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Abstract: Leveraging external controls – relevant individual patient data under control from external trials or
real-world data – has the potential to reduce the cost of randomized controlled trials (RCTs) while increasing
the proportion of trial patients given access to novel treatments. However, due to lack of randomization, RCT
patients and external controls may differ with respect to covariates that may or may not have been measured.
Hence, after controlling for measured covariates, for instance by matching, testing for treatment effect using
external controls may still be subject to unmeasured biases. In this article, we propose a sensitivity analysis
approach to quantify the magnitude of unmeasured bias that would be needed to alter the study conclusion
that presumed no unmeasured biases are introduced by employing external controls. Whether leveraging
external controls increases power or not depends on the interplay between sample sizes and the magnitude of
treatment effect and unmeasured biases, which may be difficult to anticipate. This motivates a combined
testing procedure that performs two highly correlated analyses, one with and one without external controls,
with a small correction for multiple testing using the joint distribution of the two test statistics. The combined
test provides a new method of sensitivity analysis designed for data fusion problems, which anchors at the
unbiased analysis based on RCT only and spends a small proportion of the type I error to also test using the
external controls. In this way, if leveraging external controls increases power, the power gain compared to
the analysis based on RCT only can be substantial; if not, the power loss is small. The proposed method is
evaluated in theory and power calculations, and applied to a real trial.
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1 Introduction

1.1 Use of external controls in randomized controlled trials (RCTs)

RCTs are the gold standard for generating high-quality causal evidence of new treatments and have long been
recognized as the standard method to support key decisions in the drug development process [1,2]. However,
despite its clear advantages, the traditional paradigm of conducting RCTs has been increasingly criticized for
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failing to meet contemporary needs. In certain settings, for example, in HIV prevention [3,4], oncology [5], and
neurology [6], randomizing patients to placebo may be difficult for ethical or feasibility reasons. Moreover,
adequately powered RCTs are becoming more and more impractical as a growing number of new treatments
are targeted toward rare diseases or biomarker-defined subgroups of patients in the era of precision medi-
cine [7].

Meanwhile, a plethora of real-world data (RWD) have been curated for administrative or research pur-
poses and are becoming accessible to researchers in the form of disease registries, administrative claims
databases, and electronic health records. These rich data sources can produce valuable insights, i.e., real-world
evidence (RWE), into the effect of treatments in routine, daily practice. However, researchers almost ubiqui-
tously caution against possible bias from unmeasured confounding when using RWD.

Being well aware of the limitations of using either RCT or RWD alone, the idea of using RWD to supplement
RCT has gained growing interest in recent years. As forcefully argued in the study of Eichler et al. [7], “the
future is not about RCTs vs RWE but RCTs and RWE.” There are numerous opportunities in how the integration
of RCTs and RWD can achieve fruitful results that using either RCT or RWD alone cannot [8–10]. Among those,
an important theme is on augmenting the RCT with RWD to increase efficiency [11–16], and particularly,
constructing an externally augmented control arm in the analysis of RCTs [17–20]. Leveraging external con-
trols – relevant individual patient data under control from external trials or RWD – has the potential to reduce
the cost of RCTs while increasing the proportion of trial patients given access to novel treatments.

Using external controls is not an entirely new idea. Criteria for evaluating what constitute an acceptable
external control arm are proposed in the study of Pocock [21]. It was discussed 20 years ago by the [22, E10
Section 2.5], and also recognized by European Medicines Agency [23], US Food and Drug Administration [24],
and National Cancer Institute [25] as one direction to modernize clinical trials. In fact, properly selected
external controls (e.g., using propensity score matching) have shown early promise, and several drugs have
already been approved based on external control groups [26–28].

Using external controls typically requires the exchangeability condition, i.e., all patient characteristics that
affect the potential outcome under control and differ between the trial population and the external control
population are measured [29]. While careful adjustment for observed covariates can probably render the
exchangeability assumption to hold approximately, the analysis may still be biased due to unmeasured
covariates related to “difficulties in reliably selecting a comparable population because of potential changes
in medical practice, lack of standardized diagnostic criteria or equivalent outcome measures, and variability
in follow-up procedures” [24]. To reduce the potential biases from using external controls, an intuitive
frequentist approach is “test-then-pool” that first tests for the comparability of the external controls and
internal controls before leveraging external controls [20]. Bayesian methods that rely on power priors have
also been popular, which use the likelihood of the external data to a specified power as the prior distribution
[30,31]. As such, one can use power priors to adjust the weight allocated to the external information according
to the levels of comparability between the external control and the internal data. However, these methods lack
formal statistical theory on how the unmeasured biases might affect the validity and efficiency of the proposed
procedures.

