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Abstract: Estimation and evaluation of individualized treatment rules have been studied extensively, but
real-world treatment resource constraints have received limited attention in existing methods. We inves-
tigate a setting in which treatment is intervened upon based on covariates to optimize the mean counter-
factual outcome under treatment cost constraints when the treatment cost is random. In a particularly
interesting special case, an instrumental variable corresponding to encouragement to treatment is inter-
vened upon with constraints on the proportion receiving treatment. For such settings, we first develop a
method to estimate optimal individualized treatment rules. We further construct an asymptotically efficient
plug-in estimator of the corresponding average treatment effect relative to a given reference rule.
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1 Introduction

The effect of a treatment often varies across subgroups of the population [1,2]. When such differences are
clinically meaningful, it may be beneficial to assign treatments strategically depending on subgroup mem-
bership. Such treatment assignment mechanisms are called individualized treatment rules (ITRs). A treat-
ment rule is commonly evaluated on the basis of the mean counterfactual outcome value it generates –
what is often referred to as the treatment rule’s value – and an ITR with an optimal value is called an
optimal ITR. There is an extensive literature on estimation of optimal ITRs and their corresponding values
using data from randomized trials or observational studies [3–7].

Most existing approaches for estimating ITRs do not incorporate real-world resource constraints.
Without such constraints, an optimal ITR would assign the treatment to members of a subgroup provided
there is any benefit for such individuals, even when this benefit is minute. In contrast, under treatment
resource limits, it may be more advantageous to reserve treatment for subgroups with the greatest benefit
from treatment. This issue has received attention in the recent work. Luedtke and van der Laan developed
methods for estimation and evaluation of optimal ITRs with a constraint on the proportion receiving
treatment [8]. Qiu et al. instead considered related problems in settings in which instrumental variables
(IVs) are available [9]. In one of the settings they considered, the same resource constraint is imposed as in
the study by Luedtke and van der Laan [8], but a binary IV is used to identify optimal ITRs even in settings
in which there may be unmeasured confounders. In another setting considered in the study by Qiu et al. [9],
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the authors considered interventions on a causal IV or encouragement status and developed methods to
estimate individualized encouragement (rather than treatment) rules with a constraint on the proportion
receiving both encouragement and treatment [10]. They also developed nonparametrically efficient esti-
mators of the average causal effect of optimal rules relative to a prespecified reference rule. Sun et al. [11]
considered a setting in which the cost of treatment is random and dependent on baseline covariates. They
developed methods to estimate optimal ITRs under a constraint on the expected additional treatment cost
compared to control, though inference on the impact of implementing the optimal ITR in the population
was not studied [11]. Sun [12] considered a related problem involving the development of optimal ITRs
under resource constraints and established the asymptotic properties of the estimated optimal ITR. Their
method appears viable when the class of ITRs is restricted by the user a priori.

In this article, we study estimation and inference for an optimal rule under two different cost constraints.
The first is the same as appearing in the study by Sun et al. [11]. In contrast to earlier work on this setting, we
do not constrain the class of ITRs considered and provide a means to obtain inference about the optimal ITR.
The second constraint we consider places a cap on the total cost under the rule rather than on the incremental
cost relative to control. To our knowledge, the latter problem has not previously been considered in the
literature. Both of these estimation problems mirror the intervention-on-encouragement setting considered in
the study by Qiu et al. [9] but involve different constraints and a more general cost function.

Similarly as in the study by Qiu et al. [9], the estimators that we develop are asymptotically efficient
within a nonparametric model and enable the construction of asymptotically valid confidence intervals
(CIs) for the impact of implementing the optimal rule. We develop our estimators using similar tools – such
as semiparametric efficiency theory [13,14] and targeted minimum loss-based estimation (TMLE) [15,16] – as
were used to tackle the related problem studied in the study by Qiu et al. [9]. Consequently, our proposed
estimators are similar to that presented in the study by Qiu et al. [9]. Therefore, we will streamline the
presentation by highlighting the key similarities and focusing on the differences between these related
problems and estimation schemes.

The rest of this article is organized as follows. In Section 2, we describe the problem setup, introduce
notation, and present the causal estimands along with basic causal conditions. In Section 3, we present
additional causal conditions and the corresponding nonparametric identification results. In Section 4, we
present our proposed estimators and their theoretical properties. In Section 5, we present a simulation
illustrating the performance of our proposed estimators. We make concluding remarks in Section 6. Proofs,
technical conditions, and additional simulation results can be found in the Supplementary material.

2 Setup and objectives

To facilitate comparisons with the study by Qiu et al. [9], we adopt similar notation. Suppose that
we observe independent and identically distributed data units …O O O P, , , ~n1 2 0, where P0 is an unknown
sampling distribution. A prototypical data unit O consists of the quadruplet ( )W T C Y, , , , where

��∈ ⊆W p is the vector of baseline covariates, { }∈T 0, 1 is the treatment status, [ )∈ ∞C 0, is the
random treatment cost, and �∈Y is the outcome of interest. As a convention, we assume that larger
values of Y are preferable. We use �( )= ∈V V W to denote a fixed transformation of W upon which we
allow treatment decisions to depend. For example,V may be a subset of covariates inW or a summary of
W (e.g., body mass index as a summary of height and weight). In practice, V may be chosen based on
prior knowledge on potential modifiers of the treatment effect as well as the cost of measuring various
covariates. We distinguish between ( )V W andW because of their different roles. On the one hand, we will
assume that the full covariateW contains all confounders and thus is used to identify causal effects, while

