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Abstract: We present two novel approaches to variance estimation of semi-parametric efficient point esti-
mators of the treatment-specific mean: (i) a robust approach that directly targets the variance of the
influence function (IF) as a counterfactual mean outcome and (ii) a modified non-parametric bootstrap-
based approach. The performance of these approaches to variance estimation is compared to variance
estimation based on the sample variance of the empirical IF in simulations across different levels of posi-
tivity violations and treatment effect sizes. In this article, we focus on estimation of the nuisance parameters
using correctly specified parametric models for the treatment mechanism in order to highlight the chal-
lenges posed by violation of positivity assumptions (distinct from the challenges posed by non-parametric
estimation of the nuisance parameters). Results demonstrate that (1) variance estimation based on the
empirical IF may provide highly anti-conservative confidence interval coverage (as reported previously),
(2) the proposed robust approach to variance estimation in this setting provides conservative coverage, and
(3) the proposed modified bootstrap maintains close to nominal coverage and improves power. In the
appendix, we (a) generalize the robust approach of estimating variance to marginal structural working
models and (b) provide a proof of the consistency of the targeted minimum loss-based estimation bootstrap.
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1 Introduction

A number of estimators are available for the treatment-specific mean outcome parameter (and the corre-
sponding causal contrasts) based on longitudinal data structures, such as inverse probability weighting
(IPW) [1,2], double robust augmented IPW (AIPW) [3-8], and targeted minimum loss-based estimation
(TMLE) [9]. Variance estimation for each of these estimators is conventionally achieved by using their
corresponding influence functions (IFs) [10] based on the empirical distribution or by resampling methods
such as the non-parametric bootstrap [11]. However, a number of shortcomings exist with these variance
estimation approaches. In particular, the non-parametric bootstrap has been lacking in theory to support its
validity and may be computationally prohibitive when machine learning methods are used for the estima-
tion of nuisance parameters. Furthermore, both IF-based and bootstrap-based confidence intervals can
become anti-conservative in the setting of positivity violations (i.e., when support for a treatment regime of
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interest is minimal for some levels of covariate history [12]). For example, van der Laan and Gruber [9]
found IF-based variance estimates for the intervention-specific mean outcome that were anti-conservative
when compared with the Monte Carlo variance of the TMLE, leading to poor confidence interval coverage.
Petersen et. al. [12] also found poor coverage for IF-based confidence intervals, owing to both practical
positivity violations and relatively rare outcomes. Importantly, poor performance of standard variance
estimators can occur in finite samples, even when the assumptions for asymptotic validity of these esti-
mators hold [12]. Furthermore, these standard approaches to variance estimation are not sensitive to
theoretical violations of the positivity assumptions under which the asymptotic variance of the estimator
would be infinity, i.e., when the positivity assumption needed for identification fails due to lack of support
in the underlying data-generating process. Improved approaches to variance estimation in the context of
positivity violations are thus needed that are able to (1) serve as a “red flag” to alert the analyst if the data at
hand provide insufficient information to estimate the desired causal parameter with any reasonable degree
of accuracy, and (2) provide closer to nominal confidence interval coverage and type 1 error control in these
challenging estimation settings.

Previous studies [12,13] proposed estimating the asymptotic variance of the estimator with a parametric
bootstrap based on a fit of the density of the data-generating distribution, involving estimation of individual
factors of the likelihood. This proposal corresponds with evaluation of the variance of a given estimator using
the data at hand as a given data-generating experiment. The consistency of this estimator relies on a con-
sistent estimation of the corresponding factors of the likelihood. This parametric bootstrap integrates over
sparse events and therefore will explode the variance. An extremely large sample is therefore needed to get
the true variance under this Monte Carlo scheme. As a consequence, this parametric bootstrap-based variance
estimate was only proposed as a measure to raise a red flag for unreliable statistical inference due to poor data
support. In addition, in the context of sparsity in order to obtain a valid estimate of the variance, one needs to
(i) sample a large number of bootstrap samples and (ii) refit the likelihood in each iteration in order to capture
the rare observations that, nonetheless, heavily contribute to the variance. Thus, the bootstrap method is
extremely computer-intensive, making this Monte Carlo scheme an intractable method for complex estima-
tors, particularly those that rely on machine learning for nuisance parameter estimation.

In this article, we present two approaches to variance estimation in the context of positivity violations
to address these challenges. We use analytic expressions to compute the variance of the efficient influence
function (EIF) for the statistical target parameter corresponding (under assumptions) to the counterfactual
mean outcome under a longitudinal dynamic treatment regime, thereby providing the asymptotic variance
of estimators solving the estimating equation corresponding to this function. These analytic expressions
naturally integrate over the rare observations and thereby avoid the finite sample bias in variance estima-
tion using standard influence curve or non-parametric bootstrap-based methods due to the rare aforemen-
tioned observations. With this, we construct robust plug-in-type estimators of these asymptotic variances
that are consistent if both the treatment mechanism and treatment-specific means of specified outcomes are
consistently estimated (as our derived expression requires both). These estimators require estimation of the
treatment mechanism and several treatment-specific means of specified outcomes (defined as a function of
the observed data structure, indexed by the estimator of the treatment mechanism), which can be estimated
with either an estimating equation-type IPW estimator or an efficient substitution-based method such as a
TMLE [9]. The resulting variance estimator, unlike current alternatives based on taking the variance of the
empirical IF, or using a non-parametric bootstrap, will become very large whenever the estimated treatment
mechanism reflects practical or theoretical violations of the positivity assumption.

While this newly presented approach performs well in estimating the asymptotic variance of estimators
solving the estimating equation corresponding to the EIF, a lower finite sample variance should be expected
for substitution-based estimators such as TMLE [9], due to the guaranteed parameter boundaries provided
by the estimator. We therefore additionally present a second bootstrap-based approach of estimating the
finite sample variance. This bootstrap improves on the estimator based on the empirical variance of the
variance of the IF by making use of rare observations in the update step of the estimator. Importantly, it
does not require re-estimation of the individual factors of the likelihood and therefore reduces the compu-
tational burden compared to both the standard parametric and non-parametric bootstrap methods. The
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resulting reduction in the computational load (compared to a fully non-parametric bootstrap approach,
which refits the likelihood for each iteration) allows for a more tractable approach at estimating the
variance. Furthermore, the modified bootstrap is asymptotically consistent under reasonable assumptions,
namely, the same essential assumptions needed for the estimator of the target parameter itself to be
asymptotically linear. In other words, the bootstrap we propose is valid whenever the original TMLE is
asymptotically linear. A non-parametric full bootstrap can easily break down due to the machine learning
algorithms behaving differently under sampling from B, than under Py, where B, is our empirical distribu-
tion and P, is the true distribution. Thus, while the non-parametric bootstrap is not consistent for these
efficient estimators using machine learning, our proposed bootstrap is consistent.

1.1 Organization of this article

In Section 2, we formally define the observable data, likelihood, and statistical model for its distribution.
Our target parameter of the treatment-specific mean outcome is defined, along with its EIF. We briefly
review the causal model and identification assumptions under which this statistical parameter of the
observed data distribution corresponds with the desired causal parameter of the counterfactual distribu-
tion, along with the currently common approach of IF-based estimator variance estimation.

Section 3 presents an approach for robust estimation of the variance of the EIF under sparsity. The
expression for the variance of the EIF is presented along with both IPW and TMLE-based approaches for
estimating this parameter. To illustrate, an example is given for a point treatment setting under a static
treatment regime. Advantages of this approach, implemented in the ltmle R package [12,14] but not pre-
viously described in the literature, are covered. Appendix A generalizes the approach to working marginal
structural working models and provides proofs.

Section 4 discusses a second approach of estimating the estimator variance using the bootstrap under a
modified TMLE. Appendix B proves the consistency of this bootstrap estimator.