In this article, we take a different perspective to this problem and propose a sensitivity analysis approach
to quantify the magnitude of unmeasured bias that would be needed to alter the study conclusion that
presumed no unmeasured biases are introduced by employing external controls [32]. With the unbiased
RCT-only test as the benchmark, leveraging external controls increases power or not depends on the interplay
between sample sizes and the magnitude of treatment effect and unmeasured biases, which may be difficult to
anticipate. This motivates a combined testing procedure that performs both tests, one with and one without
external controls, correcting for multiple testing using the joint distribution of the two test statistics. Because
the two tests are highly correlated, this correction for multiple testing is small. Interestingly, the proposed
combined testing procedure can be viewed as a new method of sensitivity analysis designed for data fusion
problems that anchors at the unbiased analysis based on RCT only and “spends” a small proportion of the type
I error (i.e., the cost of multiple testing) to also test using the pooled controls. In this way, if leveraging external
controls increases power, the power gain compared to the RCT-only test can be substantial; if not, the power
loss is small. Before introducing technical details, it is useful to consider a motivating example.
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1.2 Example: an RCT in patients with type-2 diabetes

Consider a non-inferiority, phase 3 RCT (referred to as the internal trial, ClinicalTrials.gov number,
NCT01894568) comparing a new basal insulin, insulin peglispro, to insulin glargine as the control in Asian
insulin-naïve patients with type-2 diabetes using a noninferiority margin of 0.4% [33]. The primary endpoint is
the change in hemoglobin A1c (HbA1c) from baseline to 26 weeks of treatment. HbA1c is a continuous-valued
measure of average blood glucose in the past 3 months. Before this trial, a phase 3 RCT of similar design
(referred to as the external trial, ClinicalTrials.gov number, NCT01435616) has been conducted in the North
America and Europe [34], whose control arm will be used as the source of external controls.

We focus on the overweight and obese population, which are, respectively, defined as ≤23 bodymass index
(BMI) <25 and ≥BMI 25 for the internal trial according to the Asia-Pacific guidelines, and ≤ <25 BMI 30 and

≥BMI 30 for the external trial according to the World Health Organization classifications [35]. There are in
total 159 patients under treatment and 150 patients under control in the internal RCT, and 486 patients under
control in the external trial. We match 159 similar external controls to the 159 treated patients in the internal
RCT using optimal matching based on a robust Mahalanobis distance and a caliper on the propensity score. See
Rosenbaum [36, Part II] for discussion of these matching techniques. Table 1 describes covariate balance in the
159 matched pairs. All variables have standardized differences less than 0.13 and are considered sufficiently
balanced [37].

Using only the internal RCT, 159 patients under treatment and 150 under control, we conduct a Z -test with
the noninferiority margin of 0.4% and obtain a one-sided p-value × −7.92 10 7. In this analysis, the evidence that

Table 1: Covariate balance after matching in 159 matched pairs of one treated patient in the RCT and one external control patient

Treated ( ==n 1591 ) External
control ( ==n 159e )

Standardized
mean difference

Age (years) 57.45 57.16 0.03
Female (fr) 0.41 0.41 0.00
Overweight (fr) 0.28 0.28 0.00
Obese (fr) 0.72 0.72 0.00
Diabetes duration (years) 12.08 11.74 0.05
Hypertension (fr) 0.66 0.69 −0.07
History of MI (fr) 0.04 0.01 0.13
History of CR (fr) 0.04 0.02 0.13
History of CABG (fr) 0.01 0.00 0.05
Lipid lowering medication (fr) 0.61 0.57 0.09
Statin Use (fr) 0.51 0.50 0.01
Non-statin lipid lowering medication (fr) 0.15 0.11 0.10
Fasting serum glucose (mg/dL) 164.99 166.25 −0.03
Triglycerides (mg/dL) 139.86 140.06 −0.00
Total cholesterol (mg/dL) 178.92 180.93 −0.05
LDL (mg/dL) 101.42 103.29 −0.06
HDL (mg/dL) 50.41 50.01 0.03
Alanine aminotransferase (U/L) 33.60 33.03 0.03
Aspartate aminotransferase (U/L) 26.99 26.08 0.08
Total bilirubin (mg/dL) 0.58 0.54 0.12

eGFR (mL/min/1.73 m2) 90.52 87.70 0.13

Baseline sulfonylureas or meglitinides
use (fr)

0.86 0.86 0.02

Smoking (fr) 0.46 0.43 0.06
Baseline HbA1c (%) 8.57 8.59 0.03

Abbreviations: CABG = coronary artery bypass graft; CR = coronary revascularization; eGFR = estimated glomerular filtration rate based
on the modified Modification of Diet in Renal Disease equation; fr = fraction; HbA1c = hemoglobin A1c; HDL = high-density lipoprotein
cholesterol; LDL = low-density lipoprotein cholesterol; MI = myocardial infarction.
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the new insulin treatment is noninferior to insulin glargine is strong enough when only using the internal
controls. On the other hand, under the exchangeability assumption, which implies that the 159 matched
external controls are comparable to patients in the internal RCT, we construct an augmented control arm
of 309 patients in total and obtain a one-sided p-value × −1.88 10 7. Again, we find strong evidence of noninfer-
iority; however, an investigator may be in doubt about the exchangeability assumption due to the influence of
regions on the outcome. Then a natural question is could the one-sided p-value of × −1.88 10 7 be due to regions
rather than the effect of treatment? If the study conclusion from using external controls can be altered by a
plausible effect of regions and because the RCT-only test is already powerful enough, the RCT-only test would
be a better choice. However, it would be difficult to know this before examining the data. Motivated by the
advice of performing multiple analyses with an appropriate correction for multiple testing given by
Rosenbaum [38], we propose a combined testing procedure that performs both analyses, controlling for
multiple testing using the joint distribution of the two test statistics. In this article, we will demonstrate
that the combined test avoids making an inapt choice about whether to use external controls or not, and
only has a small loss of power compared to knowing a priori which is the better choice.

