
Supplementary Material for “Individualized treatment rules under

stochastic treatment cost constraints”

This Supplementary Material is organized as follows. Section S1 contains technical conditions to

ensure that the statistical parameter of interest, the average treatment effect, is pathwise differentiable

and that our proposed estimator is asymptotically efficient. We discuss a particular technical condition

that may be difficult to verify in Section S2. In Section S3, we describe a modified version of our proposed

estimator with improved performance in small to moderate samples. We present proofs of theoretical

results in Section S4. In Section S5, we present the results of a simulation under an idealized setting.

These results may provide guidance on interpreting the simulation results in Section 5.

As noted in the main text, the methods proposed in this work build upon tools used in Qiu et al. [34];

as such, the involved technical details bear similarity. To orient readers and facilitate comparisons, we

have organized these supplementary materials for these papers similarly and shared portions of technical

details when appropriate.

S1 Technical conditions for pathwise differentiability of parameter and

asymptotic linearity of proposed estimator

In this section, we list the additional technical conditions required by Theorems 3 and 4 in Section 4 that

we omit in the main text. Before doing this, we define pointwise

Dn,FR(o) := D(P̂n, ρn, τ0, µ
C
n )(o)−D(P̂n, ρ

FR, 0, µC0 )(o) ,

Dn,RD(o) := D(P̂n, ρn, τ0, µ
C
n )(o)−D(P̂n, ρ

RD
n , 0, µC0 )(o)

− α
ΨρRD

n
(P̂n)

κ− φn
D1(P̂n, µ

C
n )(o)−

ΨρRD
n

(P̂n)

Pn∆̂C
n

D2(P̂n, µ̂
C
n )(o) ,

Dn,TP(o) := D(P̂n, ρn, τ0, µ
C
n )(o)−GTP(P̂n)(o) .

Condition B2 (Nonzero continuous density of ξ0(V ) around η0). If η0 > −∞, then the distribution of

ξ0(V ) has positive, finite and continuous Lebesgue density in a neighborhood of η0.

Since Condition B2 is most plausible when covariates are continuous, in this case, it is also plausible

to expect the distribution of ξ0(V ) to be continuous and thus Condition B2 holds.
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Condition B3 (Smooth treatment cost function or lack of constraint). If η0 > −∞, then the function

η 7→ E0

[
I (ξ0(V ) > η) ∆C

0 (W )
]

is continuously differentiable with nonzero derivative in a neighborhood

of η0; if η0 = −∞ and κ <∞, then E0

[
∆C

0 (W )
]
< κ− αφ0.

Condition B3 requires different conditions in separate cases. There are three cases in terms of the

sufficiency of the budget to treat every individual: (i) there is an infinite budget and no constraint is

present (κ = ∞); (ii) the budget is insufficient (η0 > −∞); and (iii) the budget is finite but sufficient

(η0 = −∞ and κ < ∞). Condition B3 makes no assumption for Case (i). In Case (ii), we require

a function η 7→ E0

[
I (ξ0(V ) > η) ∆C

0 (W )
]

to be locally continuously differentiable. Since ∆C
0 > 0 by

Condition A4, this function is nonincreasing and thus only continuous differentiability is required. For

each η, this function is an integral of additional cost ∆C
0 over the set {v : ξ0(v) > 0} and has a similar

nature to survival functions. When covariates are continuous, it is plausible to assume that ∆C
0 (W )

is continuous and thus η 7→ E0

[
I (ξ0(V ) > η) ∆C

0 (W )
]

is continuously differentiable. In Case (iii), we

require that the budget has a surplus. When it is unknown a priori whether the budget is sufficient to

treat every individual, namely in Case (ii) or (iii), it is highly unlikely that the budget exactly suffices

with no surplus. Therefore, Condition B3 is mild.

Condition B4 (Bounded additional treatment cost). ∆C
0 is bounded.

Condition B5 (Active constraint). If R = RD, then it holds that (κ− αφ0)/E0

[
∆C

0 (W )
]
< 1.

Condition B5 requires that, when the rule ρRD that assigns treatment completely at random while

respecting the budget constraint is the reference rule of interest, it should not correspond to the trivial

rule v 7→ 1 that assigns treatment to every individual. The rule ρRD equals v 7→ 1 only when the budget

is sufficient to treat every individual. Since, as a separate reference rule from given fixed rules ρFR, the

reference rule ρRD is only interesting when the budget constraint is active, Condition B5 often holds

automatically.

Condition B6 (Sufficient rates for nuisance estimators).

‖µTn − µT0 ‖2,P0

{
‖µYn − µY0 ‖2,P0 + ‖µ̂Yn − µY0 ‖2,P0

+ ‖µCn − µC0 ‖2,P0 + ‖µ̂Cn − µC0 ‖2,P0

}
= op(n

−1/2) .

Condition B6 holds if all above nuisance estimators converge at a rate faster than n−1/4, which may

be much slower than the parametric rate n−1/2 and thus allows for the use of flexible nonparametric
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estimators. This condition also holds if µYn , µ̂Yn , µCn and µ̂Cn each converges slower than n−1/4, as long as

the estimated propensity score µTn converges sufficiently fast to compensate.

Condition B7 (Consistency of estimated influence function). The following terms are all op(1):

‖D1(P̂n, µ̂
C
n )−D1(P0, µ

C
0 )‖2,P0 , ‖D2(P̂n, µ

C
n )−D2(P0, µ

C
0 )‖2,P0 , ‖Dn,R −DR(P0)‖2,P0 ,

‖[D(P̂n, ρn, τ0, µ
C
n )−D(P̂n, ρ

RD
n , 0, µC0 )]− [D(P0, ρ0, τ0, µ

C
0 )−D(P0, ρ

RD
0 , 0, µC0 )]‖2,P0 .

Condition B8 (Consistency of strong positivity). With probability tending to one over the sample used

to obtain µTn , it holds that
∫
I{εT < µTn (w) < 1− εT }dP0(w) = 1.

Condition B9 (Consistency of strictly more costly treatment). With probability tending to one over

the sample used to obtain ∆C
n and δCn , it holds that

∫
I(∆C

n (w) > δC)dP0(w) = 1 and
∫
I(δCn (v) >

δC)dP0(v) = 1.

Condition B10 (Fast rate of estimated optimal ITR). As sample size n tends to infinity, it holds that

∫
{ρn(v)− ρ0(v)}

{
δY0 (v)− τ0δ

C
0 (v)

}
dP0(v) = op(n

−1/2) .

Condition B10 may, at first sight, appear to be difficult to verify and is discussed in detail in Section S2.

As shown in Theorem S1 of Section S2, Condition B10 may require faster rates on nuisance estimators than

Condition B6. For example, convergence in the L2-sense at a rate op(n
−1/4) is sufficient for Condition B6,

but a rate op(n
−3/8) is needed in order to use Theorem S1 to show that Condition B10 holds.

Condition B11 (Donsker condition). {o 7→ dn,k(v)D2(P̂n, µ
C
n )(o) : k ∈ [0, 1]} is a subset of a fixed

P0-Donsker class with probability tending to 1. Additionally, each of D1(P̂n, µ
C
n ), D(P̂n, ρn, τ0, µ

C
n ) −

D(P̂n, ρ
RD
n , 0, µC0 ) and Dn,R belongs to a (possibly different) fixed P0-Donsker class with probability

tending to 1.

Condition B12 (Glivenko-Cantelli condition). ‖ξn − ξ0‖1,P0 = op(1) and ‖∆C
n − ∆C

0 ‖1,P0 = op(1).

Moreover, (i) if η0 > −∞, then, for any η sufficiently close to η0, w 7→ I(ξn(v) > η)∆C
n (w) belongs

to a P0-Glivenko-Cantelli class with probability tending to 1; (ii) otherwise, if η0 = −∞, then, for any

η < 0 with sufficiently large |η|, w 7→ I(ξn(v) > η)∆C
n (w) belongs to a P0-Glivenko-Cantelli class with

probability tending to 1.

3



The Donsker condition B11 and the Glivenko-Cantelli condition B12 impose restrictions on the flex-

ibility of the methods used to estimate nuisance functions. We refer readers to, for example, van der

Vaart and Wellner [50], for a more thorough introduction to such conditions.

All above conditions are similar to those in Qiu et al. [34] except that Conditions B9 and B4 are addi-

tional in this paper because the assumption of more costly treatment was not needed and a boundedness

condition similar to B4 was automatically satisfied with a binary cost.

S2 Sufficient condition for fast convergence rate of estimated optimal

rule

Condition B10, which is required by Theorem 4, may seem unintuitive and difficult to verify. In Theo-

rem S1 below, we present sufficient conditions for Condition B10 that are similar to those in Qiu et al.

[34].

Throughout the rest of the Supplement, for two quantities a, b ∈ R, we use a . b to denote a ≤ Cb

for some constant C > 0 that may depend on P0.

Theorem S1 (Sufficient condition for Condition B10). Assume that
∫
I(ξn(v) = τn)dP0(v) = Op(n

−1/2).

Further assume that each of o 7→ I(ξn(v) > ηn) and o 7→ I(ξn(v) > ηn)δC0 (v) belongs to a (possibly

different) fixed P0-Donsker class with probability tending to 1. Suppose also that the distribution of ξ0(V )

(V ∼ P0) has nonzero finite continuous Lebesgue density in a neighborhood of η0 and a neighborhood of

τ0. Under Condition B4, the following statements hold.

• If ‖δYn − δY0 ‖q,P0 = op(1) for some q ≥ 1, then

|P0{(ρn − ρ0)(δY0 − τ0δ
C
0 )}| . ‖δYn − δY0 ‖

2q/(q+1)
q,P0

+ Op(n
−1).

• If ‖δYn − δY0 ‖∞,P0 = op(1), then

|P0{(ρn − ρ0)(δY0 − τ0δ
C
0 )}| . ‖δYn − δY0 ‖2∞,P0

+ Op(n
−1).

The proof of Theorem S1 is very similar to Theorem 5 in Qiu et al. [34] and can be found in Sec-

tion S4.5.
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S3 Modified procedure with cross-fitting

In this section, we describe our proposed procedure to estimate the ATE with cross-fitting, which is

mentioned in Remark 6. We use Λ to denote a user-specified fixed number of folds to split the data.

Common choices of Λ used in practice include 5, 10 and 20.

1. Use the empirical distribution P̂W,n of W as an estimate of the true marginal distribution of W .

Compute estimates µYn , µCn and µTn of µY0 , µCn and µT0 , respectively using flexible regression methods.

2. Estimate an optimal individualized treatment rule for each observation:

(a) Create folds: split the set of observation indices {1, 2, . . . , n} into Λ mutually exclusive and

exhaustive folds of (approximately) equal size. Denote these sets by Sλ, λ = 1, 2, . . . ,Λ. Define

S−λ := ∪λ′ 6=λSλ′ . For each i = 1, 2, . . . , n, let λ(i) be the index of the fold containing i; in

other words, λ(i) is the unique value of λ such that i ∈ Sλ.

(b) Estimate ξ0(Vi) using sample splitting: for each λ = 1, 2, . . . ,Λ, compute estimates δYn,S−λ and

δCn,S−λ of δY0 and ∆C
0,b using flexible regression methods based on data {Oi : i ∈ S−λ}. For each

i = 1, 2, . . . , n, let ξn,i := δYn,S−λ(i)(Vi)/δ
C
n,S−λ(i)

(Vi) be the sample splitting estimate of ξ0(Vi).

