ζ r β β γ β α α E Cˆ 0 , 0 ˆ ˆ ˆ ˆ ˆ ˆ ˆ

r x r rm c i . A proof is given in Park et al. [24] and is, thus, omitted here. As far
as investigators are willing to make the modeling assumptions along with A1–A3, these estimators provide a
valid estimate of disparity reduction and disparity remaining.

3.2 Comparison with the related definitions in the literature

In this section, we compare disparity reduction and remaining defined in equations (1) and (2) with the
related definitions in the literature: conditional average treatment effects (CATE), controlled direct effects
(CDEs), natural in/direct effects, and interventional in/direct effects.

CATE and CDE. Defining disparity reduction and remaining requires stochastic interventions on the
mediator to follow an alternative distribution. Instead of stochastic interventions, we could intervene to fix
the mediator to a prespecified value. Then, disparity reduction and remaining will similarly correspond to
CATE and CDE, respectively. The CATE is the effect of an intervention (M) on the outcome (Y ) conditional
on R, as [ ∣ ] [ ∣ ]= = − = = ′E Y R M m c E Y R M m c1, , 1, ,i i i i i i . In our example, the CATE is the expected change
in CVH in response to the change in education from =M m to = ′M m among Black women. The CDE
(e.g., [26,27]) is the effect of exposure (R) on the outcome (Y ) after fixing the mediator to a prespecified
value =M mi over the entire sample as [ ∣ ] [ ∣ ]= = − = =E Y R M m c E Y R M m c1, , 0, ,i i i i i i . The CDE is of
interest when the exposure effect at a prespecified value is meaningful. For example, it would be interesting
to ask how much of the Black women–White men disparity would remain if every individual attended
college. While interesting, these effects based on a prespecified mediator value may be less realistic for
interventions. Intervening to have every individual in the population to take a certain value of a mediator
may not be feasible in practice. One alternative to avoid this global intervention is to use a stochastic
intervention that follows the observed distribution of a different group, as shown in the definitions in
equations (1) and (2).

Natural in/direct effects. First, we argue that defining natural indirect effects is not straightforward in
disparities research. In the example, the natural indirect effect defined between Black women and White
men in the motivating example is the expected difference, comparing each Black woman’s actual and
potential CVH after setting her education level to a value that would have naturally been observed had
she been born a White man. Given that gender and race are essentially nonmodifiable, it is somewhat
strange to consider fixing each individual’s mediator to a value that would have naturally been observed
had the individual been born a White man [28]. In contrast, interpreting disparity reduction defined in
equation (1) is straightforward because we (1) do not define counterfactual outcomes with respect to social
groups such as race and gender and (2) assign Black women’s education to a randomly drawn value from
the observed distribution of White men’s education, rather than assigning education to the value that
would have been realized in a counterfactual world in which she was a White man. Disparity reduction
compares the average Black woman’s CVH to the average counterfactual CVH outcome of Black women
after equalizing their education level to that of White men as a group.

Next, we compare the conditional independence assumption (A1) with the related assumptions
required to identify natural indirect effects. We don’t compare assumptions regarding the exposure (treat-
ment ignorability) because causal decomposition analysis does not attempt to estimate the causal effect
of social groups (race and gender) and thus does not make any assumption regarding the exposure
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(group status). Pearl [19] made the following assumption to identify natural indirect and direct effects:
( ) ( )∣⊥ ′ =Y r m M r cC,i i i , which implies (1) no unobserved pre-exposure confounders (i.e., variables mea-

sured before the exposure that confound the mediator–outcome relationship) given the race–gender status
and baseline covariates and (2) no intermediate confounders. The first assumption might be met in some
disparities research since there are hardly any variables that can be measured before race and gender
status. However, the second assumption is unlikely to be met in many disparities research settings, since a
myriad of life-course factors contribute to disparities in education and CVH.

Alternatively, Robins [13] made the following assumption: ( ) ( )∣⊥ = = =Y r m M r R r x cX C, , ,i i i i i , which
allows intermediate confounders X. This is an important advantage considering that the assumption of no
intermediate confounders is unlikely to be met in many disparities research settings. However, this relaxed
assumption comes with the cost of requiring no interactions between the exposure and the mediator at the
individual level. Unfortunately, assuming no interaction effects between the group status and the mediator
is also a strong assumption that is unlikely to be met in many studies. For example, prior studies docu-
mented diminished returns of human capital as a result of discrimination for minorities [29].

Instead of the no interaction assumption, Petersen et al. [30] require the following assumption:
[ ( ) ( )∣ ( ) ] [ ( ) ( )∣ ]− = = = − =E Y m Y m M m C c E Y m Y m C c1, 0, 0 , 1, 0,i i i i i i i , which implies that the exposure effect

at the controlled level of =M m is independent of the potential mediator under =R 0. Although this assump-
tion is weaker than the previously discussed no intermediate confounding assumption, it is still difficult to
check whether this assumption is met in practice.

Interventional in/direct effects. Even when these additional assumptions are not met, previous
studies [30,31] have noted that the natural direct effect still estimates an interesting causal parameter:
the average of CDEs with respect to the conditional distribution of M for =R 0 givenC. The related idea was
discussed in the noncounterfactual literature [32,33], which described a target trial using a randomized
intervention that follows an observed alternative distribution. The interventional analogs were formalized
within the counterfactual outcomes framework and used to accommodate intermediate confounders [21]
and time-varying exposures and mediators [34,35]. In the literature, the interventional indirect effects were
based on defining counterfactual outcomes with regard to both exposure and mediator.

By applying the interventional analogs, VanderWeele and Robinson [4] investigated contributing
factors to racial disparities. They suggested focusing on the causal effect of manipulable factors (mediators)
rather than the causal effect of race (exposure), thereby defining counterfactual outcomes with respect to
the mediators, not the exposure. Following their approach, Jackson and VanderWeele [5] proposed formal
definitions of disparity reduction and disparity remaining, one of which is shown in equations (1) and (2).
The causal estimands were further extended by other scholars, including Lundberg [11] who allowed
intervening to fix the mediator to a prespecified value or the mediator to follow various distributions (rather
than the observed distribution of the reference group), and Park et al. [10] who accommodated the case of
intervening on multiple mediators.

