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Abstract: The attributable fraction (population) has attracted much attention from a theoretical perspective
and has been used extensively to assess the impact of potential health interventions. However, despite its
extensive use, there is much confusion about its concept and calculation methods. In this article, we
discuss the concepts of and calculation methods for the attributable fraction and related measures in the
counterfactual framework, both with and without stratification by covariates. Generally, the attributable
fraction is useful when the exposure of interest has a causal effect on the outcome. However, it is important
to understand that this statement applies to the exposed group. Although the target population of the
attributable fraction (population) is the total population, the causal effect should be present not in the total
population but in the exposed group. As related measures, we discuss the preventable fraction and pre-
vented fraction, which are generally useful when the exposure of interest has a preventive effect on the
outcome, and we further propose a new measure called the attributed fraction. We also discuss the causal
and preventive excess fractions, and provide notes on vaccine efficacy. Finally, we discuss the relations
between the aforementioned six measures and six possible patterns using a conceptual schema.

Keywords: attributable fraction, counterfactual model, excess fraction, preventable fraction, prevented
fraction, vaccine efficacy
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1 Introduction

Since the paper by Doll in 1951 [1], the attributable fraction (population) has attracted much attention from
a theoretical perspective [2–17] and has been used extensively in empirical studies to assess the impact of
potential health interventions. Epidemiology textbooks provide several formulae for calculating the attri-
butable fraction (population) [18], including the Levin formula introduced in 1953 [19] and Miettinen
formula introduced in 1974 [2]. Despite its extensive use, there is much confusion about the concept of
and calculation methods for the attributable fraction (population), presumably because less attention has
been paid to its definition in the counterfactual framework.

In this article, we discuss the concepts of and calculation methods for the attributable fraction and
related measures in the counterfactual framework, providing their conceptual relations in a comprehensive
manner. As related measures, we discuss the preventable fraction and prevented fraction, which are



* Corresponding author: Etsuji Suzuki, Department of Epidemiology, Graduate School of Medicine, Dentistry and
Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; Department of Epidemiology, Harvard T.H. Chan
School of Public Health, Boston, MA 02115, USA, e-mail: esuzuki@hsph.harvard.edu, etsuji-s@cc.okayama-u.ac.jp
Eiji Yamamoto: Okayama University of Science, Okayama 700-0005, Japan

Journal of Causal Inference 2023; 11: 20210068

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/jci-2021-0068
mailto:esuzuki@hsph.harvard.edu
mailto:etsuji-s@cc.okayama-u.ac.jp


generally useful when the exposure of interest has a preventive effect on the outcome, and we further
propose a new measure called the attributed fraction. We also discuss the causal and preventive excess
fractions. As a result of this, we show that, as a prerequisite for the calculation of these measures, it is
important to have clear definitions of them in the counterfactual framework, which would improve the
interpretation and use of these measures.

2 Notation and setting

Let E denote a binary exposure of interest (1 = exposed, 0 = unexposed), Y denote a binary adverse outcome
(1 = outcome occurred, 0 = outcome did not occur), and C denote a set of covariates. In the counterfactual
framework, also let Ye denote the potential outcomes of Y if, possibly contrary to the fact, there had been
interventions to set E to e. Then, for each individual, there would be two relevant potential outcomes, Y1 and
Y0, corresponding to what would have happened to that individual when that person was exposed and
unexposed, respectively. When no confusion occurs for a binary variable X, we write X and X̄ as shorthand
for the events of X = 1 and X = 0, respectively.

Using this notation, the associational risk ratio (aRR) is defined as Y E Y EPr Pr ̅( ) ( )| / | , whereas the causal
risk ratio (cRR) is defined as Y YPr Pr1 0( ) ( )/ . Similarly, we also define the cRRs in the exposed group (cRRE)
and unexposed group (cRRU) as Y E Y EPr Pr1 0( ) ( )| / | and Y E Y EPr ̅ Pr ̅1 0( ) ( )| / | , respectively. Furthermore, we
define the standardized mortality (or morbidity) ratio (SMR) as Y E Y EPr Pr 0( ) ( )| / | in the counterfactual
framework [20], which is equal to cRRE under the assumption of partial consistency under exposure
(i.e., Y1 = Y if E = 1). Similarly, we define the standardized risk ratio in the unexposed group (SRRU) as

Y E Y EPr ̅ Pr ̅1( ) ( )| / | , which is equal to cRRU under the assumption of partial consistency under no exposure
(i.e., Y0 = Y if E = 0). Note that each of the assumptions of partial consistency is slightly weaker than the
assumption of consistency (i.e., Ye = Y if E = e (e = 0, 1)) [21,22], which we assume throughout the article.
However, it is worth mentioning that only partial consistency is required in some derivations. When the
measures of interest are defined in stratum c, we add the subscript c to the corresponding measures (e.g.,

Y E c Y E caRR Pr , Pr ̅,c ( ) ( )≡ | / | ). We use Pr(c) as shorthand for Pr(C = c). In Table S1, a summary of the
measures is provided. The lemmas and their proofs are provided in Supplementary Appendix A.

3 Attributable fraction

In this section, we discuss the concepts of and calculation methods for the attributable fraction in the
counterfactual framework, both with and without stratification by covariates. First, we provide an overview
of the attributable fraction by presenting its definition, theorems, and corollaries. Then, we discuss a
common misuse of the Levin formula (i.e., the “partially adjusted”method) and then discuss the condition
under which the Levin formula is valid. Finally, we provide concluding remarks, and highlight the impor-
tance of understanding the definition of the attributable fraction to avoid common misunderstandings and
confusion about it.

3.1 Overview

Generally, the attributable fraction (population) is used when one is interested in the reduction in incidence
that would be achieved if the population had been entirely unexposed compared with its “current” or
observed exposure pattern; that is, the attributable fraction compares the observed risk with the counter-
factual risk under e = 0.
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Definition 1: When the target population is the total population, the attributable fraction (population) is
defined as Y Y YPr Pr Pr0{ ( ) ( )} ( )− / , whereas when the target population is the exposed group, the attribu-
table fraction (exposed) is defined as Y E Y E Y EPr Pr Pr0{ ( ) ( )} ( )| − | / | .

Note that the numerator event is not included in the denominator event, and the attributable fraction
ranges from −∞ to 1. The attributable fraction in Definition 1 corresponds to the attributable caseload
proposed by Suzuki et al. [13], who distinguished between the attributable caseload and attributable
proportion, both of which compose the broader concept of the attributable fraction. The attributable
proportion (population) and attributable proportion (exposed) are defined as Y Y Y YPr Pr , Pr0{ ( ) ( )} ( )− /

and Y E Y Y E Y EPr Pr , Pr0{ ( ) ( )} ( )| − | / | , respectively, and both range from 0 to 1 [13]. Under the assumption
of positive monotonicity of E on Y (i.e., Y Y0 1≤ for all individuals), the attributable caseload and attribu-
table proportion become equivalent. In this article, we use the term attributable fraction to refer to the
attributable caseload.