Section 5 illustrates the performance of the variance estimators presented in Sections 3 and 4 by
applying them in simulations to both a single time point and longitudinal treatment settings to estimate
the variance of an (iterated conditional expectation) TMLE point estimator [9,15] under varying effect sizes
and degrees of positivity violation. We focus on the setting in which the treatment mechanism is estimated
according to a correctly specified parametric model in order to distinguish challenges to inference due to
positivity from the distinct challenges to variance estimation and inference due to potential slow conver-
gence of machine learning-based nuisance parameter estimators. We discuss extensions to the setting of
machine learning-based nuisance parameter estimation in the discussion. Results show that, in settings of
substantial positivity violation, the standard empirical IF-based approach results in anti-conservative
confidence interval coverage. In contrast, the robust approach provides conservative coverage, and thus
an effective diagnostic for settings in which standard approaches may result in misleading inference.
Finally, the proposed bootstrap approach provides the closest to nominal coverage of the three estimators,
and maintains higher power than the robust approach.

We conclude with a discussion in Section 6, which reviews the results, benefits of this new approach,
potential limitations, and future directions.

2 The causal roadmap: the statistical estimation problem and
causal identification

Consider a longitudinal study in which subjects are seen at each time point t from t = 0, 1,..., K + 1. The
observable data structure on a randomly sampled subject is
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0 = (L(0), A(0), L(1), AQD), ...,AK), Y=LK+ 1) i P,, oy

where L(0) includes all baseline covariates, A(t) denotes an intervention (or treatment) node at time ¢, and
L(t) denotes all time-varying covariates at time point ¢, measured between the intervention nodes A(t~) and
A(t), where for notational convenience, we define ¢~ = t — 1. Our outcome of interest Y = L(K + 1) is an
outcome measured after the final intervention A(K). We observe n independent and identically distributed
(iid) copies 0; : i = 1,..., n, of O.

The likelihood L(O) for the observable data is the product of conditional probabilities such that the
likelihood for subject i is

L(0;) = po(Li(0), A;(0), Li(1), A;(D), ...,Li(K + 1))
= po(Li(K + D|Li(K), Ai(K)) - po(Ai(K)IL(K), A;(K - 1))
Po(L{K)ILi(K - 1), Ai(K - 1)) po(Ai(K — DILi(K - 1), Ai(K - 2))-++ po(Li(0))

)
K+1 _ _ K _ _
=| [[po@iOILi(t™), &) |- | [ [po(AOILi(D), Ai(tY)) |,
=0 do.(L(®))|Pa(L(t)) =0 g (AW)|PalA(D)

where X(t) = (X(1), X(2), ...,X(t)), A(-1) = L(-1) = &, and py(0) denotes py(O = 0) under the true distri-
bution P, where we assume O is discrete for the sake of presentation.
The statistical model M for the data involves assumptions, if any, only on the conditional distributions
of A(t), given Pa(A(t)) = (L(t), A(t?)), t=0,..., K. Let
K+1

P = [ [Po.co @I, d(I(t)),
t=0
denote the G-computation formula for the post-intervention distribution of an intervention that sets A(K) =
d(I(K)) [16]. We use the notation Py, for a conditional distribution of L(t), given Pa(L(t)) = (L(t"), A(t)).
Let L4 = (L(0), ...,Y4 = LK + 1)) be a random variable under the post-intervention distribution P§. The
statistical target estimand is defined here as ¥(P,) = [E Pg[Yd], i.e., the mean of the outcome at time K + 1
under this distribution. We note that ¥ : M — R represents a target parameter mapping on the statistical
model to the real line. Defining t* = t + 1, the EIF of ¥ at P is given by previous studies [6,15,17]

K+1

D*(P)(0) = ) D{(P)(0),

t=0
where
Dy(P)L(0)) = @ - Qf
D;(PYA®), Lt N = H©@)(Q - Q) 1 t=1,2, ., K + 1,
where
1At = dd(t)))
H = = = )
&)= G, L)
Q%2=Y, (3)
O =Ep[YYL4 ) = L(t)] 1 £=1,2, ..., K + 1,
Q4 = Ep[Y4].

Here, g,..(A(t"), L(t")) denotes the cumulative probability of treatment up to time ¢ - 1, i.e.,

t-1

o (A, L(t) = [[pAWIEw), A - 1)).

u=0
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Furthermore, Q,d is defined by recursive regression, starting att = K + 1 and moving backward in time.
For notational convenience, we let Hy = 1 so that

K+1

D'(P)(0) = Y H(g)(Q4 - Q).
t=0

2.1 Causal model

Under additional assumptions about the data-generating process, the target statistical estimand W(P) is
equal to the mean of the counterfactual outcome Y; under an intervention to set the vector of treatment
nodes to value d(I (K)) (i.e., the counterfactual outcome under a specified dynamic regime). Specifically, for
interventions of interest d € 9, we assume sequential randomization [16]

Y; L A)IL(),A(t™) : t=0,1,...,K
and positivity [18]
P(A(t) = d(L(t)|L(H), A(t™) = d(L(t))) >0 a.e. :t=0,1,..., K. (4)

Regarding the assumption of positivity, we note that as P(A(t) = d(L(t))|L(t), A(t") = d(L(t))) — 0, we
have that H;(g) — oo resulting in var [D*(P)(0)] — oo; following the literature, we refer to violation of the
positivity assumption (4) as a theoretical positivity violation and near violations resulting in lack of ade-
quate support in finite samples as practical positivity violations.

2.2 Review of IF-based variance

Recall that an estimator W(R,) is considered to be asymptotically linear if and only if

n
¥R - ¥(P) = - Y DE:)(O0) + 0,(n2)

i=1
for some mean O finite variance IF D(P,)(0) [10]. If an estimator is asymptotically linear, then it will be
asymptotically normal with variance equal to the variance of the IF over n. The asymptotic variance of the
estimator can therefore be consistently estimated with the variance of the empirical IF D(B,)(0), i.e.,
var[¥(B)] = var[D(B)(0)]/n, which implies an asymptotically valid confidence interval (assuming the
theoretical positivity assumption (4)). However, as we discuss in the following sections, this approach
has substantial limitations both as a diagnostic that the theoretical positivity assumption fails, and for
finite sample inference in the context of practical positivity violations.

2.2.1 TMLE

One possible estimator that solves the estimating equation corresponding to the EIF for intervention-
specific mean outcomes is TMLE [19]. Naive plug-in estimators can be too biased with a dominating term
being the empirical mean of the EIF, and solving the estimating equation can reduce this bias.

This plug-in estimator works by forming an initial fit of the g, factors of the likelihood and subsequently
perturbing it such that the estimating equation corresponding to the EIF is solved. We assume the use of the
iterated conditional outcome TMLE [9,15] but modified to improve robustness to data sparsity by incorpora-
tion of the inverse probability of treatment as a weight rather than a covariate in the targeted update
[20-22]. We restrict ourselves to this estimator for our estimation problem, such that our attention is
focused on estimation of the estimator’s variance. Note that our proposed variance estimators also apply
to estimating equation approaches, such as the double robust AIPW [3-8].
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3 Semi-targeted estimation of the EIF variance

A common approach to variance estimation and corresponding inference based on this point estimator is
thus based on taking the sample variance of the empirical EIF divided by sample size, using either the initial
or the targeted empirical estimates of the gy factors of the likelihood.

The basis of the proposed “robust” approach to variance estimation is to express the variance of
D(Py)(0) as an expectation, allowing us to estimate the variance as a mean and the target estimation of
the variance directly using TMLE. The following describes how to obtain a TMLE of the variance of each
component of the EIF ¢/ in the setting of a scalar parameter. We provide a proof for the more general
working MSM setting in Appendix A for the interested reader. Both robust estimators are implemented as
options in the ltmle R package.