3.3 Implications on existing sensitivity analyses

3.3.1 Under no intermediate confounders

If no intermediate confounders exist, interventional direct and indirect effects coincide with natural direct
and indirect effects, respectively. Although it may be a rare situation, suppose that the intermediate con-
founders (e.g., childhood SES and abuse) do not exist. Then, one can use a nonparametric sensitivity
analysis [36,37] or parametric sensitivity analysis [3] developed for natural direct and indirect effects to
assess the robustness of estimated disparity reduction and remaining to possible unobserved pre-exposure
confounding.

Sensitivity analysis for causal decomposition analysis  7



3.3.2 Under no interaction between R and M

Now, we consider a situation where intermediate confounders exist, but no interaction exists between
social groups and the mediator. This situation is perhaps plausible in some studies that examine disparities
depending on a type of mediator. Then, the estimator of disparity reduction α βr m is consistent for the
natural indirect effect given equations (5) and (6). However, the sensitivity analysis developed for natural
direct and indirect effects to possible violations of unobserved intermediate confounding [38,39] is not
appropriate for assessing the robustness of estimated disparity reduction and remaining. For instance, a
sensitivity analysis developed by Imai and Yamamoto [38] addresses the bias due to incorporating inter-
action effects given that all intermediate confounders are observed. VanderWeele and Chiba [39] do not
assume that all intermediate confounders are observed; however, the bias formulas do not incorporate
existing intermediate confounders.

In conclusion, a new sensitivity analysis is necessary for disparity reduction and remaining that
incorporates existing intermediate confounders and possible interaction effects.

3.4 An application to MIDUS

We estimate disparity reduction and remaining with varying assumptions. Table 1 shows the estimated
quantities of interest between Black women and White men. Other comparisons are available, but we only
present the results between Black women and White men for simplicity. The initial disparity between Black
women and White men is −0.965 (equivalent to 0.420 SD of CVH), and the 95% confidence interval (CI) is
bounded away from zero, meaning that Black women have significantly worse CVH than White men after
controlling for age and genetic vulnerability.

First, we estimate disparity reduction and remaining, assuming no interaction between education and
race–gender status (first column in Table 1). These estimators are consistent for natural direct and indirect
effects defined by Robins [13]. Disparity reduction is negative (−0.401) and is significant at the 95% con-
fidence level. The initial disparity would decrease by 41.6% if Black women’s education level were the same
as White men’s among those with the same age and genetic vulnerability level.

We compare this result after relaxing the no interaction assumption (third column), which is consistent
with disparity reduction and remaining defined in equation (3). The difference in disparity reduction and
remaining estimates is small. Disparity reduction changes from −0.401 (first column) to −0.360 (third
column); disparity remaining changes from −0.564 (first column) to −0.604 (third column). This slight
change after relaxing the no interaction assumption implies that there is little evidence for the presence of
the interaction effect.

Table 1: Estimates of the disparity reduction and disparity remaining

Estimate (95% CI)

R–M interaction No Yes Yes
Intermediate confounders Yes No Yes

Initial disparity (τ 1, 0( )) −0.965 −0.965 −0.965
(95% CI) −1.259, −0.662( ) −1.257, −0.675( ) −1.238, −0.658( )

Disparity remaining (ζ 0 1, 0( ∣ )) −0.564 −0.480 −0.604
(95% CI) −0.863, −0.278( ) −0.791, −0.143( ) −0.868, −0.187( )

Disparity reduction (δ 1, 0 1( ∣ )) −0.401 −0.485 −0.360
(95% CI) −0.561, −0.239( ) −0.727, −0.261( ) −0.712, −0.219( )

% Reduction 41.6% 50.2% 37.3%

Note: Black women: R 1= , White men: R 0= .
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Finally, we examine the result after relaxing the no interaction assumption but without intermediate
confounders (second column), which is consistent with the natural indirect effect defined by Pearl [19]. Not
controlling for intermediate confounders results in an overestimation or underestimation of disparity
reduction and remaining when compared to controlling for intermediate confounders (third column). After
including observed intermediate confounders, disparity reduction changes from−0.485 (second column) to
−0.360 (third column); disparity remaining changes from −0.480 (second column) to −0.604 (third
column). This result suggests overestimation of disparity reduction due to education when intermediate
confounders were not accounted for. In the next section, we present a sensitivity analysis to possible
unobserved confounding that incorporate observed intermediate confounders and the interaction effect.

4 General bias formulas

We begin by calculating the bias for disparity reduction and remaining when the unobserved confounderU
exists, on which the two sensitivity analyses that we propose in Sections 5 and 6 are based. We first derive
bias formulas when intermediate unobserved confounding exist and later show that the same bias formulas
apply, with an additional assumption, to pre-exposure unobserved confounding.

The conditions required to calculate the bias are as follows: (1) no omitted confounding exists in the
mediator and outcome relationship given group status (r), observed confounders (x c, ), and the unobserved
confounder (u), as ( )∣⊥ = = = =M Y m R r U uX x C c, , ,i i i i i i and (2) the unobserved confounder (U ) is an
effect of group status (R) and thereby is considered as an intermediate unobserved confounder as shown
in Figure 1(b). An example of intermediate unobserved confounder includes discrimination, which is an
effect of group status and adversely affects education and CVH.

Suppose that we only had observed data. Then, researchers would often estimate the disparity reduction using
observed data, ( ∣ ) [ ∣ ] [ ∣ ] ( ∣ )= = − ∑ = = =δ r r E Y R r E Y R r m P R rc x c X x c, 0 , , , , ,i i m i i ixres , ( ∣ )= =P M m R c0,i i , as

equation (3). However, if the unobserved confounder U exists, this expression will lead to a biased estimate of
disparity reduction. The bias is, therefore, defined as the difference between the expected value of this estimator
using observed data and the true effect of disparity reduction as follows:

( ( ∣ )) ( ∣ ) ( ∣ )

[ ∣ ] [ ∣ ] ( ∣ ) ( ∣ )

[ ∣ ] [ ∣ ] ( ∣ ) ( ∣ )

∑

∑

= −

= = − = = =

− = + = = =

δ r r δ r r δ r r
E Y R r E Y R r m P R r P m R

E Y R r E Y R r m u P u R r P m R

c x c x c c

c x c x c c

bias , 0 , 0 , 0
, , , , , 0,

, , , , , , , 0, .

i i
m

i i i i

i i
m u

i i i i

x

x

res

,

, ,

(8)

Note that we used ( ∣ )=P u R rx c, ,i to accommodate both cases: (1)whenU is measured beforeX and (2)when
U is measured after X. The bias for disparity remaining is defined the same way ( ( ( )) ( ) ( )= −ζ ζ ζbias 0 0 0res ).