Next we present Theorem 1.1 and Corollary 1.1, which provide the attributable fraction if one does not
use stratification by C.

Theorem 1.1: The attributable fraction (population) and attributable fraction (exposed) are obtained as
E YPr SMR 1 SMR( )( )| − / and SMR 1 SMR( )− / , respectively.

Corollary 1.1: The attributable fraction (population) and attributable fraction (exposed) are obtained as
E YPr aRR 1 aRR( )( )| − / and aRR 1 aRR( )− / , respectively, if and only if partial exchangeability under no expo-

sure holds (i.e., Y E0⫫ ).

Note that partial exchangeability under no exposure (i.e., Y E0⫫ ) is equivalent to SMR = aRR (Lemma 1),
which is obviously expected to hold in an ideal randomized controlled trial. On a related issue, the equation

Y E Y Y E EPr Pr Pr , ̅ Pr0 0( ) { ( ) ( )} ( )| = − / holds. Thus, if YPr 0( ) is obtained in experimental studies, Y EPr 0( )| is
reducible to empirically estimable quantities [23]. Regarding the attributable fraction (population) in Cor-
ollary 1.1, the following equation holds irrespective of whether Y E0⫫ holds:

E Y E
E

Pr aRR 1
aRR

Pr aRR 1
Pr aRR 1 1

.( )
( )( )

( )( )
|

−
=

−

− +

The first and second formulae are often called the Miettinen formula and Levin formula, respectively.
By contrast, if one uses stratification by C, Theorem 1.2 and Corollary 1.2 provide the attributable fraction.

Theorem 1.2: If one uses stratification by C, the attributable fraction (population) and attributable frac-
tion (exposed) are obtained as E Y c Y EPr Pr , SMR 1 SMRc c c( | ) ( | )( )∑ − / and c Y EPr , SMR 1 SMRc c c( | )( )∑ − / ,
respectively.

Corollary 1.2: The attributable fraction (population) and attributable fraction (exposed) are obtained as
E Y c Y EPr Pr , aRR 1 aRRc c c( | ) ( | )( )∑ − / and c Y EPr , aRR 1 aRRc c c( | )( )∑ − / , respectively, if conditional partial

exchangeability under no exposure holds (i.e., Y E C0⫫ | ).

Note that conditional partial exchangeability under no exposure (i.e.,Y E C0⫫ | ) is equivalent to SMRc = aRRc

(Lemma 1), which is obviously expected to hold in an observational study with no unmeasured con-
founding. In Table 1, we present Theorems 1.1 and 1.2, and Corollaries 1.1 and 1.2 in more detail, and we
provide their proofs in Supplementary Appendix B. Note that we obtain each formula for the attributable
fraction (exposed) in Table 1 by dividing the corresponding formula for the attributable fraction (popula-
tion) by Pr(E|Y), which is the exposure prevalence among cases. Although this relation is obvious in the
Miettinen formula (i.e., the first formula in Corollary 1.1), it is unclear in the Levin formula (i.e., the second
formula in Corollary 1.1).

Generally, the attributable fraction is useful when the exposure of interest has a causal effect on the
outcome. However, it is important to understand that this statement applies to the exposed group; that is, the
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attributable fraction is useful or straightforwardly interpretable when SMR > 1, in which case the range of the
measure becomes (0, 1). Conversely, the attributable fraction is less interpretable when it is a negative value.
This is especially relevant for improving the understanding of the attributable fraction (population). Although
the target population of this measure is the total population, the causal effect should be present not in the
total population but in the exposed group. Thus, for example, even if exposure has a causal effect in the total
population (i.e., cRR > 1), the attributable fraction (population) is less useful if exposure has a preventive
effect in the exposed group (i.e., SMR < 1). We address this point further in Section 9.

3.2 Notes on the “partially adjusted” method of the Levin formula

When using the Levin formula, calculating the attributable fraction (population) with adjusted RR (or SMR)
may be the most common error [6]. This was previously called the “partially adjusted” method [10,14]:

E
E

Pr SMR 1
Pr SMR 1 1

“Partially adjusted” Levin formula .( )( )

( )( )
[ ]

−

− +

If conditional partial exchangeability under no exposure holds (i.e., Y E C0⫫ | ), SMR can be calculated as
Y E Y E c c EPr Pr ̅, Prc( ) ( ) ( )| /∑ | | (refer the proof of Lemma 2). However, as has been emphasized [4], the “par-

tially adjusted” Levin formula does not yield the correct attributable fraction (population), whereas the
Miettinen formula does not suffer from this problem. This point can be clearly understood by comparing
the formulae for the attributable fraction (population) in Theorem 1.1 and Corollary 1.1 in Table 1. Although
the first formula in Theorem 1.1 can be readily obtained by substituting SMR with aRR in the Miettinen
formula, the second formula in Theorem 1.1 cannot be obtained by substituting SMR with aRR in the Levin
formula. On a related issue, it is important to note that Y E0⫫ (or equivalently, SMR = aRR) is a necessary
and sufficient condition for both the Miettinen formula and Levin formula to yield the attributable fraction
(population), whereas Y E0⫫ is a sufficient but not necessary condition for the “partially adjusted” Levin
formula to yield the attributable fraction (population). Note also that Y E C0⫫ | is neither a necessary nor a
sufficient condition for the “partially adjusted” Levin formula to yield the correct attributable fraction
(population). See the proof of Theorem 1.1 in Supplementary Appendix B for details. A possible reason
for the misuse of the Levin formula is that information about Pr(E|Y) in the target population is relatively
less available than information about Pr(E). Without information about Pr(E|Y), the first formula in The-
orem 1.1 cannot be used, and some may consider using the “partially adjusted” Levin formula because of
the lack of a better alternative [4]. However, even if information about Pr(E|Y) is not available, the second
formula in Theorem 1.1, which is similar to the Levin formula, can be used to obtain a true attributable
fraction (population) once information about Pr(E), aRR, and SMR is available.