( )V W might not be sufficient for this purpose. On the other hand, some covariates inW may be expensive
or difficult to measure in future applications, and thus, implementing an optimal ITR based on a subset

( )V W of covariateW may be desirable. In the rest of this article, we will use the shorthand notationV ,Vi,
and v to refer to ( )V W , ( )V Wi , and ( )V w , respectively. We define an individualized (stochastic) treatment
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rule (ITR) to be a function � [ ]→ρ : 0, 1 that prescribes treatment with probability ( )ρ v according to an
exogenous source of randomness for an individual with covariate value v. Any stochastic ITR that only
takes values in { }0, 1 is referred to as a deterministic ITR.

In this work, we adopt the potential outcomes framework [17,18]. For each individual, we use ( )C t and
( )Y t to denote the potential treatment cost and potential outcome, respectively, corresponding to scenarios

in which the individual has treatment status t . We use � to denote an expectation over the counterfactual
observations and the exogenous random mechanism defining a rule, and E0 to denote an expectation over
observables alone under sampling from P0. We make the usual stable unit treatment value assumption.

Condition A1. (Stable unit treatment value assumption) The counterfactual data unit of one individual is
unaffected by the treatment assigned to other individuals, and there is only a single version of the treat-
ment, so that =T t implies that ( )=C C t and ( )=Y Y t .

Remark 1. The ITRs we consider are not truly individualized, because they are based on the value of
covariate V rather than each individual’s unique potential treatment effects ( ) ( )−Y Y1 0 and ( ) ( )−C C1 0 .
Nevertheless, depending on the resolution of V , these ITRs can be considerably more individualized than
assigning everyone to either treatment or control. In this article, we adopt the conventional nomenclature
and refer to the treatment rules we study as ITRs [see, e.g., 7,19–29].

We define ( )C ρ and ( )Y ρ to be the counterfactual treatment cost and outcome, respectively, for an ITR ρ
under an exogenous random mechanism. We note that if ( ) ( )∈ρ v 0, 1 for an individual with covariate v, an
exogenous random mechanism is used to randomly assign treatment with probability ( )ρ v , and thus, ( )C ρ
and ( )Y ρ are random for this given individual. If ρ were implemented in the population, then the population
mean outcome would be �[ ( )]Y ρ , where we use � to denote expectation under the true data-generating
mechanism involving potential outcomes ( ( ) ( ))C t Y t, and exogenous randomness in ρ. We consider a
generic treatment resource constraint requiring that a convex combination of the population average
treatment cost and the population average additional treatment cost compared to control be no greater
than a specified constant ( ]∈ ∞κ 0, . Consequently, an optimal ITR ρ0 under this constraint is a solution in

� [ ]→ρ : 0, 1 to

� � �[ ( )] [ ( )] ( ) [ ( ) ( )]+ − − ≤Y ρ α C ρ α C ρ C κmaximize subject to 1 0 , (1)

where [ ]∈α 0, 1 is also a constant specified by the investigator. Natural choices of α are =α 0, corre-
sponding to a constraint on the population average additional treatment cost compared to control, and

=α 1, corresponding to a constraint on the population average treatment cost. The first choice may be
preferred when the control treatment corresponds to the current standard of care and a limited budget is
available to fund the novel treatment to some patients. The second choice may be more relevant when both
treatment and control incur treatment costs.

Remark 2. Our setup is similar to that in the study by Qiu et al. [9] if we viewT andC defined here as the IV/
encouragement Z and treatment status A defined in those prior works, respectively. However, the con-
straint in our setup is different from the constraint �[ ( ) ( )] ≤ρ V C ρ κ considered previously. In IV settings,
the constraint in (1) with =α 1 is useful when assigning treatment always incurs a cost, regardless of
whether encouragement is applied, such as in distributing a limited supply of an expensive drug within
a health system based on the results of a randomized clinical trial. It is instead useful with =α 0 when no
encouragement is present under the standard of care but intervention on the encouragement is of interest
when additional treatment resources are available. The constraint considered in the study by Qiu et al.
[9,10] was instead useful in cases in which treatment only incurs a cost when paired with encouragement,
such as when housing vouchers are used to encourage individuals to live in a certain area. In the general
setting in whichT is viewed as treatment status andC as a random treatment cost, the constraint in (1) with

=α 0 is identical to that considered in the study by Sun et al. [11] – we refer the readers to these works for a
more in-depth discussion of the relation between the current problem setup and IV settings.
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To evaluate an optimal ITR ρ0, we follow Qiu et al. [9] in considering three types of reference ITRs and
develop methods for statistical inference on the difference in the mean counterfactual outcome between ρ0

and a reference ITR �
� [ ]→ρ : 0, 10 . The first type of reference ITR considered, denoted by ρFR (FR = fixed

rule), is any fixed ITR that may be specified by the investigator before the study. When =α 0, it is usually
most reasonable to consider the rule that always assigns control, namely, ↦v 0, because the constraint in (1)
may arise due to limited funding for implementing treatment whereas the standard of care rule is to always

assign control. The second type, denoted by ρ0
RD (RD = random), prescribes treatment completely at random to

individuals regardless of their baseline covariates. The probability of prescribing treatment is chosen such that
the treatment resource is saturated (i.e., all available resources are used) or all individuals receive treatment, if

such a probability exists. Symbolically, this ITR is given by � �{ ( [ ( )]) [ ( ) ( )]}↦ − / −ρ v κ α C C C: min 1, 0 1 00
RD

under the condition that �[ ( )] ≤C κ0 and �[ ( ) ( )]− >C C1 0 0. Although ρ0
RD has the same interpretation as the

corresponding encouragement rule in the study by Qiu et al. [9], its mathematical expression is different due to
the different resource constraints. This rule may be of interest if it is known a priori that treatment is harmless.