(c) Estimate φ0 with a one-step correction estimator

φn :=
1

n

n∑
i=1

{µCn (0,Wi) +
1− Ti

1− µTn (Wi)
[Ci − µCn (0,Wi)]}.

(d) Let Γn : τ 7→ 1
n

∑
i:ξn,i>τ

∆C
n (1,Wi) and γn : τ 7→ 1

n

∑
i:ξn,i=τ

∆C
n (Wi). For any k ∈ [0,∞),

define ηn(k) := inf{τ : Γn(τ) ≤ k − αφn}, τn(k) := max{ηn(k), 0}, and, for i = 1, 2, . . . , n,

dn,k,i :=


k−αφn−Γn(ηn(k))

γn(ηn(k)) , if ξn,i = ηn(k) and γn(ηn(k)) > 0,

I{ξn,i > ηn(k)}, otherwise.

(e) Compute kn, which is used to define an estimate of ρ0 for which the plug-in estimator is

asymptotically linear.

• If τn(κ) > 0 and there is a solution in k ∈ [0,∞) to

1

n

n∑
i=1

dn,k,i

[
∆C
n (Wi) +

1

Ti + µTn (Wi)− 1
[Ci − µCn (Ti,Wi)]

]
+ αφn = κ, (S1)
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then take kn to be this solution.

• otherwise, set kn = κ.

(f) For each i = 1, 2, . . . , n, estimate ρ0(Vi) with

ρn,i :=


kn−αφn−Γn(τn(kn))

γn(τn(kn)) , if ξn,i = τn(kn), and γn(τn(kn)) > 0,

I{ξn,i > τn(kn)}, otherwise.

3. Obtain an estimate ρRn of the reference ITR ρR0 as follows:

• For R = FR, take ρRn to be ρFR.

• For R = RD,

(a) obtain a targeted estimate µ̂Cn of µC0 : run an ordinary least-squared regression using

observations i = 1, 2, . . . , n with outcome Ci, offset µCn (Ti,Wi), no intercept and covariate

1/(Ti + µTn (Wi)− 1). Take µ̂Cn to be the fitted mean model;

(b) take ρRn to be the constant function o 7→ min{1, (κ − αφn)/P̂W,n∆̂C
n }, where we define

pointwise ∆̂C
n : w 7→ µ̂Cn (1, w)− µ̂Cn (0, w).

• For R = TP, take ρRn to be µTn .

4. Estimate ATE of ρ0 relative to the reference ITR ρR0 with a targeted minimum-loss based estimator

(TMLE) ψn:

(a) obtain a targeted estimate µ̂Yn of µY0 : run an ordinary least-squares linear regression using

observations i = 1, 2, . . . , n with outcome Yi, offset µYn (Ti,Wi), no intercept and covariate

[ρn,i − ρRn (Oi)]/[Ti + µTn (Wi)− 1]. Take µ̂Yn to be the fitted mean function.

(b) with P̂n being any distribution with components µ̂Yn and P̂W,n, set ψn := 1
n

∑n
i=1 ρn,i∆̂

Y
n (Wi)−

ΨρRn
(P̂n) where ∆̂Y

n : w 7→ µ̂Yn (1, w)− µ̂Yn (0, w).

S4 Proof of theorems

S4.1 Identification results (Theorem 1 and 2)

Theorem 1 is a simple corollary of the standard G-formula [36]. We provide a complete proof below.
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Proof of Theorem 1. Note that

E[Y (1) |W ] = E[Y (1) | T = 1,W ] = E0[Y | T = 1,W ] = µY0 (1,W ).

Similarly, E[Y (0) | W ] = E0[Y | T = 0,W ] = µY0 (0,W ). Hence, E[Y (1) − Y (0) | W ] = ∆Y
0 (W ). By the

law of total expectation, this yields that E[Y (1)− Y (0) | V ] = E0[∆Y
0 (W ) | V ] = δY0 (V ). It then follows

that

E[Y (ρ)− Y (ρR0 )] = E[{ρ(V )− ρR0 (W )}{Y (1)− Y (0)}]

= E0[{ρ(V )− ρR0 (W )}E[Y (1)− Y (0) |W ]]

= E0[{ρ(V )− ρR0 (W )}∆Y
0 (W )].

The results for the treatment cost can be proved similarly.

We next prove Theorem 2.

Proof of Theorem 2. Let ρ be any ITR that satisfies the constraint that E0[ρ(V )δC0 (V )] + αφ0 ≤ κ. We

will show that E0[ρ0(V )δY0 (V )] ≥ E0[ρ(V )δY0 (V )], implying that ρ0 is a solution to (2).

Observe that

E0[ρ0(V )δY0 (V )]− E0[ρ(V )δY0 (V )]

= E0[{ρ0(V )− ρ(V )}δY0 (V )]

= E0[{ρ0(V )− ρ(V )}δY0 (V )I(ξ0(V ) > τ0)] + E0[{ρ0(V )− ρ(V )}δY0 (V )I(ξ0(V ) < τ0)]

+ E0[{ρ0(V )− ρ(V )}δY0 (V )I(ξ0(V ) = τ0)]

= E0[{ρ0(V )− ρ(V )}ξ0(V )δC0 (V )I(ξ0(V ) > τ0)] + E0[{ρ0(V )− ρ(V )}ξ0(V )δC0 (V )I(ξ0(V ) < τ0)]

+ E0[{ρ0(V )− ρ(V )}ξ0(V )δC0 (V )I(ξ0(V ) = τ0)].

Note that ρ0(v) = 1 ≥ ρ(v) if ξ0(v) > τ0 and ρ0(v) = 0 ≤ ρ(v) if ξ0(v) < τ0. Combining this observation

with the fact that τ0 ≥ 0, the above shows that

E0[ρ0(V )δY0 (V )]− E0[ρ(V )δY0 (V )]

≥ τ0 E0[{ρ0(V )− ρ(V )}δC0 (V )I(ξ0(V ) > τ0)] + τ0 E0[{ρ0(V )− ρ(V )}δC0 (V )I(ξ0(V ) < τ0)]
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+ τ0 E0[{ρ0(V )− ρ(V )}δC0 (V )I(ξ0(V ) = τ0)]

= τ0 E0[{ρ0(V )− ρ(V )}δC0 (V )].

If τ0 = 0, then E0[ρ0(V )δY0 (V )]−E0[ρ(V )δY0 (V )] ≥ 0, as desired; otherwise, τ0 > 0 and E0[ρ(V )δC0 (V )] ≤

κ − αφ0 = E0[ρ0(V )δC0 (V )], and so it follows that E0[ρ0(V )δY0 (V )] ≥ E0[ρ(V )δY0 (V )]. Therefore, we

conclude that ρ0 is a solution to (2).

S4.2 Pathwise differentiability of ATE parameter (Theorem 3)

We follow existing literature on semiparametric efficiency theory closely to prove pathwise differentiability

of our estimands and asymptotic efficiency of our estimators under nonparametric models. We refer

readers to, for example, Pfanzagl [30, 31], Bolthausen et al. [4], for a more thorough introduction to

semiparametric efficiency.

To derive the canonical gradient of the ATE parameters, let H ⊆ L2
0(P0) be the set of score functions

with range contained in [−1, 1] and we study the behavior of the parameters under perturbations in an

arbitrary direction H ∈ H. We note that the L2
0(P0)-closure of H is indeed L2

0(P0).

We define HW : w 7→ E0[H(O) | W = w], HT : (t | w) 7→ E0[H(O) | T = t,W = w] and PH,ε via its

Radon-Nikodym derivative with respect to P0:

dPH,ε
dP0

: o 7→ [1 + εH(o)− εHT (t | w)− εHW (w)] [1 + εHT (t | w)] [1 + εHW (w)] (S2)

for any ε in a sufficiently small neighborhood of 0 such that the right-hand side is positive for all o ∈

W ×{0, 1} × {0, 1} ×R. It is straightforward to verify that the score function for ε at ε = 0 is indeed H.

For the rest of this section, we may drop H from the notation and use Pε as a shorthand notation for

PH,ε when no confusion should arise.

We will see that each parameter evaluated at Pε depends on the following marginal or conditional

distributions in a clean way: the marginal distribution PW,ε of W , the marginal distribution PT,W,ε of

(T,W ), the conditional distribution PT,ε of T given W , the conditional distribution PC,ε of C given (T,W ),

and the conditional distribution PY,ε of Y given (T,W ). We now derive their closed-form expressions.

Let HC : (c | t, w) 7→ E0[H(O) | C = c, T = t,W = w] − HT (t | w) − HW (w), and HY : (y | t, w) 7→
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E0[H(O) | Y = y, T = t,W = w]−HT (t | w)−HW (w). We can then show that

dPW,ε
dPW,0

: w 7→ 1 + εHW (w),

dPT,W,ε
dPT,W,0

: (t, w) 7→ 1 + εHT (t | w) + εHW (w),

dPT,ε
dPT,0

( · | w) : t 7→ 1 + εHT (t | w),

dPC,ε
dPC,0

( · | t, w) : c 7→ 1 + εHC(c | t, w),

dPY,ε
dPY,0

( · | t, w) : y 7→ 1 + εHY (y | t, w).

(S3)

Moreover, E0[HW (W )] = 0, E0[HT (T | W ) | W ] = 0 P0-a.s., E0[HC(C | T,W ) | T,W ] = 0 P0-a.s., and

E0[HY (Y | T,W ) | T,W ] = 0 P0-a.s.

We finally introduce some additional notations that are used for the rest of the section. We use C

to denote a generic positive constant that may vary line by line. Let S0 be the survival function of the

distribution of ξ0(V ) when V ∼ P0. We also use the notation . defined in Section S2. For a generic

function f : R→ R, we will use the big- and little-oh notations, namely O(f(ε)) and o(f(ε)), respectively,

to denote the behavior of f(ε) as ε→ 0. Finally, for a general function or quantity fP that depends on a

distribution P , we use fε to denote fPε . For example, we may write µYε as a shorthand for µYPε . We will

also write expectations under Pε as Eε.

The derivation of the canonical gradients of P 7→ ΨρFR(P ) can be found in the Supplement of Qiu

et al. [34]. We now derive the canonical gradients of P 7→ ΨρTP
P

(P ), P 7→ ΨρRD
P

(P ) and P 7→ ΨρP (P ),

which are different from the parameters in Qiu et al. [34].

