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Abstract: Statisticians show growing interest in estimating and analyzing heterogeneity in causal effects in obser-
vational studies. However, there usually exists a trade-off between accuracy and interpretability for developing a
desirable estimator for treatment effects, especially in the case when there are a large number of features in
estimation. To make efforts to address the issue, we propose a score-based framework for estimating the conditional
average treatment effect (CATE) function in this article. The framework integrates two components: (i) leverage the
joint use of propensity and prognostic scores in a matching algorithm to obtain a proxy of the heterogeneous
treatment effects for each observation and (ii) utilize nonparametric regression trees to construct an estimator
for the CATE function conditioning on the two scores. The method naturally stratifies treatment effects into sub-
groups over a 2d grid whose axis are the propensity and prognostic scores. We conduct benchmark experiments on
multiple simulated data and demonstrate clear advantages of the proposed estimator over state-of-the-art methods.
We also evaluate empirical performance in real-life settings, using two observational data from a clinical trial and a
complex social survey, and interpret policy implications following the numerical results.
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1 Introduction

The questions that motivate many scientific studies in disciplines such as economics, epidemiology, medicine, and
political science are not associational but causal in nature. In the study of causal inference, many researchers are
interested in inferring average treatment effects, which provide a good sense of whether treatment is likely to
deliver more benefit than the control among a whole community. However, the same treatment may affect
different individuals very differently. Therefore, a substantial amount of works focus on analyzing heterogeneity
in treatment effects, of which the term refers to variation in the effects of treatment across individuals. This
variation may provide theoretical insights, revealing how the effect of interventions depends on participants’
characteristics or how varying features of a treatment alters the effect of an intervention.

In this article, we follow the potential outcome framework for causal inference [1,2], where each unit is
assigned into either the treatment or the control group. Each unit has an observed outcome variable with a set
of covariates. In randomized experiments and observational studies, it is desirable to replicate a sample as
closely as possible by obtaining subjects from the treatment and control groups with similar covariate dis-
tributions when estimating causal effects. However, it is almost impossible to match observations exactly the
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same in both treatment and control groups in observational studies. To address this problem, it is usually
preferred to define prespecified subgroups under certain conditions and estimate the treatment effects
varying among subgroups. Accordingly, the conditional average treatment effect (CATE [3]) function is
designed to capture heterogeneity of a treatment effect across subpopulations. The function is often condi-
tioned on some component(s) of the covariates or a single statistic, like propensity score [4] and prognostic
score [5]. Propensity scores are the probabilities of receiving the treatment of interest; prognostic scores model
the potential outcome under a control group assignment. To understand treatment effect heterogeneity in
terms of propensity and prognostic scores, we assume that equal or similar treatment effects are observed
along some intervals of the two scores.

We target at constructing an estimator for treatment effects that conditions on only two quantities,
propensity and prognostic scores, and we assume a piecewise constant structure in treatment effects. We
take a step further from score-based matching algorithms and propose a data-driven approach that integrates
the joint use of propensity and prognostic scores in a matching algorithm and a partition over the entire
population via a nonparametric regression tree. In the first step, we estimate propensity scores and prognostic
scores for each observed unit in the data. Secondly, we perform a K-nearest-neighbour matching of units of
the treatment and control groups based on the two estimated scores and forth construct a proxy of individual
treatment effects for all units. The last step involves growing a binary tree regressed on the two estimated
scores.

The complementary nature of propensity and prognostic score methods supports that conditioning on
both the propensity and prognostic scores has the potential to reduce bias and improve the precision of
treatment effect estimates, and it is affirmed in the simulation studies by Leacy and Stuart [6] and Antonelli
et al. [7]. We also demonstrate such advantage for our proposed estimator across almost all scenarios exam-
ined in the simulation experiments.

Besides high precision in estimation, our proposed estimator demonstrates its superiority over the state-
of-arts methods with a few attractive properties as follows:

+ The estimator is computationally efficient. Propensity and prognostic scores can be easily estimated through
simple regression techniques. Our matching algorithm based on the two scores largely reduces dimension-
ality compared to full matching on the complete covariates. Moreover, growing a single regression tree saves
much time over other tree-based estimation methods, such as Bayesian additive regression tree models
(BART) [8] and random forests [9, 10].

* Many previous works in subgroup analysis, such as studies by Assmann et al. [11] and Abadie et al. [12], set
stratification on the sample with a fixed number of subgroups before estimating treatment effects. These
approaches require a pre-determination on the number of subgroups contained in the data, and they
inevitably introduce arbitrariness into the causal inference. In comparison, our proposed method simulta-
neously identifies the underlying subgroups in observations through binary split according to propensity
and prognostic scores and provides a consequential estimation of treatment effects on each subgroups.

+ Although random forests-based methods [9, 10] achieve great performance in minimizing bias in estimating
treatment effects, these ensemble methods are often referred to as “black boxes.” It is hard to capture the
underlying reason why the collective decision with the high number of operations involved is made in their
estimation process, especially in the case when there are many features considered in the model. On the
contrary, our proposed method provides a straightforward and low-dimensional summary of treatment
effects simply based on two scores that are relatively easy to estimate. As a result, given the covariates of an
observation, one can easily deduce the positiveness and magnitude of its treatment effect according to its
probability of treatment receipt and potential outcome following the structure of the regression tree without
carrying out feature selection process.

Instead of relying on a single feature or a subset of features, identifying subgroups with the joint distribution

of all features will be of particular interest to policymakers seeking to target policies on those most likely to

benefit. Therefore, many existing researches focus on subgroup stratification based on a single index that
combines baseline characteristics. For instance, Abadie et al. [12] utilized potential outcomes without treat-
ment (prognostic scores) for endogenous stratification, and Kent and Hayward [13] stratified experimental
subjects based on their predicted probability of certain risks (propensity scores). Our method can be
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considered as a natural extension of the two previous works, which allows researchers and policy makers to
merge a large number of baseline characteristics into simply two indices and identify the subgroup who are
most in need of help in a population.

We review relevant literature on matching algorithms and estimation of heterogeneous treatment effects
in Section 2. In Section 3, we provide the theoretical framework and preliminaries for the causal inference
model. We propose our method for estimation and prediction in Section 4. Section 5 lists the results of
numerical experiments on multiple simulated data sets and two real-world data sets, following with the
comparison with state-of-the-art methods in existing literature and the discussion on policy implications under
different realistic scenarios.

2 Relevant literature

Statistical analysis of causality can be dated back to Neyman [1]. Causal inference can be viewed as an
identification problem [14], for which statisticians are dedicated to learn the true causality behind the data.
In reality, however, we do not have enough information to determine the true value due to a limited number
of observations for analysis. This problem is also summarized as a “missing data” problem [15], which stems
from the fundamental problem of causal inference [16], that is, for each unit at most one of the potential
outcomes is observed. Importantly, the causal effect identification problem, especially for estimating treat-
ment effects, can only be resolved through assumptions. Several key theoretical frameworks have been
proposed over the past decades. The potential outcome framework by Rubin [2], often referred to as the
Rubin causal model [16], is a common model of causality in statistics at the moment. Dawid [17] developed a
decision theoretic approach to causality that rejects counterfactuals. Pearl [18,19] advocated for a model of
causality based on non parametric structural equations and path diagrams.