1.3 Outline

Section 2 presents a test that uses only the internal controls and another test that also leverages the external
controls, and discusses controlling type I error and comparing power without the exchangeability assumption.
Section 3 proposes a combined test that performs both tests and studies in detail its statistical properties. Section 4
presents power calculations. Section 5 returns to the real data applications. Section 6 concludes with a discussion.

2 Testing using internal and external controls

2.1 Testing under exchangeability

There is an RCT denoted as =D 1. Let A be a binary treatment, where =A 1 denotes treatment and =A 0

denotes control, X a vector of observed baseline covariates, ( )Y a the potential outcome under =A a, for
=a 0, 1. Throughout the article, we assume consistency and Stable Unit Treatment Value Assumption

(SUTVA) so that the observed outcome satisfies ( )( ) ( )= + −Y AY A Y11 0 [39]. Our estimand of interest is the
average treatment effect in the RCT population ( ∣ ) ( ∣ )( ) ( )= = − =⋆θ E Y D E Y D1 11 0 . In particular, we consider
testing a one-sided hypothesis:

= >⋆ ⋆H θ θ H θ θ: versus : .A0 0 0

The other direction can be considered in the same way. Combining both one-sided tests and applying
Bonferroni correction give a two-sided test [40, Section 4.2], and by inversion, a confidence interval.

Write the RCT sample as ( )= =Y X A D i n, , , 1 , 1,…,i i i i r , which is assumed to be independent and identi-
cally distributed according to the joint law of ( )∣( ) ( ) =Y Y X A D, , , 11 0 . Randomization in the RCT guarantees that

( )∣( ) ( )⊥ =A Y Y X D, , 11 0 and ( ∣ )= = = >P A a D π1 0a for =a 0, 1, with πa known and + =π π 10 1 . LetYa and Sa

2,
respectively, be the sample mean and sample variance of the responsesYi ’s from RCT subjects under treatment
a, for =a 0, 1. Hence, the null hypothesis H0 can be tested using a simple Z -statistic:

=
− −

+− −
T

Y Y θ

n S n S

,1

1 0 0

1

1

1

2

0

1

0

2

where n1 and n0 are, respectively, the number of RCT patients under treatment and control. Based on T1, we
reject H0 when ≥ −T z α1 1 , where −z α1 is the ( )− α1 th quantile of the standard normal distribution.
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To supplement the RCT using external controls, one approach is to first extract external data for patients
under control based on the inclusion/exclusion criteria of the RCT and then proceed by matching these
external patients to the RCT patients based on their similarity in observed baseline information X [27]. Let

=D 0 denote the matched external controls, and thus =D 0 implies =A 0. Write the matched external
controls as ( )= = =Y X A D i n, , 0, 0 , 1,…,i i i i e, which is assumed to be independent and identically distributed
according to the joint law of ( )∣( ) = =Y X A D, 0, 00 . Suppose that matching has rendered the baseline observed
covariates comparable between the RCT and external controls, i.e., ⊥D X , and that these baseline covariates X

explain all differences between the RCT and external controls, i.e., the exchangeability assumption ∣( )⊥D Y X0

holds. This implies ( )( )⊥D Y X,0 and thus ( ∣ ) ( ∣ )( ) ( )= = =E Y D E Y D1 00 0 . Let Ye be the sample mean of the
responses Yi ’s from the external controls, and ( )+ −wY w Y1 e0 be a weighted average of mean responses for
the two control groups, where [ ]∈w 0, 1 is a pre-specified weight, which could reflect the proportion of the
internal control in the two control groups combined. Therefore, the null hypothesis H0 can also be tested
borrowing information from the external controls using

( )
{ ( ) }

( )
=

− + − −
+ + −− − −

T w
Y wY w Y θ

n S w n S w n S

1

1

,
e

e e

2

1 0 0

1

1

1

2 2
0

1

0

2 2 1 2

where Se

2 is the sample variance of the responses Yi ’s from external controls. We make two remarks about
( )T w2 . First, ( )T w2 is constructed assuming independence between the RCT and external controls, which means

that ( )T w2 may be conservative due to correlation induced by matching [41] but usually to a small extent as the
correlation is typically small [42]. Second, ( ) [ ]∈T w w, 0, 12 defines a family of statistics that includes ( ) =T T12 1

as a special case. Among those, the exchangeability assumption implies the optimal w that maximizes the
efficiency of ( )T w2 is proportional to the sample size, i.e., the optimal w equals ( ) ( )∕ +n π n π nr r e0 0 . One can also
choose different values of w to reflect the weights allocated to the two control groups.

2.2 Controlling type I error without exchangeability

The aforementioned approach of leveraging external controls relies on the exchangeability assumption, which
may not hold because the RCT patients and external controls may differ with respect to covariates that may not
have been measured. Without exchangeability, { ( ) }− + −Y wY w Y1 e1 0 is not necessarily centered at θ0 under
H0 and rejecting the null hypothesis when ( ) ≥ −T w z α2 1 may inflate type I error.