S4.2.1 Canonical gradient of P 7→ ΨρTP
P

(P ) (Theorem 3)

Fix a score H ∈ H. Note that, for all P ∈M, ΨρTP
P

(P ) =
∫
µTP (w)∆Y

P (w)PW (dw). Combining this, (S3)

and the chain rule yields that

d

dε
ΨρTP

ε
(Pε)

∣∣∣∣
ε=0

=

∫
d

dε

[
µTε (w)∆Y

ε (w)PW,ε(dw)
]∣∣∣∣
ε=0

=

∫ (
d

dε
µTε (w)

∣∣∣∣
ε=0

)
∆Y

0 (w)PW,0(dw) +

∫
µT0 (w)

(
d

dε
∆Y
ε (w)

∣∣∣∣
ε=0

)
PW,0(dw)

+

∫
µT0 (w)∆Y

0 (w)
d

dε
PW,ε(dw)

∣∣∣∣
ε=0
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=

∫∫
(t− µT0 (w))HT (t | w)∆Y

0 (w)PT,0(dt | w)PW,0(dw)

+

∫∫∫
µT0 (w)

(
I(t = 1)

µTP (w)
− I(t = 0)

1− µTP (w)

)
(y − µY0 (t, w))HY (y | t, w)PY,0(dy | t, w)PT,0(dt | w)PW,0(dw)

+

∫
(µT0 (w)∆Y

0 (w)−ΨρTP
0

(P0))HW (w)PW,0(dw)

=

∫
GTP(P0)(o)H(o)P0(do),

where we have used the fact that E0[HY (Y | T,W ) | T,W ] = 0 P0-a.s., E0[HT (T | W ) | W ] = 0 P0-a.s.,

and E0[HW (W )] = 0. Therefore, the canonical gradient of P 7→ ΨρTP
P

(P ) at P0 is GTP(P0).

S4.2.2 Canonical gradient of P 7→ ΨρRD
P

(P )

Let H be a score function in H. We aim to show that

d

dε
ΨρRD

ε
(Pε)

∣∣∣∣
ε=0

=

∫
GRD(P0)(o)H(o)P0(do), (S4)

which shows that P 7→ ΨρRD
P

(P ) is pathwise differentiable with canonical gradient GRD(P0) at P0.

By similar arguments to those in Section 3.4 of Kennedy [16], we can show that

d

dε
Pεµ

C
ε (0, ·)

∣∣∣∣
ε=0

=

∫ {
1− t

1− µT0 (w)
[c− µC0 (0, w)] + µC0 (0, w)− P0µ

C
0 (0, ·)

}
H(o)P0(do), (S5)

d

dε
Pε∆

C
ε

∣∣∣∣
ε=0

=

∫ {
1

t+ µT0 (w)− 1
[c− µC0 (t, w)] + ∆C

0 (w)− P0∆C
0

}
H(o)P0(do). (S6)

Consequently, Pεµ
C
ε (0, ·) = P0µ

C
0 (0, ·) + O(ε) and Pε∆

C
ε = P0∆C

0 + O(ε). It follows that, for all ε

in a sufficiently small neighborhood of zero, Condition B5 implies that (κ − αPεµ
C
ε (0, ·))/Pε∆C

ε < 1.

Consequently, for each ε in this neighborhood, ΨρRD
ε

(Pε) = κ−αPεµCε (0,·)
Pε∆C

ε
Ψv 7→1(Pε), where we have used

that Pε∆
Y
ε = Ψv 7→1(Pε). It follows that the derivative d

dεPεµ
C
ε (0, ·)

∣∣
ε=0

is the same as the derivative of

f : ε 7→ κ−PεµCε (0,·)
Pε∆C

ε
Ψv 7→1(Pε) at ε = 0, provided this derivative exists. Noting that v 7→ 1 is a particular

instance of a fixed treatment rule, we may take ρFR to be v 7→ 1 in the results on pathwise differentiability

of P 7→ ΨρFR(P ) and show that

d

dε
Ψv 7→1(Pε)

∣∣∣∣
ε=0

=

∫
D(P0, v 7→ 1, 0, µC0 )(o)H(o)P0(do). (S7)
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As both the above derivative and the derivatives in (S5) and (S6) exist, by the chain rule, it follows that

d

dε
f(ε)

∣∣∣∣
ε=0

=
κ− αP0µ

C
0 (0, ·)

P0∆C
0

d

dε
Ψv 7→1(Pε)

∣∣∣∣
ε=0

− (κ− αP0µ
C
0 (0, ·))Ψv 7→1(P0)

(P0∆C
0 )2

d

dε
Pε∆

C
ε

∣∣∣∣
ε=0

− αΨv 7→1(P0)

P0∆C
0

d

dε
Pεµ

C
ε (0, ·)

∣∣∣∣
ε=0

.

Note that φP = PµCP (0, ·). Plugging (S5), (S6) and (S7) into the above and we can show that the right-

hand side of the above is equal to the right-hand side of (S4). As d
dεf(ε)

∣∣
ε=0

= d
dεΨρRD

ε
(Pε)

∣∣∣
ε=0

, we have

shown that (S4) holds, and the desired result follows.

S4.2.3 Canonical gradient of P 7→ ΨρP (P )

Let H be a score function in H. The argument that we use parallels that of Luedtke and van der Laan [20]

and Qiu et al. [34], except that it is slightly modified to account for the fact that the resource constraint

takes a different form in this paper.

We first note that all of following hold for all ε sufficiently close to zero:

sup
w
|∆C

ε (w)−∆C
0 (w)| . |ε|, (S8)

sup
v
|δYε (v)− δY0 (v)| . |ε|, (S9)

sup
v
|δCε (v)− δC0 (v)| . |ε|. (S10)

The derivations of these inequalities are straightforward and hence omitted. Under Condition A4, the

above inequalities imply that

sup
v
|ξε(v)− ξ0(v)| =

∣∣∣∣δYε (v)

δCε (v)
− δY0 (v)

δC0 (v)

∣∣∣∣ . |ε|. (S11)

For ε sufficiently close to zero, it will be useful to define

Γε : η 7→ Eε[I{ξε(V ) > η}δCε (V )]

for η ∈ [−∞,∞). We also define Γ′ε : η 7→ d
dsΓε(s)|s=η when the derivative exists.

We first show two lemmas. These two lemmas show that, under a perturbed distribution Pε with

magnitude ε, the fluctuation in the threshold τε − ε0 is of order ε. This result is crucial in quantifying
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the convergence rate of two terms in the expansion of Ψρε(Pε)−Ψρ0(P0), namely terms 1 and 3 in (S12)

below. In particular, term 1 is the main challenge in the analysis as it comes from the perturbation in

the threshold and is unique in estimation problems involving the evaluation of optimal ITRs. The first

studies the convergence of ηε to η0. Because it may be the case that η0 = −∞, the convergence stated in

this result is convergence in the extended real line.

Lemma S1. Under the conditions of Theorem 3, ηε → η0 as ε→ 0.

Proof of Lemma S1. We separately consider the cases where η0 > −∞ and η0 = −∞.

Suppose that η0 > −∞. For all sufficiently small δ > 0 and sufficiently small |ε|, by (S10), (S11) and

the fact that the range of H is contained in [−1, 1], we can show that

Γε(η0 + δ) + αφε ≤ (1 + C|ε|) E0[I{ξε(V ) > η0 + δ}δC0 (V )] + αφε ≤ (1 + C|ε|)Γ0 (η0 + δ − C|ε|) + αφε.

Under Condition B3, as long as δ is small enough, the right-hand side converges to Γ0(η0 + δ) + αφ0

as ε → 0. Moreover, Conditions B3 and A4 can be combined to show that the derivative of Γ0 is

strictly negative for all x ∈ [η0, η0 + δ] for sufficiently small δ, and so Γ0(η0) > Γ0(η0 + δ). Because

Γ0(η0) + αφ0 = κ by the definition of ρ0 under Condition B2, it follows that, for all ε sufficiently close

to zero, Γε(η0 + δ) + αφε < κ. By the definition ηε := inf{η : Γε(η) ≤ κ − αφε}, it follows that, for all ε

sufficiently close to zero, η0 + δ ≥ ηε, that is, ηε − η0 ≤ δ.

By similar arguments, we can show that, for all ε sufficiently close to zero, ηε − η0 ≥ −δ. Indeed,

Γε(η0 − δ) + αφε ≥ (1− C|ε|)Γ0(η0 − δ + C|ε|) + αφε.

The right-hand side converges to Γ0(η0−δ)+αφ0 as ε→ 0 provided δ is sufficiently small. The derivative

of Γ0 is strictly negative on [η0 − δ, η0] provided δ is small enough, and therefore, Γ0(η0 − δ) + αφ0 >

Γ0(η0) + αφ0 = κ. Hence, Γε(η0 − δ) + αφε > κ. By the definition of ηε, it follows that ηε − η0 ≥ −δ.

Combining these two results, we see that, for all ε sufficiently close to zero, |ηε − η0| ≤ δ. Hence,

lim supε→0 |ηε−η0| ≤ δ. As δ > 0 is an arbitrary in a neighborhood of zero, it follows that lim supε→0 |ηε−

η0| = 0. That is, ηε → η0 as ε→ 0 in the case that η0 > −∞.

We now study the case where η0 = −∞. If κ =∞, then it is trivial that ηε = −∞ = η0 for all ε, and

so the desired result holds. Suppose now that κ < ∞. Fix a small enough δ > 0 so that the bound in

(S11) is valid for all ε ∈ [−δ, δ]. Also fix ε ∈ [−δ, δ] and η ∈ R. By (S11) and the bound on the range of
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H,

Γε(η) + αφε ≤ (1 + C|ε|) E0[I{ξε(V ) > η}∆C
0,b(V )] + αφε ≤ (1 + C|ε|)Γ0(η − C|ε|) + αφε.

Because Γ0 is a nonnegative decreasing function, the right-hand side is no greater than (1 + C|ε|)Γ0(η −

Cδ) + αφε. This upper bound tends to Γ0(η − Cδ) + αφ0 as ε → 0. Hence, lim supε→0 Γε(η) + αφε ≤

Γ0(η−Cδ)+αφ0. By Condition B3 and the monotonicity of Γ0, Γ0(η−Cδ)+αφ0 < κ, and so Γε(η)+αφε < κ

for all ε sufficiently close to zero. By the definition of ηε, it follows that ηε ≤ η for all ε sufficiently close

to zero. Since η ∈ R is arbitrary, the desired result follows.

The next lemma establishes a rate of convergence of τε to τ0 as ε→ 0.

Lemma S2. Under conditions of Theorem 3, τε = τ0 + O(ε).

Proof of Lemma S2. We separately consider the cases where η0 < 0 and η0 ≥ 0.

We start with the easier case where η0 < 0. In this case, Lemma S1 shows that τε := max{ηε, 0} is

equal to τ0 = 0 for all ε sufficiently close to zero. Thus, τε − τ0 = O(|ε|).

Now consider the more difficult case where η0 ≥ 0. By the Lipschitz property of the function x 7→

max{x, 0}, we can show that |max{ηε, 0} − max{η0, 0}| ≤ |ηε − η0|. As a consequence, to show that

τε − τ0 = O(ε), it suffices to show that ηε − η0 = O(ε). We next establish this statement.

Fix ε in a sufficiently small neighborhood of zero. By the definition ηε := inf{η : Γε(η) ≤ κ− φε}, the

bound on the range of H, and (S11), it holds that κ < Γε(ηε−|ε|)+αφε ≤ [1+C|ε|]Γ0(ηε− [1+C]|ε|)+αφε.

We use a Taylor expansion of Γ0 about η0, which is justified by Condition B3 provided |ε| is small enough,

and it follows that

κ < [1 + C|ε|]
[
Γ0(η0) + {ηε − η0 − (1− C)|ε|}{Γ′0(η0) + o(1)}

]
+ αφ0 + O(ε).