2.1 Matching

To tackle the “missing data” problem when estimating treatment effects in randomized experiments in
practice, matching serves as a very powerful tool. The main goal of matching is to find matched groups
with similar or balanced observed covariate distributions [20]. The exact K-nearest-neighbour matching [2]
is one of the most common and easiest to implement and understand methods; ratio matching [21-23], which
finds multiple good matches for each treated individual, performs well when there is a large number of control
individuals. Rosenbaum [24], Gu and Rosenbaum [25], and Zubizarreta [26,27] developed various optimal
matching algorithms to minimize the total sum of distances between treated units and matched controls in
a global sense. Abadie and Imbens [28] studied the consistency of covariate matching estimators under large
sample assumptions. Instead of greedy matching on the entire covariates, propensity score matching (PSM) by
Rubin and Thomas [29] is an alternative algorithm that does not guarantee optimal balance among covariates
and reduces dimension sufficiently. Imbens [30] improved propensity score matching with regression adjust-
ment. The additional matching on prognostic factors in propensity score matching was first considered by
Rubin and Thomas [22]. Later, Leacy and Stuart [6] demonstrated the superiority of the joint use of propensity
and prognostic scores in matching over single score-based matching in low-dimensional settings through
extensive simulation studies. Antonelli et al. [7] extended the method to fit to high-dimensional settings and
derived asymptotic results for the so-called doubly robust matching estimators (DRME). The sequential works
by Aikens et al. [31] and Aikens and Baiocchi [32] pioneered in visualizing the relationship between propensity
and prognostic scores as auxiliary in the estimation of treatment effects.
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2.2 Subclassification

To understand heterogeneity of treatment effects in the data, subclassification, first used by Cochran [33], is
another important research problem. The key idea is to form subgroups over the entire population based on
characteristics that are either immutable or observed before randomization. Rosenbaum and Rubin [4,34], and
Lunceford and Davidian [35] examined how creating a fixed number of subclasses according to propensity scores
removes the bias in the estimated treatment effects, and Yang et al. [36] developed a similar methodology in
settings with more than two treatment levels. Full matching [37-39] is a more sophisticated form of subclassifica-
tion that selects the number of subclasses automatically by creating a series of matched sets. Schou and
Marschner [40] presented three measures derived using the theory of order statistics to claim heterogeneity
of treatment effect across subgroups. Su et al. [41] pioneered in exploiting standard regression tree methods [42]
in subgroup treatment effect analysis. Further, Athey and Imbens [43] derived a recursive partition of the
population according to treatment effect heterogeneity. Hill [44] was the first work to advocate for the use of
BART [45] for estimating heterogeneous treatment effects, followed by a significant number of research papers
focusing on the seminal methodology, including Green and Kern [46], Hill and Su [47], and Hahn et al. [8]. Abadie
et al. [12] introduced endogenous stratification to estimate subgroup effects for a fixed number of subgroups
based on certain quantiles of the prognostic score. More recently, Padilla et al. [48] combined the fused lasso
estimator with score matching methods to lead to a data-adaptive subgroup effects estimator.

2.3 Machine learning for causal inference

For the goal of analyzing treatment effect heterogeneity, supervised machine learning methods play an
important role. One of the more common ways for accurate estimation with experimental and observational
data is to apply regression [49] or tree-based methods [50]. From a Bayesian perspective, Heckman et al. [51]
provided a principled way of adding priors to regression models, and Taddy et al. [52] developed Bayesian
nonparametric approaches for both linear regression and tree models. The recent breakthrough work by
Wager and Athey [9] proposed the causal forest estimator arising from random forests from Breiman [53].
More recently, Athey et al. [10] took a step forward and enhanced the previous estimator based on generalized
random forests. Imai and Ratkovic [54] adapted an estimator from the support vector machine classifier with
hinge loss [55]. Bloniarz et al. [56] studied treatment effect estimators with lasso regularization [57] when the
number of covariates is large, and Koch et al. [58] applied group lasso for simultaneous covariate selection and
robust estimation of causal effects. In the meantime, a series of papers including Qian and Murphy [59], Ki
nzel et al. [60], and Syrgkanis et al. [61] focused on developing meta-learners for heterogeneous treatment
effects that can take advantage of various machine learning algorithms and data structures.

2.4 Applied work

On the application side, the estimation of heterogeneous treatment effects is particularly an intriguing topic in
causal inference with broad applications in scientific research. Gaines and Kuklinski [62] estimated hetero-
geneous treatment effects in randomized experiments in the context of political science. Dehejia and Wahba
[63] explored the use of propensity score matching for nonexperimental causal studies with application in
economics. Dahabreh et al. [64] investigated heterogeneous treatment effects to provide the evidence base for
precision medicine and patient-centred care. Zhang et al. [65] proposed the survival causal tree method to
discover patient subgroups with heterogeneous treatment effects from censored observational data. Rekkas
et al. [66] examined three classes of approaches to identify heterogeneity of treatment effect within a rando-
mized clinical trial, and Tanniou et al. [67] rendered a subgroup treatment estimate for drug trials.
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3 Preliminaries

Before we introduce our method, we need to provide some mathematical background for treatment effect
estimation. We follow Rubin’s framework on causal inference [2] and assume a superpopulation or distribu-
tion # from which a realization of n independent random variables is given as the training data. That is, we
are given {(%(0), ¥(1), X;, Z)}*, independent copies of (Y (1), Y(0), X, Z), where X; € R? is a d-dimensional
covariate or feature vector, Z; € {0, 1} is the treatment-assignment indicator, ¥;(0) € R is the potential out-
come of unit i when i is assigned to the control group, and ¥;(1) is the potential outcome when i is assigned to
the treatment group.

One important and commonly used measure of causality in a binary treatment model is the average
treatment effect (ATE; [30]), that is, the mean outcome difference between the treatment and control groups.
Formally, we write the ATE as

ATE = E[Y(1) - Y(0)].

With the n units in the study, we further define the individual treatment effect (ITE) of unit i denoted by D; as
follows:

D = Yi(1) - ¥(0).

Then, an unbiased estimate of the ATE is the sample average treatment effect
_ _ 1¢
Y(1) - ¥(0) = =) D,
nia

However, we cannot observe D; for any unit because a unit is either in the treatment group or in the control
group, but not in both.

To analyze heterogeneous treatment effects, it is natural to divide the data into subgroups (e.g., by gender,
or by race) and investigate if the average treatment effects are different across subgroups. Therefore, instead
of estimating the ATE or the ITE directly, statisticians seek to estimate the conditional average treatment effect
(CATE), defined by

(x) = E[Y() - Y(0) | X = x]. ()]

The CATE can be viewed as an ATE in a subpopulation defined by {X = x}, i.e. the ATE conditioned on
membership in the subgroup.
We also recall the propensity score [4], denoted by e(X), and defined as follows:

eX)=PZ=1]X).