Then, for a particular value of = ′U u , the biases for disparity reduction and remaining are given by

( ( ∣ )) { [ ∣ ] [ ∣ ]}{ ( ∣ ) ( ∣ )}

( ∣ ) ( ∣ )

( ( ∣ )) { [ ∣ ] [ ∣ ]}{ ( ∣ ) ( ∣ )}

( ∣ ) ( ∣ )

∑

∑

= − ′ −

× =

= − − ′ −

× =

δ r r E Y r m u E Y r m u P u r c P u r m

P r P m R
ζ r E Y r m u Y r m u P u r c P u r m

P r P m R

x c x c x x c

x c c
x c x c x x c

x c c

bias , 0 , , , , , , , , , , , , ,

, 0, ,
bias 0 , 0 , , , , , , , , , , , , ,

, 0, .

m u

m u

x

x

, ,

, ,

(9)

A proof is given in Appendix A. These general bias formulas do not require any assumptions regarding
functional forms, variable types of the mediator, outcome, or unobserved confounders. While these bias
formulas can be used in general settings, their applicability may be limited due to too many moving parts
(i.e., sensitivity parameters). Therefore, we provide simplified bias formulas under linear models specified
for the outcome and the unobserved confounder that are straightforward to use in Section 6. We will discuss
the applicability of the general bias formulas later.
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Note that the same bias formulas apply with pre-exposure unobserved confounding under the addi-
tional assumption of ∣⊥R U C, whereU is pre-exposure unobserved confounder. The assumption states that
the pre-exposure confounder and group status do not affect each other given baseline covariates. An
example of such confounder would be an unknown genetic factor that is not related to race or gender,
but affects later education and CVH. Given the pre-exposure confounderU , the bias for disparity reduction
is defined as follows:

( ( ∣ )) [ ∣ ] [ ∣ ] ( ∣ ) ( ∣ )

[ ∣ ] [ ∣ ] ( ∣ ) ( ∣ ) ( ∣ )

∑

∑

= = − = = =

− = + = = =

δ r r E Y R r E Y R r m P R r P m R

E Y R r E Y R r m u P R r u P m R P u

c x c x c c

c x c x c c c

bias , 0 , , , , , 0,

, , , , , , , 0, .

i i
m

i i i i

i i
m u

i i i i

x

x

,

, ,

This equation leads to the same expression shown in equation (8) since ( ∣ ) ( ∣ )= =P R r u P ux c c, ,i
( ∣ ) ( ∣ )= =P R r u P u R rx c c, , ,i i due to the assumption of ∣⊥R U C.

5 Sensitivity analysis using regression coefficients

Unlike the general bias formulas, the proposed sensitivity analyses in this study are developed under a
particular statistical model that assumes linearity. However, we show that an extension is possible when
linearity is violated.

5.1 Under the linearity assumption

The general bias formulas in equation (9) can be simplified under linear models specified for the outcome
and the unobserved confounder as follows:

[ ∣ ]

[ ∣ ]

= + + + + +

= + + + +

E Y r x m c u β β β x β m β c β u
E U r x m c δ δ δ x δ m δ c

, , , , , and
, , , ,

i r x m c u

i r x m c
(10)

for { }∈r 1, 2, 3 . We first assume the simplest models for the outcome and the unobserved confounder and
discuss later how to relax the linearity assumption. Given equation (10), the nonparametric bias formulas
for disparity reduction and remaining are considerably simplified as follows:

( ( ∣ )) ( ( ∣ )) { }= = − ∈δ r r α δ β ζ r α δ β rbias , 0 , and bias 0 , 0 for 1, 2, 3 ,r m u r m u (11)

where an unbiased estimate of αr can be obtained by fitting the mediator model in equation (5). A proof is
given in Appendix B.

We offer several remarks about these bias formulas. First, the bias for disparity reduction and
remaining is the same except for the sign. This is because the initial disparity is an observed quantity
conditional on specified covariates, and hence, no bias exists due to the unobserved mediator–outcome
confounder.³

Second, the bias is zero when either βu or δm is zero, meaning that the unobserved confounder is not
associated with the outcome or the mediator given observed confounders. The bias is also zero when the
mediator does not differ by group given baseline covariates.



3 No bias exists for the initial disparity as shown below.

( ( )) ( ( ∣ )) ( ( ∣ )) ( )= + = − =τ r δ r r ζ r α δ β α δ βbias , 0 bias , 0 bias 0 , 0 0. 12r m u r m u
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Third, the unobserved variable confounds the intermediate confounders–outcome and intermediate
confounders–mediator relationships ( − YX and − MX ) in addition to the mediator–outcome relationship
( −M Y ). However, confounding relationships in the − YX and − MX relationships do not contribute to
the bias of disparity reduction and remaining. The only confounding path that matters for disparity reduc-
tion and remaining is ← →M U Y . Intuitively, it makes sense since conditional independence (A1) only
concerns unobserved confounding in the mediator–outcome relationship.

Finally, the intermediate confounder and outcome models specified in equation (10) imply that the
effect of unobserved confounder (U ) on the outcome (Y ) is constant across social groups. However, it may
be too restrictive to assume the constant effect ofU across social groups. For example, discrimination has a
differential effect on CVH by race [40]. To address this differential impact of U on Y , we can add the
interaction effect between u and ( )I r in the outcome model as ( )∑ β I r ur ru . Then the bias for disparity
reduction is given by ( ( ∣ )) ( )= +δ r r α δ β βbias , 0 r m u ru .