3.1 Expression for variance of the EIF for EYy

Under regimens d(I(K)), we have

K+1
02 = EolD*(Po)O)P = Y Eo[HZ(8o)(Qs - Qs )]

t=0
where g, represents the true cumulative probability of treatment up to time ¢ - 1, i.e., g,.,- under P,.
Using the expression for Hy(g) from equation (3), and first taking the conditional expectation w.r.t.
A(t™) given X = (L% : d), it follows that this can be written as:
— d - d -
02 = KZH[E 4 Qo+ - Qo,t)Z(Ld(t))
- P = - b
S | W), LUt)
where we define g,(d(I(-1)), L%~1)) = 1 so that the term at t = 0 equals [EL(O)[QOd, 1(L(0)) — EoY9]2. This is

simply a sum of expectations over t € {0, 1, ...,K + 1}. For notational convenience, we re-write equation (5)
as

o)

K+1 K+1 _ _
05 = Y 07" = Y EpdSHQo, )L, ©)
t=0

t=0

for the specified function

(Qs.r - Qs PEE)
go(dI(t)), LUt))
Note that given (Qo, g,), we have that [E Pg[Std(Qo, g,)] is the mean of a counterfactual S£(Qo, g,)(L*(t)), i.e., the
mean of a real-valued function (indexed by d(I) itself) of Ed(t), which needs to be estimated based on the
longitudinal data structure L(0), A(0), ..., A(t — 1), L(t). Given Qy, g,, We observe the outcome S4(Qo, go)Li(1)),
i=1,2,...,n, so that we can represent the observed data structure as L(0), A(0),..., A(t - 1), S,d(Q_o, 8o)L(D)),
and we wish to estimate the statistical target parameter

E palSA(Qo, 8)] = Y. S(Qo, I NPILAE) = I(1) : t = 0,1,..., K + 1, o
I(t)

where again we assume I(t) is discrete for the sake of presentation.

S&4(Qo, g) L)) = t=0,1,.. ,K+1.

3.1.1 Estimation of variance of the EIF

With the expression for the variance of the EIF in hand (equation (6)), we can now form estimators that
target this parameter. Qo and g, are not known in practice, though estimates Q, and g, will be readily
available if estimating E[Y;] using a double robust estimator such as TMLE, thus providing us with the
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observed outcome St Q,, g )(L(t)). Treating this variable as our new time point-specific outcome, our goal is

to estimate the mean of this variable over the post-intervention distribution of L 4(t). For notational conve-
nience, let Z4(t) = S#(Qo, 8,)(L(t)) represent the observable outcome and (L(0), A(0), ...,A(t - 1), Z4(t))
represent the observed data structure.

One possible approach to estimating each of the components (equation (7)) is to use a simple IPW
estimator [1]

52 _ 1y 1) = dd®)) a4,
Tor. pw §g0 add)), Lit)) "0,

where Z4(t) = Std(Qn, g.)(L(t)). However, such an estimator would still be subject to underestimation of the
variance by ignoring the contribution of observations that selected a likely treatment 4;, even though their
probability of following d(I) is very small. In other words, subjects i with small probabilities of following
d(I) would be unlikely to be observed with 4; = d(I) resulting in an indicator value of O for the numerator
and, consequently, a contribution of O to the IPW estimator. Therefore, we stress that it is important to use a
plug-in estimator such as TMLE [9] to estimate this parameter. A plug-in estimator will integrate over allI(t)
in the support of Pf,, and thus contribute many large values of S;fn(Q,f , 8,) when there are practical or
theoretical positivity assumption violations. In addition, the TMLE is a double robust estimator (for the
point estimate) so that it will yield a consistent estimator of this variance if g, is consistent for the true g, or
Q,, is consistent for Q.

Given Qo and g,, we will now provide a succinct summary of the TMLE of 00 t =E Pg[Zd(t)] that is based
on the iterative sequential regression approach. Note that this iterative sequential regression approach is
similar to the one presented by van der Laan and Gruber [9] for the intervention-specific mean outcome

parameter. Denote the counterfactual of Z4(t) under treatment d’ with Zd’d'(t) Recall that we observe
S[d(Qo, go)(L(t)) whereas we wish to estimate S¢ (Qo,go)(L (t)) (n.b. here, we focus only on when

=d). Let Po be the G-computation formula [16] corresponding with this intervention A(¢t”) = d'(I(¢)).
We wish to estimate 00[ =E Pod[Zd’d’(t)], which can be represented as a series of iterated conditional
expectations

o8 = E[E[-- E[E[Z4O)ILYt - DILU(E — 2))---ILUO)]].

The EIF for this target parameter o2 is given by:

D, (P)(0) = Hd 1()(Q%Y - ),

mO

where we define

QA = Zz4(t)
3% _ [ ZAOIEm) = Em)] s m=1,2, ..., ¢
He(g) = 1A(m) = d(I(m)))
8o.m-(dI (m)L(m"))
HE¢t=1.

tm=1,2,...,t

Therefore, the EIF for 02 = Zt 4 is simply D* = ZtD *2 a
With the EIF established, the TMLE of atz a (in 51m11ar fashion to van der Laan and Gruber [9]) is now
defined as follows.
* Estimates g;.,,- , : m =1, 2,..., t are readily available if estimating [F[Y;] using an estimator, which solves
the estimating equation corresponding to the EIF such as TMLE.

. Seth"f

metric submodel respecting this range (a, b) by adding the clever covariate Ht‘“ (on, say, the logistic
d,a} d, o}«

ZA(t). Determine the range (a, b) for Z%(t), i = 1,..., n and target this initial fit using a para-

scale), using the initial fit Q" as off-set. The resulting updated fit is denoted with Q; ,
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. =d,o?, .
* Given Q ,, %" we can recursively form =t -1,t - 2,..., 1:

— Regress the targeted fit Qd ”f onto A(m™) = d(I(m)), L(m"), using logistic regression to respect the

range (a, b). Denote the fit Qd Uf.
— Target this initial fit respecting the range (a, b) with clever covariate 1(A(m~) = d(I(m"))) and observa-
1
8o.m (A (M), L(m))
Note that we already have g,.,,-(d(I(m")), L(m")) readily available from Step 1. Furthermore, we have
the ability to use different submodels (e.g., using a linear submodel that incorporates the propensity
scores into the clever covariate, rather than as weights). We defer discussing this until Section 5.2.1.

tional weight (on the logistic scale), and denote this targeted fit of Qd & with Qd 07 .

e Atm = 1, we have the estimate Q, d.0f, e

of Qd 0[

O rmLe = Qd %% is the desired TMLE of a2

, which now is a function of only L(0). Finally, we take the average

w.r.t. the empirical distribution of L;(0), i.e Qdaf Zl 1Qd0‘ *(L0)). The resulting

We refer any readers unfamiliar with TMLE to Gruber and van der Laan [23] for further details.

3.1.2 Application to single time point treatment setting

For the sake of illustration, let us consider the method presented earlier for the estimation of the variance of
the EIF for the case that O = (L(0), A(0), Y = L(1)) and the target parameter is [E[Y?] for a static point
treatment a.