The third type, denoted by ρ0
TP (TP = true propensity), prescribes treatment according to the true propensity of

the treatment implied by the study sampling mechanism P0, so that ρ0
TP equals ( ∣ )↦ = =w P T W w10 . This ITR

may be of interest in two settings. In one setting, ρ0
TP satisfies the treatment resource constraint. The investigator

may wish to determine the extent to which the implementation of an optimal ITR would improve upon the
standard of care. In the other setting, the treatment resource constraint is newly introduced and the standard-of-
care ITR may lead to overuse of treatment resources. The investigator may then be interested in whether the
implementation of an optimal constrained ITR would result, despite the new resource constraint, in a non-
inferior mean outcome.

3 Identification of causal estimands

In this section, we present nonparametric identification results. Though these results are similar to those for
individualized encouragement rules in the study by Qiu et al. [9], there are two key differences. First, the
form of some of the conditions in the study by Qiu et al. [9] need to be modified to account for the novel
resource constraint considered here. Second, two additional conditions are needed to overcome challenges
that arise due to this new constraint.

We first introduce notation that will be useful when presenting our identification results and our
proposed estimators. For any observed-data distribution P, we define pointwise the conditional mean

functions ( ) ( ∣ )≔ = =μ t w E C T t W w, ,P
C

P and ( ) ( ∣ )≔ = =μ t w E Y T t W w, ,P
Y

P , where we use EP to denote
an expectation over observables alone under sampling from P, and their corresponding contrasts due to different

treatment status, ( ) ( ) ( )≔ −w μ w μ wΔ 1, 0,P
C

P
C

P
C and ( ) ( ) ( )≔ −w μ w μ wΔ 1, 0,P

Y
P
Y

P
Y . We also define the average of

these contrasts conditional onV as ( ) [ ( )∣ ]≔ =δ v E W V vΔP
C

P P
C and ( ) [ ( )∣ ]≔ =δ v E W V vΔP

Y
P P

Y , and the propensity

to receive treatment ( ) ( ∣ )≔ = =μ w P T W w1P
T . In addition, we define ( ) [ ( ∣ )∣ ]≔ = =ν t v E E C T t W V v, ,P P P ,

[ ( )]≔ϕ E μ W0,P P P
C . These quantities play an important role in tackling the problem at hand. Throughout the

article, for ease of notation, if fP is a quantity or operation indexed by distribution P, we may denote fP0 by f0. As

an example, we may use ΔY
0 to denote ΔP

Y
0
.

We introduce additional causal conditions we will require, positivity and unconfoundedness. In one
form or another, these conditions commonly appear in the causal inference literature [16], including in the
IV literature [30–33].

Condition A2. (Strong positivity). There exists a constant >ε 0T such that ( )< < −ε μ w ε1T
T

T0 holds for
P0 – almost every w.
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Condition A3. (Unconfoundedness of treatment). For each { }∈t 0, 1 , T and ( ( ) ( ))C t Y t, are conditionally
independent given =W w for P0 – almost every w.

Equipped with these conditions, we are able to state a theorem on the nonparametric identification of
the mean counterfactual outcomes and average treatment effect (ATE) – these results can be viewed as a
corollary of the well-known G-formula [34].

Theorem 1. (Identification of ATE and expected treatment resource expenditure). Provided Conditions A1–A3 are
satisfied, it holds that �[ ( )∣ ] ( )= =Y t W w μ t w,Y

0 , �[ ( ) ( )∣ ] ( )− = =Y Y W w w1 0 ΔY
0 , and �[ ( ) ( )∣ ]− = =Y Y V v1 0

( )δ vY
0 for P0 – almost every w and v, and so, � � �[ ( ) ( )] [{ ( ) ( )} ( )]− = −Y ρ Y ρ E ρ V ρ W WΔY

0 0 0 0 .

In addition, it holds that �[ ( )∣ ] ( )= =C t W w μ t w,C
0 for P0 – almost every w, and so,

�[ ( )] [ ( ) ( ) ( ( )) ( )]= + −C ρ E ρ V μ W ρ V μ W1, 1 0,C C
0 0 0 .

In view of Theorem 1, the objective function in (1) can be identified as follows:

�[ ( )] [ ( ) ( ) ( ( )) ( )] [ ( ) ( )] [ ( )]= + − = +Y ρ E ρ V μ W ρ V μ W E ρ V W E μ W1, 1 0, Δ 0, ,Y Y Y Y
0 0 0 0 0 0 0

and, similarly, the expected cost is identified as�[ ( )] [ ( ) ( )] [ ( )]= +C ρ E ρ V W E μ WΔ 0,C C
0 0 0 0 . It follows that the

optimization problem (1) is equivalent to

[ ( ) ( )] [ ( ) ( )] + ≤E ρ V δ V E ρ V δ V αϕ κmaximize subject to .Y C
0 0 0 0 0 (2)

This differs from equation (3) defining optimal individualized encouragement rules in the study by Qiu et al.
[9]. We now present two additional conditions so that (2) is a fractional knapsack problem [35], thereby
allowing us to use existing results from the optimization literature. These conditions are similar to those in
the study by Sun et al. [11].