IfY E0⫫ does not hold (i.e., SMR ≠ aRR) and SMR > 1, the following inequalities hold between the Levin
formula, second formula in Theorem 1.1 in Table 1, and “partially adjusted” Levin formula (refer Supple-
mentary Appendix C for the proof):

E
E

E
E

E
E

Pr aRR 1
Pr aRR 1 1

Pr SMR 1
Pr SMR

Pr SMR 1
Pr SMR 1 1

if SMR 1 SMR aRR
SMR
aRR

SMR
aRR

( )( )

( )( )

( )( )

( )

( )( )

( )( )
( ) ( )

( )
−

− +
>

−

− +
>

−

− +
> ∧ <

and

E
E

E
E

E
E

Pr aRR 1
Pr aRR 1 1

Pr SMR 1
Pr SMR

Pr SMR 1
Pr SMR 1 1

if SMR 1 SMR aRR .
SMR
aRR

SMR
aRR

( )( )

( )( )

( )( )

( )

( )( )

( )( )
( ) ( )

( )
−

− +
<

−

− +
<

−

− +
> ∧ >

Recall that, in this scenario, only the second formula in Theorem 1.1 yields the correct attributable fraction
(population). Thus, the “partially adjusted” formula underestimates the true attributable fraction (popula-
tion) if SMR < aRR, which is equivalent to Y E Y E Y EPr Pr ̅ Pr ̅0 0( ) ( ) ( )| > | = | using partial consistency under no
exposure. Conversely, the “partially adjusted” formula overestimates the true attributable fraction (popula-
tion) if SMR > aRR, which is equivalent to Y E Y E Y EPr Pr ̅ Pr ̅0 0( ) ( ) ( )| < | = | . Thus, the direction of the inherent
“bias” in the “partially adjusted” formula is determined by the sum of proportions of the “doomed”
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response type (i.e., (Y1, Y0) = (1, 1)) and “preventive” response type (i.e., (Y1, Y0) = (0, 1)) in the exposed and
unexposed groups. In the two inequalities above, the correct formula lies between the Levin formula and
“partially adjusted” formula. Thus, compared with the correct formula, the “partially adjusted” formula
over-adjusts the Levin formula.

3.3 Further remarks on the Levin formula – when is the formula valid?

Regarding the calculation of the attributable fraction (population), in some previous studies, researchers
have argued that the Levin formula is valid only in the absence of confounding or effect modification
[11,12,15,18]. Our study shows that this argument requires clarification.

First, we consider a scenario in which partial exchangeability under no exposure holds (i.e., Y E0⫫ ). In
this case, as shown in Corollary 1.1, the Levin formula yields the correct attributable fraction (population).
Next we consider a scenario in which conditional partial exchangeability under no exposure holds (i.e.,
Y E C0⫫ | ). As mentioned above, the Levin formula cannot yield the correct attributable fraction (population)
in this case, and one may use the formulae in Corollary 1.2 in Table 1 instead, the third of which is a
stratification method of the Levin formula. In this regard, it is worth mentioning that, if the homogeneity of
aRRc across strata of C additionally holds in Corollary 1.2, the homogeneous aRRc is equal to SMR (Lemma
2). If this is the case, the formulae in Corollary 1.2 are reduced to the formulae in Theorem 1.1. Because the
homogeneous aRRc is not necessarily equal to aRR, the formulae in Corollary 1.2 are not reduced to the
formulae in Corollary 1.1, unless Y E0⫫ holds. Note that Y E C0⫫ | is neither stronger nor weaker than Y E0⫫ .

To summarize, even if both Y E C0⫫ | and the homogeneity of aRRc across strata of C hold, the Levin
formula cannot be used to obtain the correct attributable fraction (population). As shown in Corollary 1.1,
the Levin formula is valid if and only if Y E0⫫ holds.

3.4 Importance of the definition

In previous studies, researchers have focused on how to calculate attributable fractions, particularly paying
attention to the Levin formula and Miettinen formula. However, as shown in Table 1, it is important to
understand the definition of the attributable fraction first, and then derive relevant theorems and corollaries
accordingly. Some confusion about attributable fractions may originate from the lack of an overview, such
as that shown in Table 1. As another source of confusion, some researchers have used the terms “attribu-
table fraction” and “excess fraction” interchangeably [20,24]. However, as has been emphasized [13], it is
important to clearly distinguish them in the counterfactual framework, which we discuss further later.

Finally, it cannot be emphasized too much that the attributable fraction is distinct from the etiologic
fraction [5,13,25], which becomes clearer by considering the link between the potential outcome model and
the sufficient cause model [13]. The etiologic fraction has been broadly defined as the fraction of cases that
were “caused” by exposure, and a lower bound can be calculated by the attributable fraction if it yields a
positive value. See previous studies for further discussions on the link between the two models [26–33].

In Section 4, we outline hypothetical examples to illustrate some formulae shown in Table 1 and then
discuss other related measures.

4 Hypothetical examples

Following Flegal [14], we use hypothetical examples of being overweight and mortality. In these examples,
we let E and Y denote overweight (1 = overweight, 0 = normal weight) and mortality (1 = deceased, 0 = not
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deceased), respectively. We also consider smoking status C (1 = smoker, 0 = nonsmoker) as a confounder of
the effect of E on Y and assume that conditional exchangeability holds (i.e., Y E C e 0, 1e ( )⫫ | = ).

In the upper part of Table 2, we show data for Study 1, which we derived from Example 1 in the paper by
Flegal [14]. Although being overweight has a causal effect on mortality (cRR = 1.2), a negative association is
observed (aRR = 0.8) because of the presence of confounding by the smoking status. Note that the aRRc

values are homogeneous across the smoking status (aRRc=1 = aRRc=0 = 1.2), which is equivalent to SMR
(Lemma 2). The true attributable fraction (population) in Study 1 is approximately 0.074. When aRR in the
Miettinen formula is substituted with SMR, it becomes the first formula in Theorem 1.1, which, by definition,
correctly yields the attributable fraction (population) as

E YPr SMR 1
SMR

72
162

1.2 1
1.2

0.074.( )|
−

= ×
−

≈ (1)

Particularly when information about Pr(E|Y) is not available, some may attempt to use the “partially
adjusted” Levin formula as follows:

Table 2: Hypothetical examples of being overweight and mortalitya

Total population Nonsmokers (C = 0) Smokers (C = 1)

Overweight
(E = 1)

Normal
weight
(E = 0)

Overweight
(E = 1)

Normal
weight
(E = 0)

Overweight
(E = 1)

Normal
weight
(E = 0)

Study 1b

Death (Y = 1) 72 90 54 30 18 60
Survival (Y = 0) 428 410 396 270 32 140
Total 500 500 450 300 50 200
Pr(Y = 1|E = e, C = c) 0.144 0.18 0.12 0.1 0.36 0.3
aRR 0.8 1.2 1.2

( ) ( ) ( )= ∑ | =Y Y E c cPr Pr , Pr 0.18c
1

( ) ( ) ( )= ∑ | =Y Y E c cPr Pr ̅, Pr 0.15c
0

( ) ( )= / =Y YcRR Pr Pr 1.21 0

( | ) ( | ) ( | )= /∑ =Y E Y E c c ESMR Pr Pr ̅, Pr 1.2c

( ) { ( ) ( )} ( ) ( )= / = / ≈Y Y YAttributable fraction population Pr − Pr Pr 0.162 − 0.15 0.162 0.0740

Study 2c

Death (Y = 1) 81 90 54 30 27 60
Survival (Y = 0) 419 410 396 270 23 140
Total 500 500 450 300 50 200
Pr(Y = 1|E = e, C = c) 0.162 0.18 0.12 0.1 0.54 0.3
aRR 0.9 1.2 1.8