Define ( ∣ ) ( ∣ )( ) ( )= = − =⋆Δ E Y D E Y D1 00 0 , which may be nonzero when exchangeability does not hold.
This could occur, for example, if an important prognostic variable is unobserved and left uncontrolled, or if a
variable that differs in distribution between =D 0 and =D 1 (such as region) cannot be matched. The correct
rejection region for a size-α test based on ( )T w2 is

( )
( )

( )
−

−
+ + −

>
⋆

− − − −T w
w Δ

n S w n S w n S

z
1

1

,

e e

α2

1

1

1

2 2
0

1

0

2 2 1 2
1

which is infeasible because ⋆Δ is unknown. To deal with this issue, a tempting choice is to estimate ⋆Δ and “de-
biase” the numerator of ( )T w2 to make it mean zero. Nonetheless, estimating ⋆Δ introduces additional variation,
which negatively affects the efficiency of the test. In particular, if one estimates ⋆Δ by −Y Ye0 , the debiased
numerator of ( )T w2 becomes − −Y Y θ¯ ¯1 0 0, and the resulting test statistic (after appropriately adjusting for its
denominator to reflect the variability of the numerator) becomes equivalent to T1, the test statistic without
using any external controls.

In order to borrow information from external controls while still controlling type I error, we consider
departures from the exchangeability through the lens of a sensitivity analysis [36]. Specifically, we consider a
sensitivity parameter Δ0 such that it bounds the magnitude of bias ⋆Δ , i.e., ≥ ⋆Δ Δ0 . Define

( )
{ ( ) } ( )

( ) ( ) ( )
=

− + − − − −
+ + −− − −

T w
Y wY w Y θ w Δ

n π S w n π S w n S

1 1

1

.Δ

e

r r e e

2,

1 0 0 0

1
1

1

2 2
0

1
0

2 2 1 2
0

Testing for treatment effect twice  5



Because ≤⋆Δ Δ0, the reject region ( ) ≥ −T w zΔ α2, 10
controls type I error at level α. As a special case when ≤⋆Δ Δ0

holds with =Δ 00 (e.g., under exchangeability), ( ) ≥ −T w zΔ α2, 10
becomes ( ) ≥ −T w z α2 1 , the reject region under

exchangeability. As Δ0 increases, there is greater uncertainty about how the exchangeability might be violated,
leading to more stringent rejection criterion to control type I error. The reject region ( ) ≥ −T w zΔ α2, 10

is sharp
under ≤⋆Δ Δ0 in the sense that they are of size-α when =⋆Δ Δ0, so it cannot be improved unless further
information is provided.

2.3 Power comparison without exchangeability

Write ( ∣ )( )= =σ Y DVar 1a
a2 , for =a 0, 1, and ( ∣ )( )= =σ Y DVar 0e

2 0 . Under the alternative hypothesis >⋆H θ θ:A 0,
the power of T1 is the probability of event ≥ −T z α1 1 , which is asymptotically equal to

( )
−

⎛

⎝
⎜ +

−

+

⎞

⎠
⎟−

⋆

− −
z

n θ θ

π σ π σ

1 Φ ,α

r

1

0

1

1

1

2

0

1

0

2

(1)

where ( )⋅Φ is the standard normal cumulative distribution. In parallel, the power of ( )T wΔ2, 0
is the probability

of event ( ) ≥ −T w zΔ α2, 10
, which is asymptotically equal to

( ) ( )( )

( )
−

⎛

⎝
⎜ +

− + − −

+ + −

⎞

⎠
⎟−

⋆ ⋆

− − −
z

n θ θ n w Δ Δ

π σ w π σ w n n σ

1 Φ
1

1

.α

r r

r e e

1

0 0

1

1

1

2 2
0

1

0

2 2 1 2

(2)

Several remarks are in order based on the above power formulas. First, the power of ( )T wΔ2, 0
is larger than

that of T1 if and only if

( )( )

( )

− + − −
+ + −

≤
−
+

⋆ ⋆

− − −

⋆

− −

θ θ w Δ Δ

π σ w π σ w n n σ

θ θ

π σ π σ

1

1

.

r e e

0 0

1

1

1

2 2
0

1

0

2 2 1 2

0

1

1

1

2

0

1

0

2

For instance, when = ⋆Δ Δ0 , i.e., the specified upper bound for ⋆Δ is tight, and =σ σe0

2 2, i.e., the variance ofY for
the two control groups are equal, simple algebra reveals that the power of ( )T wΔ2, 0

is always larger than that of
T1 for any w satisfying ( ( ) ( ))− ∕ + ≤ <n π n n π n wmax 0, 1r e r e0 0 .

Second, we can derive the oracle w that maximizes the power of ( )T wΔ2, 0
. Let ( ) ( )= ∕ +− − −

κ π σ π σ π σ0

1

0

2

1

1

1

2

0

1

0

2 ,
the optimal w takes the following form:

( )

( )( ) ( )

( )( ) ( )
( )

⎪

⎪
=

⎧
⎨
⎩

− ≥ − >

−
− + + −

− + + −
− > − ≥

⋆ ⋆

⋆ − − ⋆ −

⋆ − − ⋆ −
⋆ ⋆w

Δ Δ κ θ θ

Δ Δ π σ π σ θ θ π σ

θ θ n n σ π σ Δ Δ π σ
κ θ θ Δ Δ

1, when 0,

1 , when 0,

r e e

opt

0 0

0 1

1

1

2

0

1

0

2
0 0

1

0

2

0
1 2

0

1

0

2
0 0

1

0

2 0 0

(3)

where the first case is when Δ0 is specified too large, the power of ( )T wΔ2, 0
is maximized at =w 1, which means

that using the external controls does not lead to efficiency gain. As an illustration, under the special case that
= =− − −