Thus, e(X) is the probability of receiving treatment for a unit with covariate X. In addition, we consider
prognostic scores, denoted by p(X), for potential outcomes. The prognostic score is first defined by Hansen [5]
as any quantity p(X) that satisfies

Y(0) L X | p(X),
and in this article, we use the conventional definition as the predicted outcome under the control condition
[31]:
pX) = E[Y(0) | X].
We are interested in constructing a 2d summary of treatment effects based on propensity and prognostic

scores. Instead of conditioning on the entire covariates or a subset of it in the CATE function, we express our
estimand, named as scored-based subgroup CATE, by conditioning on the two scores:

7(x) = E[Y(D) - Y(0) | e = e(x), p = p(Xx)]. 2

For interpretability, we assume that treatment effects are piecewise constant over a 2d grid of propensity and
prognostic scores. Specifically, there exists a partition of intervals {If, ...,I{} of [0, 1] and another partition of
intervals {I{, ...,I’} of R such that for any i € {1, ...,s} and j € {1, ...,t}, we have
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T(x)=G; for x st e(x) €I, px) €I},

where C;; €R is a constant.
Moreover, our estimation of treatment effects relies on the following assumptions:

Assumption 1. Throughout the article, we maintain the stable unit treatment value assumption (SUTVA [49]),
which consists of two components: no interference and no hidden variations of treatment. Mathematically, for
unit i = 1,..., n with outcome ¥; and treatment indicator Z;, it holds that

Yi(er ZZ’ ---;Zn) = YI(ZI)

Thus, the SUTVA requires that the potential outcomes of one unit should be unaffected by the particular
assignment of treatments to the other units. Furthermore, for each unit, there are no different forms or
versions of each treatment level, which lead to different potential outcomes.

Assumption 2. The assumption of probabilistic assignment holds. This requires the assignment mechanism to
imply a nonzero probability for each treatment value, for every unit. For the given covariates X and treat-
ment-assignment indicator Z, we must have

0<P(Z=1]|X)<1,

almost surely.

This condition, regarding the joint distribution of treatments and covariates, is also known as overlap in
some literature (see Assumption 2.2 in the studies by Imbens [30] and D’Amour et al. [68]), and it is necessary
for estimating treatment effects everywhere in the defined covariate space. Note that P(Z; = 1| X;) is the
propensity score. In other words, Assumption 2 requires that the propensity score, for all values of the
treatment and all combinations of values of the confounders, be strictly between 0 and 1.

Assumption 3. We make the assumption that
(¥Y(0), Y(D) L Z | e(X), p(X)
holds.

This assumption is an implication of the usual unconfoundedness assumption:
(Y(0), YD) L Z|X. 3)

Combining Assumption 2 and that in Equation (3), the conditions are typically referred as strong ignorability
defined in Rosenbaum and Rubin [4]. Strong ignorability states which outcomes are observed or missing is
independent of the missing data conditional on the observed data. It allows statisticians to address the
challenge that the “ground truth” for the causal effect is not observed for any individual unit. We rewrite
the conventional assumption by replacing the vector of covariates x with the joint of propensity score e(x) and
p(x) to accord with our estimation target.

Provided that Assumptions 1-3 hold, it follows that

E[Y(z) | e = e(x),p = p(x)] = E[Y | e = e(x),p = p(x), Z = z],
and thus our estimand (2) is equivalent to
T(x)=E[Y |e=e(x),p=pXx),Z=1] - E[Y | e=e(x),p = p(x),Z = 0]. 4

Thus, in this article, we focus on estimating (4), which is equivalent to (2) if the aforementioned assump-
tions hold, but might be different if Assumption 3 is violated.
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4 Methodology

We now formally introduce our proposal of a three-step method for estimating heterogeneous treatment
effects and the estimation rule for a given new observation. We assume a sample of size n with covariate
X, treatment indicator Z, and outcome variable Y, where the notations are inherited from the previous
section. Generally, we consider a low-dimensional setup, where the sample size n is larger than the covariate
dimension d. An extension of our proposed method to the high-dimensional case is discussed in this section
as well.

4.1 Step 1

We first estimate propensity and prognostic scores for all observations in the sample. For propensity score, we
apply a logistic regression on the entire covariate X and the treatment indicator Z by solving the optimization
problem

@ = argmin - ) [Zilogo(X; @) + (1 - Z)log(1 - o(X; )], (5)
acR4 i=1

_ 1
where g(x) = Trexp(n)
pensity scores é by

is the logistic function. With the coefficient vector @, we compute the estimated pro-

é = a(X[d).
For prognostic score, we restrict to the controlled group and regress the outcome variable Y on the
covariate X through ordinary least squares: we solve

6 = arg mdm . > (Y% - X0 (6)
6€ER i:Z;=0

and we estimate prognostic scores as

b= XzTé

4.2 Step 2

Next, we perform a nearest-neighbour matching based on the two estimated scores from the previous step. We
adapt the notation from Abadie and Imbens [28], and use the Mahalanobis distance norm as the distance
metric in the matching algorithm. Mahalanobis distance matching, first proposed by Hansen [69], has been
widely used in matching algorithms for causal inference [6,31]. It has been found to perform well when the
dimension of covariates are relatively low [20], and thus, it is more suitable than using standard Euclidean
distance in our case when we have only propensity scores and prognostic scores as covariates.

Formally, for the units i and j with estimated propensity scores é;, ¢ and propensity scores p;, p;, we define

the score-based Mahalanobis distance between i and j by

é
p;
where I denotes the variance-covariance matrix of (¢, p)'.

Let ji (i) be the index j € {1, 2, ...,n} that solves Z; = 1 - Z; and

2 Hd, D <d(j,d} =k,

1.2=1-Z;

T

é

d(i, j) = 5
J
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where 1{-} is the indicator function. This is the index of the unit that is the kth closest to unit i in terms of the
distance between two scores, among the units with the treatment opposite to that of unit i. We can now
construct the K-nearest-neighbour set for unit i by the set of indices for the first K matches for unit i,

Tk = oD, s (D3

We then compute

ﬁ=(zzi-1)yi—% Y vl )

JEIK(D)

Intuitively, the construction of ¥ gives a proxy of the ITE on each unit. We find K matches for each unit in the
opposite treatment group based on the similarity of their propensity and prognostics scores, and the mean of
the K matches is used to estimate the unobserved potential outcome for each unit.

4.3 Step 3

The last step involves denoising of the point estimates of the individual treatment effects ¥ obtained from Step
2. The goal is to partition all units into subgroups such that the estimated treatment effects would be constant
over some 2d intervals of propensity and prognostic scores (see the left of Figure 1).