Condition A4. (Strictly costlier treatment). There exists a constant >ε 0C such that ( ) >w εΔC
C0 holds for

P0 – almost every w.

Condition A5. (Financial feasibility of assigning treatment). The inequality <αϕ κ0 holds.

Condition A4 is reasonable if the treatment is more expensive than control. When applied to an IV
setting as outlined in Remark 2, this condition corresponds to the assumption that the IV is indeed an
encouragement to take treatment. This condition is slightly stronger than its counterpart in the study by

Sun et al. [11], which only requires that ≥Δ 0C
0 . This stronger condition is needed to ensure the asymptotic

linearity of our proposed estimator in Section 4. Under Condition A4, it is evident that Condition A5 is
reasonable because if >αϕ κ0 , then no ITR satisfies the treatment resource constraint in view of the fact that

[ ( ) ( )] ≥E ρ V δ V 0C
0 0 , whereas if =αϕ κ0 , then only the trivial ITR ↦v 0 satisfies the constraint, and there is

no need to estimate an optimal ITR.
Under these two additional conditions, (2) is a fractional knapsack problem [35] in which every sub-

group defined by a different value of V corresponds to a different “item.” A solution in the special case in
which ( ) =V W W and =α 0 was given in Theorem 1 in the study by Sun et al. [11]. We now state a more
general result with the following differences: (i) the treatment decision may be based on a summaryV rather
than the entire covariate vector W , and (ii) α may take any value in [ ]0, 1 rather than only zero. We also
explicitly state the randomization probability at the boundary for completeness and clarity. Despite these
differences, the result we obtain is similar to Theorem 1 in the study by Sun et al. [11]. Define pointwise

( ) ( ) ( )≔ /ξ v δ v δ vY C
0 0 0 , and write { [ ( ( ) ) ( )] }≔ > ≤ −η η E I ξ V η δ V κ αϕinf : C

0 0 0 0 0 and { }≔τ ηmax , 00 0 .

Theorem 2. (Optimal ITR). Under Conditions A1–A5, a solution to (2) is explicitly given by
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( )

⎧

⎨

⎪

⎩
⎪

[ ( ( ) ) ( )]

[ ( ( ) ) ( )]
( ) [ ( ( ) ) ( )]

( ( ) )

≔

− − >

=

> = = >

>

ρ v
κ αϕ E I ξ V τ δ V

E I ξ V τ δ V
if τ ξ v τ and E I ξ V τ δ V

I ξ v τ otherwise.

: 0, 0

:

C

C
C

0

0 0 0 0 0

0 0 0 0
0 0 0 0 0 0 0

0 0

Here, the first case is the boundary case with the randomization probability that saturates the treatment resource.

We also note that the reference ITRs introduced in Section 2 are also identified under the aforemen-
tioned conditions. In particular, it can be shown that ( ) { ( ) [ ( )]}≔ − /ρ v κ αϕ E Wmin 1, ΔC

0
RD

0 0 0 and =ρ μ T
0
TP

0 .

4 Estimating and evaluating optimal ITRs

In this section, we present an estimator of an optimal ITR ρ0 and an inferential procedure for its ATE relative

to a reference ITR �ρ0 , where � is any of FR, RD, or TP. The proposed procedure is an adaptation of the
method first proposed by Qiu et al. [9,10].

We begin by introducing some notations that are useful for defining the estimands. We define the

parameter ( ) [ ( ) ( )]≔P E ρ V WΨ Δρ P P
Y or ( ) [ ( ) ( )]≔P E ρ W WΨ Δρ P P

Y for each ITR ρ and distribution �∈P ,
depending on whether the domain of ρ is � or � . Here, we consider the model � to be locally nonpara-
metric at P0 [13]. For �∈P , the ATE of an optimal ITR ρP relative to a reference ITR �ρP equals

� �( ) ( ) ( )≔ −P P PΨ Ψ Ψρ ρP P
. We are interested in making inference about �( )≔ψ PΨ0 0 , where we have sup-

pressed dependence on � from our shorthand notation.

4.1 Pathwise differentiability of the ATE

We first present a result regarding the pathwise differentiability of the ATE. Pathwise differentiability of the
parameter of interest serves as the foundation for constructing asymptotically efficient estimators of this
parameter, based on which an inferential procedure may be developed. Additional technical conditions are
required and are provided in Section S1 in the Supplementary Material. For a distribution �∈P , a function

��{ } × →μ : 0, 1C , an ITR ρ, and a decision threshold �∈τ , we define pointwise the following functions:

( )( ) ( )
⎡

⎣
⎢

( )

( )
( )

⎤

⎦
⎥ ( )

⎧

⎨
⎩

( )
⎡

⎣
⎢

( )

( )
( )

⎤

⎦
⎥

⎡

⎣
⎢

( )( ( ))

( )
( )

⎤

⎦
⎥

⎫

⎬
⎭

( )( ) ( )( )

( )( )
( )( ( ))

( )
( ) [ ( )]

( )( )
( )

( )
( ) [ ( )]