( ) ( ) ( )= ∑ | =Y Y E c cPr Pr , Pr 0.225c
1

( ) ( ) ( )= ∑ | =Y Y E c cPr Pr ̅, Pr 0.15c
0

( ) ( )= / =Y YcRR Pr Pr 1.51 0

( | ) ( | ) ( | )= /∑ =Y E Y E c c ESMR Pr Pr ̅, Pr 1.35c

( ) { ( ) ( )} ( ) ( )= / = / ≈Y Y YAttributable fraction population Pr − Pr Pr 0.171 − 0.15 0.171 0.120

Abbreviations: aRR, associational risk ratio; cRR, causal risk ratio; SMR, standardized mortality ratio.
aWe assume ( )⫫ | =Y E C e 0, 1e in these two studies.
bThis hypothetical study is derived from Table 1 in the paper by Flegal [14], in which the values of aRRc are homogeneous across
strata of C. Note that ( ) ( )⫫ | ∧ = ∀Y E C k caRR forc

0 is a sufficient but not necessary condition for SMR = k. The attributed
fraction (population) and causal excess fraction (population) are ( )/ =0.18 − 0.162 0.18 0.1 and ( )/ ≈0.18 − 0.15 0.18 0.17,
respectively, which, by definition, differ from the attributable fraction (population).
cThis hypothetical study is slightly modified from Study 1 so that the values of aRRc are non-homogeneous across strata of C.
The attributed fraction (population) and causal excess fraction (population) are ( )/ =0.225 − 0.171 0.225 0.24 and
( )/ ≈0.225 − 0.15 0.225 0.33, respectively, which, by definition, differ from the attributable fraction (population).
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E
E

Pr SMR 1
Pr SMR 1 1

500 1000 1.2 1
500 1000 1.2 1 1

0.091,( )( )

( )( )

( ) ( )

( ) ( )

−

− +
=

/ × −

/ × − +
≈ (2)

which is slightly higher than the true attributable fraction (population). This is expected because SMR (i.e.,
1.2) is higher than aRR (i.e., 0.8). However, even without information about Pr(E|Y), the true attributable
fraction (population) can be obtained using the second formula in Theorem 1.1 as follows:

E
E

Pr SMR 1
Pr SMR

500 1000 1.2 1
500 1000 1.2 1.2 0.8 1.2 0.8

0.074.
SMR
aRR

SMR
aRR

( )( )

( )

( ) ( )

( ) ( )( )
−

− +
=

/ × −

/ × − / + /
≈ (3)

When using equations (1)–(3), information about SMR is necessary. However, because Y E C0⫫ | holds, the
formulae in Corollary 1.2 can also be used to directly obtain the true attributable fraction (population) as
follows:

E Y c Y EPr Pr , aRR 1
aRR

72
162

54
72

1.2 1
1.2

18
72

1.2 1
1.2

0.074.
c

c

c
( | ) ( | ) ⎛

⎝
⎞
⎠

∑
−

= × ×
−

+ ×
−

≈ (4)

For comparison, when we use the Levin formula, we obtain

E
E

Pr aRR 1
Pr aRR 1 1

500 1000 0.8 1
500 1000 0.8 1 1

0.11.( )( )

( )( )

( ) ( )

( ) ( )

−

− +
=

/ × −

/ × − +
≈ − (5)

Similarly, when we use the Miettinen formula, we obtain

E YPr aRR 1
aRR

72
162

0.8 1
0.8

0.11,( )|
−

= ×
−

≈ − (6)

which is equivalent to the Levin formula. Note that the relation shown in the second inequality in Section
3.2 holds in Study 1 because SMR = 1.2 and aRR = 0.8.

In the lower part of Table 2, we slightly modify Study 1 to make aRRc non-homogeneous across the
smoking status. The true attributable fraction (population) in Study 2 is approximately 0.12. Because the
values of aRRc are non-homogeneous, we need to calculate SMR (i.e., 1.35) before using equations (1)–(3).
Equations (1) and (3) both yield the true attributable fraction (population), but equation (2) yields approxi-
mately 0.15, which is, as expected, higher than the true attributable fraction (population). However,
equation (4) directly yields the true attributable fraction (population) without calculating SMR, as follows:

E Y c Y EPr Pr , aRR 1
aRR

81
171

54
81

1.2 1
1.2

27
81

1.8 1
1.8

0.12.
c

c

c
( | ) ( | ) ⎛

⎝
⎞
⎠

∑
−

= × ×
−

+ ×
−

≈

For comparison, when we use the Levin formula (equation (5)) or Miettinen formula (equation (6)), we
obtain approximately 0.053− . Thus, the relation shown in the second inequality in Section 3.2 again holds
in Study 2 because SMR = 1.35 and aRR = 0.9.

To summarize, when the values of aRRc are homogeneous across strata of C as in Study 1, one does not
have to calculate SMR, which is equal to the homogeneous aRRc, and may simply proceed to use the
formulae in Theorem 1.1 to calculate the attributable fraction. However, even when the homogeneity of
aRRc is not met as in Study 2, the approach is essentially the same, and one may choose the most appro-
priate formula on each occasion, partly depending on the availability of data.

5 Preventable fraction and prevented fraction

When the exposure of interest has a preventive effect on the outcome, the following two measures are used
in the literature: preventable fraction and prevented fraction [34,35]. In this section, we briefly discuss these
measures in the counterfactual framework.
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The preventable fraction (population) is used when one is interested in the reduction in incidence that would
be achieved if the population had been entirely exposed comparedwith its “current” or observed exposure pattern;
that is, the preventable fraction compares the observed risk with the counterfactual risk under e = 1.

Definition 2: When the target population is the total population, the preventable fraction (population) is
defined as Y Y YPr Pr Pr1{ ( ) ( )} ( )− / , whereas when the target population is the unexposed group, the pre-
ventable fraction (unexposed) is defined as Y E Y E Y EPr ̅ Pr ̅ Pr ̅1{ ( ) ( )} ( )| − | / | .

Note that the preventable fraction is equivalent to the attributable fraction when the coding of exposure is
reversed. Thus, a discussion analogous to that concerning the attributable fraction applies to the preven-
table fraction. If one does not use stratification by C, Theorem 2.1 and Corollary 2.1 provide the preventable
fraction.

Theorem 2.1: The preventable fraction (population) and preventable fraction (unexposed) are obtained as
E YPr ̅ 1 SRRU( )( )| − and 1 SRRU− , respectively.

Corollary 2.1: The preventable fraction (population) and preventable fraction (unexposed) are obtained as
E YPr ̅ 1 aRR( )( )| − and 1 aRR− , respectively, if and only if partial exchangeability under exposure holds

(i.e., Y E1⫫ ).

By contrast, if one uses stratification by C, Theorem 2.2 and Corollary 2.2 provide the preventable fraction.

