Supplementary Material for “Individualized treatment rules under

stochastic treatment cost constraints”

This Supplementary Material is organized as follows. Section contains technical conditions to
ensure that the statistical parameter of interest, the average treatment effect, is pathwise differentiable
and that our proposed estimator is asymptotically efficient. We discuss a particular technical condition
that may be difficult to verify in Section[S2] In Section we describe a modified version of our proposed
estimator with improved performance in small to moderate samples. We present proofs of theoretical
results in Section In Section we present the results of a simulation under an idealized setting.
These results may provide guidance on interpreting the simulation results in Section

As noted in the main text, the methods proposed in this work build upon tools used in Qiu et al. [34];
as such, the involved technical details bear similarity. To orient readers and facilitate comparisons, we
have organized these supplementary materials for these papers similarly and shared portions of technical

details when appropriate.

S1 Technical conditions for pathwise differentiability of parameter and

asymptotic linearity of proposed estimator

In this section, we list the additional technical conditions required by Theorems [3] and ] in Section [] that

we omit in the main text. Before doing this, we define pointwise
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Condition B2 (Nonzero continuous density of £y (V') around 7). If ny > —oo, then the distribution of
&o(V) has positive, finite and continuous Lebesgue density in a neighborhood of 7.

Since Condition is most plausible when covariates are continuous, in this case, it is also plausible

to expect the distribution of £,(V') to be continuous and thus Condition holds.



Condition B3 (Smooth treatment cost function or lack of constraint). If 79 > —oo, then the function
n = Eo [I(&(V) > n) A§(W)] is continuously differentiable with nonzero derivative in a neighborhood

of 1; if 19 = —oo and k < oo, then Eq [AS(W)] < k — agyo.

Condition requires different conditions in separate cases. There are three cases in terms of the
sufficiency of the budget to treat every individual: (i) there is an infinite budget and no constraint is
present (k = 00); (ii) the budget is insufficient (n9 > —o0); and (iii) the budget is finite but sufficient
(np = —oo0 and kK < oo). Condition makes no assumption for Case (i). In Case (ii), we require
a function n +— Eo [I (&(V) > 1) AOC(W)] to be locally continuously differentiable. Since A§ > 0 by
Condition [AZ] this function is nonincreasing and thus only continuous differentiability is required. For
each 7, this function is an integral of additional cost A§ over the set {v : &(v) > 0} and has a similar
nature to survival functions. When covariates are continuous, it is plausible to assume that A§ (W)
is continuous and thus n — Eq [1 (&(V) > n) A§(W)] is continuously differentiable. In Case (iii), we
require that the budget has a surplus. When it is unknown a priori whether the budget is sufficient to
treat every individual, namely in Case (ii) or (iii), it is highly unlikely that the budget exactly suffices

with no surplus. Therefore, Condition [B3]is mild.
Condition B4 (Bounded additional treatment cost). A§ is bounded.
Condition B5 (Active constraint). If R = RD, then it holds that (x — agg)/Eg [AF(W)] < 1.

Condition requires that, when the rule pRP that assigns treatment completely at random while
respecting the budget constraint is the reference rule of interest, it should not correspond to the trivial
rule v — 1 that assigns treatment to every individual. The rule pRP equals v — 1 only when the budget
is sufficient to treat every individual. Since, as a separate reference rule from given fixed rules p'®, the
reference rule pRP is only interesting when the budget constraint is active, Condition often holds

automatically.

Condition B6 (Sufficient rates for nuisance estimators).
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Condition [B6| holds if all above nuisance estimators converge at a rate faster than n~/4, which may

~1/2

be much slower than the parametric rate n and thus allows for the use of flexible nonparametric
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estimators. This condition also holds if uY, 4Y, u& and 1S each converges slower than n~'/4, as long as

the estimated propensity score ul converges sufficiently fast to compensate.

Condition B7 (Consistency of estimated influence function). The following terms are all 0,(1):
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Condition B8 (Consistency of strong positivity). With probability tending to one over the sample used

to obtain pl, it holds that [ I{er < ul(w) < 1 — er}dPy(w) = 1.

Condition B9 (Consistency of strictly more costly treatment). With probability tending to one over
the sample used to obtain AS and 6, it holds that [I(AS(w) > é¢)dPy(w) = 1 and [1(6S(v) >

no

5¢)dPy(v) = 1.

Condition B10 (Fast rate of estimated optimal ITR). As sample size n tends to infinity, it holds that

/ {pn(v) = po(v)} {8y (v) — 7005 (v) } dPy(v) = op(n~/?) .

Condition [BI0|may, at first sight, appear to be difficult to verify and is discussed in detail in Section[S2]
As shown in Theorem [S1]of Section[S2}, Condition BI0|may require faster rates on nuisance estimators than
Condition [B6| For example, convergence in the L?-sense at a rate o,(n~/4) is sufficient for Condition
but a rate o,(n~%/®) is needed in order to use Theorem [S1|to show that Condition holds.

Condition B11 (Donsker condition). {0 + dpx(v)D2(Prn, u$)(0) = k € [0,1]} is a subset of a fixed
Py-Donsker class with probability tending to 1. Additionally, each of Dl(Pn, uey, D(Pn, P> T0, yg) -
D(Py, pRP 0, u§) and D, r belongs to a (possibly different) fixed Py-Donsker class with probability

tending to 1.

Condition B12 (Glivenko-Cantelli condition). ||&, — &ll1.p, = 0p(1) and |AY — A§|l1.p, = 0p(1).
Moreover, (i) if 79 > —oo, then, for any n sufficiently close to 19, w + I(&,(v) > n)AS (w) belongs
to a Py-Glivenko-Cantelli class with probability tending to 1; (ii) otherwise, if 79 = —oo, then, for any
n < 0 with sufficiently large |n|, w — I(&,(v) > n)AS (w) belongs to a Py-Glivenko-Cantelli class with

probability tending to 1.



The Donsker condition [BIT] and the Glivenko-Cantelli condition impose restrictions on the flex-
ibility of the methods used to estimate nuisance functions. We refer readers to, for example, van der
Vaart and Wellner [50], for a more thorough introduction to such conditions.

All above conditions are similar to those in Qiu et al. [34] except that Conditions [B9|and [B4|are addi-
tional in this paper because the assumption of more costly treatment was not needed and a boundedness

condition similar to was automatically satisfied with a binary cost.

S2 Sufficient condition for fast convergence rate of estimated optimal

rule

Condition which is required by Theorem [4 may seem unintuitive and difficult to verify. In Theo-
rem [S1| below, we present sufficient conditions for Condition that are similar to those in |Qiu et al.
[34].

Throughout the rest of the Supplement, for two quantities a,b € R, we use a < b to denote a < Cb

for some constant € > 0 that may depend on Fj.

Theorem S1 (Sufficient condition for Condition. Assume that [ I(&,(v) = T,)dPo(v) = Op(n=1/2).
Further assume that each of o v I(&,(v) > n,) and o = I(&,(v) > 1,)6§ (v) belongs to a (possibly
different) fized Py-Donsker class with probability tending to 1. Suppose also that the distribution of &o(V)
(V ~ Py) has nonzero finite continuous Lebesgque density in a neighborhood of ny and a neighborhood of

10. Under Condition[BJ}, the following statements hold.

o If||6Y — 63 |14, = 0p(1) for some q > 1, then

2 _
1Po{(pn — p0) (6 — 7005 )} S 1187 — 63 112247 1 0, (n 7).

o If Hd}f — (%/Hoo,Po = op(1), then
1Po{(pn — p0) (85 — 7005 )} S N10% — 65 l1%.py + Op(n?).

The proof of Theorem [S1|is very similar to Theorem 5 in (Qiu et al. [34] and can be found in Sec-
tion



S3 Modified procedure with cross-fitting

In this section, we describe our proposed procedure to estimate the ATE with cross-fitting, which is
mentioned in Remark [6, We use A to denote a user-specified fixed number of folds to split the data.

Common choices of A used in practice include 5, 10 and 20.

1. Use the empirical distribution PW,n of W as an estimate of the true marginal distribution of W.

Y

Y ul and pl of ,u%/ , u& and ug, respectively using flexible regression methods.

Compute estimates p
2. Estimate an optimal individualized treatment rule for each observation:

(a) Create folds: split the set of observation indices {1,2,...,n} into A mutually exclusive and
exhaustive folds of (approximately) equal size. Denote these sets by Sx, A =1,2,...,A. Define
S_x := UxzrSy. For each i = 1,2,...,n, let A(7) be the index of the fold containing i; in

other words, A\(7) is the unique value of A such that i € S).

(b) Estimate £ (V;) using sample splitting: for each A =1,2,..., A, compute estimates 53{7 s_, and
(55’ s, of 6¢ and Agb using flexible regression methods based on data {O; : ¢ € S_,}. For each

i=1,2,...,n,let &, ; := 53;57 (Vi) 571,5%(1’) (Vi) be the sample splitting estimate of {o(V;).