( )( ) ( )( )
( ) ( ) ( ) ( )

[ ( )]

( )( )
( )

( )
[ ( )] ( ) ( )

( )( ) ( )( )

≔

−

+ −

+ −

−

−

+ −

+ +

− −

−

+ −

≔

≔

− −

−

+ −

≔

−

+ −

+ −

≔ −

−

−

≔

+ −

− + −

≔

D P ρ τ μ o ρ v
y μ t w

t μ w
w P

τ ρ v c μ t w
t μ w

w α t c μ w
μ w

μ w κ

G P o D P ρ τ μ o

D P μ o t c μ w
μ w

μ w E μ W

D P μ o c μ t w
t μ w

w E W

G P o D P ρ μ o
α P D P μ

κ ϕ
P D P μ

E W

G P o
μ w

t μ w
y μ t w t w P

G P o D P ρ μ o

, , ,
,

1
Δ Ψ

,
1

Δ 1 0,
1

0, ;

, , , ;

, 1 0,
1

0, 0, ;

, ,
1

Δ Δ ;

, , 0,
Ψ , Ψ ,

Δ
;

1
, Δ Ψ ;

, , 0, .

C P
Y

P
T P

Y
e

C

P
T

C
C

P
T

C

P P P
C

C
C

P
T

C
P

C

C
C

P
T

C
P

C

P P
C ρ P

C

P

ρ P
C

P P
C

P
T

P
T P

Y
P
Y

ρ

P
C

1

2

RD
RD 1 2

TP

FR
FR

P P

P

RD RD

TP

(3)
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One key condition we rely on is the following nonexceptional law assumption.

Condition B1. (Nonexceptional law). ( ( ) )= =P ξ V τ 00 0 0 .

Under this condition, the true optimal ITR ρ0 is identical to an indicator function. If all covariates are
discrete, then we can plug in the empirical estimates into the identification formulae in Theorems 1 and 2
and show that the resulting estimators of the ATE are asymptotically normal by the delta method even when
Condition B1 does not hold. We do not further pursue this simple case in this article, and thus need to rely
on the nonexceptional law assumption, namely Condition B1, to account for continuous covariates. We list
additional technical conditions in Supplement S1.

We can now provide a formal result describing the pathwise differentiability of the ATE parameter.

Theorem 3. (Pathwise differentiability of the ATE). Let � { }∈ FR, RD, TP . Provided Conditions A1–A5 and
B1–B5 are satisfied, the parameters ( )↦P PΨρP and �( )↦P PΨρP

are pathwise differentiable at P0 relative to

� with canonical gradients ( )G P0 and �( )G P0 , respectively.

We note that the pathwise differentiability of �( )↦P PΨρP
was established in Theorem 3 in the study by

Qiu et al. [9] for � { }∈ FR, TP . The other results can be proven using similar techniques. We presented the
proof of these results in Supplement S4.2. In view of Theorem 3, it follows that the ATE parameter �Ψ is
pathwise differentiable at P0 with nonparametric canonical gradient:

� �( ) ( ) ( )≔ −D P G P G P0 0 0 (4)

for � { }∈ FR, RD, TP .

Remark 3. We have noted similar additional terms related to the resource being used in the canonical
gradient of the mean counterfactual outcome or ATE of optimal ITRs under resource constraints, for
example, in the studies by Luedtke and van der Laan [8] and Qiu et al. [9]. In our problem, this additional
term is

⎧

⎨
⎩

( )
⎡

⎣
⎢

( )

( )
( )

⎤

⎦
⎥

⎡

⎣
⎢

( )( ( ))

( )
( )

⎤

⎦
⎥

⎫

⎬
⎭

−

−

+ −

+ +

− −

−

+ −τ ρ v
c μ t w

t μ w
w α

t c μ w
μ w

μ w κ
,

1
Δ

1 0,
1

0, .
C

T
C

C

T
C

0 0
0

0
0

0

0
0

Such terms appear to come from solving a fractional knapsack problem with truncation at zero and take the
form of a product of (i) the threshold in the solution, and (ii) a term that equals the influence function of the
resource being used under the solution when the resource is saturated. We conjecture that such structures
generally exist for fractional knapsack problems.

4.2 Proposed estimator and asymptotic linearity

We next present our proposed nonparametric procedure for estimating an optimal ITR ρ0 and the corre-
sponding ATE ψ0. We will generally use subscript n to denote an estimator with sample size n and add a hat
to a nuisance function estimator that is targeted toward estimating ϕ0.

(1) Use the empirical distribution P̂W n, ofW as an estimate of the true marginal distribution ofW . Compute

estimates μn
Y , μn

C, μn
T , δn

Y and δn
C of μ Y

0 , μ C
0 , μ T

0 , δY
0 and δ C

0 , using flexible regression methods. Recall that

( ) [ ∣ ]= = =μ t w E Y T t W w, ,Y
0 0 , ( ) [ ∣ ]= = =μ t w E C T t W w, ,C

0 0 , ( ) [ ( ) ( )∣ ]= − =δ v E μ W μ W V v1, 0,Y Y Y
0 0 0 0 ,

and ( ) [ ( ) ( )∣ ]= − =δ v E μ W μ W V v1, 0,C C C
0 0 0 0 . Define pointwise ( ) ( ) ( )≔ −w μ w μ wΔ 1, 0,n

C
n
C

n
C .