In this case, the variance of the EIF is represented as:

¢ = Eo[D*(P,)(0)P

_E [ 1(A =a)

2
0 m(y = Qo (L(0))) + Qo(L(0)) - [E[Ya]]

o 2 2 2 (8)
=E,] ——— =2 (Y - L(O L) - El7a
[go(alL(O))( Qo (LC )))] Eo[Q5(L(0)) — E[Y“]]
= Epg

Eo[OS(L(0)) - E[Y4]]?.
2o(alL(0) ]+ 0[Qo (L(0)) - E[Y“]]

If using an estimator that solves the estimating equation corresponding to the EIF for the estimation of E[Y?] such as
TMLE, we are provided with estimators g, and Q,, of g,(A|L(0)) and Qg (L(0)) = E[Y?L(0)] = Eo[Y|A = a, L(0)],
respectively. The second term in the final expression of equation (8) is easily estimated with the empirical
distribution. Given g, and Qo, the first term can be represented as the mean of a counterfactual
S4(L2(0)) = (Y - Qq(L(0)))?/ 8,(alL(0)), which needs to be estimated based on (L(0), 4, S*(L(0), Y)), where
S%(L(0), Y) = (Y - Qo(a, L(0)))?/g(alL(0)) represents the observed outcome. For example, we can use
a TMLE estimator E,[S*L(0), Y*)] of Eo[S*L(0), Y®)] = Ey),0lEc[S?A = a, L(0)]]. The TMLE estimate
E[SYA = a, L(0)] of Eo[S?A = a, L(0)] is defined by determining the range (a, b) of S%(L;(0), Y;), obtaining
an initial regression fit of [Eo[S?|L(0), A] that respects this range, representing it as a logistic regression fit
bounded by (a, b), and updating the latter by fitting a univariate logistic regression with clever covariate
1(A = a) and observational weight 1/g,(alL(0)), using the initial fit as an off-set. Regarding the initial fit
E.[S?A = a, L(0)], recall from the aforementioned fact that S¢ is a function of L(0), which results in the initial
fit being exactly (Y - Qo(a, L(0)))?/g,(alL(0)). We can therefore use (Y - Qu(a, L(0)))?/g,(alL(0)), thus not
requiring that we perform additional regression. Following the update step, the TMLE of E o[S%(L(0), Y9)] is
now given by - Y1 E7[SULi(0), A = a] = - ¥ (¥ - Qa(a, Li(0)))?/g,(alLi(0)), so that
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O & (Y - Q. (a, Li(0)))? 1 no | .
o n,-; g,(alL(0)) + n;(Qn(L,(O), a) - )2,

where 113: is the targeted estimate of E[Y“].

3.2 Advantages of this plug-in estimator of the asymptotic variance of the EIF

Since o7 /n equals the asymptotic variance of an asymptotically efficient estimator, it provides a good
measure of the amount of information in the data for the target parameter of interest. Therefore, it is
sensible to view 03 /n as a measure of sparsity for the target parameter of interest. If g, is a good estimator
of g,, then our proposed plug-in estimator 67 is much less subject to underestimation due to sparsity than
currently available estimators such as the sample variance of the estimated IF, and the bootstrap-based
estimate of the variance of an efficient estimator. This plug-in estimate §; represents a variance of the
estimate of the EIF, which involves the integration of rare combinations of treatment and covariates that are
unlikely to occur in the actual sample.

In particular, if there are theoretical violations of the positivity assumption, then this true variance o3
equals infinity, and if g, approximates g, well, then also the estimate ; will generate very large values,
demonstrating the lack of identifiability and thereby raising a red flag for finite sample sparsity bias in the
estimators (beyond the large confidence intervals generated by 67).

We note that a disadvantage is that it is overly sensitivity to positivity violations by getting too large
relative to real finite sample variance of the TMLE.

4 Variance estimation for substitution-based estimators

The plug-in estimator of the asymptotic variance of the EIF presented earlier is superior to the more
common approach of taking the empirical EIF variance over the sample (i.e., var[D*(P,)(0)]), in that there
is a much stronger contribution of combinations of treatment and covariates that are unlikely to occur in the
actual sample. In finite samples, however substitution-based estimators such as TMLE (which are guaran-
teed to solve the EIF within a bounded range) are often observed to have smaller variance than their
asymptotic variance. This is due to the mere fact that they are guaranteed to respect the global constraints
of the statistical model and target parameter mapping. That is, as opposed to estimators defined as the
solution to estimating equations, which tend to result in estimates outside parameter boundaries as the EIF
variance increases, the use of substitution estimators in finite samples will often retain an estimator
variance that is smaller than the EIF variance divided by the sample size, n. Thus, using the newly pre-
sented robust EIF variance method can result in overestimation of the estimator variance for these types of
estimators. This therefore motivates us to develop an estimator of variance that is less conservative, i.e.,
more aligned to the true variance of substitution-based estimators (such as TMLE), particularly in settings
of positivity violations.

One alternative approach for estimating the variance for substitution-based estimators is to conduct a
non-parametric bootstrap. The n observations are sampled with replacement and used to form an estimate
of the parameter over B iterations. However, as stated earlier, the non-parametric bootstrap is generally
invalid and not theoretically supported. Additionally, this is a very computer-intensive method that usually
requires estimating the full likelihood (i.e., P§) of the longitudinal data structure within each sampled
iteration and is therefore normally infeasible in practice unless conducted within an a priori selected
smaller parametric statistical model such as logistic regression.

In this section, we present an alternative bootstrap-based approach that, unlike the standard non-
parametric bootstrap, is both computationally feasible and theoretically valid. That is, this bootstrap
approach allows us to estimate the variance of the estimator while avoiding re-estimation of g, and Qo.



10 —— Linh Tran et al. DE GRUYTER

To facilitate this, we propose a modification of the usual TMLE such that the targeting step is separated from
the initial estimation of Q,. Recall that the typical TMLE, as implemented, pivots between the targeting step and
the initial estimator for the next regression (preventing us from separating the initial fit from the targeting step).
We propose a minor modification of the TMLE that separates these steps, first estimating all of the initial
regressions and subsequently targeting the fits in a separate step. This modified TMLE can then be bootstrapped
via only the targeting step. We provide a proof of its consistency in Appendix B. Note that, because the modified
TMLE has the same asymptotic behavior as the original TMLE, the bootstrap is theoretically supported and will
continue to have valid inference. To ensure that this does not result in anti-conservative behavior, we use a
bootstrap with a TMLE update that is non-robust (i.e., by defining the clever covariate Hy(g) with the denomi-
nator g,), thereby resulting in large values for observations that are highly unlikely to follow the treatment
regime of interest given their covariate history, even when they in fact fail to do so in the sample.

4.1 Modified TMLE for E[Y“]

To reduce the computational burden that bootstrapping requires, we first present the modified TMLE
approach for generating a point estimate of the parameter E[Y4]. This parameter can be estimated by the
following steps:

(1) Estimate g;,(4,L):t=1,2,...,K + 1 and denote the fits gy, ,.

(2) Determine the range (a, b) for E[Y?]. Recursively fort = K + 1, K, ..., 1, estimate the conditional expec-
tation Qtd = [E[Qﬁl]:(t‘), A(t") = d(I(t))] respecting this range. Denote the fits an. We stress that this
step is crucially different than the typical TMLE, in that all of the initial regression fits are done
simultaneously.

(3) Fortimet = K + 1, target the initial fit Q_I?H,n by using a parametric submodel respecting the range (a, b)
by adding the covariate 1(A(K) = d(I(K))) and observational weight 1/ So.x,n (on the logistic scale),
using the initial fits as off-set, and setting Y as the dependent variable. Denote this updated fit as Q,?fl’n.

(4) Given Q,?’:Ln, we can recursively for t = K, K - 1,..., 1 target the initial fits an by using parametric
submodels respecting the range (a, b), adding the covariates 1(A(t") = d(I(t))) and observational
weight 1/g,..- , (on the logistic scale), using the initial fits as off-set, and setting Qﬂ’y;‘, as the dependent
variable. Denote the updated fits as Qf,;*.

(5) Att =1, we have the estimate Qf;l*, which now is a function of only L(0). Taking the average of Qf;,*

w.r.t. the empirical distribution of L;(0) gives us the desired TMLE estimate of E[Y4].

This estimator also solves the EIF and is therefore also asymptotically linear and efficient. We note that
the analysis of this TMLE is identical to the typical TMLE presented by van der Laan and Gruber [9], with the
only difference being the initial estimator fits. Here, the initial estimators are the original ones, whereas the
previous TMLE is implemented with initial estimators using the targeted fits for the outcome.

We emphasize that this estimator is proposed for the sake of the bootstrap method for variance

estimation. It is recursive, in that each fit, an is dependent upon the fit at ¢*. As opposed to the TMLE,
the recursive nature of this TMLE is self-contained within each step. In other words, each estimation step in
this TMLE can be performed independently of the other steps. This allows the analyst to form all of the
initial fits B, prior to performing any of the targeted updates.