π σ π σ n n σr e e1

1

1

2

0

1

0

2 1 2, when ( )− > − ∕⋆ ⋆Δ Δ θ θ 20 0 , the optimal w is 1, whereas when ( )− ∕ > −⋆θ θ Δ20 0

>⋆Δ 0, the optimal w is {( ) ( )} { ( ) ( )}− − + − ∕ − + −⋆ ⋆ ⋆ ⋆θ θ Δ Δ θ θ Δ Δ1 2 20 0 0 0 . Under another special case
when =⋆Δ Δ0 and = =σ σ σe1 0 , wopt becomes ( ) ( )∕ +n π n π nr r e0 0 , which agrees with the optimal w under
exchangeability discussed in Section 2.1. The proof of (3) is given in the supplementary material.

Finally, we compare the two tests T1 and ( )T wΔ2, 0
in terms of their limiting power as the sample sizes grow

to infinity. When >⋆θ θ0 and ( )− = +∞→+∞
⋆n θ θlimn r 0r

(e.g., when ⋆θ θ, 0 are two constants), then the power of
T1 goes to 1 as → ∞nr . In contrast, the limiting power of ( )T wΔ2, 0

depends on specifications of w and Δ0.
Specifically, as can be seen from the power formula in (2), when ( ) → +∞n nmin ,r e , the power of ( )T wΔ2, 0

tends to 1
if ( )( )− + − − <⋆ ⋆θ θ w Δ Δ1 00 0 , i.e., when ( ) ( )< − ∕ − +⋆ ⋆Δ θ θ w Δ10 0 , and to 0 if ( )( )− + − − >⋆ ⋆θ θ w Δ Δ1 00 0 ,
i.e., when ( ) ( )> − ∕ − +⋆ ⋆Δ θ θ w Δ10 0 . In other words, there exists a w-dependent number ( )͠ =Δ w

( ) ( )− ∕ − +⋆ ⋆θ θ w Δ10 that characterizes the limiting behavior of ( )T wΔ2, 0
under the alternative: the power of

6  Yanyao Yi et al.



( )T wΔ2, 0
tends to 1 if ( )͠<Δ Δ w0 and to 0 if ( )͠>Δ Δ w0 as ( ) → +∞n nmin ,r e . In plain language, since themaximumbias

Δ0 counteracts with −⋆θ θ0, the difference we would like to detect, when Δ0 exceeds a certain threshold ( )Δ͠ w , the
maximumbias starts to dominate the true difference −⋆θ θ0, resulting in no power to detect the difference. This number

( )Δ͠ w is analogous to the design sensitivity in the literature of sensitivity analysis [36,43].

3 A combined test

Should we leverage external controls? In other words, is it better to use the test statistic T1 constructed solely
based on the RCT or the test statistic ( )T wΔ2, 0

that additionally leverages the external controls? We know from
the above theory and analysis that the answer to this question depends upon the context, specifically upon the
nature and size of the treatment effect, and the specification of w and Δ0, that might be difficult to anticipate
prior to examining the data. As Motivated in Section 1, we propose a combined testing procedure that performs
both T1 and ( )T wΔ2, 0

, correcting for multiple testing using the joint distribution of the two test statistics.
Under H0, the joint distribution of ( )( )⋆T T w, Δ1 2, is asymptotically bivariate normal, satisfying

( )
⎟⎜⎟⎜

⎛
⎝

⎞
⎠

→
⎛
⎝
⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠⋆

T

T w
N

ρ

ρ

0

0
,

1

1
,

Δ

d1

2,

where

( )( ( ) )
=

+

+ + + −

− −

− − − − −
ρ

π σ wπ σ

π σ π σ π σ w π σ w n n σ1

.

r e e

1

1

1

2

0

1

0

2

1

1

1

2

0

1

0

2

1

1

1

2 2
0

1

0

2 2 1 2

Again, for illustration, consider the special case that = =− − −
π σ π σ n n σr e e1

1

1

2

0

1

0

2 1 2, then ρ increases as w increases
from 0 to 1, and thus ρ ranges between 0.5 and 1.

Consider the testing procedure that, for any specified Δ0 and w, rejects H0 if

( ( )) ≥ −T T w cmax , ,Δ α ρ1 2, 1 ;0
(4)

where −c α ρ1 ; satisfies ( ) = −−c αΦ 1ρ α ρ2, 1 ; , ( )x yΦ ,ρ2, is the probability of the two-dimensional lower orthant
( ] ( ]−∞ × −∞x y, , for a bivariate normal distribution with expectation ( )0, 0 T , unit variances, and correlation
coefficient ρ, and write ( ) ( )=x x xΦ Φ ,ρ ρ2, 2, . This combined testing procedure is able to control the type I error
for any [ ]∈ −∞⋆Δ Δ, 0 because

( ( ( )) ) ( ( ( )) )≥ ≤ ≥ =− = −⋆ ⋆P T T w c P T T w c αmax , max , .H Δ α ρ H Δ Δ Δ α ρ1 2, 1 ; , 1 2, 1 ;0 0 0 0