By Condition B3, Γ0(η0) + αφ0 = κ. Plugging this into the above shows that

0 < CΓ0(η0)|ε|+ [1 + C|ε|] [ηε − η0 − (1− C)|ε|]
[
Γ′0(η0) + o(1)

]
+ O(ε).

Note that Condition B3 implies that Γ′0(η0) ∈ (−∞, 0). Therefore, the above shows that, for all ε

sufficiently close to zero, 0 < [ηε − η0]Γ′0(η0) + C|ε|+ o (ηε − η0), which implies that there exists an O(ε)

sequence for which ηε − η0 < O(ε).
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A similar argument, which is based on the observation that Γε(ηε + |ε|) +φε ≤ κ, can be used to show

that there exists an O(ε) sequence such that ηε − η0 > O(ε). Combining these two bounds shows that

ηε − η0 = O(ε), as desired. This concludes the proof.

Our derivation of the canonical gradient is based on the following decomposition:

Ψρε(Pε)−Ψρ0(P0)

=Ψρε(Pε)−Ψρ0(Pε) + Ψρ0(Pε)−Ψρ0(P0)

=Pε{[ρε − ρ0]δYε }+ Ψρ0(Pε)−Ψρ0(P0)

=Pε{[ρε − ρ0](δYε − τ0δ
C
ε )}+ τ0Pε{(ρε − ρ0)δCε }+ Ψρ0(Pε)−Ψρ0(P0)

=Pε{[ρε − ρ0](δYε − τ0δ
C
0 )}+ [Ψρ0(Pε)−Ψρ0(P0)] + τ0{Pε[δCε ρε] + αφε − P0[δC0 ρ0]− αφ0}

− τ0Pε{(δCε −∆C
0,b)ρ0} − τ0(Pε − P0){δC0 ρ0} − ατ0{φε − φ0}. (S12)

We separately study each of the six terms on the right-hand side, which we refer to as term 1 up to

term 6.

Study of term 1 in (S12): We will show that this term is o(ε). By Lemma S2 and (S9),

sup
v
|δYε (v)− τεδCε − δY0 (v) + τ0δ

C
0 | ≤ sup

v
|δYε (v)− δY0 (v)|+ sup

v
|δCε (v)− δC0 (v)|+ |τε − τ0| . |ε|.

Under Condition B2, P0{ξ0(V ) = τ0} = 0. We apply a similar argument as that used to prove Lemma 2

in van der Laan and Luedtke [46]:

∣∣Pε{[ρε − ρ0](δYε − τ0δ
C
ε )}
∣∣

=

∣∣∣∣∫ [ρε(v)− ρ0(v)][δYε (v)− τ0δ
C
ε (v)]PW,ε(dw)

∣∣∣∣
≤
∫
|ρε(v)− ρ0(v)|

∣∣δYε (v)− τ0δ
C
ε (v)

∣∣PW,ε(dw).

Because ρε(v) 6= ρ0(v) implies that either (i) ξε(v)− τε and ξ0(v)− τ0 have different signs or (ii) only one

of these quantities is zero, the display continues as

≤
∫
I{|ξ0(v)− τ0| ≤ |ξε(v)− τε − ξ0(v) + τ0|}

∣∣δYε (v)− τ0δ
C
ε (v)

∣∣PW,ε(dw)

≤
∫
I{|ξ0(v)− τ0| ≤ C|ε|}

(∣∣δY0 (v)− τ0δ
C
0 (v)

∣∣+ C|ε|
)
PW,ε(dw).
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Using the facts that infv δ
C
0 (v) > 0 by Condition A4, that supv δ

C
0 (v) ≤ 1 since probabilities are no more

than one, and that ξ0(v) := δY0 (v)/δC0 (v), the display continues as

≤
∫
I{|ξ0(v)− τ0| ≤ C|ε|} (|ξ0(v)− τ0|+ C|ε|)PW,ε(dw)

Leveraging the bound on |ξ0(v)− τ0| that appears in the indicator function, we see that

≤
∫
I{|ξ0(v)− τ0| ≤ C|ε|}(C|ε|+ C|ε|)PW,ε(dw)

. |ε|
∫
I{|ξ0(v)− τ0| ≤ C|ε|}PW,0(dw)

= |ε|
∫
I{0 < |ξ0(v)− τ0| ≤ C|ε|}PW,0(dw),

where the final equality holds by Condition B1. The integral in the final expression is o(1), and so this

expression is o(ε).

Study of term 2 in (S12): By the result on the pathwise differentiability of P 7→ ΨρFR(P ), setting ρFR

to be ρ0, we see that the second term satisfies Ψρ0(Pε) − Ψρ0(P0) = ε
∫
G2(o)H(o)P (do) + o(ε), where

G2 ∈ L2
0(P0) is equal to D(P0, ρ0, 0, µ

C
0 ).

Study of term 3 in (S12): We will show that the third term is identical to zero for any ε that is

sufficiently close to zero. If τ0 = 0, then this term is trivially zero. Otherwise, τ0 = η0 > 0. Lemma S1

shows that, in this case, ηε > 0 for ε sufficiently close to zero. Hence, Eε[δ
C
ε (V )ρε(V )] + αφε = κ =

E0[δC0 (V )ρ0(V )] + αφ0. Consequently, term 3 equals zero for all ε sufficiently close to zero.

Study of term 4 in (S12): We will show that this term can be writes as ε
∫
G4(o)H(o)P0(do) + o(ε)

for an appropriately defined G4 ∈ L2
0(P0) that does not depend on H. Note that there exists a function

HW : (w | v) 7→ HW (w | v) for which
∫
HW (w | v)PW,0(dw | v) = 0, supw,v |HW (w | v)| <∞, and, for all

v,

PW,ε(dw | v) = (1 + εHW (w | v) + o(ε))PW,0(dw | v).

The function HW can be chosen so that the above o(ε) term indicates little-oh behavior uniformly over
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w and v. By the definition of HC from (S3), we see that

δCε (v)− δC0 (v) =

∫∫
c
{

[1 + εHC(c | 1, w)][1 + εHW (w | v) + o(ε)]− 1
}
P0(dc | 1, w)P0(dw | v)

−
∫∫

c
{

[1 + εHC(c | 0, w)][1 + εHW (w | v) + o(ε)]− 1
}
P0(dc | 0, w)P0(dw | v)

= ε
{∫∫

c(HC(c | 1, w) +HW (w | v) + o(1))P0(dc | 1, w)P0(dw | v)

−
∫∫

c(HC(c | 0, w) +HW (w | v) + o(1))P0(dc | 0, w)P0(dw | v)
}

+ o(ε),

where the little-oh terms are uniform over w and v. Hence,

d

dε
Pε{[δCε − δC0 ]ρ0}

∣∣∣∣
ε=0

=

∫∫
ρ0(v)c{HC(c | 1, w) +HW (w | v)}P0(dc | 1, w)P0(dw)

−
∫∫

ρ0(v)c{HC(c | 0, w) +HW (w | v)}P0(dc | 0, w)P0(dw)

= E0

[
ρ0(V )

(
1

T + µT0 (W )− 1
{C − µC0 (T,W )}HC(C | 1,W ) + {∆C

0 (W )− δC0 (V )}HW (W | V )

)]
.

Since E0[HC(C | T,W ) | T,W ] = E0[HW (W | V ) | V ] = 0 P0-a.s., the display continues as

= E0

[
ρ0(V )

(
1

T + µT0 (W )− 1
{C − µC0 (T,W )}+ ∆C

0 (W )− δC0 (V )

)
H(O)

]
.

As a consequence, term 4 satisfies

−τ0Pε{[δCε − δC0 ]ρ0} = ε

∫
G4(o)H(o)P0(do) + o(ε),

where

G4 : o 7→ − τ0ρ0(v)

{
1

t+ µT0 (w)− 1
[c− µC0 (t, w)] + ∆C

0 (w)− δC0 (v)

}
.

Study of term 5 in (S12): By (S3) and the fact that P0{δC0 ρ0} = κ−αφ0 whenever τ0 > 0, we see that

−τ0(Pε−P0){δC0 ρ0} = ε
∫
G5(o)HV (v)P0(do), where G5 ∈ L2

0(P0) is defined as o 7→ −τ0[δC0 (v)ρ0(v)−κ+

αφ0]. Since HV is defined as v 7→ E0[H(O) | V = v], we see that it also holds that −τ0(Pε−P0){δC0 ρ0} =

ε
∫
G5(o)H(o)P0(do).
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Study of term 6 in (S12): We have shown that

φε − φ0 = ε

∫ {
1− t

1− µT0 (w)
[c− µC0 (0, w)] + µC0 (0, w)− φ0

}
H(o)P0(do) + o(ε).

Therefore, −τ0α(φε − φ0) = ε
∫
G6(o)H(o)P0(do) + o(ε) where

G6 : o 7→ −τ0α

{
1− t

1− µT0 (w)
[c− µC0 (0, w)] + µC0 (0, w)− φ0

}
.

Conclusion of the derivation of the canonical gradient of P 7→ ΨρP (P ): Combining our results

regarding the six terms in (S12), we see that

Ψρε(Pε)−Ψρ0(P0) = ε

∫
[G2(o) +G4(o) +G5(o) +G6(o)]H(o)P0(do) + o(ε).

Dividing both sides by ε 6= 0 and taking the limit as ε → 0, we see that G2 + G4 + G5 + G6 = G(P0) is

the canonical gradient of P 7→ ΨρP (P ) at P0.

S4.3 Expansions based on gradients or pseudo-gradients

In this section, we present (approximate) first-order expansions of ATE parameters based on which we

construct our proposed targeted minimum-loss based estimators (TMLE) and prove their asymptotic

linearity. We refer the readers to Supplement S5 of Qiu et al. [34] for an overview of TMLE based on

gradients and pseudo-gradients. The overall idea behind TMLE based on gradients is the following: the

empirical mean of the gradient at the estimated distribution can be viewed as the first-order bias of the

plug-in estimator; this bias can be removed by solving the estimating equation that equates the first-

order bias to zero. The idea behind pseudo-gradients is similar, except that the gradient is replaced by

an approximation that we term pseudo-gradient so that the corresponding estimating equation is easy to

solve with a single regression step.

For any ITR ρ :W → [0, 1] that utilizes all covariates, we define

Rρ(P, P0) :=Ψρ(P )−Ψρ(P0) + P0D(P, ρ, 0, µC)

= E0

[
ρ(W )

{
µTP (W )− µT0 (W )

µTP (W )
(µYP (1,W )− µY0 (1,W ))

+
µTP (W )− µT0 (W )

1− µTP (W )
(µYP (0,W )− µY0 (0,W ))

}]
.
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For any ITR ρ : V → [0, 1] that only utilizes V , for convenience, we define Rρ(P, P0) := Rw 7→ρ(V (w))(P, P0).

For ΨρFR and ΨρTP
P

, it is straightforward to show that the following expansions hold:

ΨρFR(P )−ΨρFR(P0) = −P0GFR(P ) +RρFR(P, P0),

ΨρTP
P

(P )−ΨρTP
P0

(P0) = −P0GTP(P ) + P0

{
µTP (·)− µT0 (·)

1− µTP (·)
(µYP (0, ·)− µY0 (0, ·))

}
.