(2) Estimate an optimal ITR:
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(a) Estimate [ ( )]=ϕ E μ W0,C
0 0 0 with a one-step correction estimator:

⎡

⎣
⎢ ( )

( )( ( ))

( )

⎤

⎦
⎥∑

≔ +

− −

−

=

ϕ
n

μ W
T C μ W

μ W
1 0,

1 0,
1

.n
i

n

n
C

i
i i n

C
i

n
T

i1

(b) Let ≔ /ξ δ δn n
Y

n
C, ( )

( )
↦ ∑

>

τ WΓ : Δn n i ξ V τ n
C

i
1

: n i
and ( )

( )
↦ ∑

=

γ τ W: Δn n i ξ V τ n
C

i
1

: n i
. For any [ ]∈ ∞k 0, , define

( ) { ( ) }≔ ≤ −η k τ τ k αϕinf : Γn n n , ( ) { ( ) }≔τ k η kmax , 0n n and

⎧

⎨

⎪

⎩
⎪

( ( ))

( ( ))
( ) ( ) ( ( ))

{ ( ) ( )}

↦

− −

= >

>

d v
k αϕ η k

γ η k
ξ v η k γ η k

I ξ v η k
:

Γ
: if and 0,

: otherwise.
n k

n n n

n n
n n n n

n n

,

The rule dn k, is the sample analog of an ITR that prescribes treatment to those with the highest
values of ( )ξ V0 , regardless of whether the treatment is harmful, until treatment resources run out.

(c) Compute kn, which is used to define an estimate of ρ0 for which the plug-in estimator is asympto-
tically linear under conditions, as follows:

– if ( ) >τ κ 0n and there is a solution in [ )∈ ∞k 0, to

( )
⎡

⎣
⎢ ( )

( )

( )

⎤

⎦
⎥∑

+

−

+ −

+ =

=

n
d V W

C μ T W
t μ W

αϕ κ1 Δ
,

1
,

i

n

n k i n
C

i
i n

C
i i

i n
T

i
n

1
, (5)

then take kn to be this solution;
– otherwise, set =k κn .

(d) Estimate ρ0 using the sample analog of ρ0 with treatment resource constraint kn, namely,

⎧

⎨

⎪

⎩
⎪

( ( ))

( ( ))
( ) ( ) ( ( ))

{ ( ) ( )}

↦

− −

= >

>

ρ v
k αϕ τ k

γ τ k
ξ v τ k γ τ k

I ξ v τ k
:

Γ
: if and 0

: otherwise.
n

n n n n n

n n n
n n n n n n

n n n

(3) Obtain an estimate �ρn of the reference ITR �ρ0 as follows:

– For � = FR, take �ρn to be ρFR.
– For � = RD,

(a) obtain a targeted estimate ( )⋅μ̂ 1,n
C of ( )⋅μ 1,C

0 : run an ordinary least-square linear regression with

outcome C, covariate ( ( ) )/ + −T μ W1 1n
T , offset ( )μ T W,n

C , and no intercept. Take μ̂n
C to be the

fitted mean model;

(b) take �ρn to be the constant function ( ) ( )
{ }

↦ − / ∑

=

w κ ϕ Wmin 1, Δ̂n n i
n

n
C

i
1

1 , where we define point-

wise ( ) ( ) ( )≔ −w μ w μ wΔ̂ ˆ 1, ˆ 0,n
C

n
C

n
C .

– For � = TP, take �ρn to be μn
T .

(4) Estimate ATE of ρ0 relative to the reference ITR �ρ0 with a TMLE ψn:

(a) obtain a targeted estimate μ̂n
Y of μ Y

0 : run an ordinary least-square linear regression with outcomeY ,

covariate �[ ( ) ( )] [ ( ) ]− / + −ρ V ρ W T μ W 1n n n
T , offset ( )μ T W,n

Y , and no intercept. Take μ̂n
Y to be the

fitted mean function.

(b) with P̂n being any distribution with components μ̂n
Y and P̂W n, , take

�
�( ) ( ) [ ( ) ][ ( ) ( )]

∑
≔ − = − −

=

ψ P P
n

ρ V ρ μ W μ WΨ ˆ Ψ ˆ 1 ˆ 1, ˆ 1, ,n ρ n ρ n
i

n

n i n i n
Y

i n
Y

i
1

,n n

where �ρn i, is defined as � ( )ρ Wn i or � ( )ρ Vn i depending on the covariate used by the reference ITR.
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The aforementioned procedure is similar to that proposed in the study by Qiu et al. [9]. One key
difference is the use of the refined estimator kn of κ obtained via the estimating equation (5), which is a

key to ensuring the asymptotic linearity of ψn. Another difference is that the denominator of ξn is now δn
C,

which is consistent with our different definition of the unit value for solving the fractional knapsack
problem (2). Similar to TMLE for other problems, when C or Y has known bounds (e.g., the closed interval
[ ]0, 1 ), to obtain a corresponding targeted estimate that respect the known bounds, we may use logistic
regression rather than ordinary least squares [36].