A(4)

(c) Estimate ¢y with a one-step correction estimator

b 1= = S AU (0,00 + 1[G — (0, W)
i=1

1
1 — i, (Wi)
(d) Let I'y, - 7 +— %Zi:sn,pf AS(1,W;) and 7y, : T %Zi{nﬂ_/:T AS(W;). For any k € [0,00),
define 0, (k) := inf{7 : I',,(7) < k — app}, T (k) := max{n,(k),0}, and, for i = 1,2,...,n,
FERn i g = (K) and 7 (1(k) > 0,

dp i = Yn (1 (K))

I{&ni > nn(k)},  otherwise.

(e) Compute k;,, which is used to define an estimate of py for which the plug-in estimator is

asymptotically linear.

e If 7,,(k) > 0 and there is a solution in k € [0, c0) to

1

Ty G e (T Wl fadn =r. (S1)
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then take k,, to be this solution.

e otherwise, set k,, = k.

(f) For each i =1,2,...,n, estimate po(V;) with

kn—oapn—Dpn (1n(kn :
’jiz(‘rn(ki))( ))7 if En,i = Tn(kn)7 and Vn(Tn(kn)) >0,

I{&n: > m(kn)}s otherwise.

Pn,i =

3. Obtain an estimate p* of the reference ITR pX as follows:

e For R = FR, take pX to be p'R.
e For R = RD,

a) obtain a targeted estimate iC of u$: run an ordinary least-squared regression using
Hn, Ho
observations i = 1,2, ...,n with outcome Cj, offset ug(Ti, W;), no intercept and covariate

1/(T; + uE(W;) — 1). Take a$ to be the fitted mean model;

(b) take p to be the constant function o — min{1, (k — ad,)/PwnAS}, where we define
pointwise AS : w — S (1,w) — A€ (0, w).
e For R = TP, take pF to be ul.

4. Estimate ATE of pg relative to the reference ITR pz)2 with a targeted minimum-loss based estimator

(TMLE) t),,:

(a) obtain a targeted estimate i} of ,u%/: run an ordinary least-squares linear regression using
observations i = 1,2,...,n with outcome Y;, offset u) (T;, W;), no intercept and covariate

[pni — PO/ T; + pk(W;) — 1]. Take 1Y to be the fitted mean function.

(b) with P, being any distribution with components fY and me’ set 1y, 1= % py pmAX(Wl) -

U, (Py) where AY s w — i} (1,w) — fi} (0, w).

S4 Proof of theorems

S4.1 Identification results (Theorem (1| and

Theorem 1| is a simple corollary of the standard G-formula [36]. We provide a complete proof below.



Proof of Theorem[1. Note that
E[Y (1) | W] = EY (1) | T = 1,W] = o[y | T = 1,W] = s (1L W),

Similarly, E[Y (0) | W] = Eo[Y | T = 0, W] = u¥ (0, W). Hence, E[Y (1) — Y(0) | W] = A} (W). By the
law of total expectation, this yields that E[Y (1) — Y (0) | V] = Eg[AY (W) | V] = 6 (V). Tt then follows

that
E[Y (p) = Y (p5)] = E[{p(V) — o (W)HY (1) = Y (0)}]
= Eol[{p(V) — p& (W)} E[Y (1) = Y(0) | W]]
= Eo[{p(V) = o5 (W)} Ag (W)).
The results for the treatment cost can be proved similarly. O

We next prove Theorem

Proof of Theorem [3. Let p be any ITR that satisfies the constraint that Eo[p(V)dS (V)] + ago < k. We
will show that Eg[po(V)dy (V)] > Eo[p(V)éy (V)], implying that pg is a solution to (2).

Observe that

Eolpo(V)85 (V)] = Eo[p(V)dg (V)]

= Eo[{po(V) = p(V)}é5 (V)]

= Eo[{po(V) = p(V)}d5 (V)I(&(V)) > 70)] + Eol{po(V') — p(V)}65 (V)I(& (V) < 70)]
+Eol{po(V) = p(V)}d5 (V)I(&0(V) = 7))

= Eo[{po(V) = p(V)}6o(V)&5 (V)I(&0(V) > 70)] + Eol{po(V) — p(V)}o(V)&5 (V)I(&(V) < 70)]

+ Eo[{po(V) — p(V)}o(V)S§ (V)T (£0(V) = 70)].

Note that po(v) =1 > p(v) if {o(v) > 70 and po(v) = 0 < p(v) if {r(v) < 79. Combining this observation

with the fact that 79 > 0, the above shows that

Eo[po(V)dg (V)] — Eo[p(V)ég (V)]

> 70 Eol{po(V) = p(V)}65 (V)I(&(V) > 70)] + 70 Eo[{po(V) — p(V)}65 (V)1 (&0(V) < 70)]



+70 Eo[{po(V) = p(V)}65 (V)1 (&0(V) = 0)]

=70 Eo[{po(V) = p(V)}55 (V).

If 79 = 0, then Eg[po (V)33 (V)] — Eo[p(V)dy (V)] > 0, as desired; otherwise, 79 > 0 and Eq[p(V)s§ (V)] <
Kk — apg = Eolpo(V)6§ (V)], and so it follows that Eg[po(V)dy (V)] > Eo[p(V)dY (V)]. Therefore, we

conclude that pg is a solution to . O

S4.2 Pathwise differentiability of ATE parameter (Theorem b

We follow existing literature on semiparametric efficiency theory closely to prove pathwise differentiability
of our estimands and asymptotic efficiency of our estimators under nonparametric models. We refer
readers to, for example, Pfanzagl [30, B1], Bolthausen et al. [4], for a more thorough introduction to
semiparametric efficiency.

To derive the canonical gradient of the ATE parameters, let H C L%(Po) be the set of score functions
with range contained in [—1, 1] and we study the behavior of the parameters under perturbations in an
arbitrary direction H € H. We note that the LZ(Py)-closure of #H is indeed L3(Py).

We define Hy : w — Eq[H(O) | W = w], Hr : (t | w) = Eo[H(O) | T =t,W = w] and Py via its

Radon-Nikodym derivative with respect to Pp:

APy
P,

o [1+eH(0o) —eHp(t | w) — eHy (w)] [1 + eHp(t | w)] [1 + eHy (w)] (S2)

for any € in a sufficiently small neighborhood of 0 such that the right-hand side is positive for all o €
W x{0,1} x {0,1} x R. It is straightforward to verify that the score function for € at € = 0 is indeed H.
For the rest of this section, we may drop H from the notation and use P. as a shorthand notation for
Pr ¢ when no confusion should arise.

We will see that each parameter evaluated at P, depends on the following marginal or conditional
distributions in a clean way: the marginal distribution Py of W, the marginal distribution Pry e of
(T, W), the conditional distribution Pr of T' given W, the conditional distribution Pc . of C given (T, W),
and the conditional distribution Py, of Y given (T',W). We now derive their closed-form expressions.

Let Ho : (¢ | t,w) — Eo[H(O) | C = ¢, T = t,W = w] — Hr(t | w) — Hw(w), and Hy : (y | t,w) —



Eo[HO) |Y =y, T =t,W =w| — Hp(t | w) — Hw(w). We can then show that

APy
= 1 H
P w = 1+ eHy (w),
dPr .
BWe  (t,w) > 1+ eHp(t | w) + eHy (w),
dPTJ/{/,()
dP
D w) it 1+ eHp(t | w), (S3)
dPrg
dP,
dPS:;(- | t,w):cr 1+ eHo(c | tw),
dPy.

|t : 1 H: t .
dPY,O( | ,U}) yr—=r1l4e Y(y| ,U})

Moreover, Eo[Hw (W)] = 0, Eo[Hp (T | W) | W] =0 Py-a.s., Eo[Hc(C | T, W) | T,W] = 0 Py-a.s., and
Eo[Hy (Y | T,W) | T,W] =0 Py-a.s.

We finally introduce some additional notations that are used for the rest of the section. We use €
to denote a generic positive constant that may vary line by line. Let Sy be the survival function of the
distribution of &y (V) when V' ~ Py. We also use the notation < defined in Section For a generic
function f : R — R, we will use the big- and little-oh notations, namely O(f(e)) and o(f(¢)), respectively,
to denote the behavior of f(e€) as € — 0. Finally, for a general function or quantity fp that depends on a
distribution P, we use f. to denote fp . For example, we may write ,uzf as a shorthand for ,uge. We will
also write expectations under P, as E..

The derivation of the canonical gradients of P+ W rr(P) can be found in the Supplement of |Qiu
et al. [34]. We now derive the canonical gradients of P \IIP’ITDP(P), P~ \pr%D(P) and P — V,,(P),

which are different from the parameters in Qiu et al. [34].