For P 7→ ΨρRD
P

(P ), we expand this parameter sequentially as follows:

ΨρRD
P

(P )−ΨρRD
P0

(P0) = P0D(P, ρRD
P , 0, µCP ) +RρRD

P
(P, P0) + (ρRD

P − ρRD
0 )P0∆Y

0 ,

ρRD
P − ρRD

0 =
κ− φP
P∆C

P

− κ− φ0

P0∆C
0

,

(κ− αφP )− (κ− αφ0) = α

{
P0D1(P, µC) + P0

{
(µC(0, ·)− µC(1, ·))

µTP − µT0
1− µTP

}}
,

P∆C
P − P0∆C

0 = −P0D2(P, µCP ) + P0

{
(µCP (1, ·)− µC0 (1, ·))

µTP − µT0
µTP

+ (µCP (0, ·)− µC0 (0, ·))
µTP − µT0
1− µTP

}
.

For P 7→ ΨρP (P ), straightforward but tedious calculation shows that the following expansion holds:

ΨρP (P )−Ψρ0(P0) = −P0D(P, ρ, τ0, µ
C)

+Rρ(P, P0) + P0{(ρ− ρ0)(δY0 − τ0δ
C
0 )}

− τ0 E0

[
ρ(V )

µTP (W )− µT0 (W )

µTP (W )
{µC(1,W )− µC0 (1,W )}

]
+ τ0 E0

[
(1− ρ(V ))

µTP (W )− µT0 (W )

1− µTP (W )
{µC(0,W )− µC0 (0,W )}

]
.

S4.4 Asymptotic linearity of proposed estimator (Theorem 4)

For convenience, we set P̂n to have component µTn and µ̂Cn , even though the plug-in estimator does

not explicitly involve these functions. We start with some lemmas that facilitate the proof of the main

theorem. In this section, we define ηn := ηn(kn) and τn := τn(kn) to simplify notations.

Our proof is centered around the expansions in Supplement S4.3. We first prove a few lemmas.

Lemma S3 is a standard asymptotic linearity result on estimators φn and Pn∆̂C
n about treatment resource

being used for constant ITRs v 7→ 0 and v 7→ 1, respectively; Lemma S4 is a technical convenient tool to

convert conditions on norms in Condition B6 between functions; Lemmas S5–S7 are analysis results for

estimators that are similar to Lemmas S1–S2 for deterministic perturbations of P0, and they lead to the
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crucial Lemma S8 on the negligibility of the remainder Rρ(P̂n, P0) for an arbitrary ITR ρ.

Lemma S3 (Asymptotic linearity of φn and Pn∆̂C
n ). Under the conditions of Theorem 4,

φn − φ0 = (Pn − P0)D1(P0, µ
C
0 ) + op(n

−1/2) = Op(n
−1/2),

Pn∆̂C
n − P0∆C

0 = (Pn − P0)D2(P0, µ
C
0 ) + op(n

−1/2) = Op(n
−1/2).

This result follows from the facts that (i) φn is a one-step correction estimator of φ0 [30], and (ii)

Pn∆̂C
n is a TMLE for P0∆C

0 [44, 49]. Therefore the proof is omitted.

Lemma S4 (Lemma S8 in Qiu et al. [34]). Fix functions µC : {0, 1}×W → [0, 1] and µY : {0, 1}×W → R,

and suppose that P0µ
Y (0, ·)2 <∞ and P0µ

Y (1, ·)2 <∞. If Condition A2 holds, then

‖µY (1, ·)− µY0 (1, ·)‖2,P0 + ‖µY (0, ·)− µY0 (0, ·)‖2,P0 ' ‖µY − µY0 ‖2,P0 ,

‖µC(1, ·)− µC0 (1, ·)‖2,P0 + ‖µC(0, ·)− µC0 (0, ·)‖2,P0 ' ‖µC − µC0 ‖2,P0 ,

where a ' b is defined as a . b and b . a.

The following Lemmas S5–S7 prove consistency of the estimated thresholds used to define the esti-

mated optimal ITR ρn.

Lemma S5 (Lemma S5 in Qiu et al. [34]). Let ε > 0, η ∈ R, g : O → R be bounded and functions

f0 : O→ R and f : O→ R. Then

|P0([I(f > η)− I(f0 > η)]g)| ≤ P0|[I(f > η)− I(f0 > η)]g|

. P0{|f(O)− f0(O)| > ε}+ P0{|f0(O)− η| ≤ ε}.

If g takes values in [−1, 1], then . can be replaced by ≤.

Lemma S6 (Consistency of ηn(κ)). Under Conditions B2, B3 and B12, ηn(κ)
p→ η0.

This lemma is a stochastic variant of the deterministic result in Lemma S1 and has a similar proof.

Therefore, the arguments are slightly abbreviated here.

Proof of Lemma S6. We separately consider the cases where η0 > −∞ and η0 = −∞.
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First consider the case where η0 > −∞. We start by showing that, for any η sufficiently close to η0,

it holds that Γn(η)− Γ0(η) = op(1). Fix an η in a neighborhood of η0. By the triangle inequality,

|Γn(η)− Γ0(η)| ≤ |P0[I{ξn(V (·)) > η} − I(ξ0(V (·)) > η)]∆C
0 |

+ |P0I{ξn(V (·)) > η}[∆C
n −∆C

0 ]|

+ |(Pn − P0)I{ξn(V (·)) > η}∆C
n |. (S13)

We will show that the right-hand side is op(1). By Condition B12, the third term on the right is op(1)

for η sufficiently close to η0. Moreover, because the second term is no greater than ‖∆C
n − ∆C

0 ‖1,P0 ,

Condition B12 also implies that this second term is also op(1). We will now argue that the first term is

op(1). By Lemma S5 and Condition B4, for any ε′ > 0,

|P0[I(ξn(V (·)) > η)− I(ξ0(V (·)) > η)]∆C
0 | . P0|I(ξn > η)− I(ξ0 > η)|

≤ P0I(|ξn − ξ0| > ε′) + P0I(|ξ0 − η| ≤ ε′)

≤
‖ξn − ξ0‖1,P0

ε′
+ P0I(|ξ0 − η| ≤ ε′),

where the final relation follows from Markov’s inequality. We next show that the last line is op(1).

Fix ε > 0. For η that is sufficiently close to η0 and ε′ that is sufficiently small, by Condition B2, we

see that S0 is continuous in [η − ε′, η + ε′] and hence, for all sufficiently small ε′ > 0, it holds that

P0I(|ξ0 − η| ≤ ε′) ≤ ε/2. Therefore,

P0 {|P0[I(ξn > η)− I(ξ0 > η)]| > ε} ≤ P0

{
‖ξn − ξ0‖1,P0

ε′
+ P0I(|ξ0 − η| ≤ ε′) > ε

}
≤ P0

{
‖ξn − ξ0‖1,P0

ε′
> ε/2

}
.

Since ‖ξn − ξ0‖1,P0 = op(1) by Condition B12, the right-hand side of the above display converges to zero

as n → ∞. Therefore, |P0[I(ξn(V (·)) > η) − I(ξ0(V (·)) > η)]∆C
0 | = op(1). Recalling (S13), the above

results imply that Γn(η)− Γ0(η) = op(1) for any η that is sufficiently close to η0.

Fix ε > 0. For any ε sufficiently small, the above result and Lemma S3 imply that Γn(η0 − ε) +

αφn = Γ0(η0 − ε) + αφ0 + op(1) and Γn(η0 + ε) + αφn = Γ0(η0 + ε) + αφ0 + op(1). By Condition B3,

Γ0(η0 − ε) + αφ0 > κ > Γ0(η0 + ε) + αφ0 provided ε is sufficiently small. It follows that, with probability

tending to one, Γn(η0 − ε) + αφn > κ > Γn(η0 + ε) + αφn, and hence η0 − ε ≤ ηn(κ) ≤ η0 + ε by the
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definition of ηn(κ). Because ε is arbitrary, it follows that ηn(κ)
p→ η0.

The case where η0 = −∞ can be proved similarly. If κ = ∞, then it trivially holds that ηn(κ) =

−∞ = η0 for all n and the desired result holds. Otherwise, for any η < 0 for which |η| is sufficiently large,

a nearly identical argument to that used above shows that [Γn(η) + αφn] − [Γ0(η) + αφ0] = op(1). By

Condition B3 and monotonicity of Γ0, it follows that Γ0(η) + αφ0 < κ, and so, with probability tending

to one, Γn(η) + αφn < κ and hence ηn(κ) ≤ η by the definition of ηn(κ). Because η is arbitrary, we have

shown that ηn(κ)
p→ −∞ = η0.

Lemma S7 (Consistency of τn and existence of solution to Eq. 5 when η0 > −∞). Assume that the

conditions of Theorem 4 hold. The following statements hold:

i) if η0 > −∞, then, with probability tending to one, a solution k′n ∈ [0,∞) to (5) exists. Note that we

let kn = k′n when ηn(κ) > 0 and k′n exists. Hence, if η0 > 0, ηn = ηn(kn) = ηn(k′n) with probability

tending to one;

ii) if a solution k′n to (5) exists, then with probability tending to one, P0{dn,k′n∆C
n }+αφ0 = κ+Op(n

−1/2);

iii) τn − τ0 = op(1).

We separately prove i, ii, and iii in the case that η0 > −∞, and then we separately prove iii in the

cases where η0 > 0, η0 = 0 and η0 < 0.

Proof of i from Lemma S7. Our strategy for showing the existence of a solution to (5) is as follows. First,

we show that the left-hand side of (5) consistently estimates the treatment resource being used uniformly

over rules {dn,k : k ∈ [0,∞]}. Next, we show that the left-hand side of (5) is a continuous function in k

that takes different signs at k = 0 and k =∞ with probability tending to one.

Define fn,k : o 7→ dn,k(v)
[
∆C
n (w) + 1

t+µTn (w)−1
[c− µCn (t, w)]

]
. We first show that

sup
k∈[0,∞]

|Pnfn,k − P0{dn,k∆C
0 }| = Op(n

−1/2). (S14)

We rely on the fact that, for fixed dn,k, Pnfn,k is a one-step estimator of P0{dn,k∆C
0 }. Note that

sup
k∈[0,∞]

∣∣Pnfn,k − P0{dn,k∆C
0 }
∣∣ ≤ sup

k∈[0,∞]

∣∣∣(Pn − P0)dn,kD2(P̂n, µ
C
n )
∣∣∣

+ sup
k∈[0,∞]

∣∣∣∣P0

{
dn,k(V (·))µ

T
n (·)− µT0 (·)
µTn (·)

[µCn (1, ·)− µC0 (1, ·)]
}∣∣∣∣
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+ sup
k∈[0,∞]

∣∣∣∣P0

{
dn,k(V (·))µ

T
n (·)− µT0 (·)
1− µTn (·)

[µCn (0, ·)− µC0 (0, ·)]
}∣∣∣∣ .

Conditions B7 and B11 along with Lemma S4 imply that the first term on the right-hand side is Op(n
−1/2).

For the second term, we note that the fact that dn,k(V (w)) ∈ [0, 1] for all w ∈ W and all k ∈ [0,∞] and

the Cauchy-Schwarz inequality imply that

sup
k∈[0,∞]

∣∣∣∣P0

{
dn,k(V (·))µ

T
n (·)− µT0 (·)
µTn (·)

[µCn (1, ·)− µC0 (1, ·)]
}∣∣∣∣

≤ P0

∣∣∣∣µTn (·)− µT0 (·)
µTn (·)

[µCn (1, ·)− µC0 (1, ·)]
∣∣∣∣ . ‖µTn − µT0 ‖2,P0‖µCn (1, ·)− µC0 (1, ·)‖2,P0 .