To perform such stratification, we grow a regression tree on ¥, denoted by T, and the regressors are the
estimated propensity scores é and the estimated prognostic scores p from Step 1. We follow the very general
rule of binary recursive partitioning to build the tree T: allocate the data into the first two branches, using
every possible binary split on every covariate; select the split that minimizes Gini impurity, and continue the
optimal splits over each branch along the covariate’s values until the minimum node size is reached. To avoid
overfitting, we set the minimum node size as 20 in our model. Choosing other criteria such as information gain
instead of Gini impurity is another option for splitting criteria. A 10-fold cross validation is also performed at
meantime to prune the large tree T for deciding the value of cost complexity. Cost complexity is the minimum
improvement in the model needed at each node. The pruning rule follows that if one split does not improve the
overall error of the model by the chosen cost complexity, then that split is decreed to be not worth pursuing
(see more details in Section 9.2 in the study by Hastie et al. [70]).

The final tree T (see the right plot of Figure 1) contains a few terminal nodes, and these are the predicted
treatment effects for all units in the data. The values exactly represent a piecewise constant stratification over
the 2d space of propensity and prognostic scores.

, e_hat<0.9
0.6
p 1 p_hat < 0.6
3
@
e 0.9

Figure 1: Left: a hypothetical partition over the 2d space of propensity and prognostic scores with the true values of piecewise constant
treatment effects; Right: a sample regression tree T constructed in Step 3.
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4.4 Estimation on a new unit

After we obtain the regression tree model T in Step 3, we can now estimate the value of the individual
treatment effect corresponding to a new unit with covariate X ey .
We first compute the estimated propensity and prognostic scores for the new observation by
€new = U(Xgewd): Drew = XITSWG’
where & and @ are the solutions to equations (5) and (6), respectively. Then with the estimated propensity score
énew and prognostic score p.,,, we can obtain an estimate of the treatment effect for this unit following the
binary predictive rules in the tree T.

4.5 High-dimensional estimator

In a high-dimensional setting where the covariate dimension d is much larger than the sample size n, we can
estimate the propensity and prognostic scores by adding a lasso (I1-based) penalty [57] instead. This strategy
was first proposed and named as DRME by Antonelli et al. [7]. The corresponding optimization problems for
the two scores can be written as follows:

n d
@=argmin - ) [Ylogo(X; @) + (1 - ¥)log(l - o(X )] + A ) laj,
aeRr? i=1 j=1
N d
f=argmin ) (Y- X072+ ) |6

6eRr? i:Z;=0 j=1
The selection of the tuning parameters 4; and 4, can be determined by any information criteria (AIC, BIC, etc.).
In practice, we use 10-fold cross-validation (CV) to select the value of A. Then we perform the K-nearest-
neighbour matching based on propensity and prognostic scores to obtain the estimates of individual treatment
effects using equation (7).
We extend the aforementioned estimator with our proposal of applying a regression tree on the estimated

propensity and prognostic scores. The procedure for estimation of subgroup heterogeneous treatment effects
and estimation on a new unit remains the same as Step 3 for low-dimensional setups.

Remark. The choice of the number of nearest neighbours is a challenging problem. Updating distance metrics
for every observation is computationally expensive, and choosing a value that is too small leads to a higher
influence of noise on estimation. With regards to the application of nearest neighbour matching in causal
inference, Abadie and Imbens [28] derived large sample properties of matching estimators of average treat-
ment effects with a fixed number of nearest neighbours, but the authors did not provide any details on how to
select the exact number of neighbours. Conventional settings on the number of nearest neighbours in current
literature is to set K = 1 (one-to-one matching [20, 71]). However, Ming and Rosenbaum [72] suggested that in
observational studies, substantially greater bias reduction is possible through matching with a variable
number of controls rather than exact pair matching.

In Appendix A, we conduct a simulation study following one of the generative models from Section 5 to
show how sensitive estimation accuracy is to the number of nearest neighbours selected and setting K to a
large number other than 1 is more “sensible” to reduce estimation bias. Although it is usually difficult to select
a perfect value of K in practice, simply setting K = log(n) as suggested by Brito et al. [73] leads to reasonable
results for a data sample of size n. Throughout all our experiments in the next section, setting K to the integer
closest to the value log(n) provides estimates with high accuracy and does not require too much computa-
tional cost.
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4.6 Computational complexity

Our method is composed of three steps as introduced before. We first need to implement a logistic regression
for estimating propensity score for a sample with size n and ambient dimension d. To solve a logistic regres-
sion optimization problem involves using the proximal Newton method, and its computational complexity is of
#of iterations - O(nd) [74]. In general, the algorithm converges after a small number of iterations, and we can
safely assume it is of a constant order. As a result, the overall time complexity of solving a logistic regression is
O(nd). The estimation of prognostic scores also requires a computational cost of O(nd), and for high-dimen-
sional settings, the cost of solving the solution via coordinate descent remains at O(nd) [75]. The complexity of
a K-nearest-neighbour matching based on the two estimated scores in the second step is of O(Kn) [76], and the
selection of K = log(n) leads to a complexity of O(n logn). In the third step, we grow a regression tree based on
two estimated scores, and it requires a computational complexity of O(nlogn).

The overall computational complexity of our method depends on the comparison between the order of d
and log(n). Our method attains a computational complexity of O(nd) if the order of d is greater than that of
log(n). Otherwise, the complexity becomes O(n logn).

5 Experiments

In this section, we will examine the performance of our proposed estimator (PP) in a variety of simulated and real
data sets. The baseline estimators we compete against are leave-one-out endogenous stratification (ST; [12]), causal
forest (CF [9]), single-score matching including PSM, and prognostic-score matching. Note that in the original research
by Abadie et al. [12], the authors restricted their attention to randomized experiments, because this is the setting
where endogenous stratification is typically used. However, they mentioned the possibility of applying the method
on observational studies. We take this into consideration and make their method as one of our competitors.

We implement our methods in R, using the packages “MatchIt” for K-nearest-neighbour Mahalanobis
distance matching and “caret” for growing a nonparametric regression tree with cross validation over com-
plexity parameter. Throughout, we set the number of nearest neighbours, K, to be the closest integer to log(n),
where n is the sample size. For causal forest, we directly use the R package “grf” developed by Athey et al. [10],
following with an automatic cross-validation to select values of hyperparameters [77] and a K-fold cross-fitting
under a conventional setting of K = 10 recommended by Nie and Wager [78]. Software that replicate all the
simulations is available on the authors’ Github page.

We evaluate the performance of each method according to two aspects, accuracy and uncertainty quan-
tification. The results for single-score matching algorithms are not reported in this article because of very poor
performance throughout all scenarios.

5.1 Simulated data

We first examine on the following simulated data sets under six different data generation mechanisms. We
obtain insights from the simulation study by Leacy and Stuart [6] for the models considered in Scenarios 1-3. The
propensity score and outcome (prognosis) models in Scenarios 1 and 3 are characterized by additivity and
linearity (main effects only), but with different piecewise constant structures in the true treatment effects
over a 2d grid of the two scores. We add nonadditivity and nonlinear terms to both propensity and prognosis
models in Scenarios 2. In other words, both propensity and prognostic scores are expected to be misspecified in
these two models if we apply generalized linear models directly in estimation. Scenario 4 comes from Abadie
et al. [12], with a constant treatment effect over all observations. Scenario 5 is modified from the study by Wager
and Athey [9] (see Equation 27 there), in which the propensity model follows a continuous distribution instead of
a linear structure. In addition, the true treatment effect is not a function of propensity and prognostic scores. In
Scenario 6, we break the mold assumption of nicely delineated subgroups in treatment effects over 2d space of
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the two scores, and use a smooth function instead. A high-dimensional setting (d > n) is examined in Scenario 7,
where the generative model inherits from Scenario 1. We also include a table summarizing all simulation
scenarios in Appendix B to help the audience interpret the result of the simulation study more readily.