Theorem 2.2: If one uses stratification by C, the preventable fraction (population) and preventable fraction
(unexposed) are obtained as E Y c Y EPr ̅ Pr , ̅ 1 SRRc cU( | ) ( | )( )∑ − and c Y EPr , ̅ 1 SRRc cU( | )( )∑ − , respectively.

Corollary 2.2: The preventable fraction (population) and preventable fraction (unexposed) are obtained as
E Y c Y EPr ̅ Pr , ̅ 1 aRRc c( | ) ( | )( )∑ − and c Y EPr , ̅ 1 aRRc c( | )( )∑ − , respectively, if conditional partial exchange-

ability under exposure holds (i.e., Y E C1⫫ | ).

In Table S2, we present Theorems 2.1 and 2.2, and Corollaries 2.1 and 2.2 in more detail, and we provide their
proofs in Supplementary Appendix B. Note that we obtain each formula for the preventable fraction
(unexposed) in Table S2 by dividing the corresponding formula for the preventable fraction (population)
by E YPr ̅( | ).

Moreover, the prevented fraction (population) is used when one is interested in the reduction in
incidence that has been achieved with the “current” or observed exposure compared with the scenario
in which the population had been entirely unexposed; that is, the prevented fraction compares the counter-
factual risk under e = 0 with the observed risk, where the reference is the counterfactual risk.

Definition 3: When the target population is the total population, the prevented fraction (population) is
defined as Y Y YPr Pr Pr0 0{ ( ) ( )} ( )− / , whereas when the target population is the exposed group, the pre-
vented fraction (exposed) is defined as Y E Y E Y EPr Pr Pr0 0{ ( ) ( )} ( )| − | / | .

Compared with the attributable fraction, the roles of YPr( ) (or Y EPr( )| ) and YPr 0( ) (or Y EPr 0( )| ) are reversed
in the prevented fraction. If one does not use stratification by C, Theorem 3.1 and Corollary 3.1 provide the
prevented fraction.

Theorem 3.1: The prevented fraction (population) and prevented fraction (exposed) are obtained as
E YPr 1 SMR0( )( )| − and 1 SMR− , respectively.
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Corollary 3.1: The prevented fraction (population) and prevented fraction (exposed) are obtained as
E YPr 1 aRR0( | )( )− and 1 aRR− , respectively, if and only if partial exchangeability under no exposure holds

(i.e., Y E0⫫ ).

Note that if Y E0⫫ holds, the prevented fraction (population) can be written as EPr 1 aRR( )( )− , but not vice
versa, which is identified from observed data. By contrast, if one uses stratification by C, Theorem 3.2 and
Corollary 3.2 provide the prevented fraction.

Theorem 3.2: If one uses stratification by C, the prevented fraction (population) and prevented fraction
(exposed) are obtained as E Y c Y EPr Pr , 1 SMRc c

0 0( | ) ( | )( )∑ − and c Y EPr , 1 SMRc c
0( | )( )∑ − , respectively.

Corollary 3.2: The prevented fraction (population) and prevented fraction (exposed) are obtained as
E Y c Y EPr Pr , 1 aRRc c

0 0( | ) ( | )( )∑ − and c Y EPr , 1 aRRc c
0( | )( )∑ − , respectively, if conditional partial exchange-

ability under no exposure holds (i.e., Y E C0⫫ | ).

In Table S3, we present Theorems 3.1 and 3.2, and Corollaries 3.1 and 3.2 in more detail, including identifi-
able estimands, and we provide their proofs in Supplementary Appendix B. Note that we obtain each
formula for the prevented fraction (exposed) in Table S3 by dividing the corresponding formula for the
prevented fraction (population) by E YPr 0( | ). Although the formula in Corollary 2.1 for the preventable
fraction (unexposed) is identical to the formula in Corollary 3.1 for the prevented fraction (exposed), it is
important to understand the difference between their definitions, as well as their differing conditions.

To summarize, both the preventable and prevented fractions are useful when the exposure of interest
has a preventive effect on the outcome. However, the preventable fraction is useful when the preventive
effect is present in the unexposed group (i.e., SRRU < 1), whereas the prevented fraction is useful when the
preventive effect is present in the exposed group (i.e., SMR < 1). In these cases, the range of both measures
becomes (0, 1]. On a related issue, in line with the approach to distinguish between the attributable case-
load and attributable proportion [13], it is also possible to define the preventable and prevented proportions
in the counterfactual framework [36], which are both always within the range [0, 1]. For example, the
preventable proportion (population) is defined as Y Y Y YPr Pr , Pr1{ ( ) ( )} ( )− / , whereas the prevented pro-
portion (population) is defined as Y Y Y YPr Pr , Pr0 0 0{ ( ) ( )} ( )− / [36]. Under the assumption of negative
monotonicity of E on Y (i.e., Y Y0 1≥ for all individuals), these measures are identifiable [36], and they
become equivalent to the preventable fraction (population) and prevented fraction (population) in this
section, respectively. To provide the conceptual relations of these measures, we propose a new measure in
Section 6.

6 Attributed fraction

The three measures discussed previously all compare the observed risk under the “current” or observed
exposure pattern with the counterfactual risk under either e = 1 or e = 0. Accordingly, a newmeasure may be
defined that compares the observed risk and the counterfactual risk under e = 1, where the reference is the
counterfactual risk under e = 1. Following the relations between the preventable fraction and prevented
fraction, we call this newly proposed measure the “attributed fraction.”

Definition 4: When the target population is the total population, the attributed fraction (population) is
defined as Y Y YPr Pr Pr1 1{ ( ) ( )} ( )− / , whereas when the target population is the unexposed group, the attrib-
uted fraction (unexposed) is defined as Y E Y E Y EPr ̅ Pr ̅ Pr ̅1 1{ ( ) ( )} ( )| − | / | .

Note that the attributed fraction is equivalent to the prevented fraction when the coding of exposure is
reversed. Furthermore, compared with the preventable fraction, the roles of YPr( ) (or Y EPr ̅( )| ) and YPr 1( )
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(or Y EPr ̅1( )| ) are reversed in the attributed fraction. If one does not use stratification by C, Theorem 4.1 and
Corollary 4.1 provide the attributed fraction.

Theorem 4.1: The attributed fraction (population) and attributed fraction (unexposed) are obtained as
E YPr ̅ SRR 1 SRR1

U U( )( )| − / and SRR 1 SRRU U( )− / , respectively.

Corollary 4.1: The attributed fraction (population) and attributed fraction (unexposed) are obtained as
E YPr ̅ aRR 1 aRR1( )( )| − / and aRR 1 aRR( )− / , respectively, if and only if partial exchangeability under exposure

holds (i.e., Y E1⫫ ).

Note that, ifY E1⫫ holds, the attributed fraction (population) can be written as EPr ̅ aRR 1 aRR( )( )− / , but not
vice versa, which is identified from observed data. By contrast, if one uses stratification by C, Theorem 4.2
and Corollary 4.2 provide the attributed fraction.