The aforementioned procedure has both similarities and substantial differences compared to the esti-
mation procedure proposed by Sun et al. [11]. The main difference is that our procedure is targeted towards
efficient estimation of and inference about the ATE of ψ0 of the optimal ITR under a nonparametric model,
while Sun et al. [11] focused on estimating the optimal ITR ρ0 and does not evaluate this optimal ITR. This
leads to a key difference between the two procedures when estimating the optimal ITR: we need to solve an
estimating equation (5), which is crucial to ensuring that the estimator ψn is asymptotically linear, while
Sun et al. [11] do not. The requirement of solving (5) is related to the nature of the fractional knapsack
problem discussed in Remark 3, and we conjecture that such a calibration on the resource used is necessary
for general problems of the same nature. Our procedure is also related to the method in Sun [12]. Sun [12]
relied on the availability of asymptotically normal estimators of both the average benefit and average

resource used (Assumption 2.4), a nontrivial requirement when the propensity score μ T
0 is unknown in

observational studies. Our procedure essentially produces such estimators: in Step 4, an asymptotically
normal estimator of the ATE is constructed, whereas an asymptotically normal estimator of the expected
resource is produced in Step 2 and used to calibrate the resource expenditure of the estimated optimal ITR
ρn in Step 2(c).

Remark 4. In Step 1 of the aforementioned procedure, we estimate the functions δY
0 and δ C

0 using a naïve
approach based on outcome regression. It is viable to use more advanced techniques such as the doubly
robust methods in van der Laan and Rubin [15], van der Laan and Luedtke [37], Luedtke and van der Laan
[38], and Kennedy [39] or R-learning as in Nie and Wager [40]. These methods were developed for condi-
tional ATE estimation and might lead to better estimators of δY

0 and δ C
0 . It is also possible to develop

multiply robust methods to estimate ξ0 using influence function techniques. Such methods to estimate ξ0
are beyond the scope of our article, whose main focus is on the inference for the ATE. Our theoretical
analysis of the estimator only applies to naïve estimators based on outcome regression, but we expect only
minor modifications to be required to study these more advanced estimators once their asymptotic behavior
is characterized.

Remark 5. In Step 2(a), it is also viable to use other efficient estimators of ϕ0, for example, a TMLE. We note
that estimating ϕ0 is only one component of estimating the optimal ITR ρ0. Methods such as TMLE can be
preferable to ensure that the estimator respects known bounds on the estimand. However, in our case, such
an improvement in estimating ϕ0 does not necessarily lead to an improvement in the estimation of ρ0.

We now present results on the asymptotic linearity and efficiency of our proposed estimator. We state
and discuss the technical conditions required by the theorem below in Supplement S1.

Theorem 4. (Asymptotic linearity of ATE estimator) Let � { }∈ FR, RD, TP . Under Conditions B1–B12, with the
canonical gradient �( )D P0 defined in (3) and (4), it holds that

�( )( ) ( )
∑

− = +

=

− /ψ ψ
n

D P O o n1 .n
i

n

i p0
1

0
1 2

Therefore, ( ) ( )− ⟶n ψ ψ σN 0,n
d

0 0
2 , where �[ ( )( ) ]≔σ E D P O0

2
0 0

2 . Since ψn is asymptotically linear with
influence function equal to the canonical gradient, ψn is also asymptotically efficient.

488  Hongxiang Qiu et al.



To conduct inference about ψ0, we can directly plug the estimators of nuisance functions into �( )D P0 to
obtain a consistent estimator of �( )D P0 , and then take the sample variance to obtain a consistent estimator
of the asymptotic variance σ0

2. The proof of Theorem 4 can be found in Supplements S4.3 and S4.4.

Remark 6. It may be desirable to use cross-fitting [41,42] to estimate an optimal ITR for better finite-sample
performance. The asymptotic linearity is maintained by a similar argument that is used to prove Theorem 4.
We describe this algorithm in Section S3 in the Supplementary Material.

Remark 7.We note that, unlike the study by Qiu et al. [9] where the bound κ lies in ( ]0, 1 due to the binary
nature of treatment status, the methods we propose here do not require knowledge of an upper bound on
treatment costs. When such a bound is indeed known (e.g., one), our methods may still be applied as long
as all special cases corresponding to = ∞κ or < ∞κ in Section 4 are replaced by κ being equal to or less
than the known bound, respectively.

5 Simulation

5.1 Simulation setting

In this simulation study, we investigate the performance of our proposed estimator of the ATE of an optimal
ITR relative to specified reference ITRs. We focus here on the setting =α 1. This scenario is more difficult
than the case =α 0 because it requires the estimation of ϕ0.

We generate data from a model in which the treatment T is an IV and both the treatment cost C and
outcome Y are binary. This data-generating mechanism satisfies all causal conditions and has an
unobserved confounder between treatment cost and outcome. We first generate a trivariate covariate

( )=W W W W, ,1 2 3 , where ( )−W ~ Unif 1, 11 , ( )W ~ Bernoulli 0.82 , and ( )W ~ N 0, 13 are mutually independent.
We also simulate an unobserved treatment-outcome confounder ( )U ~ Bernoulli 0.5 independently of W ,
and then simulate T , C, and Y as follows:

∣ ( ( ))

∣ ( ( ))

∣ ( ( ))

+

− − + + + +

− + − + − +

T W U W W W
C T W U T W W W W W U

Y T C W U C CW W W W CU

, ~ Bernoulli expit 2.5 0.5 ,
, , ~ Bernoulli expit 2 1 0.2 0.7 2 0.5 ,

, , , ~ Bernoulli expit 0.3 0.2 0.9 0.3 .