The bias formulas expressed in regression coefficients give us an intuitive idea of sensitivity analysis.
The basic idea is to find a combination of βu and δm that will explain the disparity reduction and remaining,
and change the significance of the effects. Given the combinations, researchers are required to determine
whether the amount of confounding expressed in these sensitivity parameters is plausible or not. To do so,
understanding the precise meaning of the sensitivity parameters is essential. One sensitivity parameter (βu)
is the difference in the outcome, comparing individuals who differ by one unit on the confounder U , after
controlling for the group status, the mediator, and observed confounders. Another sensitivity parameter
(δm) is the difference in the unobserved confounderU , comparing individuals who differ by one unit on the
mediator M , after controlling for race–gender status and observed confounders. We illustrate the use of this
sensitivity analysis with the MIDUS example in Section 5.3.

5.2 When the linearity assumption is violated

When the linearity assumption made in equation (10) is violated, one can either (1) derive their bias
formulas based on modified models for Y and U or (2) use the original bias formula shown in equation
(9). We showed earlier how to address the differential impact of the unobserved confounder U on the
outcomeY by group status. However, addressing another differential impact (e.g., the interaction between
the unobserved confounder and the mediator) leads to a more complex form of bias formulas. In this case,
researchers can directly use the nonparametric bias formulas. To use the nonparametric bias formulas, one
should choose a reference value for = ′U u and specify [ ∣ ] [ ∣ ]− ′E Y r m u E Y r m ux c x c, , , , , , , ,i i , which is the
difference in the outcome among the comparison group =R r, comparing =U u and = ′U u , across strata of

mx, , and c. Also, one should specify ( ∣ ) ( ∣ )−P u r c P u r mx x c, , , , , , which is the distribution of the unob-
served confounder U for the comparison group =R r, conditional on =X x and =C c, compared with the
distribution of the unobserved confounderU conditional on =X x, =C c, and =M m. As mentioned earlier,
using the original bias formulas is not entirely straightforward since specifying these values may be
difficult. However, in some cases, it may be possible to draw these values based on substantive knowledge
and use the bias formulas directly.

5.3 Illustration using regression-based sensitivity analysis

This section uses the example provided in Section 3.4 to describe and interpret the sensitivity analysis using
regression coefficients. In Section 3.4, we estimated the disparity reduction and disparity remaining
between Black women and White men. We here focus on the case after assuming differential effects of
education by group (R–M interaction) and accounting for existing intermediate confounders. As shown in
Table 1, the initial disparity would be reduced by about 37.3% if Black women’s education level was the
same as that of White men among those with the same age and genetic vulnerability. This result can be
given a causal interpretation under the assumptions described in A1–A3. Suppose that conditional
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independence (A1) is violated because an unobserved variable, that is, whether each individual perceives to
be discriminated, confounds education and CVH. How strongly does this unobserved confounder have to be
to explain away the estimates?

In Figure 2, hypothetical values for βu and δm lie on the horizontal and vertical axis, respectively. The
contour lines show the true disparity reduction and remaining values at hypothesized values of βu and δm.

In addition to the figure, we can also calculate the true disparity reduction and remaining given = −α̂ 1.736.
Suppose that the difference in CVH between those who are discriminated and those not discriminated is,
say, =β 0.993u (as strong as the effect of education for White men, which is the strongest among four
race–gender groups) after controlling for the group status, the mediator, and observed confounders. Then
to completely explain the estimated disparity reduction ( ( ∣ ) = −δ 1, 0 1 0.360), δm would need to be close to
0.208 (i.e., ( )− − − × × ≈0.360 1.736 0.993 0.208 0). This δm value indicates that the probability difference
of being discriminated is 20.8%, when comparing individuals with the same values for the group status and
observed confounders (childhood SES and abuse, education, age, and genetic vulnerability), but differing
by one unit on education. Given the same βu, to completely explain the estimated disparity remaining
( ( ∣ ) = −ζ 0 1, 0 0.604), δm would need to be close to 0.350 (i.e., ( )− − − × × ≈0.604 1.736 0.993 0.350 0).
These δm values seem unlikely large given that we compare those who have the same group status, age,
and genetic vulnerability, but differing by one unit in education (e.g., no schooling vs graduating junior
high school).

6 Sensitivity analysis using R2 values

The regression-based sensitivity analysis has often been used with a binary unobserved confounder, such
as whether discriminated. It is perhaps because the interpretation of sensitivity parameters with a binary
unobserved confounder is straightforward. Specifically, δm is the prevalence difference in the unobserved
confounder U , comparing individuals with one unit increase in the mediator M , given controls; βu is the
outcome difference between two levels of the unobserved confounder, given controls. However, the inter-
pretation of sensitivity parameters is no longer straightforward if the unobserved confounder is continuous,
such as discrimination intensity. With a continuous unobserved confounder, sensitivity parameters depend
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Figure 2: Sensitivity contour plots using regression coefficients. (a) Disparity reduction. (b) Disparity remaining. Note. (1) Bold
lines represent the points at which the estimates become zero. (2) Standard lines represent the points at which the estimates
become the respective value (e.g., 0.4, 0.2, −0.2, −0.4).
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on the scale of the unobserved confounder. To see this, δm is the difference in the unobserved confounder,
comparing individuals with a one-unit increase in the mediator M , given controls; βu is the outcome
difference, comparing individuals with a one-unit increase in the unobserved confounder, given controls.
If sensitivity parameters depend on the scale of the unobserved confounder, it is challenging to determine
whether the confounding amount expressed by the sensitivity parameters is large or small even with the
substantial knowledge of possible unobserved confounders (e.g., degree of discrimination). One solution is
to standardize the unobserved confounder as shown in Section 5.3. Another solution is to reparameterize
sensitivity parameters to R2 values.

In this section, we re-express the simplified bias formulas shown in equation (11) using scale-free R2

values. By using the R2 values, we can obtain correct standard errors for disparity reduction and remaining
with a varying amount of unobserved confounding. We also present a standard way to report the amount of
confounding using the RVs. Cinelli and Hazlett [14] developed a way to express biases using R2 values in the
context of estimating a treatment effect, and we extend this reparameterization of R2 values to our bias
formulas for disparity reduction and remaining.

This reparameterization to R2 values is based on a particular statistical model specified in equations (5)
and (6) that assume linearity. We later provide the extension that can be used when linearity is violated.
Note that we rewrite equation (6) as follows to differentiate outcome coefficients before and after including
the unobserved confounder U .