S4.2.1 Canonical gradient of P — ¥ pgp(P) (Theorem )

Fix a score H € H. Note that, for all P € M, U e (P) = [ ph(w)AY(w) Py (dw). Combining this, (S3))

and the chain rule yields that




- / / (t — ud () Hr(t | w)AY (w) Pro(dt | w)Po(dw)
[ (* %(: ?—11_“53(0;))<y—u§<t,w>>Hy<y|t,w>Py,o<dy|t,w>PT,o<dt|w)PW,o<dw>
/ (W ()Y (1) — @ e (Po)) Hy (1) P (dw)

/GTP P() ( )Po(do),

where we have used the fact that Eq[Hy (Y | T, W) | T, W] = 0 Py-a.s., Eo[Hr (T | W) | W] =0 FPy-ass.,
and Eq[Hy (W)] = 0. Therefore, the canonical gradient of P +— W pIT)P(P) at Py is Grp(Fp).
S4.2.2 Canonical gradient of P — \ij;RDD(P)

Let H be a score function in H. We aim to show that

d
a\:[]pftD P

:(/]gRD(fh)@ﬁf{@g}%(do% (S4)

which shows that P — ¥ pRD (P) is pathwise differentiable with canonical gradient Grp(F) at Fp.

By similar arguments to those in Section 3.4 of Kennedy| [16], we can show that

d 1-—

aPE/JJeC(O? ) o / {HLQTEW)[C = 1§ (0, w)] + p§ (0, w) — Pou; (0, ')} H(o)Py(do),  (SH)
d 1
2ra?| = [l )+ A w) - RAT} HOR@). (56

Consequently, P.uf(0,) = Pou§(0,-) + O(e) and P.AY = PyA§ + O(e). Tt follows that, for all e
in a sufficiently small neighborhood of zero, Condition implies that (k — aP.uc(0,-))/P.AC < 1.

_ k—aPepf(0,) U

Consequently, for each € in this neighborhood, V¥ zp (P.) = B AC vs1(P;), where we have used

that P.AY = W, ,1(P.). It follows that the derivative %Pﬁug(o, -)’620 is the same as the derivative of

fre— %&C(O)\IJUHH(PE) at € = 0, provided this derivative exists. Noting that v — 1 is a particular

instance of a fixed treatment rule, we may take p'® to be v — 1 in the results on pathwise differentiability

of P+ W pr(P) and show that

d

7\111) Pe
de ~1(F)

:/Dmmmﬂﬁ#$@H@%M® (S7)
=0
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As both the above derivative and the derivatives in and exist, by the chain rule, it follows that

d K —aPou§(0,-) d
— = — U1 (P
def(e) =0 POAOC de —1(F)

\I’vl—>1 (PO) d C
—a—E P (0,
« P(]Ag dG IU’E (0 )

(1 — aPouf (0. ) Tus1(Bo) d o, (¢
- . S PAC
=0 (PoAG)? de

e=0

e=0

Note that ¢p = P,ug(O, -). Plugging , and into the above and we can show that the right-

hand side of the above is equal to the right-hand side of (S4). As %f(e)‘gzo = %‘Ilpgn (P)| , we have

shown that holds, and the desired result follows.

S4.2.3 Canonical gradient of P — V,,(P)

Let H be a score function in H. The argument that we use parallels that of Luedtke and van der Laan| [20]
and Qiu et al.| [34], except that it is slightly modified to account for the fact that the resource constraint
takes a different form in this paper.

We first note that all of following hold for all € sufficiently close to zero:

sup [AL (w) — Af (w)] < e, (S8)
sup |07 (v) — & (V)] S lel, (59)
sup |0¢ (v) — 65 (v)] < [el. (510)

The derivations of these inequalities are straightforward and hence omitted. Under Condition the

above inequalities imply that

oc (v) 95 (v)

€

0C (v) 65 (v)

S lel. (S11)

sup|&.(v) - &o(v)| =

For e sufficiently close to zero, it will be useful to define
Le 1 E[I{E(V) > n}o¢ (V)]

for n € [—00,0). We also define I', : n — d%l“e(s)\szn when the derivative exists.
We first show two lemmas. These two lemmas show that, under a perturbed distribution P. with

magnitude e, the fluctuation in the threshold 7. — €y is of order e. This result is crucial in quantifying

11



the convergence rate of two terms in the expansion of ¥, (P) — V¥, (Fy), namely terms 1 and 3 in
below. In particular, term 1 is the main challenge in the analysis as it comes from the perturbation in
the threshold and is unique in estimation problems involving the evaluation of optimal ITRs. The first
studies the convergence of 7. to ng. Because it may be the case that nyg = —oo, the convergence stated in

this result is convergence in the extended real line.
Lemma S1. Under the conditions of Theorem[3, ne — no as € — 0.

Proof of Lemma[S1. We separately consider the cases where 79 > —oo and 19 = —oc.
Suppose that ng > —oo. For all sufficiently small 6 > 0 and sufficiently small |¢|, by (S10), (S11|) and

the fact that the range of H is contained in [—1,1], we can show that

Le(no +8) + age < (1 + €lel) Eo[[{€(V) > no + 83155 (V)] + ade < (1 + €le)To (1o + 6 — Cle]) + ape.

Under Condition as long as ¢ is small enough, the right-hand side converges to I'g(no + ) + ago
as € — 0. Moreover, Conditions and [A4] can be combined to show that the derivative of Tg is
strictly negative for all x € [ng,no + ] for sufficiently small §, and so T'g(no) > To(no + ). Because
Lo(no) + apy = K by the definition of py under Condition it follows that, for all e sufficiently close
to zero, I'e(no + ) + ape < k. By the definition 7. := inf{n : I'«(n) < k — age}, it follows that, for all €
sufficiently close to zero, g + 0 > e, that is, n. —ny < 9.

By similar arguments, we can show that, for all e sufficiently close to zero, n. — ng > —9. Indeed,

Ce(no —8) + age > (1 — Cle|)To(no — d + Cle|) + ade.

The right-hand side converges to T'o(19 — ) + agg as € — 0 provided § is sufficiently small. The derivative
of Ty is strictly negative on [ny — d,np] provided § is small enough, and therefore, T'o(ny — d) + agg >
To(no) + agpg = k. Hence, T'e(ny — 6) + ade > k. By the definition of 7., it follows that ne — ny > —9.

Combining these two results, we see that, for all € sufficiently close to zero, |n. — ng| < §. Hence,
lim sup,_,q |7e —no| < 0. As § > 0 is an arbitrary in a neighborhood of zero, it follows that lim sup,_, |7 —
no| = 0. That is, . — 1o as € — 0 in the case that ny > —oc.

We now study the case where 19 = —oo. If kK = 0o, then it is trivial that . = —oo = ng for all €, and
so the desired result holds. Suppose now that x < oco. Fix a small enough § > 0 so that the bound in

(S11)) is valid for all € € [—4,d]. Also fix € € [-4,d] and n € R. By (S11)) and the bound on the range of

12



Le(n) + age < (1 + €lel) Eo[[{&(V) > n}AG, (V)] + age < (1 + €le|)To(n — Clel) + age.

Because I'y is a nonnegative decreasing function, the right-hand side is no greater than (1 + Cle|)To(n —
Cd) + a¢pe. This upper bound tends to I'g(n — CJ) + agpp as € — 0. Hence, limsup,_,oTe(n) + age <
Lo(n—Cd)+apy. By Conditionand the monotonicity of I'g, I'o(n—Cd)+agy < k, and so I'¢(n)+ad. < K
for all € sufficiently close to zero. By the definition of 7., it follows that n. < n for all € sufficiently close

to zero. Since n € R is arbitrary, the desired result follows. O
The next lemma establishes a rate of convergence of 7. to 7y as € — 0.
Lemma S2. Under conditions of Theorem[3, e = 19 + O(€).

Proof of Lemma[S9 We separately consider the cases where 1y < 0 and n9 > 0.

We start with the easier case where 19 < 0. In this case, Lemma shows that 7. := max{n,, 0} is
equal to 79 = 0 for all e sufficiently close to zero. Thus, 7. — 79 = O([e).

Now consider the more difficult case where 1y > 0. By the Lipschitz property of the function z —
max{z,0}, we can show that | max{n., 0} — max{ny,0}| < |ne — no|- As a consequence, to show that
Te — 10 = O(€), it suffices to show that n. — np = O(e). We next establish this statement.

Fix € in a sufficiently small neighborhood of zero. By the definition 7. := inf{n : I'¢(n) < k — ¢¢}, the
bound on the range of H, and (S11)), it holds that & < Te(ne — |e]) + age < [1+C|e|]To(ne — [1+C]le]) + ade.
We use a Taylor expansion of I'g about 719, which is justified by Condition [B3|provided |e| is small enough,

and it follows that
< [1+ €lel] [To(m) + {1 —mo — (1= ©)le[HTh(mo) +o(1)}] + ado + O(e).
By Condition To(no) + ago = k. Plugging this into the above shows that
0 < CTo(o)le| + [1 + Clel] [ne — 1m0 — (1 = €)lel] [ (mo) + o(1)] + O(e).