Hence, the second term is op(n
−1/2) by Condition B6. The third term is also op(n

−1/2) by an almost

identical argument. Combining the previous two displays shows that (S14) holds.

Applying (S14) at k = 0 shows that Pnfn,0+αφn = P0{dn,0∆C
0 }+αφ0+Op(n

−1/2) = αφ0+Op(n
−1/2).

Therefore, Pnfn,0 + αφn < κ with probability tending to one. Applying this result at k =∞ shows that

Pnfn,1 +αφn = P0{dn,∞∆C
0 }+αφ0 +Op(n

−1/2) = P0∆C
0 +αφ0 +Op(n

−1/2). Combining this fact with the

fact that P0∆C
0 + αφ0 > κ whenever η0 > −∞ shows that Pnfn,1 + αφn > κ with probability tending to

one. Combining these results at k = 0 and k =∞ with the fact that k 7→ Pnfn,k is a continuous function

shows that, with probability tending to one, there exists a k′n ∈ [0,∞) such that Pnfn,k′n = κ − αφn.

Lemma S6 then implies ηn = ηn(kn) with probability tending to 1.

Proof of ii from Lemma S7. . By Lemma S3, Eq. S14 and part i of this lemma, we see that P0{dn,kn∆C
0 }+

αφ0 = Pnfn,kn + αφn + Op(n
−1/2) = κ+ Op(n

−1/2), as desired.

Proof of iii from Lemma S7 when η0 > 0. In this proof, we use Pn0 to denote a probability statement over

the draws of O1, . . . , On. Fix ε > 0. We will argue by contradiction to show that Pn0 {ηn ≥ η0 + ε} → 0

and Pn0 {ηn ≤ η0 − ε} → 0 as n→∞, implying the consistency of ηn. The consistency of τn then follows.

We study these two events separately. First, we suppose that

lim sup
n

Pn0 {ηn ≥ η0 + ε} > 0. (S15)

Then there exists δ > 0 such that, for all n in an infinite sequence N ⊆ N, the probability Pn0 {ηn ≥ η0 + ε}
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is at least δ. Consequently, for any n ∈ N , the following holds with probability at least δ:

P0{dn,kn∆C
0 }+ αφ0 − κ ≤ P0{I(ξn > η0 + ε/2)∆C

0 }+ αφ0 − κ

= P0{[I(ξn > η0 + ε/2)− I(ξ0 > η0 + ε/2)]∆C
0 }+ Γ0(η0 + ε/2) + αφ0 − κ.

(S16)

We now show that the first term is op(1). For any x > 0 and n ∈ N, by Lemma S5 and Condition B4,

|P0{[I(ξn > η0 + ε/2)− I(ξ0 > η0 + ε/2)]∆C
0 }| . P0I(|ξn − ξ0| > x) + P0I(|ξ0 − ηn + ε/2| ≤ x)

≤
‖ξn − ξ0‖1,P0

x
+ P0I(|ξ0 − ηn + ε/2| ≤ x).

Similarly to the proof of Lemma S6, the fact that ‖ξn − ξ0‖1,P0 = op(1) (Condition B12) ensures that

P0{[I(ξn > η0 + ε/2)− I(ξ0 > η0 + ε/2)]∆C
0 = op(1). By Condition B3, Γ0(η0 + ε/2)−Γ0(η0) is a negative

constant. Because (S16) holds with probability at least δ > 0 for infinitely many n, this shows that

P0{dn,kn∆C
0 } + αφ0 − κ is not op(1). This contradicts our result from part ii of this lemma. Therefore,

(S15) is false, that is, lim supn P
n
0 {ηn ≥ η0 + ε} = 0.

Now we assume that, for some ε > 0, lim supn P
n
0 {ηn ≤ η0 − ε} > 0. Then there exists δ > 0 such

that, for all n in an infinite sequence N ⊆ N, Pn0 {ηn ≤ η0 − ε} ≥ δ. Now, for any n ∈ N , the following

holds with probability at least δ:

P0{dn,kn∆C
0 }+ αφ0 − κ ≥ P0{I(ξn > η0 − ε)∆C

0 }+ αφ0 − κ

= P0{[I(ξn > η0 − ε)− I(ξ0 > η0 − ε)]ν0}+ Γ0(η0 − ε) + αφ0 − κ.

The rest of the argument is almost identical to the contradiction argument for the previous event, and is

therefore omitted.

Since ε is arbitrary, combining the results of these two contradiction arguments shows that |τn− τ0| ≤

|ηn − η0| = op(1), as desired.

Proof of iii from Lemma S7 when η0 = 0. If η0 = 0, then the construction of ηn implies that ηn takes

values from two sequences: ηn(κ) and ηn(kn) where kn is a solution to (5). By Lemma S6, ηn(κ) is

consistent for η0. When a solution to (5) exists and equals kn, the proof of part iii from Lemma S7 when

η0 > 0 shows that ηn(kn) is consistent for η0 and the desired result follows.
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Proof of iii from Lemma S7 when η0 < 0. If η0 < 0, then by Lemma S6, ηn(κ) ≤ 0 with probability

tending to one. Hence, with probability tending to one, τn = 0 = τ0. Therefore, part iii holds.

The following Lemma S8 show that certain remainders in the expansions in Section S4.3 are op(n
−1/2).

Lemma S8. Under Conditions A2, B8 and B6,

sup
ρ:W→[0,1]

∣∣∣Rρ(P̂n, P0)
∣∣∣ = op(n

−1/2).

Proof of Lemma S8. By the boundedness of the range of ρ, we see that

sup
ρ:W→[0,1]

∣∣∣Rρ(P̂n, P0)
∣∣∣

= sup
ρ:W→[0,1]

P0

∣∣∣∣ρ(·)
[
µTn (·)− µT0 (·)

µTn (·)
{µ̂Yn (1, ·)− µY0 (1, ·)}+

µTn (·)− µT0 (·)
1− µTn

{µ̂Yn (0, ·)− µY0 (0, ·)}
]∣∣∣∣

≤ P0

∣∣∣∣[µTn (·)− µT0 (·)
µTn (·)

{µ̂Yn (1, ·)− µY0 (1, ·)}+
µTn (·)− µT0 (·)

1− µTn (·)
{µ̂Yn (0, ·)− µY0 (0, ·)}

]∣∣∣∣ .
Using Condition B8 and Lemma S4, the display continues as

.P0

∣∣(µTn (·)− µT0 (·))[µ̂Yn (1, ·)− µY0 (1, ·)]
∣∣+ P0

∣∣(µTn (·)− µT0 (·))[µ̂Yn (0, ·)− µY0 (0, ·)]
∣∣

≤‖µTn − µT0 ‖2,P0‖µ̂Yn (1, ·)− µY0 (1, ·)‖2,P0 + ‖µTn − µT0 ‖2,P0‖µ̂Yn (0, ·)− µY0 (0, ·)‖2,P0

.‖µTn − µT0 ‖2,P0‖µ̂Yn − µY0 ‖2,P0 .

The right-hand side is op(n
−1/2) by Condition B6.

We next prove Theorem 4.

Proof of Theorem 4. By the expansion of P 7→ ΨρP (P ) presented in Section S4.3,

Ψρn(P̂n)−Ψρ0(P0)

= P0D(P̂n, ρn, τ0, µ
C
n ) +Rρn(P̂n, P0) + P0{(ρn − ρ0)(δY0 − τ0δ

C
0 )}

− τ0P0

{
ρn(·)µ

T
n (·)− µT0 (·)
µTn (·)

[µCn (1, ·)− µC0 (1, ·)]
}

+ τ0P0

{
(1− ρn(·))µ

T
n (·)− µT0 (·)
1− µTn (·)

[µCn (0, ·)− µC0 (0, ·)]
}

= (Pn − P0)D(P0, ρ0, τ0, µ
C
0 )− PnD(P̂n, ρn, τ0, µ

C
n )
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+ (Pn − P0)
[
D(P̂n, ρn, τ0, µ

C
n )−D(P0, ρ0, τ0, µ

C
0 )
]

+Rρn(P̂n, P0) + P0{(ρn − ρ0)(δY0 − τ0δ
C
0 )}

− τ0P0

{
ρn(·)µ

T
n (·)− µT0 (·)
µTn (·)

[µCn (1, ·)− µC0 (1, ·)]
}

+ τ0P0

{
(1− ρn(·))µ

T
n (·)− µT0 (·)
1− µTn (·)

[µCn (0, ·)− µC0 (0, ·)]
}
.

Similarly,

ΨρFR(P̂n)−ΨρFR(P0) = (Pn − P0)D(P0, ρ
FR, 0, µC0 )− PnD(P̂n, ρ

FR, 0, µC0 )

+ (Pn − P0)
[
D(P̂n, ρ

FR, 0, µC0 )−D(P0, ρ
FR, 0, µC0 )

]
+RρFR(P̂n, P0);

ΨρRD
n

(P̂n)−ΨρRD
0

(P0) = (Pn − P0)D(P0, ρ
RD
0 , 0, µC0 )− PnD(P̂n, ρ

RD
n , 0, µC0 )

+ (Pn − P0)
[
D(P̂n, ρ

RD
n , 0, µC0 )−D(P0, ρ

RD
0 , 0, µC0 )

]
+RρRD

n
(P̂n, P0) + (ρRD

n − ρRD
0 )P0∆Y

0 ;

ΨρTP
n

(P̂n)−ΨρTP
0

(P0) = (Pn − P0)GTP(P0)− PnGTP(P̂n) + (Pn − P0)
[
GTP(P̂n)−GTP(P0)

]
+RρTP

0
(P̂n, P0).

First, we note the following facts, which will be sufficient to ensure that the remainders and empirical

process terms in all of the first-order expansions given above are op(n
−1/2). By Condition B6, Lemmas S4

and S8, the Cauchy-Schwarz inequality, and boundedness of the range of an ITR, the following terms are

all op(n
−1/2):

Rρ(P̂n, P0) for ρ = ρn, ρ
FR, ρRD

n ,

P0

{
µTn (·)− µT0 (·)

1− µTn (·)
(µ̂YP (0, ·)− µ̂Y0 (0, ·))

}
,

τ0P0

{
ρn(·)µ

T
n (·)− µT0 (·)
µTn (·)

[µCn (1, ·)− µC0 (1, ·)]
}
,

τ0P0

{
(1− ρn(·))µ

T
n (·)− µT0 (·)
1− µTn (·)

[µCn (0, ·)− µC0 (0, ·)]
}
.

Moreover, by Condition B10, P0{(ρn − ρ0)(δY0 − τ0δ
C
0 )} = op(n

−1/2); by Conditions B7 and B11, (Pn −

P0) [Dn,R −DR(P0)] = op(n
−1/2) for all R ∈ {FR,RD,TP} and

(Pn−P0)
{

[D(P̂n, ρn, τ0, µ
C
n )−D(P̂n, ρ

RD
n , 0, µC0 )]− [D(P0, ρ0, τ0, µ

C
0 )−D(P0, ρ

RD
0 , 0, µC0 )]

}
= op(n

−1/2).
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Therefore, all relevant remainders and empirical process terms are op(n
−1/2).