[ ∣ ] = + + + +E Y r x m c β β β x β m β c, , , .i r x m cres res, res, res, res, (13)

6.1 Under the linearity assumption

6.1.1 Point estimates

Let the partial R2 value of the unobserved confounder (U ) with the outcome (Y ) for the comparison group
( =R r) given mediator (M) and observed confounders (X and C) be denoted as

∣

R ~Y U r MX C, , ,
2 ; and the partial

R2 value of the unobserved confounder (U ) with the mediator (M) for the comparison group ( =R r) given
observed confounders (X and C) be denoted as

∣

R ~M U r X C, ,
2 . Then, the absolute value of bias for disparity

reduction and remaining is expressed as follows:

∣ ( ( ∣ ))∣ ∣ ( ( ∣ ))∣ ∣ ∣ ( )= =

×

−

∣ ∣

∣

δ r r ζ r α β
R R

R
bias , 0 bias 0 , 0 Var ˆ ~ ~

1 ~
df ,r m

Y U r M M U r

M U r

X C X C

X C
res,

, , ,
2

, ,
2

, ,
2 (14)

for { }∈r 1, 2, 3 . We can obtain an unbiased estimate of αr by fitting the mediator model shown in equation
(5); ( )βVar ˆ

mres, is obtained from the sample variance of β̂ mres, and df is obtained from the degrees of freedom
of the outcome model shown in equation (13). A proof is given in Appendix C.

6.1.2 Standard errors

Some investigators might also be interested in quantifying the amount of confounding that would change
the significance of the effects. The standard error for disparity reduction for =R r can be calculated
approximately using the Delta method [41] as follows:

( ( ∣ )) ( ) ( )≈ +δ r r α β β αVar ˆ , 0 Var ˆ Var ˆ ,r m m r
2 2 (15)

where ( ) ( )⎛
⎝

⎞
⎠

=

−

− −

∣

∣

β βVar ˆ Var ˆ ~
~

m m
R
Rres,

1
1

df
df 1

Y U r M

M U r

X C

X C

, , ,
2

, ,
2 and
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We can obtain an unbiased estimate of αr by fitting amediator model shown in equation (5). Given the estimate,

( )αVar ˆr can be consistently estimated by computing the sample variance of α̂r. Likewise, we can obtain the

estimate of β mres, by fitting an outcome model as shown in equation (13). Given the estimate, ( )βVar ˆ
mres, can

be consistently estimated by computing the sample variance of β̂ mres, . A proof is shown in Appendix D.
Note that the standard error of disparity reduction shown in equation (15) is the same as the sample

standard deviation of the disparity reduction estimate ( ( ∣ )δ r rˆ , 0res ) if and only if the two sensitivity para-
meters are zero, meaning that there is no confounding in the mediator–outcome relationship given the
intersectional group and measured confounders.

Calculating the standard error for disparity remaining is more complex. Therefore, we use ( ) =τ r, 0
( ∣ ) ( ∣ )+δ r r ζ r, 0 0 , 0 to approximately calculate the standard error for disparity remaining as follows:

( ( ∣ )) ( ( )) ( ( ∣ )) ( ( ) ( ∣ ))

[ ( ) ] ( ( ) ) [ ] ( ( ) ( ) )

≈ + −

+ +

ζ r τ r δ r r τ r δ r r

kE β τ r α kE α τ r β

Var ˆ 0 , 0 Var ˆ , 0 Var ˆ , 0 2Cov ˆ , 0 , ˆ , 0

2 Var ˆ Cov ˆ , 0 , ˆ 2 ˆ Cov ˆ , 0 , Var ˆ ,m r r m

res

res, res,

(16)

where =

×

−

∣ ∣

∣

k df~ ~
~

R R
R1

Y U r M M U r

M U r

X C X C

X C

, , ,
2

, ,
2

, ,
2 . Here, the estimates of ( ( ))τ rVar ˆ , 0 and ( ( ) ( ∣ ))τ r δ r rCov ˆ , 0 , ˆ , 0res can be

obtained from sample variance and covariance matrix of the initial disparity and disparity reduction

estimates; ( ( ) )τ r αCov ˆ , 0 , ˆr can be obtained from sample covariance of the initial disparity and the regression

coefficient α̂r; ( ( ) ( ) )τ r βCov ˆ , 0 , Var ˆ
mres, can be obtained from sample covariance of the initial disparity and

the standard error of β̂ mres, .
Again, the standard error of disparity remaining shown in equation (16) is the same as the sample standard

deviation of the remaining disparity estimate ( ( ∣ )ζ rˆ 0 , 0res ) if and only if the two sensitivity parameters are zero,
meaning that there is no omitted confounding existing in the mediator and outcome relationship.

This bias formulas in equation (14) and standard errors for disparity reduction and remaining in
equations (15) and (16) can be used as sensitivity analysis that depends on two sensitivity parameters

∣

R ~Y U r MX C, , ,
2 and

∣

R ~M U r X C, ,
2 . The two sensitivity parameters imply the degree to which an unobserved con-

founder is associated with the mediator and the outcome for the comparison group =R r after conditioning
on appropriate controls, expressed in R2 values. Larger R2 values of the sensitivity parameters indicate a
larger bias for disparity reduction and remaining due to unobserved confounder U .

We conduct a Monte Carlo simulation study to evaluate how well the proposed standard error estima-
tors perform in varying sample sizes and effect sizes of sensitivity parameters. In this simulation, we find
that the 95% CI coverage rate exceeds 0.91 regardless of sample sizes and effect sizes of sensitivity para-
meters. The coverage rate tends to be closer to the nominal level (0.95) with a sample size of 500 or larger.
The coverage rate is lower than expected (0.916) with a small sample size (e.g., 100) and a small effect size
of sensitivity parameters (e.g., 0.02). The results and details of the simulation study are reported in
Appendix E. In addition, we provide a standard error estimator for a percent reduction in Appendix F.

6.2 When the linearity assumption is violated

The expression of point estimates and standard errors becomes more cumbersome when the interaction
effect exists in the group–mediator relationships in the outcomemodel. In such a case, the bias for disparity

reduction and remaining estimates is the same as equation (14), except that ( )βVar ˆ
mres, should be
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replaced with { ( ) ( ) ( )}+ +β β β βVar ˆ Var ˆ 2Cov ˆ , ˆ
m rm m rmres, res, res, res, . For calculating standard errors for the

disparity reduction and remaining, β mres,
2 should be replaced with ( )+β βm rmres, res,

2.