We first introduce some notations used in the experiments: the sample size n, the ambient dimension d, as
well as the following functions:

true treatment effect: 7*(X) = E[Y(1) - Y(0)|X],
treatment propensity: e(x) = P(Z = 1|X = x),

e(x)
1-e(x)

treatment logit: logit(e(x)) = log[

Throughout all the models we consider, we maintain the unconfoundedness assumption discussed in Section 3,
generate the covariate X following a certain distribution, and entail homoscedastic Gaussian noise €.

We evaluate the accuracy of an estimator 7(X) by the mean-squared error for estimating 7*(X) at a
random example X, with m = n/10, defined by

m

MSE(R() = 3 [400) = O

i=1

We record the averaged mean squared error (MSE) over 1,000 Monte Carlo trials for each scenario. For each
Monte Carlo trial, we use train-test split to evaluate model performance. In detail, we first obtain n training
sample and train models on this set. We then generate a separate testing sample under the same data
generation mechanism with sample size n/10. We make predictions on the test data using the trained models
and compute the MSEs from different models accordingly. In terms of uncertainty quantification, we measure
the coverage probability of 7(X) with a target coverage rate of 0.95. For endogenous stratification and our
proposed method, we use nonparametric bootstrap with replacement to construct the empirical quantiles for
each unit. The details on the implementation of nonparametric bootstrap methods are presented in Appendix
C. For causal forest, we construct 95% confidence intervals by estimating the standard errors of estimation
using the “grf” package. We do not include the results for Scenario 7, a high-dimensional setting, because the
asymptotic normality guarantees of nonparametric bootstrap and random forests are not valid in high
dimensions [9,79].
Scenario 1. With d € {2, 10, 50}, n € {1,000, 5,000}, for i = 1,..., n, we generate the data as follows:

Y=pX)+Z- 7 +¢g,

T = Lie(x)<0.6,p(x)<0p
logit(e(Xy) = X;' B,

p(X;) = X" B,
X o, 11,
& "N, 1),

where B¢ and BP are randomly generated from 2[-1, 1]? in each iteration.

Scenario 2. We now add some interaction and nonlinear terms to the propensity and prognostic models in
Scenario 1, while keeping the setups of the covariate X, the response Y, the true treatment effect 7*, and the
error term £ unchanged. We set d = 10 and n = 5,000 in this case.
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logit (e(X;)) = X;'B° + 0.5XuXi3 + 0.7X;pXis + 0.5X3Xis
+ 0.7Xi4Xis + 0.5X;5X;7 + 0.5X;1.Xi
+ 0.7X;pXi3 + 0.5X3Xi4 + 0.5X34Xis
+ 0.5XisX;s + X + X3 — X

p(X) = X;"BP + 05X X3 + 0.7X;2Xis + 0.5X;3Xis,

+0.7Xia X9 + 0.5X;sXi10 + 0.5Xi1Xio
+ 0.7X;pXi3 + 0.5X;3X34 + 0.5X4Xig
+ 0.5X;gXio + X5 + X - X

Again for each simulation, B¢ and P are randomly generated from ¢/[-1, 1]%
Scenario 3. In this case, we define the true treatment effect with a more complicated piecewise constant
structure over the 2d grid, under the same model used in Scenario 1, with d = 10 and n = 5,000:
0 if e(X;) < 0.6, p(X;) <0,
1 if e(X;)) <0.6,p(X;)) >0 or e(X;)>0.6,pX;) <0,
2 if e(X;) > 0.6, p(X;) > 0.

§ =

Scenario 4. Setting d = 10 and n = 5,000, the data are generated as follows:
Yi=1+p"X; +¢g,
iid.
Xi ~ N0, Lixa),
iid
&~ N(0,100 - d),
where B = (1, ...,1)' € R% Moreover, the treatment indicators for the simulations are such that Y ;Z; = [n/21. By
construction, the vector of treatment effects satisfies 7* = 0.
Scenario 5. The data satisfy
T = (X + Xpp + ...+ Xi10)/10,
= 2X'e -1+ Z- 7' +¢,
Binom (1, e(Xy)),
iid.

X~ ulo, 17,

1
e(X;) = Z[l + 52,4(Xi-rel)],
iid.
RN

where e; = (1,0, ...,0)". We compare the results of different methods under the setting: d = 10, n = 5,000.

Scenario 6. For this scenario, we examine the performance when the treatment effect takes on a smooth
interval of propensity and prognostic scores. We use the same model in Scenario 1 for generating the two
scores with d = 10 and n = 5,000, and we inherit and modify the generative function (28) from the study by
Wager and Athey [9] for treatment effects as follows:

N =
2 |

T = {(e(X)) (X)), (OO =1+ m'

Scenario 7. In the last case, we study the performance of different estimators on a high-dimensional data.
The data model follows
X< o, 11,
Y=pX)+Zi-1 +&
T = Lie(x)<0.6,p(x)<0p
logit(e(Xl-)) = 0.4X; + 0.9X;; - 0.4X;3 - 0.7X;4 — 0.3X;5 + 0.6Xj,
p(Xy) = 0.9X;; - 0.9X;; + 0.2X;5 — 0.2Xj4 + 0.9X;5 — 0.9Xj6,

&~ N(0, 1),
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Figure 2: Comparison of mean squared errors over 1,000 Monte Carlo simulations under different generative models for our proposed
method (PP), endogenous stratification (ST), and causal forest (CF).
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Figure 3: One instance comparison between the true treatment effects and the estimates from the score-based method for Scenarios 1,
2,3, 6, and 7 (from the top to the bottom). Plots on the left column depict the true treatment effect on the 2d grid of propensity and
prognostic scores, and the right plots demonstrate the estimated treatment effects from our proposed method over the same grid.
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We select n = 3,000 and d = 5,000 for analysis.