In what follows, we establish several attractive features of the combined test. Note that under the alter-
native hypothesis, the power of the combined test – the probability of event (4) – is

     
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1 Φ ,
1

1

,

Δ α ρ

ρ α ρ

r

B

α ρ

r r

r e e

B

1 2, 1 ;

2, 1 ;

0

1

1

1

2

0

1

0

2
1 ;

0 0

1

1

1

2 2
0

1

0

2 2 1 2

0

1 2

(5)

where ≈ means asymptotic approximation. This leads to the first observation that the power of the combined
test is generally larger than the worst of the two component tests, i.e., ( )≥Power min Power , Powerc 1 2 , where
Power , Power , Power c1 2 are, respectively, the asymptotic power of ( )T T w, ,Δ1 2, 0

and the combined test. This can
be seen from noting that
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( )

( ( ) )

( ( ))

( ( ) {∣ ∣ ( )})

( ( ))

{ ( ) ( )}

( )

− = + +
≤ + +∞
= +
= + − − − −
≤ +
= + +
= −

− −

−

−

− − −

−

− −

c B c B

c B B

c B B

z B B B B c z

z B B

z B z B

1 Power Φ ,

Φ min , ,

Φ min ,

Φ max ,

Φ max ,

max Φ , Φ

1 min Power , Power ,

c ρ α ρ α ρ

ρ α ρ

α ρ

α α ρ α

α

α α

2, 1 ; 1 1 ; 2

2, 1 ; 1 2

1 ; 1 2

1 1 2 1 2 1 ; 1

1 1 2

1 1 1 2

1 2

where the second inequality holds when ∣ ∣ ( )− ≥ −− −B B c zα ρ α1 2 1 ; 1 , i.e., when the power of the two component
tests are not too similar.

Moreover, not only is the power of the combined test better than the worst of the two component tests in
finite sample, it is also close to the better of the two component tests in finite sample, and equal to the better of
the two component tests in the limit. To see this, we bound the difference in power as follows:

( ) ( ) ( ( ))

( ( )) ( ( ))

(( ) )

− = + + − +
≤ + − +
≤ − − ∕

− − −

− −

− −

c B c B z B B

c B B z B B

z c

max Power , Power Power Φ , Φ min ,

Φ min , Φ min ,

1 2Φ 2 .

c ρ α ρ α ρ α

α ρ α

α α ρ

1 2 2, 1 ; 1 1 ; 2 1 1 2

1 ; 1 2 1 1 2

1 1 ;

It is helpful to anchor several values of −c α ρ1 ; and the upper bound (( ) )− − ∕− −z c1 2Φ 2α α ρ1 1 ; in terms of
different α and ρ. When =α 0.025 and for =ρ 0.5, 0.7, 1, the critical values are = =− −c c2.21,α α1 ;0.5 1 ;0.7

=−c2.18, 1.96α1 ;1 , and respectively, the upper bounds are 0.100, 0.088, 0. This means that because of the
high correlation between T1 and ( )⋆T wΔ2, , the price paid for multiple testing is generally small. With regard
to the limiting power, it is also easy to see that for fixed θ0 and >⋆θ θ0, → −∞B1 as the sample size nr increases.
Hence, the combined test always has its power approaching 1 as → ∞nr , just like the test T1 that only uses RCT
data, which is not the case for ( )⋆T wΔ2, as discussed in Section 2.3. This further shows the advantage of the
combined test.

For implementation of the sensitivity analysis (either T Δ2, 0
or the combined test), practitioners are not

required to specify the value of the sensitivity parameter Δ0. Following the pioneering work by Cornfield et al.
[44] and the sensitivity analysis literature [36], results from the combined test can be summarized by the
“tipping point” – the magnitude of Δ0 that would be needed such that the null hypothesis can no longer be
rejected. If such a value of Δ0 is deemed implausible, then we still have evidence to reject the null hypothesis
based on the combined test. In Section 5, we illustrate the method using a real example.

4 Power calculations

We investigate three factors when conducting power calculations. The first factor concerns the true treatment
effect =⋆θ 0.2, 0.3, and 0.4. The second factor is the specified value of the maximum bias =Δ 0.2, 0.3, 0.4, 0.60 .
The third factor is the sample size =n 50, 100, 150, 2001 , with =n n n: : 2 : 1 : 3e1 0 . Additional parameters are

=θ 00 , =⋆Δ 0.2, = = =σ σ σ 1e1 0 , and =α 0.025.
Table 2 summarizes the power of ( )T T w, Δ1 2, 0

and the combined test ( ) ( ( ))=T w T T wmax ,c Δ Δ, 1 2,0 0
, calculated,

respectively, using (1), (2), and (5). For ( )T wΔ2, 0
and ( )T wc Δ, 0

, we consider two choices ofw: the oraclew in (3) that
maximizes the power (denoted as wopt), and its value under exchangeability ( )∕ + = ∕n n n 1 4e0 0 . In the supple-
mentary material, we check powers by simulation, finding good agreement. In the supplementary material, we
also include a check of the type I error, which are all close to or below the nominal level, indicating validity of
all the tests. In contrast, a naive combined test without correcting for multiple testing cannot control the type I
error.