Perhaps, a more straightforward way to address differential effects is to use an algorithm to change the
reference group to =R r when computing the effect of the mediator on the outcome (β mres, ) and its corre-
sponding standard error for each comparison group ( ( )βVar ˆ

mres, ). For example, we fit the outcome model
with the group–mediator interaction effect, setting the reference group to Black women. Then, the mediator
effect on the outcome and its corresponding standard error for Black women can be obtained, respectively,

as β̂ mres, and ( )βVar ˆ
mres, in the outcome model even after adding the interaction effect. This algorithm

provides a convenient and flexible way to address differential effects of the mediator or intermediate
confounders by group status.

However, this algorithm does not address other nonlinear effects, such as the interaction effect in the
mediator and intermediate confounder relationship. In this case, one should consider using the general
bias formulas directly.

6.3 RVs

Despite the development of numerous sensitivity analyses, not many social or medical scientists have used
sensitivity analysis to assess the robustness of their findings. Recent literature on sensitivity analysis [14,42]
emphasized the use of standard way of reporting the robustness of research findings, which is expected to
facilitate the discussions regarding how credible the estimated effect is to possible violations of no omitted
confounding. For example, Ding and VanderWeele [42] advanced the E-value that reports the robustness of
research findings measured in the risk ratio; Cinelli and Hazlett [14] advanced the RV that reports the
robustness of research findings derived from linear regressions. In this section, we extend the RV computed
for the treatment effect to disparity reduction and remaining.

We define the RV as the strength of association that will explain the estimated disparity reduc-
tion or remaining, assuming an equal association to the mediator and the outcome, as =

∣

R ~Y U r MX C, , ,
2

=
∣

R ~ RVM U r X C, ,
2 . Then, the RV for disparity reduction and remaining are, respectively, given by

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
= + − = + −

∣
∣ ∣ ∣

∣
∣ ∣ ∣

g g g g g gRV 1
2

4 and RV 1
2

4 ,δ r r δ r r δ r r δ r r ζ r ζ r ζ r ζ r,0 ,0
4

,0
2

,0
2

0 ,0 0 ,0
4

0 ,0
2

0 ,0
2 (17)

where ( )
∣ ( ∣ ) ∣

∣ ∣ ( )
=

∣

gδ r r
δ r r

α β,0
ˆ , 0

Var ˆ dfr m

res

res,

and ( )

∣ ( ∣ ) ∣

∣ ∣ ( )
=

∣

gζ r
ζ r

α β0 ,0
ˆ 0 , 0

Var ˆ dfr m

res

res,

. A proof is given in Appendix G.

Next, we define
=

RV α 0.05 as the strength of association that will change the significance of the estimated
disparity reduction or remaining at the =α 0.05 level, assuming an equal association to the mediator and
the outcome. While the RV for disparity reduction and remaining can be computed easily from regression
results, the RVα cannot be computed easily. Therefore, we use a computational approach to obtain an
approximate value of RVα. Specifically, we find combinations of two sensitivity parameters (

∣

R ~Y U r MX C, , ,
2

and
∣

R ~M U r X C, ,
2 ) that make the 95% CI of disparity reduction (or remaining) to cover approximately zero (i.e.,

( ∣ ) ( ( ∣ ))± <δ r r t se δ r r, 0 , 0 0.0010.05,df ). Once the combinations of two sensitivity parameters are identified
that will make the CI approximately cover zero, we compute the average value of the two sensitivity
parameters.

6.4 Illustration using R2-based sensitivity analysis

Section 5.3 presents sensitivity analysis using regression coefficients. This section presents the same sen-
sitivity analysis, but it is parameterized in R2 values as defined in equation (14). Figure 3 presents the results
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for the sensitivity analysis of disparity reduction (A) and disparity remaining (B) based on two sensitivity
parameters. The two sensitivity parameters are (1) the partial R2 value of discrimination with CVH given the
group status, mediator, and observed confounders, namely,

∣

R ~Y U r MX C, , ,
2 (x-axis), and (2) the partial R2

value of discrimination with the education level given the group status and observed confounders, namely,

∣

R ~M U r X C, ,
2 (y-axis). We plot the points at which the estimated disparity reduction (remaining) becomes

zero (bold line), and the 95% CIs cover zero (dashed line) given the combination of two sensitivity
parameters.

The analysis indicates that the disparity reduction would still be negative (i.e., education significantly
reduces the CVH gap between Black women and White men) if the unobserved confounder explains
less than 10.7% of the variance of the mediator and the outcome after accounting for the existing con-
founders. The disparity reduction would still be significant at the 95% CI if the unobserved confounder
explains less than 6.4% of the variance of the mediator and the outcome after accounting for the existing
confounders.

Similarly, the disparity remaining would still be negative if the unobserved confounder explains less
than 12.9% of the variance of the mediator and the outcome after accounting for the existing confounders,
respectively. The disparity remaining would still be significant at the 95% CI if the unobserved confounder
explains less than 5.2% of the variance of the mediator and the outcome after accounting for the existing
confounders.

Although the qualitative classifications of effect size depend on the context of studies, we use Cohen’s
[43] guideline to judge how large the amount of confounding is. The amount of confounding required to
change the disparity reduction (10.7%) and remaining (12.9%) estimates from negative to positive is con-
sidered medium. The amount of confounding required to change the significance of the disparity reduction
(6.4%) and remaining (5.2%) estimates is considered small. These results indicate that the conclusion
regarding disparity reduction and remaining due to the mediator (education) could be changed with an
unobserved confounder that has a small effect on the mediator and the outcome after controlling for the
existing confounders.
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Figure 3: Sensitivity contour plots using R2 values. (a) Disparity reduction. (b) Disparity remaining. Note (1) Bold lines represent
the points at which the estimates become zero. (2) Standard lines represent the points at which the estimates become the
respective value (e.g.,−0.2, −0.1, 0.1, 0.2). (3) Dashed lines represent the points at which the upper and lower CIs include zero.
(4) Red points represents the RVs, i.e., the partial R2 values that make the estimates or upper/lower limits of CIs zero, assuming
equal R2 values between the two sensitivity parameters.
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7 Discussion

In this study, we developed a set of sensitivity analyses that assesses the sensitivity of disparity reduction
and remaining to possible violations of no-unobserved mediator–outcome confounding. Although we used
the example of estimating disparity reduction and remaining after intervening on a mediator, the proposed
sensitivity analyses can be used in any settings based on interventional indirect and direct effects when the
exposure is randomized (or conditionally ignorable given covariates).