Note that Condition implies that I'{(ng) € (—o00,0). Therefore, the above shows that, for all e
sufficiently close to zero, 0 < [ne — no]T'G(n0) + Cle| 4+ o (e — 1mp), which implies that there exists an O(e)

sequence for which n. —np < O(e).
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A similar argument, which is based on the observation that I'¢(n. + |€|) + ¢ < k, can be used to show
that there exists an O(e) sequence such that 7. — g > O(e). Combining these two bounds shows that

ne — 1Mo = O(e), as desired. This concludes the proof. O

Our derivation of the canonical gradient is based on the following decomposition:

U, (P) — ¥, (FPo)
=W (Pe) = Wy (Pe) + Wy (Pe) = Wy (F)
=Pe{[pe — pol0 } + U (Pe) — Uy (Fy)
=Pe{[pe = pol (60" = 105E)} + 10P{(pe = p0)0E } + W (Pe) = Wy (Fo)
=Pe{lpe = po) (8 = 1086 )} + [ W o (Pe) = Uy (Po)] + 10 { PelFC pe] + ape — P[5 po] — o}

— 10PA{ (6 — AFy)po} — T0(Pe — Po){0§ po} — aro{e — o} (S12)

We separately study each of the six terms on the right-hand side, which we refer to as term 1 up to

term 6.

Study of term 1 in (S12)): We will show that this term is o(e). By Lemma[S2) and (S9)),
sup |07 (v) = 78 — & (v) + 7085 | < supldy (v) — &g ()] +sup |5 (v) — & (V)] + |7e — 70| < el-

Under Condition Py{& (V) =19} = 0. We apply a similar argument as that used to prove Lemma 2

in van der Laan and Luedtke, [46]:

| Pe{[pe = pol(8 = 700} |

= / [pe(v) = po()][67 (v) — 08¢ (v)] P, (dw)

< / 19e(v) = po()] |8 (v) — 700C (v)| Prve(do).

Because pe(v) # po(v) implies that either (i) & (v) — 7 and &y(v) — 70 have different signs or (ii) only one

of these quantities is zero, the display continues as

< /I{\ﬁo(v) — 70| < |&(v) = e — &o(v) + 10|} 6 (v) — 70560(1))‘ Py (dw)

< /I{Iéo(v) — o] < Clel} (|85 (v) — 7005 (v)] + Clel) Prwze(dw).
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Using the facts that inf, 5§ (v) > 0 by Condition that sup, d§'(v) < 1 since probabilities are no more

than one, and that &(v) := &% (v)/65 (v), the display continues as

< [ Hi6o) ~ ml < €lel} (0(0) — ] + EJel) Pl

Leveraging the bound on |{y(v) — 79| that appears in the indicator function, we see that

< [ 1) = ] < Elel}(€le] + Ele) Pve(aw)
Skl [ Hléo(w) = ] < Elel} uo(du)

y / 1{0 < [€0(v) — 70| < Cle]} Pao(duw),

where the final equality holds by Condition The integral in the final expression is o(1), and so this

expression is o(e).

Study of term 2 in : By the result on the pathwise differentiability of P — W rr (P), setting pFR
to be pp, we see that the second term satisfies ¥, (P.) — U, (Py) = € [ G2(0)H (0)P(do) + o(e), where
Go € LE(PRy) is equal to D(Py, po, 0, u§).

Study of term 3 in : We will show that the third term is identical to zero for any e that is
sufficiently close to zero. If 7p = 0, then this term is trivially zero. Otherwise, 79 = 19 > 0. Lemma [ST]
shows that, in this case, 7. > 0 for e sufficiently close to zero. Hence, E [0 (V)pe(V)] + ape = r =

Eo[0§ (V) po (V)] + ag. Consequently, term 3 equals zero for all e sufficiently close to zero.

Study of term 4 in (S12): We will show that this term can be writes as e [ G4(0)H (0)Py(do) + o(e)
for an appropriately defined G4 € L%(PO) that does not depend on H. Note that there exists a function
Hy : (w | v) = Hy(w | v) for which [ Hy (w | v)Pw,o(dw | v) = 0, sup,,, |[Hw(w | v)| < oo, and, for all

Py e(dw | v) = 1+ eHw(w | v) + o(e)) Pwo(dw | v).

The function Hy can be chosen so that the above o(e) term indicates little-oh behavior uniformly over
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w and v. By the definition of Ho from , we see that

5 (v) — 6§ (v) = // c{[l +eHe(c | 1,w)][1 + eHy (w | v) + o(e)] — 1}P0(dc | 1,w) Py (dw | v)
- //c{[l +eHe(e |0 w][1 -+ ey (w | v) +o(e)] — 1} Po(de | 0,w) Py(dw | v)
=< //C<HC(C 1) + Hyw (w | v) + 0(1)) Po(de | 1,w) Bo(dw | v)

= [ [ ettcte] 0.w) + Hipw] v) + o(1) Palde | 0.w)Po(dw [ v)} + ofe),

where the little-oh terms are uniform over w and v. Hence,

d
= PA16C - 5§10}

e=0

- // po(0)e{Ho (e | 1,w) + Hy (w | v)}Po(de | 1,w)Po(dw)

— // po(v)ce{Hc(c | 0,w) + Hy (w | v)}Po(de | 0, w)Py(dw)

= o | (V) (i = {C 6 LW MHIAC |10+ {AS V) — 8 (V) (W | V) ).

Since Eq[Ho(C | T, W) | T,W] = Eo[Hw (W | V) | V] = 0 FPp-a.s., the display continues as

~ o (1) ( = T W)+ 2§ 07) - 65(1) ) 1(0)].

T + g (W)

As a consequence, term 4 satisfies
o PALC — 6Cpo} = € / G4(0) H(0) Py(do) + ofe),

where

1

G4 0= — TOpO('U) {W

o=k t.0)] + AF () = 35 0) |

Study of term 5 in (S12): By and the fact that Py{d§ po} = k — ady whenever 7y > 0, we see that
—10(Pe — Po){6§ po} = € [ G5(0)Hy (v) Py(do), where G5 € L3(Pp) is defined as o — —79[55 (v)po(v) — & +
o). Since Hy is defined as v = Eo[H(O) | V = v], we see that it also holds that —7o(P. — Py){6§ po} =
e [ G5(0)H (0)Py(do).
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Study of term 6 in (S12)): We have shown that

1
b= o = e [ { T isle = 0.0+ 40.0) = 0 ) HO)Ro) + ofe).

Therefore, —oa(¢pe — ¢0) = € [ G(0)H (0) Py(do) + o(e) where

1—-1¢

Ge : 0 — —Tpa {
1 — g (w)

o= K 0.0)] + 4§ (0,) = 60 .
Conclusion of the derivation of the canonical gradient of P — ¥, (P): Combining our results

regarding the six terms in (S12)), we see that
Vo (Pe) = Wpo(Po) = 6/ [G2(0) + Ga(0) + G5(0) + Ge(0)] H (0) Po(do) + o(e).

Dividing both sides by € # 0 and taking the limit as € — 0, we see that Gy + G4 + G5 + Gg = G(P) is

the canonical gradient of P — W, (P) at P.

S4.3 Expansions based on gradients or pseudo-gradients

In this section, we present (approximate) first-order expansions of ATE parameters based on which we
construct our proposed targeted minimum-loss based estimators (TMLE) and prove their asymptotic
linearity. We refer the readers to Supplement S5 of |Qiu et al| [34] for an overview of TMLE based on
gradients and pseudo-gradients. The overall idea behind TMLE based on gradients is the following: the
empirical mean of the gradient at the estimated distribution can be viewed as the first-order bias of the
plug-in estimator; this bias can be removed by solving the estimating equation that equates the first-
order bias to zero. The idea behind pseudo-gradients is similar, except that the gradient is replaced by
an approximation that we term pseudo-gradient so that the corresponding estimating equation is easy to
solve with a single regression step.