The boxplots that depict the distribution of MSEs obtained under all scenarios are presented in Figure 2.
We can see that for Scenario 1, our proposed estimator achieves better accuracy when the sample size n is
large, and it is the best among the three estimators in these cases. The good performance of our method is
consistent when we assume a more complex partition on the defined 2d grid as in Scenario 3. In addition,
variation in accuracy, measured by the difference between the upper quartiles and the lower quartiles (also
referred as the interquartile ranges) in each boxplot becomes smaller, accompanied with the increase in n. The
reason for the enhanced performance when applying our method on a large-size data is the nature of nearest
neighbour algorithm, which benefits more in learning the boundaries of clusters accurately with a larger
sample size. Moreover, causal random forest suffers more in accuracy especially as d gets larger [9], while our
method does not impact significantly because it focuses on a low-dimensional space of the two scores instead
of the overall covariate space. In Scenario 2, we introduce nonadditivity and nonlinear terms into the data
model. Although linear assumptions are violated for both propensity and prognostic models, our method
performs better compared to the other two methods regarding accuracy and variability. For a potential
outcome model with randomized assignment of treatment and constant treatment effects, as in Scenario 4,
our method has the best accuracy among all candidates, even though large noise is added to the true signal. In
Scenario 5, our estimator performs slightly worse than causal forests in accuracy since the true treatment
function is not directly dependent on propensity and prognostic scores, but it still outperforms endogenous
stratification. However, for the previous two cases, our method shows larger variation in accuracy than the
others. One of the reasons for this phenomenon is due to the misspecification in estimating the true scores and
the large variance in constructing tree models. When the assumption of a sharp stratification of treatment
effects in the 2d space of the two scores is invalid, as shown in Scenario 6, our method maintains its superiority
over the benchmarks. With subgroups identified over the 2d interval of the scores, the mean squared errors
are reduced through our estimator comparably better than the other methods. In a high-dimensional setting
such as Scenario 7, we consider modified methods with lasso-regularized regressions for both our metho-
dology and endogenous stratification, and our method remains its high performance as in the low-dimensional
setups since the piecewise constant structure in treatment effects in the setting does not change.

We now take a careful look at the visualization comparison between the true treatment effect and the
predictions obtained from our method for Scenarios 1, 2, 3, 6, and 7. We confine both the true signal and the
predictive model in a 2d grid scaled on the true propensity and prognostic scores, as shown in Figure 3. It is not
surprising that our proposed estimators provide a descent recovery of the piecewise constant partition in the true
treatment effects over the 2d grid as in Scenarios 1, 2, 3, and 7, with only a small difference in the magnitude of
treatment effects. In the setting when treatment effects are smoothly distributed across the grid of the two scores as
in Scenario 6, our estimation does not exactly capture the soft boundary of the shape, but still provides us with a
simplified delineation that help us understand general heterogeneity in treatment effects over the 2d space.

Table 1: Reported coverage rates with a target confidence level of 0.95 and within iteration standard error estimates (in parentheses)

Scenario n d PP ST CF
1 1,000 2 0.996 (0.177) 0.748 (0.158) 0.969 (0.128)
5,000 10 0.987 (0.116) 0.731 (0.062) 0.736 (0.061)
2 1,000 10 0.994 (0.230) 0.753 (0.152) 0.797 (0.157)
5,000 10 0.956 (0.141) 0.619 (0.064) 0.829 (0.224)
3 1,000 10 0.989 (0.382) 0.420 (0.163) 0.769 (0.297)
5,000 10 0.949 (0.164) 0.307 (0.075) 0.750 (0.252)
4 1,000 10 1.000 (28.621) 0.933 (16.578) 0.993 (18.067)
5,000 10 1.000 (6.693) 0.998(6.049) 0.973 (5.957)
5 1,000 10 1.000 (0.524) 0.950 (0.353) 0.978 (0.429)
5,000 10 0.845 (0.336) 0.622 (0.287) 0.716 (0.321)
6 1,000 10 0.995 (0.472) 0.495 (0.161) 0.865 (0.474)

5,000 10 0.999 (0.179) 0.578 (0.089) 0.821 (0.259)
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With regard to uncertainty quantification, we examine coverage rates with a target confidence level of
0.95 for each method under different scenarios, and the corresponding results, along with the within iteration
standard error estimates, are recorded in Table 1. It is quite clear that our proposed method achieves nominal
coverage over the other two methods in almost all scenarios. It is worth to notice that although our estimator
achieves a better coverage rate than the benchmarks, it suffers from large variation due to the nature of
nearest-neighbour matching, especially in the case with small sample size. In general, our method that
incorporates both propensity and prognostic scores in identifying subgroups and estimating treatment effects
show its advantage in reducing bias, but the resulting large variance is worrisome and it remains space for
future study to solve this issue.

We also compare the computational cost of our proposed scored-based method and causal forest, with
simulated data from Scenario 1. Endogenous stratification is not considered in this comparison because the
method exerts an arbitrary subclassification into a predetermined number of subgroups, and it does not
involve a cross-validation process. We record the averaged time consumed to obtain the estimate over
1,000 simulations for both methods. Figure 4 demonstrates that our proposed method (PP) is comparably
time-efficient over its competitor, and CF can be very expensive in operational time for large-size problems.

These results highlight the promise of our method for accurate estimation of subgroups in heterogeneous
treatment effects, all while emphasizing avenues for further work. An immediate challenge is to control the
bias in estimation of propensity and prognostic scores. Using more powerful models instead of simple linear
regression in estimation is a good way to reduce bias by enabling the trees to focus more closely on the
coordinates with the greatest signal. The study of splitting rules for trees designed to estimate causal effects is
still in its infancy and improvements may be possible.

5.2 Real data analysis

To illustrate the behaviour of our estimator, we apply our method on the two real-world data sets, one from a
clinical study and the other from a complex social survey. Propensity score-based methods are frequently used
for confounding adjustment in observational studies, where baseline characteristics can affect the outcome of
policy interventions. Therefore, the results from our method are expected to provide meaningful implications for
these real data sets. However, one potential limitation of our proposed tree-based approach is that it imposes

40

Time per simulation in seconds
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Figure 4: A plot of time per simulation in seconds for our proposed method (PP) and CF against problem size n (50 values from 1,000 up
to 10,000). For each method, the time to compute the estimate for one simulated data is averaged over 1,000 Monte Carlo simulations.
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arbitrary dichotomization with sharp thresholds and thus may obscure potential continuous gradient over the
space. For real data analysis in general, our method provides a reasonable simplification that is easy to interpret
for the audience and gives some framework for thinking about when such a simplification would be appropriate.

5.2.1 Right heart catheterization (RHC) analysis

While randomized control trials are widely encouraged as the ideal methodology for causal inference in
clinical and medical research, the lack of randomized data due to high costs and potential high risks leads
to the studies based on observational data. In this section, we are interested in examining the association
between the use of RHC during the first 24 h of care in the intensive care unit (ICU) and the short-term survival
conditions of the patients. RHC is a procedure for directly measuring how well the heart is pumping blood to
the lungs. RHC is often applied to critically ill patients for directing immediate and subsequent treatment.
However, RHC imposes a small risk of causing serious complications when administering the procedure.
Therefore, the use of RHC is controversial among practitioners, and scientists want to statistically validate
the causal effects of RHC treatments. The causal study using observational data can be dated back to Connors
et al. [80], where the authors implemented propensity score matching and concluded that RHC treatment lead
to lower survival than not performing the treatment. Later, Hirano and Imbens [81] proposed a more efficient
propensity-score-based method, and the recent study by Loh and Vansteelandt [82] using a modified propen-
sity score model suggested that RHC significantly affected mortality rate in a short-term period.