Our study contributes to the fast-growing causal decomposition literature in several ways. First, we
compared causal decomposition analysis based on interventional effects with causal mediation analysis
based on natural effects. More importantly, we clarified that sensitivity analyses developed for natural
indirect effects to possible pre-exposure confounding can only assess the sensitivity of disparity reduction
when no intermediate confounding exists. We argued that the assumption (no intermediate confounding) is
restrictive and may only be met when the mediator is measured shortly after the group status, for example,
childhood poverty. Yet, such an assumption would be unrealistic in many studies that examine life-long
health disparities between social groups.

Second, we derived general bias formulas for disparity reduction and remaining, which serve as the
basis of our proposed sensitivity analyses. The general bias formulas can be used beyond a particular
statistical model and are applicable to any variable type of mediator, outcome, or intermediate confounder
and do not require any assumptions. Moreover, the same bias formulas apply with pre-exposure and
intermediate unobserved confounding. Within the causal mediation framework based on natural indirect
effects, it has long been desired by many researchers to address both pre-exposure and intermediate
unobserved confounding [21,38,44]. Researchers can handle both types of confounding by utilizing the
proposed sensitivity analyses, as the causal estimand is based on interventional direct and indirect effects.
We acknowledge that not every situation is suitable for interventional direct and indirect effects. However,
in some cases, such as the motivating example, defining interventional indirect effects makes more sense
than natural indirect effects.

Third, we proposed a sensitivity analysis based on regression coefficients and R2 values by extending
existing approaches. Our contribution is to derive the conditions under which the existing approaches to
sensitivity analysis with unobserved confounding can be applied to disparity reduction and remaining. The
regression-based sensitivity analysis provides a straightforward way to assess the sensitivity of the effect
estimates even without a specific software program. Compared to Park et al. [10], there are two advantages:
(1) the sensitivity analysis does not require a restrictive conditional independence assumption, and (2)
sensitivity parameters are not conditional on the descendent of the exposure (group status). Although it
hinges on the linearity assumption, we provided extensions that relax this assumption. We reparameterized
regression-based sensitivity analysis to the scale-free R2 values. The R2-based sensitivity analysis is parti-
cularly useful for evaluating the sensitivity of the estimates’ statistical inferences. In addition, RVs provide
a standard way to compare our findings’ sensitivity with that of other studies.

We also acknowledge the limitations of the proposed sensitivity analyses. First, the R2-based sensitivity
analysis is only available for continuous outcomes. An extension to discrete outcomes is left
for future research. Second, the proposed sensitivity analysis addresses unobserved confounding
fixed in time. Addressing unobserved time-varying confounding would be an important generalization of
this research. The time-varying confounding issue cannot be easily resolved within the causal mediation
framework based on natural indirect effects, as VanderWeele et al. [22] have pointed out. An alternative would
be to use interventional indirect effects. Third, in addition to addressing unobserved confounders, it is crucial
to address measurement errors in a mediator. A sensitivity analysis that simultaneously addresses unob-
served confounders and measurement errors would be particularly beneficial to researchers investigating the
role of psycho-social factors, which are susceptible to measurement errors, in reducing disparities.
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Appendix

A General bias formulas of δ r r, 0( ∣ ) and ζ r0 , 0( ∣ )

The bias for disparity reduction for r (bias( ( ∣ )δ r r, 0 )) is defined as the difference between the expected
estimate and the true value. The bias equals
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The second equality holds because of the law of total probability. The third equality is due to Bayes’
theorem.

The last expression of equation (A1) is the general bias formula for ( ∣ )δ r r, 0 . Since the bias for ( )τ r, 0
due to omitted variable U is zero, the bias for ( ∣ ) ( ( ∣ ))= −ζ r δ r r0 , 0 bias , 0 . This completes the proof.

B Sensitivity analysis using regression coefficients

Suppose that the following regression models forY andU are correctly specified as equation (10). Then the
bias for disparity reduction is given by
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This completes the proof.
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C Bias formulas based on the coefficients of determination

This proof is a straightforward extension of Cinelli and Hazlett [14]. By using equation (11), the bias for
disparity reduction is given by
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where Cov and Cor represent the covariance and correlation, respectively. The third equality is because
( ∣ ) ( ∣ ) ( ∣ ) ( ∣ )=A B C A B C A C B CCov , Cor , Var Var .
Suppose that the partial R2 value of unmeasured confounderU with the outcome for =R r given X, M ,

and C be denoted as
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2 , and suppose also that the partial R2 value of unmeasured confounder U

with the mediators for =R r given X and C be denoted as
∣
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2 . Then, given equations (5) and (13), the

absolute value of the bias can be expressed as follows:
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The first equality is derived from ( ∣ )
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outcome model shown in equation (13). This completes the proof.

D Standard errors of disparity reduction and remaining

We first calculate the standard error for disparity reduction. The standard errors for β̂ mres, and β̂m can be
obtained, respectively, as follows:
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The ratio of these standard errors is
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Using the parametric identification result shown in Section 3.2, the standard error for disparity reduc-
tion for =R r can be calculated approximately using the Delta method [41] as follows:
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Next, we calculate the standard error for disparity remaining. By using ( ) ( ∣ ) ( ∣ )= +τ r δ r r ζ r, 0 , 0 0 , 0 , we
have
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The fourth equality follows Goodman [45] and uses the conventional asymptotic approximation procedure
[46]. This completes the proof.

E A simulation study

A Monte Carlo simulation study is conducted to investigate the performance of the proposed standard error
estimators of disparity reduction and remaining given in equations (15) and (16). We consider varying
sample sizes (100, 500, and 1,000) and effect sizes of sensitivity parameters, i.e., partial R2 values of U
with M andU with Y (0.02, 0.13, and 0.26). The sample sizes of 100, 500, and 1,000 cover small, medium,
and large data and the sensitivity parameters of 0.02, 0.13, and 0.26 represent small, medium, and large
effect sizes, respectively, according to Cohen [43].