For any ITR p: W — [0, 1] that utilizes all covariates, we define

RP(P7 PO) :\I/P(P) - \IIP(PO) + POD(Pv P Ouuc)
pp(W) — pd (W)
p(W){ : mTa(Wf

pp(W) — g (W)
1 — pp(W)

(p(LW) = g (1,W))

+ (up (0, W) — uK(o,W»}]-
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For any ITR p : V — [0, 1] that only utilizes V, for convenience, we define R,(P, o) := Ry p(v (w)) (P, Fo)-

For ¥ rr and W pLP it is straightforward to show that the following expansions hold:

U rr(P) — ‘I/pFR(PQ) = —POGFR(P) + RPFR(P, Ry),

() = pd ()

W 1p(P) — U e (Py) = — P, P)+ P
e )= Wy () = ~RGre(P) + £y { EE A

W50 -3 0}
For P+— U pRD (P), we expand this parameter sequentially as follows:

Vo (P) — \pr%?(Po) = PyD(P, p&P,0, u%) + R o (P, Po) + (P8P — pi°) PoAg

K—¢p K— o
ppP — pi> =

PAS  PA§’

T _ T
(k — agp) — (K — agy) = a {PODI(P, n) + Po {(MC(Q )= (L, -))W}} )
z

c c C c c PP — 1o ¢ ¢ Kp = 1o
PAp — POAy = —PyD2(P, 1) + Py {(HP(L ) = g (1, '))T + (1p(0,) = g (0, ‘))1—uT} '
T P

For P+ W, (P), straightforward but tedious calculation shows that the following expansion holds:

\IIPP(P) - ‘;[IPO(P0> = _POD(Pa 1077_07/’40)

+ R,(P, Py) + Po{(p — po) (53 — m00§)}

T T
~ oy oV 2EE 00, w) )

e [11 - o EEOD - )

S4.4 Asymptotic linearity of proposed estimator (Theorem )

For convenience, we set P, to have component /) and ﬂg , even though the plug-in estimator does
not explicitly involve these functions. We start with some lemmas that facilitate the proof of the main
theorem. In this section, we define 7, := n,,(k,) and 7, := 7,(k;,) to simplify notations.

Our proof is centered around the expansions in Supplement We first prove a few lemmas.
Lemma is a standard asymptotic linearity result on estimators ¢,, and PNAS about treatment resource
being used for constant ITRs v — 0 and v +— 1, respectively; Lemma [S4]is a technical convenient tool to
convert conditions on norms in Condition [B| between functions; Lemmas are analysis results for

estimators that are similar to Lemmas [SIHS2| for deterministic perturbations of Py, and they lead to the
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crucial Lemma [S8| on the negligibility of the remainder Rp(f?n, Py) for an arbitrary ITR p.
Lemma S3 (Asymptotic linearity of ¢,, and PnAg). Under the conditions of Theorem

(z)n - (Z)O = (Pn — PO)Dl(PO7NOC) + Op(nil/Q) — Op(n*1/2),

PoAS — ByA§ = (P, — Po)Da(Po, u§) + 0p(n™12) = 0, (n=1/3).

This result follows from the facts that (i) ¢, is a one-step correction estimator of ¢g [30], and (ii)

P,AY is a TMLE for PyA§ [44, 49]. Therefore the proof is omitted.

Lemma S4 (Lemma S8 in|Qiu et al.|[34]). Fiz functions u© : {0,1} xW — [0,1] and p¥ : {0,1} xW — R,

and suppose that PopY (0,-)% < oo and Pyp (1,-)? < co. If Condition holds, then

H,UY(L ) - M(})/(l? ')HZPO + HMY(Oa ) - MOY(()? .)H27P0 = HMY - /-LOYH27PO’

C C
11 (1) = 1§ (1), + 116900, 7) = w6 (0, ) l2,py = 11 = 1 |2,

where a ~ b is defined as a S b and b < a.

The following Lemmas prove consistency of the estimated thresholds used to define the esti-

mated optimal ITR p,,.
Lemma S5 (Lemma S5 in |Qiu et al. [34]). Let ¢ > 0, n € R, g : O — R be bounded and functions

fo:O—=Rand f: 0 —R. Then

\Po(I(f >mn) — 1(fo > n)lg)l < BIL(f >mn) —I(fo >n)lgl

S Pollf(O) = fo(O)] > €} + Po{[fo(O) —n| < €}

If g takes values in [—1,1], then < can be replaced by <.

Lemma S6 (Consistency of n,(k)). Under Conditions and (k) 2 no.

This lemma is a stochastic variant of the deterministic result in Lemma and has a similar proof.

Therefore, the arguments are slightly abbreviated here.

Proof of Lemma[S6. We separately consider the cases where 79 > —oo and 19 = —oc.
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First consider the case where g > —o0o. We start by showing that, for any n sufficiently close to 7y,

it holds that I'y,(n) — I'o(n) = 0p(1). Fix an n in a neighborhood of 7. By the triangle inequality,

ITn(n) = To(n)] < [P[I{&(V () > n} = I(&(V () > )] A
+ [P I{&(V () > n}AS — AF]]

+ [(Po = Po)I{&(V (")) > n}AS]. (S13)

We will show that the right-hand side is 0,(1). By Condition the third term on the right is o,(1)
for n sufficiently close to 19. Moreover, because the second term is no greater than [|AS — A§|1 p),
Condition also implies that this second term is also o,(1). We will now argue that the first term is

0p(1). By Lemma [Sh| and Condition for any € > 0,

IPo[I(&a(V () > n) — I(&(V () > m]AS| < PolI(& >n) — I(& > n)]
< PoI(|&n — &o| > €) + PoI(|&o —n| <€)

- Hﬁ—fo\llp + RoI(1& —n| <€),

where the final relation follows from Markov’s inequality. We next show that the last line is o,(1).
Fix € > 0. For n that is sufficiently close to 79 and ¢ that is sufficiently small, by Condition we
see that Sp is continuous in [ — €/, + €/] and hence, for all sufficiently small ¢ > 0, it holds that

PoI(|&o — n| <€) < €/2. Therefore,

P {|PolI(6n > 1) — I(€0 > 0)]| > ¢} < P P&~ < &) > }

< Ry {”’5” _50”17130 > e/z} :

{Ilfn — Sollp
¢

Since [|&, — &oll1,p, = 0p(1) by Condition the right-hand side of the above display converges to zero
as n — oo. Therefore, |P[I(£,(V (1)) > n) — I(&(V () > n)]AS| = 0p(1). Recalling (S13), the above
results imply that I'y(n) — T'o(n) = op(1) for any n that is sufficiently close to 7.

Fix € > 0. For any e sufficiently small, the above result and Lemma imply that 'y (o — €) +
agn, = To(no — €) + ago + op(1) and I'y(no + €) + adn = Lo(no + €) + apo + 0p(1). By Condition
Lo(no —€) + apy > k > To(no + €) + app provided e is sufficiently small. It follows that, with probability

tending to one, I'y,(ng — €) + ady, > k > Tp(no + €) + ady, and hence gy — € < nu(k) < 1o + € by the
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definition of 7, (k). Because € is arbitrary, it follows that 7, (k) - no.

The case where 19 = —oo can be proved similarly. If kK = oo, then it trivially holds that n,(x) =
—o0 = 1) for all n and the desired result holds. Otherwise, for any n < 0 for which || is sufficiently large,
a nearly identical argument to that used above shows that [I';,(n) + a¢,] — [Lo(n) + agoe] = op(1). By
Condition and monotonicity of Ty, it follows that I'g(n) + a¢o < k, and so, with probability tending
to one, I'y(n) + ad, < k and hence n, (k) < n by the definition of 1, (k). Because 7 is arbitrary, we have

shown that 7, (k) 2 —oo = 10. O

Lemma S7 (Consistency of 7, and existence of solution to Eq. p| when 19 > —o0). Assume that the

conditions of Theorem[f] hold. The following statements hold:

i) if no > —oo, then, with probability tending to one, a solution k!, € [0,00) to exists. Note that we
let ky, = kI, when n,(k) > 0 and k], exists. Hence, if ng > 0, np = nu(kn) = nn(k],) with probability

tending to one;
ii) if a solution k!, to (5 ewists, then with probability tending to one, Po{dy, r AS }+agy = k+0,(n~1/2);
iii) T, — 7o = 0p(1).

We separately prove and [iii] in the case that 1y > —oo, and then we separately prove [ii] in the

cases where 19 > 0, 79 = 0 and 79 < 0.

Proof of [l from Lemma[S7. Our strategy for showing the existence of a solution to is as follows. First,
we show that the left-hand side of consistently estimates the treatment resource being used uniformly
over rules {d, ; : k € [0,00]}. Next, we show that the left-hand side of (5)) is a continuous function in k
that takes different signs at £k = 0 and k = oo with probability tending to one.

Define fy, 1 : 0+ dy 1 (v) [Ag(w) + W[c —ul(t, w)]} We first show that
sup | P fuk — Po{dniA§}H = Op(n™/?). (S14)
ke[0,00]

We rely on the fact that, for fixed d,, ., P, fy 1 is a one-step estimator of Po{dmkAOC}. Note that

sup | Py fop — Po{dn AT} < sup )(Pn — Po)dy ;Do (P, 1))

ke[0,00] ke[0,00]
Ty _ ,,T9.
v [P {dn,k<v<->>’W[uS<L ) — S, ->]}'
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p () = 115 ()

oD 1 12()

k€0,00]

2 {dnatv () 0. - i 0.1}
Conditions|B7|and along with Lemmaimply that the first term on the right-hand side is Op(n_l/ 2.