Theorem 4.2: If one uses stratification by C, the attributed fraction (population) and attributed fraction
(unexposed) are obtained as E Y c Y EPr ̅ Pr , ̅ SRR 1 SRRc c c

1 1
U U( ) ( | )( )| ∑ − / and c Y EPr , ̅ SRR 1 SRRc c c

1
U U( | )( )∑ − / ,

respectively.

Corollary 4.2: The attributed fraction (population) and attributed fraction (unexposed) are obtained as
E Y c Y EPr ̅ Pr , ̅ aRR 1 aRRc c c

1 1( ) ( | )( )| ∑ − / and c Y EPr , ̅ aRR 1 aRRc c c
1( | )( )∑ − / , respectively, if conditional partial

exchangeability under exposure holds (i.e., Y E C1⫫ | ).

In Table S4, we present Theorems 4.1 and 4.2, and Corollaries 4.1 and 4.2 in more detail, including
identifiable estimands, and we provide their proofs in Supplementary Appendix B. Note that we obtain
each formula for the attributed fraction (unexposed) in Table S4 by dividing the corresponding formula for
the attributed fraction (population) by E YPr ̅ 1( | ). Although the formula in Corollary 1.1 for the attributable
fraction (exposed) is identical to the formula in Corollary 4.1 for the attributed fraction (unexposed), it is
important to understand the difference between their definitions, as well as their differing conditions.

As an illustration, recall the hypothetical examples of being overweight and mortality (Table 2). One
may be interested in the reduction in mortality that has been achieved with the “current” or observed
distribution of being overweight compared with the scenario in which the entire population had been
overweight. In this case, one should estimate the attributed fraction (population) instead of the attributable
fraction (population). In Study 1, the attributed fraction (population) is 0.18 0.162 0.18 0.1( )− / = , which, by
definition, differs from the attributable fraction (population) (i.e., 0.074). Similarly, the attributed fraction
(population) in Study 2 is 0.225 0.171 0.225 0.24( )− / = , which, by definition, differs from the attributable
fraction (population) (i.e., 0.12).

Like the attributable fraction, the attributed fraction is useful when the exposure of interest has a causal
effect on the outcome. However, unlike the attributable fraction, the attributed fraction is useful when the
causal effect is present in the unexposed group (i.e., SRRU > 1), in which case, the range of the measure
becomes (0, 1).

7 Excess fraction: causal and preventive

As mentioned above, there has been some confusion regarding the terms “attributable fraction” and
“excess fraction,” and they are sometimes used interchangeably [20,24]. To avoid any confusion, these
measures should be clearly distinguished in the counterfactual framework [13]. The four measures in
Definitions 1–4 compare the observed risk under the “current” or observed exposure pattern with the
counterfactual risk under either e = 1 or e = 0. By contrast, we define the excess fraction as a measure
that compares the counterfactual risk under e = 1 and the counterfactual risk under e = 0. In this study, we
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propose distinguishing between the causal excess fraction and preventive excess fraction. First, we define
the former.

Definition 5: When the target population is the total population, the causal excess fraction (population) is
defined as Y Y YPr Pr Pr1 0 1{ ( ) ( )} ( )− / . Similarly, when the target population is the exposed group, the causal
excess fraction (exposed) is defined as Y E Y E Y EPr Pr Pr1 0 1{ ( ) ( )} ( )| − | / | , whereas when the target population is
the unexposed group, the causal excess fraction (unexposed) is defined as Y E Y E Y EPr ̅ Pr ̅ Pr ̅1 0 1{ ( ) ( )} ( )| − | / | .

If one does not use stratification by C, Theorem 5.1 and Corollary 5.1 provide the causal excess fraction.

Theorem 5.1: The causal excess fraction (population) is obtained as cRR 1 cRR( )− / . Similarly, the causal
excess fraction (exposed) and causal excess fraction (unexposed) are obtained as cRR 1 cRRE E( )− / and
cRR 1 cRRU U( )− / , respectively.

Corollary 5.1: The causal excess fraction (population) is obtained as aRR 1 aRR( )− / if exchangeability holds
(i.e., Y E e 0, 1e ( )⫫ = ). The causal excess fraction (exposed) is obtained as aRR 1 aRR( )− / if and only if partial
exchangeability under no exposure holds (i.e., Y E0⫫ ). The causal excess fraction (unexposed) is obtained as
aRR 1 aRR( )− / if and only if partial exchangeability under exposure holds (i.e., Y E1⫫ ).

By contrast, if one uses stratification by C, Theorem 5.2 and Corollary 5.2 provide the causal excess fraction.

Theorem 5.2: If one uses stratification by C, the causal excess fraction (population) is obtained as
c YPr cRR 1 cRRc c c

1( | )( )∑ − / . Similarly, the causal excess fraction (exposed) and causal excess fraction (unex-
posed) are obtained as c Y EPr , cRR 1 cRRc c c

1
E E( | )( )∑ − / and c Y EPr , ̅ cRR 1 cRRc c c

1
U U( | )( )∑ − / , respectively.

Corollary 5.2: The causal excess fraction (population) is obtained as c YPr aRR 1 aRRc c c
1( | )( )∑ − / if condi-

tional exchangeability holds (i.e., Y E C e 0, 1e ( )⫫ | = ). The causal excess fraction (exposed) is obtained as
c Y EPr , aRR 1 aRRc c c( | )( )∑ − / if conditional partial exchangeability under no exposure holds (i.e., Y E C0⫫ | ).

The causal excess fraction (unexposed) is obtained as c Y EPr , ̅ aRR 1 aRRc c c
1( | )( )∑ − / if conditional partial

exchangeability under exposure holds (i.e., Y E C1⫫ | ).

In Table S5, we present Theorems 5.1 and 5.2, and Corollaries 5.1 and 5.2 in more detail, including identifi-
able estimands, and we provide their proofs in Supplementary Appendix B. The causal excess fraction
(population), causal excess fraction (exposed), and causal excess fraction (unexposed) are generally useful
when the causal effect is present in the total population, exposed group, and unexposed group, respectively
(i.e., cRR > 1, cRRE > 1, and cRRU > 1, respectively). Using partial consistency under exposure (i.e., Y1 = Y if E
= 1), the causal excess fraction (exposed) becomes equivalent to the attributable fraction (exposed) in
Definition 1, which may partly explain why some researchers have used the terms “attributable fraction”
and “excess fraction” interchangeably [20,24]. Similarly, using partial consistency under no exposure (i.e.,
Y0 = Y if E = 0), the causal excess fraction (unexposed) becomes equivalent to the attributed fraction
(unexposed) in Definition 4. However, the causal excess fraction (population) is distinct from both the
attributable fraction (population) and attributed fraction (population), even under some assumptions.
Regarding this, note that the causal excess fraction (population) is useful when the causal effect is present
in the total population (i.e., cRR > 1), whereas the attributable fraction (population) and attributed fraction
(population) are useful when the causal effect is present in the exposed group (i.e., SMR > 1) and unexposed
group (i.e., SRRU > 1), respectively; that is, although the target population of these three measures is the
total population, the “target” of causation differs between them. We address this point further in Section 9.