We separately study the three cases where R = FR, R = RD, and R = TP.

Case I: R = FR. It holds that

ψn − ψ0 = (Pn − P0)DFR(P0)− PnDn,FR + op(n
−1/2)

= (Pn − P0)DFR(P0)

+ τ0

{
1

n

n∑
i=1

{
ρn(Vi)

[
∆C
n (Wi) +

1

Ti + µTn (Wi)− 1
[Ci − µCn (Ti,Wi)]

]

+ α

[
µCn (0,Wi) +

1− Ti
1− µTn (Wi)

[Ci − µCn (0,Wi)]

]}
− κ

}
+ op(n

−1/2),

where the last step follows from the TMLE construction of P̂n (Step 4a of our estimator), which implies

that

1

n

n∑
i=1

{
ρn(Vi)− ρFR(V )

Ti + µTn (Wi)− 1
[Yi − µ̂Yn (Ti,Wi)]

}
= 0.

We now show that the second term on the right-hand side is zero with probability tending to one. If

τ0 = 0, then this term is zero. Otherwise, τ0 = η0 > 0. By Lemma S7, the following holds with probability

tending to one:

1

n

n∑
i=1

{
ρn(Vi)

[
µCn (1,Wi) +

Ti
µTn (Wi)

[Ci − µCn (1,Wi)]

]
+ α

[
µCn (0,Wi) +

1− Ti
1− µTn (Wi)

[Ci − µCn (0,Wi)]

]}
= κ,

and hence the second term is zero with probability tending to one, as desired. Therefore, ψn − ψ0 =

(Pn − P0)DFR(P0) + op(n
−1/2).

Case II: R = RD. It holds that

ψn − ψ0 = (Pn − P0){D(P0, ρ0, τ0, µ
C
0 )−D(P0, ρ

RD
0 , 0, µC0 )}

− Pn{D(P̂n, ρn, τ0, µ
C
n )−D(P̂n, ρ

RD
n , 0, µC0 )}

− (ρRD
n − ρRD

0 )P0∆Y
0 + op(n

−1/2),

where we have used ρRD
n and ρRD

0 to denote the values that the two functions take, respectively. The
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TMLE construction of P̂n (Step 4a of our estimator) implies that

1

n

n∑
i=1

ρn(Vi)− ρRD
n (Vi)

Ti + µTn (Wi)− 1
[Yi − µ̂Yn (Ti,Wi)] = 0,

and hence

Pn{D(P̂n, ρn, τ0, µ
C
n )−D(P̂n, ρ

RD
n , 0, µC0 )}

= −τ0

{
1

n

n∑
i=1

{
ρn(Vi)

[
∆C
n (Wi) +

1

Ti + µTn (Wi)− 1
[Ci − µCn (Ti,Wi)]

]

+ α

[
µCn (0,Wi) +

1− Ti
1− µTn (Wi)

[Ci − µCn (0,Wi)]

]}
− κ

}
,

which is zero with probability tending to one as proved above. By Condition B5, Lemma S3 and the delta

method for influence functions, the value that ρRD
n takes is an asymptotic linear estimator of the value

that ρRD
0 takes. Straightforward application of the delta method for influence functions implies that

ψn − ψ0 = (Pn − P0)DRD(P0) + op(n
−1/2).

Case 3: R = TP. It holds that

ψn − ψ0 = (Pn − P0)DTP(P0)− PnDn,TP + op(n
−1/2).

The TMLE construction of P̂n (Step 4a of our estimator) implies that

1

n

n∑
i=1

{
ρn(Vi)− µTn (Wi)

Ti + µTn (Wi)− 1
[Yi − µ̂Yn (Ti,Wi)]

}
= 0,

so

PnDn,TP = −τ0

{
1

n

n∑
i=1

{
ρn(Vi)

[
∆C
n (Wi) +

1

Ti + µTn (Wi)− 1
[Ci − µCn (Ti,Wi)]

]

+ α

[
µCn (0,Wi) +

1− Ti
1− µTn (Wi)

[Ci − µCn (0,Wi)]

}]
− κ

}
,
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which is zero with probability tending to one as proved above. Therefore,

ψn − ψ0 = (Pn − P0)DTP(P0) + op(n
−1/2).

Conclusion: The asymptotic linearity result on ψn follows from the above results. Consequently, the

asymptotic normality result on ψn holds by the central limit theorem and Slutsky’s theorem.

S4.5 Proof of Theorem S1

In this section, we prove Theorem S1. The arguments are almost identical to those in Supplement S9

Qiu et al. [34] with adaptations to the different treatment resource constraint.

Lemma S9 (Convergence rate of τn if η0 > −∞). Assume that the conditions for Theorem 4 hold.

Suppose that η0 > −∞, that the Lebesgue density of the distribution of ξ0(V ) under V ∼ P0 is well-

defined, nonzero and finite in a neighborhood of and that P0I(ξn = ηn) = Op(n
−1/2). Under these

conditions, the following implications hold with probability tending to one:

• If ‖ξn − ξ0‖q,P0 = op(1) for some 0 < q <∞, then |τn − τ0| . ‖ξn − ξ0‖q/q+1
q,P0

+ Op(n
−1/2).

• If ‖ξn − ξ0‖∞,P0 = op(1), then |τn − τ0| . ‖ξn − ξ0‖∞,P0 + Op(n
−1/2).

The condition that P0I(ξn = ηn) = Op(n
−1/2) is reasonable if ξn(V ) has a continuous distribution

when V ∼ P0, in which case P0I(ξn = ηn) = 0.

Proof of Lemma S9. We study the three cases where η0 > 0, η0 < 0 and η0 = 0 separately.

We first study the case where η0 > 0. By Lemma S7, with probability tending to one, ηn = ηn(kn)

where kn is a solution to (5), and

P0{[I(ξn > ηn)− I(ξ0 > η0)]∆C
0 } = P0{dn,kn∆C

0 } − (κ− αφ0) + Op(n
−1/2) = Op(n

−1/2).

We argue conditionally on the event that kn is a solution to (5). Adding Γ0(ηn)− P0{I(ξn > ηn)∆C
0 } to

both sides shows that Γ0(ηn) − Γ0(η0) = −P0{[I(ξn > ηn) − I(ξ0 > ηn)]∆C
0 } + Op(n

−1/2). By a Taylor

expansion of Γ0 under Conditions B2, B3 and A4, the left-hand side is equal to −C(ηn−η0)+op(ηn−η0)

for some C > 0, yielding that

[C + op(1)][ηn − η0] = P0{[I(ξn > ηn)− I(ξ0 > ηn)]∆C
0 }+ Op(n

−1/2),
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which immediately implies that

ηn − η0 = Op

(
P0{[I(ξn > ηn)− I(ξ0 > ηn)]∆C

0 }
)

+ Op(n
−1/2). (S17)

The rest of the proof for this case and the proof for the other two cases are identical to the proof of

Lemma S14 in Qiu et al. [34]. We present the argument below for completeness. By Lemma S5 and

Condition B4, for any ε > 0 it holds that

|P0{[I(ξn > ηn)− I(ξ0 > ηn)]∆C
0 }|

. |P0{[I(ξn > ηn)− I(ξ0 > ηn)]}|

≤ P0I(|ξn − ξ0| > ε) + P0I(|ξ0 − ηn| ≤ ε).

Fix a positive sequence {εn}∞n=1, where each εn may be random through observations O1, . . . , On, such

that εn
p→ 0 as n → ∞. By a Taylor expansion of S0, the survival function of the distribution of ξ0(V )

when V ∼ P0, around η0, which is valid under Condition B2 provided εn is sufficiently small, it follows

that

|P0{[I(ξn > ηn)− I(ξ0 > ηn)]∆C
0 }| . P0I(|ξn − ξ0| > εn)− 2(S0)′(η0)εn + op(εn).

Here we recall that (S0)′(η0) is finite by Condition B2. Returning to (S17),

ηn − η0 = Op

(
P0I(|ξn − ξ0| > εn)

)
− [2(S0)′(η0) + op(1)]εn + Op(n

−1/2).

If ‖ξn−ξ0‖q,P0 = op(1) for some 0 < q <∞, by Markov’s inequality, P0I(|ξn−ξ0| > εn) ≤ ‖ξn−ξ0‖qq,P0
/εqn.

In this case, taking εn = ‖ξn−ξ0‖q/(q+1)
q,P0

yields that |ηn−η0| . ‖ξn−ξ0‖q/(q+1)
q,P0

+Op(n
−1/2) with probability

tending to one. If ‖ξn−ξ0‖∞,P0 = op(1), then taking εn = ‖ξn−ξ0‖∞,P0 yields that P0I(|ξn−ξ0| > εn) = 0,

and hence that |ηn− η0| . ‖ξn− ξ0‖2∞,P0
+ Op(n

−1/2) with probability tending to one. The desired result

follows by noting that τ0 = η0 and in both cases, τn = ηn(kn) with probability tending to one.

We now study the case where η < 0. By Lemma S6, with probability tending to one, ηn < 0 and

hence τn = 0 = τ0, as desired.

We finally study the case where η0 = 0. We argue conditional on the event that a solution k′n to

(5) exists, which happens with probability tending to one by Lemma S7. Recall that for convenience we
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let kn = k′n when ηn(κ) > 0. Then, exactly one of the following two events happen: (i) ηn(κ) ≤ 0 or

ηn(k′n) ≤ 0, in which case τn = 0 = τ0; (2) ηn(κ) > 0 and ηn(k′n) > 0, in which case a similar argument

as the above proof for the case where η0 > 0 shows that the distance between τn = ηn(k′n) and τ0 has the

desired bound. The desired result holds conditional on either event, so it holds unconditional on either

event.

We finally prove Theorem S1.

Proof of Theorem S1. Observe that

|P0{(ρn − ρ0)(δY0 − τ0∆C
0 )}| ≤ P0|{I(ξn > τn)− I(ξ0 > τ0)}(ξ0 − τ0)∆C

0 |

. P0|{I(ξn > τn)− I(ξ0 > τ0)}(ξ0 − τ0)|

≤ P0|{I(ξn > τn)− I(ξ0 > τn)}(ξ0 − τn)|

+ P0|{I(ξ0 > τn)− I(ξ0 > τ0)}(ξ0 − τ0)|

+ |τn − τ0|P0|I(ξn > τn)− I(ξ0 > τn)|.

(S18)

Starting from this inequality, the rest of the proof is identical to that of Theorem 5 in Qiu et al. [34].

We present the argument below for completeness. Let {εn}∞n=1 be a positive sequence, where each εn is

random through the observations O1, . . . , On, such that εn
p→ 0 as n→∞.

We denote the three terms on the right-hand side by terms 1, 2, and 3, and study these terms

separately. It is useful to note that τn − τ0 = op(1), so the Lebesgue density of the distribution of ξ0(V ),

V ∼ P0, is finite in a neighborhood of τn with probability tending to one.

Study of term 1 in (S18): Observe that

P0|{I(ξn > τn)− I(ξ0 > τn)}(ξ0 − τn)|

= P0|{I(ξn > τn)− I(ξ0 > τn)}(ξ0 − τn)|I(0 < |ξ0 − τn|).