For the second term, we note that the fact that d, ,(V(w)) € [0, 1] for all w € W and all k € [0, c0] and

the Cauchy-Schwarz inequality imply that

“ RO =5 O e e

. A a2 b0 - g |

Ty ,Ty.

) PO = 0] I = i eI (1) = K 1.

n

<P

Hence, the second term is o,(n~'/2) by Condition The third term is also o,(n~/2) by an almost
identical argument. Combining the previous two displays shows that holds.

Applying at k = 0 shows that P, f, o+a¢, = Po{dn,gAg}—l—ad)o+Op(n_l/2) = a¢0+0p(n_1/2).
Therefore, P, fno0 + a¢, < k with probability tending to one. Applying this result at & = oo shows that
Py fai+ady, = Po{dnooA§}+ago+0,(n12) = PyA§ +apo+O,(n~1/2). Combining this fact with the
fact that POAOC + oo > Kk whenever 1y > —oo shows that P, f, 1 + a¢, > ~ with probability tending to
one. Combining these results at k = 0 and k& = oo with the fact that k — P, f,, » is a continuous function
shows that, with probability tending to one, there exists a k;, € [0,00) such that P, f, 1 = Kk — agy.

Lemma [S6| then implies 1, = n, (k) with probability tending to 1. O

Proof of [id from Lemma[S7. . By Lemma Eq. and partof this lemma, we see that Py{d,, », A§ }+
a0 = Ppfuk, + ady +O0p(n~2) = k + 0,(n~1/2), as desired. O

Proof of[ii] from Lemma [S7 when 1o > 0. In this proof, we use P} to denote a probability statement over
the draws of Oq,...,0,. Fix € > 0. We will argue by contradiction to show that P {n, > no+ €} — 0
and P {n, <no — €} — 0 as n — oo, implying the consistency of n,,. The consistency of 7, then follows.

We study these two events separately. First, we suppose that
lim sup Py {n, > no + €} > 0. (S15)
n

Then there exists § > 0 such that, for all » in an infinite sequence N C N, the probability P {n, > no + €}
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is at least §. Consequently, for any n € N, the following holds with probability at least d:

Po{dn o, AT} + ago — & < Po{I(&n > o + €/2)AF} + ago — k

= Po{[I(&n > 1o+ €/2) — I(€0 > no + €/2)]A} + To(no + €/2) + g — k.
(S16)

We now show that the first term is o,(1). For any « > 0 and n € N, by Lemma |[S5| and Condition

|Po{[I(&n > mo + €/2) — I(&0 > mo + €/2)]ATH S Pol([€n — &0l > ) + PoI(|€0 — nn + /2] < )
< Mo =Sl 4 iy — o+ /2] < )

Similarly to the proof of Lemma the fact that ||&, — &oll1,p, = 0p(1) (Condition ensures that
Po{[I(&n > mo+€/2) — I(& > no+¢€/2)]AS = 0,(1). By Condition To(no+€/2) —Lo(no) is a negative
constant. Because holds with probability at least § > 0 for infinitely many n, this shows that
Pg{dn,k.nAOC } 4+ apo — k is not op(1). This contradicts our result from part [iif of this lemma. Therefore,
is false, that is, limsup,, Py’ {n, > no + €} = 0.

Now we assume that, for some € > 0, limsup,, P§' {n, < no — e} > 0. Then there exists § > 0 such
that, for all » in an infinite sequence N C N, P} {n, <no — €} > §. Now, for any n € N, the following

holds with probability at least §:

Po{dp i, AS} + ado — k > Po{I(&n > no — €)AF} + agy — &

= Po{[I(&n > no —€) — I(§o > mo — €)]ro} + Lo(no — €) + apo — k.

The rest of the argument is almost identical to the contradiction argument for the previous event, and is
therefore omitted.
Since € is arbitrary, combining the results of these two contradiction arguments shows that |7, — 79| <

|1, — mo| = 0p(1), as desired. 0

Proof of [it] from Lemma [S7 when ny = 0. If ng = 0, then the construction of n, implies that 7, takes
values from two sequences: n,(k) and 7, (k,) where k, is a solution to (). By Lemma (k) is
consistent for ny. When a solution to exists and equals k,, the proof of part [iiil from Lemma [S7| when

1o > 0 shows that 1, (ky) is consistent for 79 and the desired result follows. O
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Proof of [it] from Lemma [S7 when ny < 0. If ng < 0, then by Lemma Nn(k) < 0 with probability

tending to one. Hence, with probability tending to one, 7, = 0 = 7. Therefore, part [iii] holds O
The following Lemmashow that certain remainders in the expansions in Sectlon are o,(n~/2)

Lemma S8. Under Conditions[A3, [B8 and[Bé,

sup | Ry(Po, Po)| = o (n112).
p:W—[0,1]

Proof of Lemma[S8. By the boundedness of the range of p, we see that

sup ’Rp(lf’n,Po)’

p:W—[0,1]

_w O A O T N RN 1 O /1 O PN

‘p%g%uH)M)[ L GRS O uom,»ﬂ
ey — o, Iy Ty _ Ty,

~Y Y

Hn 07 )T M 07 : :| ‘ .

Using Condition [B§ and Lemma [S4], the display continues as
SPo [ () = g (), (1,-) =

po (L] + Po | (g (-)

~Y Y
— g () (0,+) = pg (0,)]|
T T ~Y Y T T ~Y Y
<[|ptn, = 110 2, 12, (1, +) — g (1) + [l ttn = 10 ll2, Rl 2, (0, ) — g (0, ) |2,y
T T ~Y Y
Sl — 1o ll2,pollin, — 10 12,

The right-hand side is 0,(n~/2) by Condition .

We next prove Theorem

Proof of Theorem[j. By the expansion of P +— W, (P) presented in Section

Uy, (Bn) = Wy (Fo)

:POD(PumTOaMn) R (Pn>P0)+P0{(

o —p0)(85 — 7085 )}
— s {2 e ) )
w0 = o £

C C
” 0’ ) — [)7 .
) 0, %<>@
= (Pn — Py)D(Py, po, 70, 115 ) — PuD (B, pr, 70, 15)
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+ (Pn - PO) [D(PnapnaToaﬂg) - D(P07p0a7—07/‘/’00):|

+ R, (P, Po) + Po{(pn — p0) (33 — 1005)}
~ s {280 ) )
Ty Ty
s {1- )OO0, - i 0.1).

Similarly,

U (Po) = W yen (Po) = (Po — Po)D(Po, o, 0, 1) — PuD (P, P, 0, 1))

+ (Pa = Po) | D(Pay p",0,1§') = D(Py, o™, 0,4)| + Ry (P, Po);
W ono (By) = W0 (Po) = (Po — Po)D(Po, po >, 0, 1) = PuD(Prs pi°, 0, 1§

+ (Po = ) | D(Pr, p°, 0, 1) = D(Po, p°, 0,45

+ Ron (Po, Po) + (03 = pi ") POAY 5
W re(By) — W re (Po) = (Pu — Po)Grp(Ro) — PaGre(Ba) + (Po — Ro) [GTP(Pn) - GTP(PO)]

+ RPOTP (Pn, PO).

First, we note the following facts, which will be sufficient to ensure that the remainders and empirical
process terms in all of the first-order expansions given above are o,(n~'/2). By Condition [B6} Lemmas

and [S8, the Cauchy-Schwarz inequality, and boundedness of the range of an ITR, the following terms are
all o, (n=1/2):

Rp<pna PO) for P = Pn, pFR7p5D7

T
%{“ﬁ}ﬂ@§>m<m»—ﬂ&m»>,
m%{%@mx>$ﬂ
() =16 () o

1

ns{ (1= pu()” MX)U%W)—M&&N}-

Moreover, by Condition Po{(pn — p0) (0} — 1005} = 0p(n~1/2); by Conditions [B7| and (P, —
Py) [Dn.r — DRr(Py)] = op(n~/2) for all R € {FR,RD, TP} and

(PH_PO){[D(P’n?pnﬂ—()?/j’g)_D(PH7PSD7O7IU’(?)]_[D(P07p077-07uoc)_D(P07 o0 0, Ko )}} Op(n71/2)‘
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Therefore, all relevant remainders and empirical process terms are op(n_l/ 2.

We separately study the three cases where R = FR, R = RD, and R = TP.

Case I: R = FR. It holds that

thn — o = (P — Po) Dpr(Po) — PoDn i + 0p(n~'/?)
= (P, — Py) Drr(F)

+7'0{:LZ {pnm)

=1

AS(W;) +

ta |:Ng(07 VVZ) + 1_1!:71(11%[01 - Ng(o, Wl)]:| } - IQ} + Op(n_l/Q)’

where the last step follows from the TMLE construction of P, (Step Ma] of our estimator), which implies
that

FR(V)
72: Y; — oY (T, W;)] b = 0.
We now show that the second term on the right-hand side is zero with probability tending to one. If

70 = 0, then this term is zero. Otherwise, 79 = 79 > 0. By Lemma[S7] the following holds with probability

tending to one:

1-T;

Z{pn D U + i = S W [ 0+ s

G- 0w} = x.

and hence the second term is zero with probability tending to one, as desired. Therefore, ¥, — ¥y =

(Pn — Po) Dy (Po) + op(n~1/2).