4.2 Bootstrapping the modified TMLE

The new TMLE approach presented above can be bootstrapped in a fully non-parametric manner, such that
observations are drawn with replacement prior to fitting the full-likelihood P¢ and used to form an estimate
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of the parameter, leading to an estimate of estimator variance. Our recommendation is to only bootstrap the

targeting step. More specifically, once the fits g;.,- , and Q_fn are formed fort =1, 2,..., K + 1, steps 3-5 are
carried out in the bootstrap such that for b = 1, 2,..., B, we have

Qrf,b = Qu(ep)

for a user-selected submodel P(¢). The estimator variance is then estimated by taking the variance over the
bootstrapped estimates, i.e., var(‘I’(b,,)) = var[¥(Q, p)].

We emphasize that this TMLE is provided such that we do not need to re-estimate Q,, g,. If g, — g, and
Qn — Qo, then this TMLE is asymptotically linear with IF D*(qo, g,). This is conservative relative to the
variance of the actual TMLE that is estimated with g, fitted on the data, when g, is consistent.

5 Simulations

Simulation studies presented in this section investigate the performance of the two proposed variance
estimators: (1) the “robust” approach based on a TMLE of the variance itself (3) and (2) the computationally
efficient bootstrap based on a modified TMLE (4). We further compare the performance of these estimators
to the common approach to variance estimation based on the sample variance of the empirical EIF (using

either the initial @ or targeted Qf;,* estimators of the gy factors of the likelihood). We consider two data-
generating processes and corresponding target causal parameters: a point treatment setting and a long-
itudinal observational study setting with three time points (i.e., K + 1 = 3) with time-dependent con-
founding. To evaluate the performance of the variance estimators, we first compare the mean of the
variance estimates to the Monte Carlo variance of the point estimator; we also report the Monte Carlo
variance of each variance estimator. Additionally, we present the 95% confidence interval coverage,
Type I and Type II errors resulting from each variance estimation approach. All analyses were conducted
on R version 3.1.1 [24]. Codes corresponding to the simulations have been uploaded to https://github.com/
tranlm/tmleVariance.

5.1 Data-generating distribution P, and causal parameters
5.1.1 Point treatment setting

Consider a point treatment setting, such as patient enrollment into a care program, in which the treatment
A(0O) is only assigned at a single time point. We are interested in determining whether the treatment of
interest has an effect on the (binary) outcome on an additive scale. Our target parameter is therefore the
difference of the mean outcomes under treatment and control, i.e., 1/)0’1 = [E [Y; — Yo]. Under this setting, the
simulated data were generated (such that we could observe the levels of positivity violations desired) as
follows:

W, ~ N(0, 1), bounded at [-2, 2],
W, ~ Ber(logit ~(-1)),
L1(0) ~ N(0.1 + 0.4W,, 0.5?),
L,(0) ~ N(-0.55 + 0.5W; + 0.75W5, 0.52),
8o,0(Pa(4(0))) = logit ‘1(ﬁp - (B, + 25)Wi + 1.75W; + (B, + 3.2)L1(0) — 1.8L5(0) + 0.8L1(0)Ly(0)),

Qo,1(Pa(Y)) = logit 1(=0.5 + 1.2W; — 2.4W; — 1.8Ly(0) - 1.6L5(0) + Ly(0)Lx(0) - B, A(0)),

with a positivity-associated parameter 8, ranging from -2 (minor positivity violations) to O (strong practical
positivity violations). In estimation of g,.;,, we impose a truncation of 0.001. For the treatment effect-
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associated parameter B%, we consider values ranging from O (no treatment effect) to 1 (strong treatment
effect). Here, L1(0) and L,(0) are not the time-dependent confounders and are therefore considered baseline
covariates along with (W;, W;), which affect both the treatment and the outcome.

Under these settings, the true parameter values i, were achieved by generating 108 observations under
the counterfactual distribution for each ﬂ% considered. Simulation results were obtained for 1,000 simula-
tions of size n = 500. Within each simulation, the bootstrap estimates of variance were formed from
B = 1,000 iterations.

5.1.2 Longitudinal treatment setting

For the longitudinal setting, we considered a treatment A(t) and outcome Ls(t), which are each allowed to
vary over time as a counting process (e.g., the treatment variable could be enrollment into a health
program, while the outcome variable could be survival up to that time point). That is, if A(t) =1, then
we have that A(t) = 1, where A(t) = (A(t), A(t + 1), ...,A(K)). Similarly, if L3(¢t) = 1, then L;(t) = 1.

We are (again) interested in whether the treatment of interest has an effect on the outcome at the final
time point t* = 3 on an additive scale. Thus, our target parameter is the difference of the mean outcomes
under treatment and control at this final time point, i.e., ¥, ; = E [¥i(t*) - Yo(t*)], where Y(t*) = L3(3).
Under this setting, data for the first time point were generated in the same manner as the point treatment
setting in Section 5.1.1. For the remaining two time points, the data were generated (again such that we
could observe the levels of positivity violations desired) conditional on survival (i.e., L3(t") = 0) as follows:

Ly(t) ~ N(0.1 + 0.4W;, 0.5 + 0.6Ly(t7) — 0.7Ly(t7) + 0.458,, A(t")),

Ly(t) ~ N(=0.55 + 0.5W; + 0.75W; + 0.1Ly(t7) + 0.3Ly(t7) + 0.758,, A(t"), 0.5?),
,((Pa(A())) = logit1(B, — (B, + 25)W; + L75W; + (B, + 3.2)Ly(t) — 1.8L(t) + 0.8Ly(1)La(1)),
Qo,i(Pa(L(1))) = logit (~0.5 + 1.2W; — 2.4W, — 1.8Ly(t") — L6Ly(t7) + Ly(t)Lo(t7) - B, A(tY)).

Similar to the point treatment setting, the treatment effect-associated parameter B% also ranged from O
to 1. We note, however, that the positivity issues faced in this scenario will be even more severe due to the

higher number of combinations of treatment over time, which result in a larger number of truncations.
Figure 1 shows the proportion of observations with truncated g,., as a function of 'Bp at a null effect,

i.e., /3,1)0 =0.

5.2 Estimators
5.2.1 TMLE specification

Any submodel and loss function for which its loss-function-specific score

L)
3 =0

spans D*(P,) can be chosen in TMLE for both the estimation of the mean outcome E[Y,] and the variance of
the EIF o2. As the corresponding estimators solve the estimating equation corresponding to the EIF, they
will all be asymptotically equivalent and thus all be asymptotically efficient. That is, no difference will be
seen between TMLEs defined using alternative submodels as the sample size grows to infinity. In the TMLE
presented by van der Laan and Gruber [9], these submodels are used in the targeting step for each Q; using a
loss L(Q;) that is indexed by Q.;. Specifically, for the targeting step, we need a loss and submodel with
clever covariate such that the score given solves a desired component of the EIF D;(Py).
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In finite samples, however, TMLEs defined using various submodels can have varying performance. For
example, under increasing levels of positivity violations, the use of linear submodels that use Hi(g) as a
covariate can have higher variance due to observations with low probabilities of treatment acting as high
leverage points, which result in highly influential points for the estimation of the submodel parameter .

Recall that the catalyst for this work was the anti-conservative estimates of estimator variance resulting
from the use of the empirical EIF variance. We therefore wish to establish a robust estimator of the variance
of estimators that solve the EIF, particularly under violations or near violations of positivity. In other words,
we desire a variance estimator that will asymptotically converge to the true variance of the estimator, but
also simultaneously act on the conservative side in finite samples. Keeping this in mind, we used two
submodel and loss function combinations for our simulations, in line with the recommendations above. For
point estimation of the target parameter and the robust estimator of the EIF variance (3), we used sub-
models that define H,(g) and H%{(g) to be observational weights such that

logitQ(e) = logitQ + el (A(t) = a(t)),

acknowledging our slight abuse of notation. Alternatively, in our bootstrap approach at estimating the
TMLE variance, we define a clever covariate using H;(g) such that

logitQ(s) = logitQ + eHy(g).