First consider the bound with the Lq(P0)-distance. Because I(ξn(v) > τn) 6= I(ξ0(v) > τn) if and only

if (i) ξn(v) − τn and ξ0(v) − τn take different signs or (ii) only one of them is zero, this event implies

|ξ0(v)− τn| ≤ |ξn(v)− ξ0(v)|, and so this term is upper bounded by

P0|{I(ξn > τn)− I(ξ0 > τn)}(ξ0 − τn)|I(0 < |ξ0 − τn| ≤ εn)
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+ P0|{I(ξn > τn)− I(ξ0 > τn)}(ξ0 − τn)|I(|ξ0 − τn| > εn)

≤ P0|ξn − ξ0|I(0 < |ξ0 − τn| ≤ εn) + P0|ξn − ξ0|I(|ξn − ξ0| > εn)

≤ ‖ξn − ξ0‖q,P0 {P0(0 < |ξ0(V )− τn| ≤ εn)}(q−1)/q +
P0|ξn − ξ0|q

εq−1
n

. ‖ξn − ξ0‖q,P0 · ε(q−1)/q
n +

‖ξn − ξ0‖qq,P0

εq−1
n

,

where second to last relation holds by Hölder’s inequality and Markov’s inequality, and the last relation

holds with probability tending to one by the assumption that the distribution of ξ0(V ), V ∼ P0, has a

continuous finite Lebesgue density in a neighborhood of τ0 and Lemma S7. Taking εn = ‖ξn − ξ0‖q/(q+1)
q,P0

yields that |P0{I(ξn > τn)− I(ξ0 > τn)}(ξ0 − τn)| . ‖ξn − ξ0‖2q/(q+1)
q,P0

.

Next consider the bound with the L∞(P0)-distance. We have that

P0|{I(ξn > τn)− I(ξ0 > τn)}(ξ0 − τn)| ≤ P0I(|ξ0 − τn| ≤ |ξn − ξ0|)|ξ0 − τn|

= P0I(0 < |ξ0 − τn| ≤ |ξn − ξ0|)|ξ0 − τn|

≤ P0I(0 < |ξ0 − τn| ≤ ‖ξn − ξ0‖∞,P0)|ξ0 − τn|

≤ ‖ξn − ξ0‖∞,P0P0(0 < |ξ0(V )− τn| ≤ ‖ξn − ξ0‖∞,P0)

. ‖ξn − ξ0‖2∞,P0
.

Therefore, the first term is upper bounded by both ‖ξn− ξ0‖2q/(q+1)
q,P0

and ‖ξn− ξ0‖2∞,P0
, up to an absolute

constant.

Study of term 2 in (S18): Because I(ξ0(v) > τn) 6= I(ξ0(v) > τ0) if and only if the two indicators take

different signs or only one of them is zero, these indicators only take different values if |ξ0(v)−τ0| ≤ |τn−τ0|.

Therefore, term 2 bounds as

P0|{I(ξ0 > τn)− I(ξ0 > τ0)}(ξ0 − τ0)| ≤ P0I(|ξ0 − τ0| ≤ |τn − τ0|)|ξ0 − τ0|

≤ |τn − τ0|P0I(|ξ0 − τ0| ≤ |τn − τ0|)

. |τn − τ0|2,

where the last step holds for with probability tending to one by the assumption that the distribution

of ξ0(V ), V ∼ P0, has a continuous finite Lebesgue density in a neighborhood of τ0 and Lemma S7. If
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η0 > −∞, by Lemma S9, with probability tending to one,

P0|I(ξ0 > τn)− I(ξ0 > τ0)||ξ0 − τ0| .


‖ξn − ξ0‖2q/(q+1)

q,P0
+ Op(n

−1), if ‖ξn − ξ0‖q,P0 = op(1)

‖ξn − ξ0‖2∞,P0
+ Op(n

−1), if ‖ξn − ξ0‖∞,P0 = op(1)

.

Otherwise, by Lemma S6, with probability tending to one, τn = 0 = τ0 and the above result still holds.

Study of term 3 in (S18): By Lemma S5,

P0|I(ξn > τn)− I(ξ0 > τn)| ≤ P0I(|ξn − ξ0| > εn) + P0I(|ξ0 − τn| ≤ εn).

By a Taylor expansion of S0 around τ0, similarly to the proof of Lemma S9, with probability tending to

one,

P0I(|ξ0 − τn| ≤ εn) = −2(S0)′(τ0)εn + op(|τn − τ0|+ εn),

where |(S0)′(τ0)| < ∞. If ‖ξn − ξ0‖q,P0 = op(1) for some 1 < q < ∞, then P0I(|ξn − ξ0| > εn) ≤

‖ξn−ξ0‖qq,P0
/εqn. Taking εn = ‖ξn−ξ0‖q/(q+1)

q,P0
yields that |P0{I(ξn > τn)−I(ξ0 > τn)}| . ‖ξn−ξ0‖q/(q+1)

q,P0
.

If ‖ξn − ξ0‖∞,P0 = op(1), then taking εn = ‖ξn − ξ0‖∞,P0 yields that |P0{I(ξn > τn) − I(ξ0 > τn)}| .

‖ξn − ξ0‖∞,P0 with probability tending to one. Also note that, by Lemma S9, if η0 > −∞, then, with

probability tending to one,

|τn − τ0| ≤ |ηn − η0| .


‖ξn − ξ0‖q/(q+1)

q,P0
+ Op(n

−1/2), if ‖ξn − ξ0‖q,P0 = op(1),

‖ξn − ξ0‖∞,P0 + Op(n
−1/2), if ‖ξn − ξ0‖∞,P0 = op(1).

The same holds when η0 = −∞ since then |τn − τ0| = 0 with probability tending to one.

Therefore, with probability tending to one,

|τn − τ0|P0|I(ξn > τn)− I(ξ0 > τn)|

.


‖ξn − ξ0‖2q/(q+1)

q,P0
+ ‖ξn − ξ0‖q/(q+1)

q,P0
Op(n

−1/2) if ‖ξn − ξ0‖q,P0 = op(1),

‖ξn − ξ0‖2∞,P0
+ ‖ξn − ξ0‖∞,P0Op(n

−1/2) if ‖ξn − ξ0‖∞,P0 = op(1).

Conclusion of the bound in (S18): We finally combine the bounds for all three terms. Note that

anOp(bn) . a2
n + Op(b

2
n) for any sequence of non-negative random variables an and sequence of constants
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bn. It follows that, with probability tending to one,

|P0{(ρn − ρ0)(δY0 − τ0ν0)}| .


‖ξn − ξ0‖2q/(q+1)

q,P0
+ Op(n

−1), if ‖ξn − ξ0‖q,P0 = op(1),

‖ξn − ξ0‖2∞,P0
+ Op(n

−1), if ‖ξn − ξ0‖∞,P0 = op(1).

S5 Additional simulations

S5.1 Results of simulation with nuisance functions being truth

In this section, we present the results of the simulation with an identical setting as that in Section 5 in the

main text except that the nuisance functions are taken to be the truth rather than estimated via machine

learning. The purpose of this simulation is to show that the performance of our proposed estimator may

be significantly improved by using machine learning estimators of nuisance functions that outperform

those used in the simulation study reported in the main text.

Table S1 presents the performance of our proposed estimator in this simulation. The Wald CI coverage

is close to 95% for sample sizes of 1000 or more. The coverage of the confidence lower bounds is also

close to the nominal coverage of 97.5%. Therefore, our proposed procedure appears to have the potential

to be significantly improved when using improved estimators of nuisance functions. Figure S1 presents

the width of our 95% Wald CI scaled by the square root of sample size n. For each estimand, the scaled

width appears to stabilize as n grows and to be similar to the scaled width observed in the simulation

reported in Section 5, where nuisance functions are estimated from data.

S5.2 Simulation under a low dimension and a parametric model

In this section, we describe the additional simulation in a setting with a low dimension and a parametric

model as well as the simulation results.

The data is generated as follows. We first generate a univariate covariate W ∼ Unif(−1, 1). We then

generate T , C and Y as follows:

T |W ∼ Bernoulli (expit(W )) ,

C | T,W ∼ Bernoulli (expit(2T − 1 +W )) ,
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Table S1: Performance of estimators of average causal effects in the simulation with nuisance
functions being the truth.

Performance measure Sample size FR RD TP

95% Wald CI coverage 500 93% 90% 90%
1000 94% 94% 93%
4000 96% 95% 95%

16000 94% 96% 95%

97.5% confidence lower 500 96% 96% 95%
bound coverage 1000 97% 97% 96%

4000 98% 97% 97%
16000 97% 97% 97%

bias 500 0.0023 0.0004 0.0010
1000 0.0013 0.0008 0.0007
4000 0.0003 0.0003 0.0003

16000 0.0002 0.003 0.0002

RMSE 500 0.048 0.023 0.029
1000 0.033 0.015 0.020
4000 0.016 0.008 0.010

16000 0.009 0.004 0.005

Ratio of mean standard error 500 0.964 0.911 0.928
to standard deviation 1000 0.967 0.998 0.958

4000 1.028 0.983 0.995
16000 0.963 1.007 0.996

Y | T,W ∼ Bernoulli (expit(1.4T − 0.7− 0.3W )) ,

where C and Y are independent conditional on (W,T ). We set ρFR : v 7→ 0, V = W , and κ = 0.35, which

is an active constraint with τ0 > 0 and ρRD
0 < 1. We use logistic regression to estimate functions µT0 , µC0

and µC0 . All other simulation settings are identical to that in Section 5.

The simulation results are presented in Table S2 and Figure S2. The performance is generally between

the nonparametric setting in Section 5 and the oracle setting in Section S5.1. The CI coverage is much

better than the nonparametric case, thus suggesting that our method might perform better with improved

estimators of nuisance functions µT0 , µC0 and µC0 .
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Figure S1: Boxplot of
√
n× CI width for ATE relative to each reference ITR in the simulation

with nuisance functions being the truth.

Table S2: Performance of estimators of average causal effects in the simulation with nuisance
functions in a parametric model.

Performance measure Sample size FR RD TP

95% Wald CI coverage 500 95% 83% 96%
1000 91% 83% 93%
4000 94% 88% 93%

16000 94% 94% 95%

97.5% confidence lower 500 99% 99% 99%
bound coverage 1000 99% 99% 99%

4000 99% 99% 98%
16000 98% 99% 99%

bias 500 −0.0177 −0.0161 −0.0167
1000 −0.0122 −0.0113 −0.0125
4000 −0.0037 −0.0036 −0.0035

16000 −0.0009 −0.0010 −0.0008

RMSE 500 0.035 0.029 0.040
1000 0.026 0.021 0.029
4000 0.012 0.009 0.013

16000 0.006 0.004 0.006

Ratio of mean standard error 500 1.122 0.908 1.046
to standard deviation 1000 0.988 0.857 0.984

4000 0.978 0.891 0.942
16000 0.986 0.979 0.979

35



FR RD TP

500 1000 4000 16000 500 1000 4000 16000 500 1000 4000 16000
2

3

4

5

6

1

2

3

2

3

4

5

n

n
*C

I w
id

th

Figure S2: Boxplot of
√
n× CI width for ATE relative to each reference ITR in the simulation

with nuisance functions in a parametric model.
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