Case II: R = RD. It holds that

wn - wO = (Pn - PO){D(POHO()aTO:,ug) - D(Po,p(P){D,O,,ug)}

A

- P, {D( n,meOaMn) D(Pnyerz{DaOaMOC)}

— (pBP — pEPYPyAY + 0,(n71/2),

where we have used pRP and pORD to denote the values that the two functions take, respectively. The
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TMLE construction of P, (Step Halof our estimator) implies that

D .
Z ) (s, W) =

and hence

P {D( 7‘L7pn77_07,un) D(P"“p5D7O7MOC)}

- {iZ {mm SOV + = G- ST W)

=1

La [’ug(o’m) + %[Q —#E(O,W/i)]] } - H}v

which is zero with probability tending to one as proved above. By Condition Lemma[S3|and the delta
method for influence functions, the value that pRP takes is an asymptotic linear estimator of the value

that pg{D takes. Straightforward application of the delta method for influence functions implies that
Wn — o = (Pn — Po)Dro(Fo) + 0p(n~'/?).
Case 3: R = TP. It holds that
Un — o = (Py — Po)Drp(Ry) — PuDy e + 0p(n~1?).

The TMLE construction of P, (Step [4al of our estimator) implies that

2 { e - ) <o,

SO
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which is zero with probability tending to one as proved above. Therefore,
Un — Yo = (P — Bo) Drp(Po) + op(n~1?).

Conclusion: The asymptotic linearity result on 1, follows from the above results. Consequently, the

asymptotic normality result on 1, holds by the central limit theorem and Slutsky’s theorem. O

S4.5 Proof of Theorem

In this section, we prove Theorem [SI} The arguments are almost identical to those in Supplement S9

Qiu et al| [34] with adaptations to the different treatment resource constraint.

Lemma S9 (Convergence rate of 7, if 79 > —o0). Assume that the conditions for Theorem |4 hold.
Suppose that ng > —oo, that the Lebesgue density of the distribution of &,(V') under V-~ Py is well-
defined, nonzero and finite in a neighborhood of and that PoI(&, = m,) = Op(n~Y2). Under these

conditions, the following implications hold with probability tending to one:
o If ||&n — &ollg,p, = 0p(1) for some 0 < g < o0, then |1, — 70| S ||&n — §0||g(]g:1 i Op(n_l/Q)-
o If 1€ — &olloo,p, = 0p(1), then |7 — 10| S 11€n — &olloo,py + Op(n_l/z).

The condition that PyI(&, = n,) = Op(n~1/2) is reasonable if &,(V) has a continuous distribution

when V' ~ Py, in which case PyI(&, =n,) =0.

Proof of Lemma[S9 We study the three cases where 19 > 0, 19 < 0 and 79 = 0 separately.
We first study the case where g > 0. By Lemma with probability tending to one, 7, = n,(ky)

where k,, is a solution to , and
Po{[I(&n > 1) — (€0 > m0)AG} = Po{dnp, AG} = (5 — ado) + Op(n~7?) = Op(n~/?).

We argue conditionally on the event that k, is a solution to (). Adding To(n,) — Po{I(& > nn)AS'} to
both sides shows that To(1,) — To(n0) = —Po{[I[(&n > mn) — I(&0 > 1a)]ASY + O,(n~1/2). By a Taylor
expansion of I'g under Conditions and the left-hand side is equal to —C(n,, —10) + 0p(1n — 10)

for some C' > 0, yielding that

[C + 0p()][nn — 10) = Po{[L(&x > 1) — I(€0 > mn)]AF} + Op(n™1/3),
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which immediately implies that

o — 10 = Op (PollT(€n > m) = 1(€0 > m))AG}) + Opn172). (s17)

The rest of the proof for this case and the proof for the other two cases are identical to the proof of
Lemma S14 in |Qiu et al|[34]. We present the argument below for completeness. By Lemma and
Condition [B4] for any € > 0 it holds that

|Po{[I(&n > 1) — (&0 > na)]AG )]
S [Po{[L(&n > nn) — 1(&0 > nn)]}]

< Pol (6 — S0l > €) + Pl (|0 — nn| < e).

Fix a positive sequence {¢€,}°2 ;, where each ¢, may be random through observations Oy, ..., Oy, such
that €, — 0 as n — oo. By a Taylor expansion of Sy, the survival function of the distribution of (V)
when V ~ Py, around 79, which is valid under Condition provided e, is sufficiently small, it follows

that

[Po{[L(&n > nn) — (&0 > n)]AGH S PoI (16 — ol > €n) — 2(50)' (10)en + 0p(en)-

Here we recall that (Sp)’(no) is finite by Condition Returning to (S17)),

tin =10 = Op (PoI([&n — €0l > en)) — [2(S0) (o) + 0p(1)]en + Op(n /%),

If € —&ollg,p, = 0p(1) for some 0 < ¢ < oo, by Markov’s inequality, PoI([§n—&o| > €) < [|§n—&0ll} p, /€n-
In this case, taking €, = ||, — EOHZ/](;;JF yields that [, —no| < [|&— §0||Z/Pg+1 +0,(n~1/?) with probability
tending to one. If ||, —&ol|0, P, = 0p(1), then taking e, = ||, —&ol/o0,p, yields that PyI(|&,—&o| > €,) =0,
and hence that [0, —no| < [|&, — &oll% P, TOp(n ~1/2) with probability tending to one. The desired result
follows by noting that 79 = 19 and in both cases, 7,, = 7, (ky) with probability tending to one.

We now study the case where < 0. By Lemma [S6] with probability tending to one, 7, < 0 and
hence 7,, = 0 = 79, as desired.

We finally study the case where g = 0. We argue conditional on the event that a solution kI, to

exists, which happens with probability tending to one by Lemma Recall that for convenience we
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let k, = k/, when n,(x) > 0. Then, exactly one of the following two events happen: (i) 7,(k) < 0 or
N (kl) < 0, in which case 17, = 0 = 70; (2) 7 (k) > 0 and n,(k},) > 0, in which case a similar argument
as the above proof for the case where 79 > 0 shows that the distance between 7,, = n,,(k],) and 79 has the
desired bound. The desired result holds conditional on either event, so it holds unconditional on either

event. ]
We finally prove Theorem

Proof of Theorem [S1]. Observe that

[Po{(pn = p0)(8y — 10AG)}H < Pol{I(&n > 1) — I (€0 > 70)} (€0 — 70)AF|
S Po{I(&n > ™) — (0 > 70)Héo — 0)
< Po{I(&n > ) — 1(§0 > )} (S0 — ™) (S18)
+ Pol{I(§0 > ) — I(§0 > 70)}(§0 — 70)|

+ ’Tn - TO’PO‘I@n > Tn) - [(50 > Tn)‘

Starting from this inequality, the rest of the proof is identical to that of Theorem 5 in |Qiu et al.| [34].
We present the argument below for completeness. Let {€,}5° ; be a positive sequence, where each ¢, is
random through the observations Oq,...,O,, such that €, 20 asn — 0.

We denote the three terms on the right-hand side by terms 1, 2, and 3, and study these terms
separately. It is useful to note that 7, — 79 = 0,(1), so the Lebesgue density of the distribution of £ (V),

V ~ Py, is finite in a neighborhood of 7,, with probability tending to one.

Study of term 1 in (S18)): Observe that

PO|{I(£n > Tn) - 1(50 > Tn)}(&O - Tn)‘

= P0|{I(§n > Tn) - 1(50 > Tn)}(fO - Tn)|I(O < |§0 - Tn|)

First consider the bound with the LY(FPy)-distance. Because I(&,(v) > 7,) # I(&(v) > 7,) if and only
if (i) &u(v) — 1, and &y(v) — 7, take different signs or (ii) only one of them is zero, this event implies

|€0(v) — Tn| < |€n(v) — &o(v)], and so this term is upper bounded by

POHI(‘gn > Tn) - 1(50 > Tn)}(&) - Tn)|I(O < |€0 - 7'n| < En)
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+ B{I(&n > ) = 1(&0 > ) }Eo — ) [ (10 — Tu| > €n)

< P0|€n - €O|I(O < ‘go - Tn’ < En) + P0|§n - £O|I(|§n - £O| > En)

Pylé, — &l
/a 0l&n — ol

—1
)

< 1€ — &llg,po {Po(0 < |&0(V) — 7| < €0)} 7Y

e e —Glle
S e =
n

where second to last relation holds by Holder’s inequality and Markov’s inequality, and the last relation
holds with probability tending to one by the assumption that the distribution of £, (V), V ~ Py, has a
continuous finite Lebesgue density in a neighborhood of 7y and Lemma Taking €, = ||, — & ”q/ q+1)

q,Po
yields that |Po{I(&n > 7) — I(€0 > ) }Eo — )| < |1én — &0 qu}éoq“ .