A dataset for analysis was first used in the study by Connors et al. [80], and it is suitable for the purpose of
applying our method because of its extremely well-balanced distribution of confounders across levels of the
treatment [83]. The treatment variable Z in the data indicates whether a patient received a RHC within 24
hours of admission. The binary outcome Y is defined based on whether a patient died at any time up to 180
days since admission. The original data consisted of 5,735 participants with 73 covariates. We preprocess the
full data in the way suggested in the Hirano and Imbens [81] and Loh and Vansteelandt [82], by removing all
observations that contain null values in covariates, dropping the singular covariate in the reduced data, and
encoding categorical variables into dummy variables. The resulted data contains 2,707 observations and 72
covariates, with 1,103 in the treated group (Z = 1) and 1,604 in the control group (Z = 0). Among the 72 observed
covariates, there are 21 continuous, 25 binary, and 26 dummy variables transformed from the original six
categorical variables.

The result of the prediction model from our proposed method is reported in Figure 5. We observe that the
sign of estimated treatment effects varies depending on the value of the propensity score and prognostic score.
This particular pattern implies that RHC procedures indeed offer both benefits and risks in affecting patients’

Estimated treatment effects
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Figure 5: Prediction model for RHC data. Left: a tree diagram of predictions on each split based on the two scores, with 95% confidence
intervals provided on the bottom. Right: a 2d plot of prediction stratification on the intervals of propensity and prognostic scores, with a
colour scale on magnitude of treatment effects.
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short-term survival conditions. Specifically, we are interested in the occurrence of large positive treatment
effects (increase in chance of death) from the estimation. An estimated treatment effect of 0.17 (with a 95%
confidence interval between -0.25 and 1.00) is observed on the group of patients with propensity scores less
than 0.64 and prognostic scores less than 0.74, and this group accounts for 56% of the entire sample. For the
rest of the sample, we observe relatively small treatment effects in magnitude. Under the scenario of RHC data,
a smaller propensity score means that the patient is less likely to receive RHC procedures after admitting to the
ICU, and it is related to the availability of RHC procedures at the hospital to which the patient is admitted. A
smaller prognostic score tells that the patient has lower underlying chance of death. One possible explanation
for this significant positive treatment on this certain group is that drastic change in treatment procedures that
were applied to patients who do not actually need the aggressive style of care largely undermine patients’
health conditions after admission and increase the mortality rate. In summary, our findings generally agree
with the results and explanations presented in the study by Connors et al. [80], and they offer some insights for
practitioners to decide whether they should apply RHC procedures to patients.

5.2.2 National medical expenditure survey (NMES)

For the next experiment, we analyze a complex social survey data. In many complex surveys, data are not
usually well balanced due to potential biased sampling procedure. To incorporate score-based methods with
complex survey data requires an appropriate estimation on propensity and prognostic scores. DuGoff et al.
[84] suggested that combining a propensity score method and survey weighting is necessary to achieve
unbiased treatment effect estimates that are generalizable to the original survey target population. Austin
et al. [85] conducted numerical experiments and showed that greater balance in measured baseline covariates
and decreased bias is observed when natural retained weights are used in propensity score matching. There-
fore, we include sampling weight as an baseline covariate when estimating propensity and prognostic scores
in our analysis.

In this study, we aim to answer the research question: how smoking habit affects medical expenditure
over lifetime, and we use the same data set as given in the study by Johnson et al. [86], which is originally
extracted from the 1987 NMES. The NMES included detailed information about frequency and duration of
smoking with a large nationally representative data base of nearly 30,000 adults, and that 1987 medical costs
are verified by multiple interviews and additional data from clinicians and hospitals. A large amount of
literature focus on applying various statistical methods to analyze the causal effects of smoking on medical
expenditures using the NMES data. In the original study by Johnson et al. [86], the authors first estimated the
effects of smoking on certain diseases and then examined how much those diseases increased medical costs. In
contrast, Rubin [87], Imai and van Dyk [88], and Zhao et al. [89] proposed to directly estimate the effects of
smoking on medical expenditures using propensity-score-based matching and subclassification. Hahn et al. [8]
applied Bayesian regression tree models to assess heterogeneous treatment effects.

For our analysis, we explore the effects of extensive exposure to cigarettes on medical expenditures, and
we use pack-year as a measurement of cigarette measurement, the same as given in the studies by Imai and
van Dyk [88] and Hahn et al. [8]. Pack-year is a clinical quantification of cigarette smoking used to measure a
person’s exposure to tobacco, defined by

Number of cigarettes per day
20

Pack-year = x Number of years smoked.

Following that, we determine the treatment indicator Z by the question whether the observation has a heavy
lifetime smoking habit, which we define to be greater than 17 pack-years, the equivalent of 17 years of pack-a-
day smoking.

The subject-level covariates X in our analysis include age at the times of the survey (between 19 and 94),
age when the individual started smoking, gender (male, female), race (white, black, other), marriage status
(married, widowed, divorced, separated, never married), education level (college graduate, some college, high
school graduate, other), census region (Northeast, Midwest, South, West), poverty status (poor, near poor, low
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income, middle income, high income), seat belt usage (rarely, sometimes, always/almost always), and sample
weight. We select the natural logarithm of annual medical expenditures as the outcome variable Y to maintain
the assumption of heteroscedasticity in random errors. We preprocess the raw data set by omitting any
observations with missing values in the covariates and excluding those who had zero medical expenditure.
The resulting restricted data set contains 7,903 individuals, with 4,014 in the treated group (Z = 1) and 3,889 in
the controlled group (Z = 0).

The prediction model obtained from our method, as shown in Figure 6, is simple and easy to interpret. We
derive a positive treatment effect across the entire sample, and the effect becomes significant when the
predicted potential outcome is relatively low (less than 5.7). These results indicate that more reliance on
smoking will deteriorate one’s health condition, especially for those who currently do not have a large amount
of medical expenditure. Moreover, we observe a significant positive treatment effect of 1.4 (with a 95%
confidence interval between 0.56 and 2.79), and in other words, a certain and substantial increase in medical
expenditure for the subgroup with propensity score less than 0.17. It is intuitive to assume that a smaller
possibility of engaging in excessive tobacco exposure is associated with healthier living styles. This phenom-
enon is another evidence that individuals who are more likely to stay healthy may suffer more from excessive
exposure to tobacco products. In all, these results support policymakers and social activists who advocate for
nationwide smoking ban.

6 Discussion

Our method is different from existing methods on estimating heterogeneous treatment effects in a way that we
incorporate both matching algorithms and nonparametric regression trees in estimation, and the final esti-
mate can be regarded as a 2d summary on treatment effects. Moreover, our method exercises a simultaneous
stratification across the entire population into subgroups with the same treatment effects. Subgroup treatment
effect analysis is an important but challenging research topic in observational studies, and our method can be
served as an efficient tool to reach a reasonable partition.