Both submodels use, as loss function, the negative log-likelihood loss.

5.2.2 Nuisance parameter estimators

To estimate our nuisance parameters Qo and g, in the point treatment setting, we fit linear models and
estimate the coefficients using maximumd-likelihood estimation. For example, we fit the treatment mechanism
by using logistic regression with the following (correct) specification:

logit (B, — B, Wi + B, W + B3L1(0) — B,L2(0) + BsL1(0)L(0)).

For the longitudinal setting, we (mostly) followed the same approach as in the point treatment with two
exceptions:
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Figure 1: Proportion of observations with g, truncated at each j3,.
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(1) For estimating the treatment mechanism, we pool the data across the time points (after conditioning on
not yet having received treatment). This provides greater data support for estimating the probability of
treatment across all three time points, resulting in higher precision for the estimates of the coefficients.

(2) We continue to use the same specification (across all time points) for estimating Q, (e.g., for time 2, we
use B, + B + B,Wh + B5Li(2) + B,La(2) + BsLi(2) * La(2) + BA(2)). While this is not the true model for

Qo, we still have consistency in our estimate of i, ; due to our consistent estimation of g,.

Of note, in both the single time point and longitudinal settings, we use a correctly specified parametric
model for the treatment mechanism. For the single time point setting, we use a correctly specified para-
metric model for the outcome regression, whereas in the longitudinal setting, we use a mis-specified
parametric model. This allows us to investigate how our variance estimators perform as we deviate from
correct specification of the outcome regressions. This is further motivated by the fact that the double robust
estimators that we study remain asymptotically linear in this setting, while the variance estimator becomes
conservative (because it targets an IF with higher variance).

5.3 Simulation results
5.3.1 Point treatment results

Figure 2 shows the Monte Carlo variance under no treatment effect (ﬁ% = 0) for the TMLE point estimator,
along with the mean of the variance estimates from each estimation approach. At the lower end of ,, where
positivity violations are minor, the observed estimator variance is low. For example, at ,Bp = -2, the Monte
Carlo variance was 8.068 x 107, As ﬁp increased, introducing higher levels of positivity violations, the
estimator variance increases as expected.

Regarding the mean of variance estimator (and thus its bias), all four approaches were similar at low
values of ,Bp. For example, at Bp = -2, the mean of the estimates was 7.957 x 107%, 7.563 x 10™*, and
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Figure 2: Mean of variance estimates under no treatment effect (,I3¢,0 = 0) at each positivity ([3p) value under the point treatment
setting, overlaid with the estimator’s Monte Carlo variance.
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8.545 x 107 for the empirical EIF (Q[d), robust, and bootstrapped-based approaches, respectively, com-
pared to the estimator’s Monte Carlo variance of 7.977 x 107*. As B, increased, the empirical EIF approaches
underestimated the variance on average (although to a lesser extent when the targeted, as compared to
initial, estimate of the gy factors was used). In contrast, the bootstrap and robust EIF approaches resulted in
slightly conservative estimates.

Figure 3 shows the Monte Carlo variance for each method used for estimating the variance. Lower
values in this figure can be interpreted as coming from a variance estimator with higher precision. From it,
we can see that the empirical EIF approach to estimating variance has the highest variance at severe levels

of positivity violation. Additionally, the use of Qtd results in noticeably higher variance than Q,’f;,*. Con-
versely, the robust approach of estimating variance maintains its low level of variability across all positivity
settings. The bootstrap approach tended to result in variance that was in between, though converged closer
to the empirical EIF approach at high levels of positivity violations.

We evaluated 95% confidence interval coverage for the TMLE estimator of EY; under the four
approaches to variance estimation. Figure 4 shows a heat map overlaid with a single contour line (at
0.95) of the resulting coverage estimates (i.e., the observed proportion of times the true parameters were
captured by the confidence intervals) over the different combinations of ﬁ% and B,. Additionally, we
estimated the power to reject the null hypothesis (at a level of 0.05) corresponding to each variance
estimation approach under the range of treatment effect sizes and degrees of positivity violation considered
above. Figure 5 shows a heat map overlaid with a single contour line (at 0.05) of the resulting power
estimates. Results at Bxpo = 0 can be interpreted as Type I errors, as they inform us of the times that the
null hypothesis of no treatment effect is incorrectly rejected.

The empirical EIF approaches consistently demonstrated a slight under-coverage of the true parameter
values (even at low levels of positivity violations), which increased in severity with the severity of positivity
violations. For example, coverage ranged from 0.945 at ,Bp = -2 to0 0.872 at ﬁp = 0. In contrast, the robust
EIF approach consistently resulted in coverage at around 0.95-0.96 at low values of ,Bp and increased with
B, consistent with expectation for the overestimation of the variance under increasing positivity by this
approach. For example, at ,Bp = -0.7, coverage remained at 0.98 at all values of ,8%. At B, > -0.1, the

observed coverage was almost always greater than or equal to 0.99 at all values of ﬁ%. As the figure only
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Figure 3: Monte Carlo variance of variance estimators under no treatment effect (,B‘,,0 = 0) at each positivity (8,) value under the
point treatment setting.
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Figure 4: Simulated 95% coverage for each variance estimation approach for the TMLE point estimator under various treatment
(,B%) and positivity (/3,,) values under the point treatment setting. Contour line corresponds to 95%. (a) Empirical EIF Q, (b)
empirical EIF Qx, (c) robust EIF, and (d) bootstrap.

contains a single contour corresponding to 95%, neither the empirical EIF (consistently under 0.95) nor the
robust EIF approach (consistently over 0.95) contains the lines. The bootstrap-based coverage shown in
Figure 4(d) varied the least, with coverage consistently between 0.95 and 0.97 irrespective of the treatment
effect (B%) and positivity severity (B,) considered.

Regarding the observed power (Figure 5), the empirical-EIF-based variance approach resulted in the
highest power among all three variance estimation approaches when an effect was present. For example, at
ﬁ% =1land ﬁp = -1, the observed power was 0.71, 0.51, and 0.51 for the empirical-EIF (Q), robust-EIF, and
bootstrap approaches, respectively. However, this gain came at a cost of higher Type I error, which became
uncontrolled as positivity violations increased (i.e., with an increase in f,). For example, at f, = -2 an
observed 5.2% of the simulations incorrectly rejected the null hypothesis. This proportion increased to as
high as 12% at B, = 0. Alternatively, the robust EIF estimation approach resulted in nominal to low Type I
errors (i.e., between 0 and 5.1%). The bootstrap approach resulted in the best performance overall of the
estimators considered, with higher power than the robust EIF approach when an effect was present while
simultaneously retaining appropriate control of the Type I error at all levels of B, when no effect was
present. For example, at ﬁp = 0, only 4.6% of the simulations incorrectly rejected the null hypothesis.

To further investigate the performance, we evaluated (i) the sampling distribution of the point estimator
and (ii) the distribution of the variance estimator, conditioning on the data-generating process with the
highest level of positivity violations (8, = 0) and no treatment effect (/3¢0 = 0). The results (Figure 6(a))
show that the distribution of the point estimators is approximately normal, despite having somewhat
heavier tails, suggesting that lack of normality of the estimator itself is not the primary driver of the loss
of coverage observed. Instead, results suggest that under-coverage is likely due primarily to the highly
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Figure 5: Simulated power for each variance estimation approach for the TMLE point estimator under various treatment (B%)
and positivity (Bp) values under the point treatment setting. Contour line corresponds to 5%. (a) Empirical EIF Q, (b) empirical
EIF Qx, (c) robust EIF, and (d) bootstrap.
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Figure 6: Under no treatment effect (szo = 0) at the most severe positivity setting (Bp = 0). (a) Sampling distribution of TMLE
point estimates and (b) sampling distribution of variance estimates with overlaid Monte Carlo variance (black vertical line).

right-skewed distribution of the empirical EIF variance estimators. The distribution of the empirical EIF
approach of estimating variance is noticeably skewed (Figure 6(b)), with most of the probability mass well
under the Monte Carlo variances. Conversely, the bootstrap variance estimator is less skewed, with a
distribution that is more closely centered around the observed Monte Carlo variance. The robust EIF
variance estimator is also noticeably less skewed, though it tends to overestimate the variance.