Next consider the bound with the L>°(Fy)-distance. We have that

PoOH{I(&n > 7n) = 1(§0 > )} €0 — )| < PoI([§0 — Tul < 160 — &0l)[€0 —
= PoI(0 < |0 — Tul < [&n — &0l)I€0 — Tl
< BRI (0 < |& — Tnl < (1€ — Solloo, )80 — Tl
< [€n = €olloo, s Fo(0 < [€0(V) = 7| < [[&n — &olloc,P)

S./ Hén - §0HC2>O,P0‘

Therefore, the first term is upper bounded by both ||, — €0||quééq+1) and [|&, — &% R+ Up to an absolute

constant.

Study of term 2 in (S18): Because I(&y(v) > 7,) # I(o(v) > 7p) if and only if the two indicators take
different signs or only one of them is zero, these indicators only take different values if [£y(v)—7p| < |7, —70].

Therefore, term 2 bounds as

Pol{I(&0 > ) — 1(&0 > 70) }(§0 — 10)| < Pol(|€0 — 7ol < |70 — 70)[§0 — 70|
< |7 — 7ol PoI (|0 — 70| < |70 — T0l)

S |Tn - 7—0|27

where the last step holds for with probability tending to one by the assumption that the distribution

of £(V), V' ~ Py, has a continuous finite Lebesgue density in a neighborhood of 79 and Lemma If
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Ny > —o0, by Lemma [S9] with probability tending to one,

2q/(q+1) 1y s B
n +0 , if ||, — y = 1
PolI(&o > ) — 1(&0 > 70)l|€0 — 10| < In = ol p(n™), i (|6 — Sollg,r, = 0p(1) |
160 — &oll% g, + Op(n™h), if [|1€0 = Eollo, Py = 0p(1)

Otherwise, by Lemma [S6] with probability tending to one, 7, = 0 = 7y and the above result still holds.

Study of term 3 in (S18)): By Lemma
PO‘I(gn > Tn) - 1(50 > Tn)‘ < POI(|§n - £O| > en) + POI(KO - Tn’ < 6n)-

By a Taylor expansion of Sy around 79, similarly to the proof of Lemma [S9] with probability tending to

one,

PoI(|& — ] < €n) = —2(S0)"(10)€n + 0p(|70 — 70| + €n),

where [(So)'(10)] < oo. If ||&n — &ollg,p, = 0p(1) for some 1 < ¢ < oo, then PyI(|&, — &| > €) <
1én —&oll% p, /€5 Taking e, = || — ol yields that [Po{I(&n > ) —I(&0 > )} < ll6n — &I/
If (1§ = Lolloo,py = 0p(1), then taking e, = [|&n — Lolloo,p, yields that [Po{I(&n > m0) = I(S0 > )} S
lén — &olloo,p, With probability tending to one. Also note that, by Lemma if ng > —oo, then, with

probability tending to one,

1én — &llYSTY + 0,(n=1/2), if | — ollg.ry = 0p(1),

1€n — f()Hoo,Po + Op(nilﬂ)a if [|&, — €OH<><>,P0 = Op(l)-

7—71_7—0‘ < |77n_770| S

The same holds when 1y = —oo since then |7, — 79| = 0 with probability tending to one.

Therefore, with probability tending to one,

’Tn - T0|P0|I(§n > Tn) - I(SO > Tn)|

2 1 _ .
Ien — &lI2%0TY + 16 — €| VETVOL(Y2) if ||€n — Eollg,p, = 0p(1),

I€n — €013,y + 160 = olloo, P Op(n™1/?) if {|€n = €olloo,ry = 0p(1)-

Conclusion of the bound in (S18): We finally combine the bounds for all three terms. Note that

anOp(by) < a2 +0,(b2) for any sequence of non-negative random variables a,, and sequence of constants
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b,. It follows that, with probability tending to one,

1€ — €oll2%4Y 4+ 0p(nY), if |1€n — Eollgpo = 0p(1),
|Po{(pn — p0) (08 — Tov0)}| S Y

160 — &0l g, + Op(n™Y),  if 160 — &olloo,py = 0p(1).

S5 Additional simulations

S5.1 Results of simulation with nuisance functions being truth

In this section, we present the results of the simulation with an identical setting as that in Section [5]in the
main text except that the nuisance functions are taken to be the truth rather than estimated via machine
learning. The purpose of this simulation is to show that the performance of our proposed estimator may
be significantly improved by using machine learning estimators of nuisance functions that outperform
those used in the simulation study reported in the main text.

Table[S1] presents the performance of our proposed estimator in this simulation. The Wald CI coverage
is close to 95% for sample sizes of 1000 or more. The coverage of the confidence lower bounds is also
close to the nominal coverage of 97.5%. Therefore, our proposed procedure appears to have the potential
to be significantly improved when using improved estimators of nuisance functions. Figure presents
the width of our 95% Wald CI scaled by the square root of sample size n. For each estimand, the scaled
width appears to stabilize as n grows and to be similar to the scaled width observed in the simulation

reported in Section |5, where nuisance functions are estimated from data.

S5.2 Simulation under a low dimension and a parametric model

In this section, we describe the additional simulation in a setting with a low dimension and a parametric
model as well as the simulation results.
The data is generated as follows. We first generate a univariate covariate W ~ Unif(—1,1). We then

generate T', C' and Y as follows:

T|W  ~ Bernoulli(expit(WW)),

C|T,W ~ Bernoulli (expit(27'— 1+ W)),
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Table S1: Performance of estimators of average causal effects in the simulation with nuisance
functions being the truth.

Performance measure Sample size ‘ FR ‘ RD ‘ TP

95% Wald CI coverage 500 93% 90% 90%
1000 94% 94% 93%

4000 96% 95% 95%

16000 94% 96% 95%

97.5% confidence lower 500 96% 96% 95%
bound coverage 1000 97% 97% 96%
4000 98% 97% 97%

16000 97% 97% 97%

bias 500 | 0.0023 | 0.0004 | 0.0010
1000 | 0.0013 | 0.0008 | 0.0007

4000 | 0.0003 | 0.0003 | 0.0003

16000 | 0.0002 | 0.003 | 0.0002

RMSE 500 | 0.048 | 0.023 | 0.029
1000 | 0.033 | 0.015 | 0.020

4000 | 0.016 | 0.008 | 0.010

16000 | 0.009 | 0.004 | 0.005

Ratio of mean standard error 500 | 0.964 | 0.911 | 0.928
to standard deviation 1000 | 0.967 | 0.998 | 0.958
4000 | 1.028 | 0.983 | 0.995

16000 | 0.963 | 1.007 | 0.996

Y |T,W ~ Bernoulli (expit(1.47 — 0.7 — 0.3W)),

where C' and Y are independent conditional on (W, T). We set p'® : v+ 0, V = W, and s = 0.35, which
is an active constraint with 79 > 0 and pORD < 1. We use logistic regression to estimate functions ,uOT, ug
and ug . All other simulation settings are identical to that in Section

The simulation results are presented in Table[S2]and Figure[S2] The performance is generally between
the nonparametric setting in Section [p| and the oracle setting in Section The CI coverage is much
better than the nonparametric case, thus suggesting that our method might perform better with improved

estimators of nuisance functions ug, MOC and ,ug .
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Figure S1: Boxplot of y/nx CI width for ATE relative to each reference ITR in the simulation
with nuisance functions being the truth.

Table S2: Performance of estimators of average causal effects in the simulation with nuisance
functions in a parametric model.

Performance measure Sample size ‘ FR ‘ RD ‘ TP
95% Wald CI coverage 500 95% 83% 96%
1000 91% 83% 93%

4000 94% 88% 93%

16000 94% 94% 95%

97.5% confidence lower 500 99% 99% 99%
bound coverage 1000 99% 99% 99%
4000 99% 99% 98%

16000 98% 99% 99%

bias 500 | —0.0177 | —0.0161 | —0.0167

1000 | —0.0122 | —0.0113 | —0.0125

4000 | —0.0037 | —0.0036 | —0.0035

16000 | —0.0009 | —0.0010 | —0.0008

RMSE 500 0.035 0.029 0.040
1000 0.026 0.021 0.029

4000 0.012 0.009 0.013

16000 0.006 0.004 0.006

Ratio of mean standard error 500 1.122 0.908 1.046
to standard deviation 1000 0.988 0.857 0.984
4000 0.978 0.891 0.942

16000 0.986 0.979 0.979
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Figure S2: Boxplot of y/nx CI width for ATE relative to each reference ITR in the simulation
with nuisance functions in a parametric model.
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