Our numerical experiments on various simulated and real-life data lay out empirical evidence of the
superiority of our estimator over state-of-the-art methods in accuracy and our proposal provides insightful
interpretation on heterogeneity in treatment effects across different subgroups. We also discovered that our
method is powerful in investigating subpopulations with significant treatment effects. Identifying representa-
tive subpopulations that receive extreme results after treatment is a paramount task in many practical
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Figure 6: Prediction model for NMES data. Left: a tree diagram of predictions on each split based on the two scores, with 95% confidence
intervals provided on the bottom. Right: a 2d plot of prediction stratification on the intervals of propensity and prognostic scores, with a
colour scale on magnitude of treatment effects.



20 —— Steven Siwei Ye et al. DE GRUYTER

contexts. Through empirical experiments on two real-world datasets from observational studies, our method
demonstrates its ability in identifying these significant effects.

Although our method shows its outstanding performance in estimating treatments effects under the
piecewise constant structure assumption, it remains meaningful and requires further study to develop
more accurate recovery of such structure. For example, a potential shortcoming of using conventional regres-
sion trees for subclassification is that the binary partition over the true signals is not necessarily unique. Using
some variants of CART, like optimal trees [90] and dyadic regression trees [91], would be more appropriate for
estimation under additional assumptions. Another particular concern with tree-based methods is the curse of
dimensionality. Applying other nonparametric regression techniques, such as K-nearest-neighbour fused lasso
[92] and locally estimated scatterplot smoothing, may offer a compromised solution to deal with this issue and
learn a more smoothed structure in treatment effects other than a rectangular partition on 2d data. It is also
worth improving the estimation of propensity and prognostic scores using similar nonparametric based
methods if a piecewise constant assumption hold for the two scores as well.

Moreover, we acknowledge that fitting propensity score and prognostic scores normally would demand
more than main terms linear and logistic regressions as used in the current method to have hope of elim-
inating bias in estimating the two scores. The key takeaway of our proposal is not to estimate the two scores
more accurately, but to provide a lower-dimensional summary on heterogeneous treatment effects. If more
foreknowledge on the structure of the underlying functions of the two scores can be incorporated, we can
certainly select a more ideal algorithm or machine learning model for estimation. To compromise the lack of
such information under a usual scenario, a SuperLearner ensemble estimator, proposed by van der Laan et al.
[93], may offer a more promising solution for estimating the two scores by taking a weighted average of
multiple prediction models. Yet, an important challenge for future work is to design rules that can automa-
tically choose the best model to fit the data.

Another question to consider is the source of heterogeneity in causal effects. Our proposal that utilizes two
scores can be seen as a reasonable starting point to analyze heterogeneity from a low-dimensional perspective,
but it cannot comprehensively capture the sources of such effects. For instance, it is seemingly possible to exist
a covariate that leads to substantial heterogeneous treatment effects on the response but does not itself have a
large effect on propensity or prognostic scores. There is no particular guiding theories about this issue in
current literature, and thus, it remains huge space for further investigation.
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Appendix A
Study on the choice of the number of nearest neighbours

In this section, we examine how the number of nearest neighbours in the matching algorithm affects the
estimation accuracy. Recall in Step 2 of our proposed method, we implement a K-nearest-neighbour algorithm
based on the two estimated scores for a sample of size n. The computational complexity of this K-NN algorithm
is of O(Kn). Although a larger K produce a promisingly higher estimation accuracy, more computational costs
become the corresponding side effect. Moreover, the issue of “underfitting” — the increase of bias occurs when
we make such selection. It is because a selection of too large K defeats the underlying principle behind nearest
neighbour algorithms — that neighbours that are nearer share similar densities. Therefore, a smart choice of K
is essential to balance the trade-off among accuracy, computational expense, and generability.

We follow the same generative model in Scenario 1 from Section 5 and compute the averaged mean
squared error over 1,000 Monte Carlo simulations for K = 1,..., 50 with a fixed sample size n = 5,000. The
results in Figure 6 show that the averaged MSE continuously decreases as the number of nearest neighbours K
selected in the matching algorithm grows. However, the speed of improvement in accuracy gradually slows
down when K exceeds 10, which is close to 10g(5,000). This suggests that an empirical choice of K = log(n) is
sufficient to produce a reasonable estimate on the target parameter, and this choice is more “sensible” than the
conventional setting of K = 1 (A1).

Appendix B
A summary table of simulation studies
In this appendix, we include a table to provide a text summary of all simulation models considered in Section

5.1. We add some notes to help the audience understand similarities, differences, and sources of these data
generative models.

Averaged MSE vs the number of nearest neighbors

MSE

T T T T T T
0 10 20 30 40 50

the number of nearest neighbors

Figure A1: The plot of averaged MSE against the number of nearest neighbours.
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Scenario Propensity model

Prognostic model

Treatment effect model

Note

1 Linearity in
covariates
2 Linear model with

additional inter-
actions and non-
linear terms

3 Linearity in
covariates
4 Random with a

fixed number of
treated units

Linearity in
covariates

Linear model with
additional inter-
actions and non-
linear terms

Linearity in
covariates

Linearity in cov-
ariates with an
intercept

A sharp delineation over
the 2d grid of propensity
and prognostic scores with

two subgroups

A sharp delineation over
the 2d grid of propensity
and prognostic scoreswith

two subgroups

A sharp delineation over
the 2d grid of propensity
and prognostic scores with

four subgroups
Constant zero

The same treatment effect
model as in Scenario 1; both
propensity and prognostic
scores are misspecified with
linear model

The same propensity and
prognostic models as in
Scenario 1; more subgroups
in treatment effects

The same setting from
Abadie et al. [12]

5 A smooth function Proportional to A function of the Modified from Equation 27 of
of single covariate single covariate  covariates Wager and Athey [9]

6 Linearity in Linearity in A smooth function of the Modified from Equation 28 of
covariates covariates two scores Wager and Athey [9]

7 Linearity in a few Linearity in a few A sharp delineation over A high-dimensional setting

covariates with ~ covariates with ~ the 2d grid of propensity
sparsity in others sparsity in others and prognostic scores with
two subgroups

corresponding to Scenario 1

Appendix C
Non-parametric bootstrap in simulation studies

In Section 5, we use nonparametric bootstrap to construct confidence intervals for endogenous stratification
and our proposed method. We use these bootstrap samples to compute coverage rates with respect to a target
level of 95% as a measurement of uncertainty. The bootstrap method, introduced by [94], is a simple but
powerful tool to obtain a robust nonparametric estimate of the confidence intervals through sampling from
the empirical distribution function of the observed data. It is worth noting that causal forests or generalized
random forests can compute confidence intervals quickly without requiring a bootstrap approach on which
our method relies.

In this appendix, we introduce the details on how we implement nonparametric bootstrap for the purpose
of computing coverage rates in the simulation experiments. For each scenario in Section 5, we start with
generating a sample following the defined data generation model with a sample size n. Next, we create 1,000
random samples with replacement from this single set of data, also with the sample size n. We then apply both
methods on these simulation repetitions and obtain a series of estimations on each unit in the original set.
Following these estimations, we calculate the corresponding 2.5 and 97.5% quantiles for all units in the original
sample. Coverage rates of a 95% prediction level are thus the frequencies of the original units falling inside the
intervals between the two quantiles computed in the previous step.
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