As an illustration, the causal excess fraction (population) in Study 1 is 0.18 0.15 0.18 0.17( )− / ≈ , which,
by definition, differs from the attributable fraction (population) (i.e., 0.074) and attributed fraction (popu-
lation) (i.e., 0.1). Similarly, the causal excess fraction (population) in Study 2 is 0.225 0.15 0.225 0.33( )− / ≈ ,
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which, by definition, differs from the attributable fraction (population) (i.e., 0.12) and attributed fraction
(population) (i.e., 0.24).

When the exposure of interest has a preventive effect on the outcome, the preventive excess fraction, in
which the coding of exposure is reversed, is useful.

Definition 6: When the target population is the total population, the preventive excess fraction (popula-
tion) is defined as Y Y YPr Pr Pr0 1 0{ ( ) ( )} ( )− / . Similarly, when the target population is the exposed group,
the preventive excess fraction (exposed) is defined as Y E Y E Y EPr Pr Pr0 1 0{ ( ) ( )} ( )| − | / | , whereas when the
target population is the unexposed group, the preventive excess fraction (unexposed) is defined
as Y E Y E Y EPr ̅ Pr ̅ Pr ̅0 1 0{ ( ) ( )} ( )| − | / | .

If one does not use stratification by C, Theorem 6.1 and Corollary 6.1 provide the preventive excess fraction.

Theorem 6.1: The preventive excess fraction (population) is obtained as 1 cRR− . Similarly, the preventive
excess fraction (exposed) and preventive excess fraction (unexposed) are obtained as 1 cRRE− and 1 cRRU− ,
respectively.

Corollary 6.1: The preventive excess fraction (population) is obtained as 1 aRR− if exchangeability holds
(i.e., Y E e 0, 1e ( )⫫ = ). The preventive excess fraction (exposed) is obtained as 1 aRR− if and only if partial
exchangeability under no exposure holds (i.e.,Y E0⫫ ). The preventive excess fraction (unexposed) is obtained
as 1 aRR− if and only if partial exchangeability under exposure holds (i.e., Y E1⫫ ).

By contrast, if one uses stratification by C, Theorem 6.2 and Corollary 6.2 provide the preventive excess
fraction.

Theorem 6.2: If one uses stratification by C, the preventive excess fraction (population) is obtained as
c YPr 1 cRRc c

0( | )( )∑ − . Similarly, the preventive excess fraction (exposed) and preventive excess fraction (unex-
posed) are obtained as c Y EPr , 1 cRRc c

0
E( | )( )∑ − and c Y EPr , ̅ 1 cRRc c

0
U( | )( )∑ − , respectively.

Corollary 6.2: The preventive excess fraction (population) is obtained as c YPr 1 aRRc c
0( | )( )∑ − if conditional

exchangeability holds (i.e., Y E C e 0, 1e ( )⫫ | = ). The preventive excess fraction (exposed) is obtained as
c Y EPr , 1 aRRc c

0( | )( )∑ − if conditional partial exchangeability under no exposure holds (i.e., Y E C0⫫ | ). The
preventive excess fraction (unexposed) is obtained as c Y EPr , ̅ 1 aRRc c( | )( )∑ − if conditional partial exchange-
ability under exposure holds (i.e., Y E C1⫫ | ).

In Table S6, we present Theorems 6.1 and 6.2, and Corollaries 6.1 and 6.2 in more detail, including identifi-
able estimands, and we provide their proofs in Supplementary Appendix B. The preventive excess fraction
(population), preventive excess fraction (exposed), and preventive excess fraction (unexposed) are gen-
erally useful when the preventive effect is present in the total population, exposed group, and unexposed
group, respectively (i.e., cRR < 1, cRRE < 1, and cRRU < 1, respectively). Using partial consistency under
exposure (i.e., Y1 = Y if E = 1), the preventive excess fraction (exposed) becomes equivalent to the prevented
fraction (exposed) in Definition 3. Similarly, using partial consistency under no exposure (i.e., Y0 = Y if E =
0), the preventive excess fraction (unexposed) becomes equivalent to the preventable fraction (unexposed)
in Definition 2. However, the preventive excess fraction (population) is distinct from both the preventable
fraction (population) and prevented fraction (population), even under some assumptions.

Finally, it is worth mentioning that, if Y E e 0, 1e ( )⫫ = holds (e.g., in ideal randomized controlled
trials), the differing target populations in either the causal or preventive excess fraction become irrelevant;
that is, the formulae in Corollary 5.1 all become identical and so do those in Corollary 6.1. This is in sharp
contrast to the measures in Definitions 1–4; even if Y E e 0, 1e ( )⫫ = holds, the concept of the target
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population is important in these measures. Conversely, even if Y E C e 0, 1e ( )⫫ | = holds, the differing target
populations are relevant in all the measures in Definitions 1–6, unless Y E e 0, 1e ( )⫫ = holds.

8 Notes on “vaccine efficacy”

In Modern Epidemiology, the preventive excess fraction (population) in Definition 6 is called the preven-
table fraction, which is further explained as follows: “[in] vaccine studies, this measure is also known as
the vaccine efficacy” [24, p. 83]. By contrast, in A Dictionary of Epidemiology, vaccine efficacy is defined
as “[the] proportion of persons in the placebo group of a vaccine trial who under ideal conditions would
not have become ill if they had received the vaccine” [34, p. 287], which may well correspond to the
preventable fraction (unexposed) in Definition 2. This possible confusion may be caused by the fact that,
ifY E e 0, 1e ( )⫫ = holds, both the preventable fraction (unexposed) and preventive excess fraction (popula-
tion) become equivalent to 1 aRR− (Corollaries 2.1 and 6.1, respectively). Vaccine efficacy is typically
measured when a study is conducted under ideal conditions (e.g., clinical trials). However, notably,
numerous observational study designs are used to evaluate vaccine efficacy, including cohort studies
and test-negative studies [37].

Conventionally, vaccine efficacy is calculated using the formula 1 aRR− , which is equivalent to
E E Y E E YPr Pr Pr 1 Pr{ ( ) ( )} { ( )( ( ))}− | / − | [38–40]. This so-called screening technique has been used as a

method for rapidly estimating vaccine efficacy [40]. However, as elaborated in this article, this calculation
method provides vaccine efficacy only when certain conditions hold. When vaccine efficacy is defined as the
preventable fraction (unexposed), the calculation method is valid if and only if Y E1⫫ holds (Corollary 2.1).
By contrast, when vaccine efficacy is defined as the preventive excess fraction (population), the calculation
method is valid if Y E e 0, 1e ( )⫫ = holds (Corollary 6.1). Thus, when vaccine efficacy is estimated in ideal
randomized controlled trials, the inconsistent definitions may not make a substantive difference. However,
when these conditions are violated, the calculation method is invalid irrespective of the definitions. Once
vaccine efficacy is clearly defined, one may proceed to estimate it using the appropriate formulae under
certain conditions. Note that the preventable fraction (unexposed) and preventive excess fraction (popula-
tion) do not become equivalent, even ifY E C e 0, 1e ( )⫫ | = holds (Corollaries 2.2 and 6.2, respectively). Given
the growing need to assess vaccine efficacy, it is important to have a clearer understanding of the defini-
tions of the relevant measures to avoid confusion.