1 2 3

1 2 3 1 2

2 1 2 3

We introduceU in the data-generating mechanism to emphasize that we do not require assumptions on the
joint distribution of treatment cost and outcome conditional on covariates. We consider all three reference
ITRs � { }∈ FR, RD, TP , where we set ↦ρ v: 0FR . We set =κ 0.68, which is an active constraint with >τ 00
and <ρ 10

RD .
The ITRs we consider are based on all covariates – that is, we take ( ) =V W W . We estimate the nuisance

functions using the Super Learner [43] with library including a logistic regression, generalized additive
model with logit link [44], gradient boosting machine [45–47], support vector machine [48,49], and neural
network [50,51]. Because none of the nuisance functions follows a logistic regression model, the resulting
ensemble learner is not expected to achieve the parametric convergence rate. Since bothC andY are binary,
we use logistic regression rather than ordinary least squares to obtain their corresponding targeted esti-
mates in Section 4.2. We consider sample size { }∈n 500, 1,000, 4,000,16,000 and run 1000 Monte Carlo
repetitions for each sample size. We implement the algorithm that incorporates cross-fitting discussed in
Remark 6 and described in Section S3 in the Supplementary Material.

To evaluate the performance of our proposed estimator, we investigate the bias and root-mean-squared
error (RMSE) of the estimator. We also investigate the coverage probability and the width of nominal 95%
Wald CIs constructed using influence function-based standard error estimates. We further investigate the
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probability that our confidence lower limit falls below the true ATE, that is, the coverage probability of the
97.5% Wald confidence lower bound.

5.2 Simulation results

Table 1 presents the performance of our proposed estimator in this simulation. For sample sizes 500, 1,000
and 4,000, the CI coverage of our proposed method is lower than the nominal coverage 95%. When sample
size is larger (16,000), the CI coverage of our proposed method increases to 90–93%. The coverage of the
confidence lower bounds is much closer to nominal (97.5%) for all sample sizes considered, though, and is
always approximately nominal when the sample size is large. For all reference ITRs, the bias and RMSE of
our proposed estimator appear to converge to zero faster than and at the same rate as the square root of
sample size, respectively. All biases are negative, which is expected in view of Remark 6. All standard errors
underestimate the variation of the estimator with the extent decreasing as sample size increases.

Figure 1 presents the width of the Wald CIs scaled by the square root of sample size n. Our theory
indicates that the CI width should shrink at a root-n rate, and our simulation results are consistent with this.
There are some outlying cases of extremely wide or narrow CIs. This is expected for small sample sizes
because the estimator of σ0

2 in Theorem 4 resembles a sample mean and might not be close to σ0
2 with high

probability when the sample size is small. In practice, this issue might be slightly mitigated by fine-tuning
the involved machine learning algorithms.

As indicated in Theorem 4, theoretical guarantees for the validity of the Wald CIs rely on the nuisance
function estimators converging to the truth sufficiently quickly. It appears that the undercoverage of our
Wald CI in small samples may owe, in part, to poor estimation of these nuisance functions in small sample
sizes. To illustrate how our procedure may perform with improved small-sample nuisance function esti-
mators, we conducted another two simulations: one is identical to those reported earlier in all ways except

that the nuisance function estimators μn
Y , μn

C, and μn
T are taken to be equal to the truth; the other is a

simpler scenario under a lower dimension and a parametric model. The results are presented in Section S5

Table 1: Performance of estimators of ATEs in the simulation with nuisance functions estimated via machine learning

Performance measure Sample size FR RD TP

95% Wald CI coverage 500 74% 71% 70%
1,000 78% 74% 73%
4,000 90% 84% 88%
16,000 93% 90% 93%

97.5% confidence lower 500 94% 96% 96%
bound coverage 1,000 97% 98% 96%

4,000 98% 98% 98%
16,000 97% 98% 97%

Bias 500 −0.018 −0.018 −0.020
1,000 −0.014 −0.013 −0.013
4,000 −0.003 −0.004 −0.003
16,000 −0.000 −0.001 −0.000

RMSE 500 0.056 0.039 0.046
1,000 0.039 0.025 0.031
4,000 0.017 0.009 0.012
16,000 0.009 0.004 0.005

Ratio of mean standard error 500 0.620 0.620 0.571
to standard deviation 1,000 0.683 0.673 0.637

4,000 0.868 0.765 0.809
16,000 0.913 0.870 0.906
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in the Supplementary material and suggest that our proposed estimator may achieve significantly better
performance with improved machine learning estimators of the nuisance functions. This motivates seeking
ways to optimize the finite-sample performance of the nuisance function estimators employed in future
applications of the proposed method, possibly based on prior subject-matter expertise. The underestima-
tion of standard errors in this simulation also motivates future work exploring whether there are standard
error estimators with better finite-sample performance, for example, estimators based on the bootstrap.

6 Conclusion

There is extensive literature on estimating optimal ITRs and evaluating their performance. Among these
works, only a few incorporated treatment resource constraints. In this article, we build upon the study by
Sun et al. [11] and study the problem of estimating optimal ITRs under treatment cost constraints when the
treatment cost is random. By using similar techniques as used in the study by Qiu et al. [9], we have
proposed novel methods to estimate an optimal ITR and infer about the corresponding ATE relative to a
prespecified reference ITR, under a locally nonparametric model. Our methods may also be applied to IV
settings in the study by Qiu et al. [9] when the IV is intervened on.
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