For the simulation study, we first generate synthetic population data that have similar characteristics
with the MIDUS data in terms of the distributions of variables R, X , M , Y , and C, and the relationships
between them. To be specific, we first generated C and R using the distributions of a covariate (age) and
race–gender status of the MIDUS data. Then we used equations (4), (5), and (7) to extract the estimates of
regression coefficients and generate X , M , and Y , respectively. We then generated U by adjusting the
coefficient values to a certain degree so that

∣

R ~Y U r MX C, , ,
2 and

∣

R ~M U r X C, ,
2 becomes 0.02, 0.13, or 0.26. Once

the population data are generated, we took a random sample of size { }=n 100, 500,1,000 from the popula-
tion data and estimated the standard error estimators of disparity reduction and remaining based on which

Table A1: Simulation results: 95% CI coverage rates of the standard error estimators of disparity reduction and remaining

Effect size Sample size Disparity reduction Disparity remaining

Small 100 0.916 0.931
500 0.934 0.942
1,000 0.927 0.935

Medium 100 0.921 0.930
500 0.946 0.940
1,000 0.941 0.941

Large 100 0.932 0.935
500 0.959 0.942
1,000 0.951 0.951
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the 95% CIs are constructed. The results are reported in Table A1 and are based on 1,000 simulations. We
compute 95% CI coverage for nine different conditions.

The 95% CI coverage rate reaches the nominal level (0.95) with a sample size of 500 or larger, yet it
reaches more quickly with medium and large effect sizes of sensitivity parameters. With a small effect size
and a sample size of 100, the coverage is as low as 0.916 for disparity reduction. This result suggests that the
coverage rate could be lower than expected with a small sample size (e.g., 100) and a small effect size of
sensitivity parameters (e.g., 0.02).

F Standard errors for a percent reduction

As the variance of a ratio of two random variables with nonzero means can be approximated using the delta
method and a first-order Taylor expansion, an uncertainty measure of a percent reduction can be derived in
a similar way as

⎜ ⎟
⎛

⎝

( ∣ )

( )

⎞

⎠

( ∣ )

( )

⎧

⎨
⎩

( ( ∣ ))

( ∣ )

( ( ) ( ∣ ))

( ∣ ) ( )

( ( ))

( )

⎫

⎬
⎭

≈ − +

δ r r
τ r

δ r r
τ r

δ r r
δ r r

τ r δ r r
δ r r τ r

τ r
τ r

Var
ˆ , 0
ˆ , 0

, 0
, 0

Var ˆ , 0
, 0

2 Cov ˆ , 0 , ˆ , 0
, 0 , 0

Var ˆ , 0
, 0

,
2

2 2 2 (A9)

where an unbiased estimate of ( )τ r, 0 and [ ( )]τ rVar ˆ , 0 can be obtained from the data; ( ∣ )δ r r, 0 is given by

( ∣ ) ( ( ∣ ))−δ r r δ r r, 0 bias , 0res where ( ( ∣ ))δ r rbias , 0 is given by equation (14); ( ( ∣ ))δ r rVar ˆ , 0 is given by equa-
tion (A7); ( ( ) ( ∣ ))τ r δ r rCov ˆ , 0 , ˆ , 0 is given by equation (16).

G RVs for disparity reduction and remaining

We define the RV as the strength of association that will explain away the estimated disparity reduction (or
remaining), assuming an equal association to the mediator and the outcome, as = =

∣ ∣

R R~ ~ RVY U r M M U rX C X C, , ,
2

, ,
2 .

We find the RV such that ∣ ( ( ∣ ))∣ ∣ ( ∣ )∣=δ r r δ r rbias , 0 ˆ , 0 . Using equation 14, we have

∣ ∣ ( ) ∣ ( ∣ )∣
( )

( )−

=

∣

∣

α β δ r rVar ˆ RV
1 RV

df ˆ , 0r m
δ r r

δ r r
res,

,0
2

,0
(A10)

Dividing both sides by ∣ ∣ ( )α βVar ˆ dfr mres, , we have

∣ ( ∣ )∣

∣ ∣ ( )

( )

( )−

=

∣

∣

δ r r

α β

RV
1 RV

ˆ , 0

Var ˆ df
δ r r

δ r r r m

,0
2

,0
res,

(A11)

We define ( )
∣ ( ∣ ) ∣

∣ ∣ ( )
≡

∣

gδ r r
δ r r

α β,0
ˆ , 0

Var ˆ dfr mres,

and solve for ( )RV δ r . Then, ( )( ) ( ) ( ) ( )
= + −

∣
∣ ∣ ∣

g g gRV 4δ r r δ r r δ r r δ r r,0
1
2 ,0

4
,0

2
,0

2 .

The RV for ( ∣ )ζ r0 , 0 can be obtained the same way and thus is omitted. This completes the proof.

Sensitivity analysis for causal decomposition analysis  23


	1 Introduction
	2 Running example
	3 Review and implications on existing sensitivity analyses
	3.1 Causal decomposition analysis
	3.1.1 Definitions
	3.1.2 Identification assumptions and results
	3.1.3 Estimation

	3.2 Comparison with the related definitions in the literature
	3.3 Implications on existing sensitivity analyses
	3.3.1 Under no intermediate confounders
	3.3.2 Under no interaction between R and M

	3.4 An application to MIDUS

	4 General bias formulas
	5 Sensitivity analysis using regression coefficients
	5.1 Under the linearity assumption
	5.2 When the linearity assumption is violated
	5.3 Illustration using regression-based sensitivity analysis

	6 Sensitivity analysis using R2 values
	6.1 Under the linearity assumption
	6.1.1 Point estimates
	6.1.2 Standard errors

	6.2 When the linearity assumption is violated
	6.3 RVs
	6.4 Illustration using R2-based sensitivity analysis

	7 Discussion
	Acknowledgments
	References
	Appendix ��A General bias formulas of &#x03B4;(r,0&#x2223;r) and &#x03B6;(0&#x2223;r,0)
	B Sensitivity analysis using regression coefficients
	C Bias formulas based on the coefficients of determination
	D Standard errors of disparity reduction and remaining
	E A simulation study
	F Standard errors for a percent reduction
	G RVs for disparity reduction and remaining


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