The following is a summary of results in Table 2.
• Across all scenarios, the power of the combined test ( )∕T 1 4c Δ, 0

is larger than the worst of the power of T1 and
( )∕T 1 4Δ2, 0

, and close to the best of the power of T1 and ( )∕T 1 4Δ2, 0
. This supports our theory in Section 3.
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• For T1, its power is not affected by Δ0. For ( )∕T 1 4Δ2, 0
, its power is mostly larger than that of T1 when

=Δ 0.2, 0.30 , but quickly diminishes as Δ0 increases and becomes substantially smaller than that of T1

when =Δ 0.4, 0.60 across most scenarios. In comparison, when =⋆θ 0.2, 0.3, the sensitivity parameter Δ0

can be as large as 0.3 before the combined test ( )∕T 1 4c Δ, 0
starts to lose power compared to T1; when =⋆θ 0.4,

the sensitivity parameter Δ0 can be as large as 0.4. If a Δ0 larger than 0.3 or 0.4 is deemed implausible by
practitioners, the combined test ( )∕T 1 4c Δ, 0

will have power gain compared to T1. On the other hand, because
the combined test ( )∕T 1 4c Δ, 0

still performs T1 as one of its component (i.e., anchors at T1) but with a small
adjustment for testing twice, the potential power loss compared to T1 is never too large. This clearly
demonstrates the key advantage of the combined test.

• As the sample size increases, the power of T1 and ( )∕T 1 4c Δ, 0
always increases. However, as the sample size

increases, the power of ( )∕T 1 4Δ2, 0
tends to 0 when =⋆θ 0.2 and =Δ 0.60 , stays unchanged when =⋆θ 0.3 and

=Δ 0.60 , and tends to 1 in other cases. This behavior of ( )∕T 1 4Δ2, 0
supports the result that the power of

( )∕T 1 4Δ2, 0
tends to 1 when ( )< ∕Δ Δ̃ 1 40 and to 0 when ( )> ∕Δ Δ̃ 1 40 as the sample size increases, where ( )∕Δ̃ 1 4

defined in Section 2.3 equals ∕ +⋆θ4 3 0.2, which is 0.47, 0.60, and 0.73 for =⋆θ 0.2, 0.3, 0.4, respectively.
• Finally, the oracle tests ( )T wΔ2, opt0

and ( )T wc Δ, opt0
are included as a reference. The test ( )T wΔ2, opt0

is more
powerful than T1 and ( )∕T 1 4Δ2, 0

, which agrees with our theory as ( )T wΔ2, opt0
maximizes power among a family

of test statistics { ( ) [ ]}∈T w w, 0, 12 . Observing that the power of ( )∕T 1 4c Δ, 0
and ( )T wc Δ, opt0

are similar indicates
that setting ( )= ∕ +w n n ne0 0 usually leads to desirable power performance.

5 Application

We revisit the example introduced in Section 1.2 and illustrate how the proposed methods can be applied.
Formally, we test the hypothesis that =⋆H θ θ:0 0 versus <⋆H θ θ:A 0, with =θ 0.40 , which can be equivalently
implemented using the tests described in Sections 2 and 3 withYi ’s replaced by −Yi’s and θ0 replaced by −θ0. We
set the significance level =α 0.025.

Using only the internal RCT, =T 4.801 with p-value × −7.92 10 7, based on which we reject the null hypoth-
esis H0. This result is solely based on internal controls and thus is invariant to the value of Δ0.

Leveraging external controls and let ( )= ∕ + =w n n n 0.485e0 0 , ( ) =T w 5.082 with p-value × −1.88 10 7 when
=Δ 00 . Therefore, under the exchangeability assumption, we can also reject the null hypothesis H0. To gauge

the robustness of this conclusion to violation of the exchangeability, we apply the proposed sensitivity
analysis. As discussed at the end of Section 3, results of our sensitivity analysis can be summarized by the
“tipping point” – the magnitude of Δ0 that would be needed such that the null hypothesis can no longer be
rejected. In this example, as Δ0 increases, the adjusted p-value associated with ( )T wΔ2, 0

increases but remains
below =α 0.025 for any ≤Δ 0.620 . Namely, two patients with the same observed characteristics (as listed in
Table 1), one in the internal RCT and the other in the external trial, may differ in their expected potential
outcome under control by up to 0.62, under which the adjusted p-value is still below the significance level α.
This means that the significant effect we observe cannot be explained away by unmeasured biases of magni-
tude up to =Δ 0.620 . If such a large unmeasured bias is deemed implausible, then there is no real doubt that
the rejection based on T Δ2, 0

provides evidence of noninferiority.
Finally, using the combined test, ( ( )) =T T wmax , 5.08Δ1 2, 0

with adjusted p-value × −3.41 10 7 when =Δ 00 . As
Δ0 increases, the adjusted p-value for the combined test increases but plateaus at × −1.41 10 6 when ( )≥T T wΔ1 2, 0

.
This means that rejection based on the combined test is insensitive to any value of Δ0, i.e., similar toT1 that only
uses the internal RCT, rejection based on the combined test is insensitive to any violation of the exchange-
ability assumption.