5.3.2 Longitudinal treatment results

Results for the longitudinal setting are similar to the point treatment setting. Similar to the point treatment
setting, Figure 7 shows the mean of the variance estimates under each approach, overlaid with the Monte
Carlo variance of the intervention-specific mean outcome point estimators. The same trend over the
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Figure 7: Mean of variance estimates for each estimator under no treatment effect (,84,0 = 0) at each positivity (8,) value under
the longitudinal treatment setting, overlaid with the estimator’s Monte Carlo variance.
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different levels of positivity was seen as in Figure 3, with the variance increasing with increasing magnitude
of positivity violations. The empirical EIF approach also performed well here at low levels of ﬁp. At high
values of B, the approach more noticeably underestimates the variance of the intervention-specific mean
outcome point estimator. Consistent with the point treatment setting, the mean of the robust EIF variance
estimator overestimated the variance. The bootstrap approach resulted in variance estimates that were
slightly conservative on average, though were still very similar to the Monte Carlo variance estimates.

Figure 8 shows the coverage corresponding to each variance estimation approach for the TMLE point
estimator of the intervention-specific mean outcome. Coverage for the empirical EIF approaches was con-
sistently anti-conservative, even at low levels of positivity violations. As in the point treatment setting, this
was true despite the apparent low bias of this variance estimator, likely due again to its heavily skewed
distribution. For example, at a null effect (i.e., B, ), the observed coverage was 0.91 at 8, = -2 and 0.87 at
ﬁp = 0 for the empirical EIF Q. For the robust EIF approach, coverage remained conservative. This became
as high as 1.00 (i.e., all simulated confidence intervals captured the true parameter value) at higher levels of
positivity issues. For the bootstrap approach, close to nominal coverage was seen, even for higher levels of
positivity violations. For example, under a null effect, a coverage of 0.97 was observed at ﬁp = -2 and 0.95
at g, = 0.

Results for the Type I error and power were also similar to the point treatment setting. When there was
an effect, the empirical EIF approach resulted in the highest power. At 8, =1and 8, = -2, we observed a
power of 0.99. However, the Type I error was also uncontrolled here, becoming as high as 0.14 at ﬁp =0.In
contrast, the robust EIF approach resulted in overly conservative Type I error rates, particularly in the
context of greater positivity violation, and thus, the power for this approach when an effect was present was
the lowest. For example, for a treatment effect size of ﬁ% = 1, we observed a power ranging from 0.94 at
Bp = -210 0.47 at ﬁp = 0. The bootstrap approach resulted in generally well-controlled Type I error rates,
with observed values ranging between 0.02 and 0.08. Power was also higher than the robust EIF approach
across all values of /3% and B,. For a treatment effect size of /3% = 1, we observed a power ranging from 0.99
at Bp =-2t00.93at ﬁp = 0 for the bootstrap approach. Compared with the robust EIF approach, this is up to
a twofold increase in power (Figure 9).

6 Discussion

The goal of this study was to establish a consistent and robust approach for estimating the variance of
asymptotically efficient estimators such as TMLE, estimating equations, and one-step estimators which, in
contrast to the common approach based on the empirical variance of the estimated EIF, does not provide

(a) (b) (c) (d)
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0.8 0.8 0.8 0.8
Coverage
1.0
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Figure 8: Simulated 95% confidence interval coverage for each variance estimation approach for the TMLE point estimator under
various treatment (/3%) and positivity (Bp) values under the longitudinal treatment setting. Contour line corresponds to 95%. (a)
Empirical EIF Q, (b) empirical EIF Qx, (c) robust EIF, and (d) bootstrap.
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-20 -15 -1.0 -05 0.0 -2.0 -15 -1.0 -0.5 0.0 -20 -15 -1.0 -05 0.0 -2.0 -15 -1.0 -0.5 0.0
Bpos ﬁpos Bpos ﬁpos

Figure 9: Simulated power for each variance estimation approach for the TMLE estimator under various treatment (B%) and
positivity ([3,,) values under the longitudinal treatment setting. Contour line corresponds to 5%. (a) Empirical EIF Q, (b) empirical
EIF Q*, (c) robust EIF, and (d) bootstrap.

anti-conservative inference when confronted with positivity violations. We have presented two such
approaches for estimating this variance: (1) a robust approach that directly targets the asymptotic variance
of the EIF and (2) a bootstrap approach based on fitting the initial density of the data once, followed by a
non-parametric bootstrap of the targeting step. In simulations, the variance of the point estimator increased
with increases in positivity violations as expected. A common trend was observed, with the empirical EIF
approach of variance estimation providing anti-conservative confidence interval coverage (as previously
reported). In contrast, the robust EIF approach described here resulted in increasingly conservative cov-
erage as the degree of positivity violation increased. The bootstrap-based approach provided closer to
nominal 95% confidence interval coverage and Type I error control (with attendant power gains relative
to the robust estimator) in the face of extreme positivity violations, both in the point treatment and in the
longitudinal setting.

While the EIF can raise a red flag for lack of identifiability, for substitution estimators such as TMLE, we
suggest that it is overly conservative for constructing valid confidence intervals and tests in finite sample in
the face of substantial positivity violations. Previous work [12] suggested the use of the parametric bootstrap
as a diagnostic tool for sparsity-bias in the point treatment setting. The approach can become cumbersome,
as the analyst would need to refit the whole likelihood for each iteration of the bootstrap, and computa-
tionally intensive, particularly in longitudinal treatment settings. Our robust EIF approach is able to avoid
estimating the whole likelihood by targeting the required means under the post-intervention distribution
defined by the longitudinal g-computation formula directly. Even if we use an actual TMLE of Pg, our
analytic estimate of the variance is still much less computer-intensive than the parametric bootstrap
method, in particular, in view that one would need to run many replicate samples of the data set in order
to pick up the observations that correspond with a rare treatment and thus contribute large numbers to the
variance expression. Our presented bootstrap approach, while more computationally intensive than the
robust EIF approach, is also superior to the earlier proposed approach, in that we do not have to refit the
entire likelihood under each iteration. This also significantly reduces the computational resources required
to obtain estimates of the target parameter, particularly if computationally intensive non-parametric
machine learning algorithms are used to estimate these densities. Therefore, we believe that the proposed
analytic method will be (at least, practically) superior to the earlier proposed parametric bootstrap method.

In order to highlight challenges to variance estimation arising from positivity violations, and the extent
to which these are addressed by the alternative variance estimators proposed, this article has focused on the
setting in which the treatment mechanism is estimated using a correctly specified parametric model, while
the outcome regressions are estimated using either a correct or mis-specified parametric model. In practice,
outside of randomized trial settings, non-parametric machine learning approaches are typically required to
ensure asymptotic linearity of the estimator (see, e.g., Klaassen [25], van der Laan and Robins [26]). In this
setting, valid inference also requires adequate convergence rate of the second-order remainder. In parti-
cular, the relatively slow convergence of machine learning estimators poses a serious challenge to finite
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sample inference due to the non-negligible contribution of the second-order remainder. One possible
response to this challenge is to incorporate data-adaptive nuisance parameter estimation into our proposed
non-parametric bootstrap, an approach shown to be promising in prior work [27], although not evaluated in
the context of positivity violations. Future research is needed to evaluate the performance of this approach
under the joint challenges of positivity violations and slower machine-learning-based convergence rates.