9 Conclusion

In this study, we discussed a total of six measures, including a newly proposed measure – the attributed
fraction – in the counterfactual framework. All the measures could also be considered to be conditional on
strata of C. Figure 1 shows a conceptual schema of these six measures when the target population is the total
population. In the figure, we consider six (= 3!) possible patterns based on Pr(Y), Pr(Y0), and Pr(Y1),
assuming that Pr(Y), Pr(Y0), and Pr(Y1) all differ. The six arrows show the contrasts of interest in the
corresponding six measures. The arrow tails represent the reference points, whereas the arrow heads
represent the points to be compared. The height of the gray areas represents the risk of the outcome for
each pattern. The difference between Pr(Y) and Pr(Y0) represents the presence of either causal or preventive
causation in the exposed group (highlighted in light red), whereas the difference between Pr(Y) and Pr(Y1)
represents the presence of either causal or preventive causation in the unexposed group (highlighted in
light blue). Note that, although Pr(Y0) and Pr(Y1) are uniquely determined in the target population, Pr(Y)
may vary according to the exposure distribution patterns, even if the proportion of exposure remains
constant.
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Three aspects are worth mentioning. First, when the coding of exposure is reversed, the attributable
fraction, attributed fraction, and causal excess fraction in the upper panel become equivalent to the pre-
ventable fraction, prevented fraction, and preventive excess fraction in the lower panel, respectively.
Second, the contrasts of interest in the attributable fraction, attributed fraction, and causal excess fraction
in the upper panel are the same as those in the prevented fraction, preventable fraction, and preventive
excess fraction in the lower panel, respectively, whereas their reference points differ. Third, and related to
the second aspect, we should clearly understand the differing “targets” of causation in the six measures. In
both the causal and preventive excess fractions, the “target” of causation is the total population, which is
the same as the target population. However, the “targets” of causation of the other four measures are not
the total population; they are the exposed group in the attributable fraction and prevented fraction,
whereas they are the unexposed group in the attributed fraction and preventable fraction. This point
may be less relevant in relatively simple scenarios, such as Patterns 1 and 4. Under the assumption of
positive monotonicity of E on Y, one may observe only Pattern 1. Similarly, under the assumption of
negative monotonicity of E on Y, one may observe only Pattern 4. However, in more complex scenarios,

A�ributable frac�on A�ributed frac�on

Prevented frac�on Preventable frac�on

Causal excess frac�on

Preven�ve excess frac�on

Preven�ve effect
(i.e., Pr > Pr )

Pa�ern 1

Pa�ern 2

Pa�ern 3

Pa�ern 4

Pa�ern 5

Pa�ern 6

Causal effect
(i.e., Pr < Pr )

PrPr Pr

Figure 1: Conceptual schema of the six measures and six possible patterns. We show a schema when the target population is
the total population. The six arrows show the contrasts of interest in the corresponding six measures. The arrow tails represent
the reference points, whereas the arrow heads represent the points to be compared. The height of the gray areas represents the
risk of the outcome for each pattern. We assume that Pr(Y), Pr(Y0), and Pr(Y1) all differ. Note that we conveniently describe their
relationships in a linear manner. The difference between Pr(Y) and Pr(Y0) represents the presence of either causal or preventive
causation in the exposed group (highlighted in light red), whereas the difference between Pr(Y) and Pr(Y1) represents the
presence of either causal or preventive causation in the unexposed group (highlighted in light blue). For example, the
attributable fraction (population) is a positive value in Patterns 1, 2, and 5 because Pr(Y) (i.e., the reference point) is higher
than Pr(Y0) (i.e., the point to be compared). In these patterns, the causal effect is present in the exposed group and SMR is
higher than 1. However, in Pattern 5, there is a preventive effect in the total population. An analogous discussion applies to the
attributed fraction, preventable fraction, and prevented fraction.
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this has important ramifications. For example, as mentioned above, even if exposure has a causal effect in
the total population (i.e., cRR > 1), the attributable fraction (population) is a negative value and is less
useful if exposure has a preventive effect in the exposed group (i.e., SMR < 1). This scenario corresponds to
Pattern 3, and the prevented fraction would be useful in this case. Furthermore, note that, because Pr(Y) is
lower than Pr(Y0) or Pr(Y1) in Pattern 3, interventions to set either E = 0 or E = 1 increase the risk of the
adverse outcome Y in the total population. In some specific situations (i.e., Pr(Y) = Pr(Y1, Y0)), one can
minimize the risk of the adverse outcome Y by preserving the status quo. Moreover, one may consider
implementing interventions on variables other than Ewith the aim to further lower the risk of Y. It would be
important to have such an overview when considering possible interventions. To understand these aspects,
we believe that it is important to understand the conceptual relations between the six measures in Figure 1.

Regarding the interpretations of these measures, it is also worth mentioning that information about
temporality is not included in their definitions. Some may consider that the attributable and preventable
fractions reflect the potential impact in the future, whereas the attributed and prevented fractions reflect the
potential impact in the past [35]. However, we note that ad hoc information about temporality is unwittingly
incorporated into this interpretation. For example, in Figure 1, the attributable fraction (population) is
generally useful in Patterns 1, 2, and 5 because Pr(Y0) is lower than the observed risk Pr(Y). In this scenario,
one may implicitly consider that Pr(Y0) represents the risk in the future. By contrast, the attributed fraction
(population) is generally useful in Patterns 1, 3, and 6 because Pr(Y1) is higher than the observed risk Pr(Y),
and one may implicitly consider that Pr(Y1) represents the risk in the past. Note that, in both cases, one
innately considers that time flows from the arrow tail to the arrow head in the measure of interest. This
conception may seem reasonable because, in the real world, interventions are typically implemented only
when they are expected to reduce adverse outcomes in the population. However, the counterfactual risks in
the definitions of the measures do not incorporate information about time; rather they are merely counter-
factual or contrary to the fact (in the current scenario). Thus, for the interpretation above to hold, the
counterfactual risks should be invariant in the future or past. This implicit assumption should be explicitly
addressed for the appropriate use of these measures.

To summarize, the six measures are, if correctly used, valuable for health impact assessment and
decision-making. However, despite their importance and potential usefulness, the definitions of these
measures remain inconsistent in the literature, which has led to some confusion among researchers and
health practitioners. It is important to have a clearer understanding of their definitions in the counterfactual
framework, which is essential for their appropriate interpretation in the real world.
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