It is also interesting to see the relative performance of ( ) ( )T T w T w, ,Δ c Δ1 2, ,0 0
when the internal RCT is

underpowered, and thus the combined test may be more useful. For this purpose, we randomly sample
with replacement 100 patients from the internal RCT, with a target ratio of 4/5 from the treated arm and
1/5 from the control arm. Then T1 is computed using this subsample from the RCT, while ( )T wΔ2, 0

and ( )T wc Δ, 0

additionally use the external controls that were matched to the sampled treated patients with ( )= ∕ +w n n ne0 0
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calculated using the subsample. This procedure is repeated 1,000 times. Among these repetitions, T1 rejects the
null hypothesis 71.5% of the time, i.e., the power of T1 is 71.5%, while the combined test ( )T wc Δ, 0

has power
82.4%, 74.2%, 71.1% when =Δ 0.1, 0.2, 0.250 , respectively. Hence, the sensitivity parameter Δ0 can be as large as
0.25 before the combined test starts to lose power compared to T1. In comparison, ( )T wΔ2, 0

has worse perfor-
mance, with power equal to 80.4%, 64.8%, 45.7% when =Δ 0.1, 0.2, 0.250 , respectively. Taking a closer look at
the results, we note that ifT1 is larger than −c α ρ1 ; defined in (4), then bothT1 and the combined test can reject H0

regardless of the value of Δ0. If < −T z α1 1 , then T1 cannot reject H0 while the combined test can still reject 27.7%
of these cases at =Δ 0.20 . The potential loss of using the combined test is when T1 is between −z α1 and −c α ρ1 ; , in
which cases using T1 alone can reject H0 but the combined test is sensitive to a certain value of Δ0. However,
this scenario is relatively rare and occurs in 8.4% of the repetitions; furthermore, even in this scenario, the
combined test can still reject H0 at =Δ 0.20 around half the time.

The last step of a sensitivity analysis is to reason about whether a value of =Δ 0.20 is plausible given that
we have already controlled for baseline covariates listed in Table 1. For this task, an intuitive strategy is to
judge the plausibility of Δ0 in reference to some observed covariates [45]. Specifically, we can omit observed
covariates one at a time during matching and calculate −Y Y¯ ē0 using the resulting matched external controls.
Using this procedure, we estimate the amount of bias from not matching on one of the observed covariates and
to benchmark the plausibility of Δ0, the amount of bias from not being able to match on the region variable.
The results show that omitting the baseline HbA1c leads to the largest −Y Y¯ ē0 that is equal to 0.14, while
omitting any other observed variables in Table 1 leads to −Y Y¯ ē0 ranging from −0.05 to 0.04. Based on the prior
knowledge in the study of Home et al. [46] that the baseline HbA1c explains most of the variability in the
change in HbA1c, particularly in comparison to the geographical region, we view that =Δ 0.2 is implausible.

In summary, before looking at the data, the choice between T1 and ( )T wΔ2, 0
, would be difficult to make or

justify on the basis of a priori considerations. In some cases, T1 may not be powerful enough due to the small
sample size of the internal RCT, while leveraging external controls leads to a more powerful test. In some other
cases, ( )T wΔ2, 0

may be sensitive to unmeasured biases while T1 is already powerful enough. Under these
circumstances, the combined test ( )T wc Δ, 0

is often preferable as it performs both tests with a small correction
for multiple testing by taking into account the high correlation of the two test statistics.

6 Discussion

We propose a sensitivity analysis approach for using external controls in clinical trials to examine the
robustness of study conclusion to remaining unmeasured bias after controlling for measured covariates.
Results from the sensitivity analysis can be summarized by the “tipping point” – the magnitude of Δ0 that
would be needed such that the null hypothesis can no longer be rejected. If Δ0 is deemed plausible (or
implausible), the conclusion based on using external controls is sensitive (or robust) to unmeasured bias.

When in doubt about whether the use of external controls increases power, we propose a combined
testing procedure that performs both tests, one only using the internal controls and one additionally using the
external controls, correcting for multiple testing using the joint distribution of the two test statistics. Because
the two test statistics are highly correlated, this correction for multiple testing is small, and thus the combined
test only has a small loss of power compared to knowing a priori which test is best. Moreover, the combined
test provides a new method of sensitivity analysis designed for data fusion problems, which anchors at the
unbiased RCT-only analysis and spends a small proportion of the type I error to also test using the external
controls. In this way, if leveraging external controls increases power, the power gain compared to the RCT-only
analysis can be substantial; if not, the power loss is small.

Our work is motivated by the literature of sensitivity analysis, in which testing a hypothesis multiple times
has been shown to be useful in enhancing the robustness to unmeasured bias [38,47–49]. Nonetheless, we focus
on a distinct context and have shown that testing multiple times using both a known unbiased test and
potentially biased tests can be particularly attractive for data fusion problems. We also have developed
various properties of the combined procedure that has not appeared in the existing literature.
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Finally, a remaining question is how to choose w for the combined test. The power of the combined test
depends on w in a complicated way as w not only affects the definition of ( )T wΔ2, 0

but also the correlation ρ,
which makes finding the optimal w a cumbersome task. In practice, a reasonable choice is ( )= ∕ +w π n n π nr e r0 0 ,
which minimizes the variance of ( )+ −wY w Y1 e0 when ( ∣ ) ( ∣ )( ) ( )= = =Y D Y DVar 1 Var 00 0 . Another way is to
pre-specify several values ofw, calculate the corresponding test statistics, and combine all the test statistics using
their joint null distribution. Because of the high correlation between these test statistics, the price paid for
multiple testing will generally be small.
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