Further refinements can be applied in an attempt to obtain variance estimates with an even smaller
finite sample bias. One such approach is a convex combination of the variance estimators considered
earlier. For example, we noted in supplementary analyses that taking

A Az A A2
@n0g1r,n + (1 = @n)0/ErF,n

had good performance, where 67y , is the variance estimate using the empirical EIF approach, 67, is the
variance estimate using the robust EIF approach, and &, = |6/r,» — Gcpir.nl / (6.0 + Oczir.n)- We note,
however, that such an approach is somewhat ad hoc and may lead to varying results in other simulations
or distributions. We therefore chose not to present the results here.

A potential limitation of the robust approach at estimating the variance involves the conditions for
asymptotic linearity to be met. Note, however, that we always require that our estimator (of the parameter)
be asymptotically linear. Thus, this is actually a limitation of our parameter estimator. Given that we have
an asymptotically linear estimator, we want a good estimator of its variance. If we correctly specify both the
outcome and treatment models, then the variance is equal to the variance of the EIF and we can proceed
with applying our robust method of estimating variance knowing that we are targeting the correct variance.
However, the variance of the EIF is not consistent for the variance of the effect estimator if either of the
outcome or treatment models are not correctly specified.

_ 2
Furthermore, it is also required that Qg "% be estimated both consistently and at a fast enough rate. We
limited the computational complexity in our simulations by using simpler parametric models to estimate

_ 2
Qg "%, though a more non-parametric approach such as Super Learning could have been applied. This

approach can become computationally expensive if there are many time points. In this regard, the bootstrap

_ 2
approach is superior as it does not require the additional estimation of Qg o

It would be of interest to further evaluate not only the practical performance of these variance estima-
tion approaches in future studies, but also the application of the approaches to other parameters. Appendix
A derives the general approach for working marginal structural models. Further research into the practical
performance of this approach is needed for this setting. These variance estimation approaches can also be
used for more complex parameters, such as mean outcomes under dynamic regimes, stochastic interven-
tions, or marginal structural working models. Future research could also develop a collaborative TMLE [28]
or cross-validated [29] based approach at robustly estimating the EIF variance.
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Appendix

A Marginal structural working model variance

A.1 TMLE of o7, for marginal structural working models

For the general working logistic marginal structural model (MSM) © = {mg : B} from Petersen et al. [12], we
have that the component of the EIF corresponding with the last time point K + 1 equals

. I(AKK) = d(L(K)))
Dy = Y md, K +1 At
icnlP) dezﬂ i, K )go:K(A(K), L(K))
= Cx(P)A, L)Y - Qg.1),

where, for some user-defined weight function h(d, K + 1),

(Y - Qr1(AK), L(K)))

CknPYA, D)= ) h(d,K + 1)[I(A(K) = fi(I:(K)))
deD 8o: K(A L)

aﬁm/;(d K+1)
h(d,K+1)=h(d,K + 1)————

il

mp(1 — mg)

Note that we want to obtain a representation of the variance of this component D, so that we can use a
semi-substitution estimator of this part of the variance of the EIF, hopefully, thereby obtaining a variance
estimator that is more accurate under violations of practical positivity, and a variance estimator that can be
used as a red flag for lack of identifiability. This variance can thus be written as:

0.1 =E[CAY - Qx:1)?]
= [E[CzQ-KH(l - QKH)]

]2 Q_K+l(l 2_ Q_K+1) (O)]

deD 0:K

- [E[( Y h(d, K + DI(A = d(L))

= [E[[ Z hy(dy, K + Dhy(ds, K + DI(A = dy(D)N(A = dz(i))] Q(; Q (O)]
0:K

dy,dyeD

= Z hy(dy, K + Dhy(dy, K + 1)[E[[I(A Adi(DN(A = dy(L))———= Q1 -Q (O)]

dy,dy O:K

The latter expectation equals

fﬂ(d D=4 (E))Iﬁq(L JA(t™) = dy(L(t)) L‘(t-))M
BT W e (D), D)

- e (0(0) - ) 2D a1 ) |

This yields the following expression:

0= Y hd, K+ Dhi(ds, K + 1)[E[[I (a(Ly,) = dz(ljdl))%(dl(idl), Edl)]
0:K

dy,dyeD

= Y hy(d K + 1)[5[[ Y h(ds, K + 01 (di(La) = do(La )))Q(1 =D (4(L,), Ldl)}

dieD dreD

= Y h(dy, K + DEZy(dy, K + 1),
dieD
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where

Z(d, K+ 1) = ( Y. In(da, K + DI((L(K)) = do(L(K))) P ONTS)

dzED

) a1 -0
so that the counterfactual of Z(d;, K + 1) under intervention d; is given by:

Za(d, K + 1) = ( Y hy(dy, K + DI (dy(La(K)) = dz(L'dl(K)))]%(dl(Ldl(K)), Ly(K)).
0:K

dzED

A.1.1 Static regimens

In the special case that the class of dynamic regimens D consists only of static regimens a(K) so that there
is only one and exactly one treatment such that A(K) = d(L(K)), then we have

ZK+1)=mA,K+ 1)M(A, D,
8o:x
so that
ZgK +1) = hy(d, K + 1)M(d(id), Ly).
8o:x

In that case, we have

Ok = ). m(d, K + DEZ(K + 1),
deD
where Zi(K + 1) = Q1 - Q)/g,.x(4, L) and Ziy(K + 1) = Q(1 - Q)/go.x(d(La), La).

It is important to note that in expressing our variance this way, we integrate out the indicator of
treatment over 4, i.e., 1(A = d(L)). By getting rid of this indicator, we no longer rely as heavily on observa-
tions from subjects following treatment in estimating the variance of Dg,,. This particularly helps us when
there is a lack of positivity, since subjects with low probabilities of desired treatment simply are not
observed.

We have now shown that

O = ) M(d, K+ DEZy(d, K + 1),
deD

where

Z(dl, K + 1) = {Zhl(dZ’ K + 1)[] (dl(l_,) = dz(i))}w(dl(i), l_,).

d 8o:x

We can now define Z(K + 1)(4, L) = Y, ,;m(d, K + DI(A = d(L_))w(A, L) (asafunctionof 4, L)asa
0:K
new outcome for our longitudinal data structure such that Zy(d, K + 1) = Z(K + 1)(d(Ly), Lg). Our variance
0%,, is then represented as Y dephi(d, K + 1)EZy(d, K + 1). Thus, if we redefine the longitudinal data as
(A, L) with the final outcome of interest as Z(K + 1) = Z(K + 1)(4, L), and use the working MSM parameter
EZyK + 1) = By, with B, = argming),_,m(d, K + 1)(EZy(K + 1) — B)?, then we have that

Bo= Y m(d, K+ DEZyK + 1)/ Y m(d, K +1).
deD deD

This demonstrates that we can obtain 0%, by simply multiplying 8, by ¥ aephi(d, K + 1), ie.,
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Ofa1 = By Iu(d, K + 1).
d

We can therefore also estimate this variance component 0, ; by computing the TMLE of the intercept f3, in
the working MSM for our newly defined outcome Z(K + 1) using weights hy(d, K + 1) and then multiplying it
against ), ,h(d, K + 1).

A.2 TMLE of o7 for marginal structural working models

We now present how to obtain a TMLE of the variance of the tth component of the EIF, 7. For the general
working MSM from Petersen et al. [12], we have that the component corresponding with the ¢th time point equals

1A®) = d(L(t))

Di(P)= Y h(d, ) (QAA®, L)) - Q7 )AE), Lt))

deD So:e-(A(t), L(t))
= Y @, d(Qf - Q).
deD

Similarly, we want to obtain a representation of the variance of this component so that we can use a
semi-substitution estimator of this part of the variance of the EIF, hopefully, thereby obtaining a variance
estimator that is more accurate under violations of practical positivity, and a variance estimator that can be
used as a red flag for lack of identifiability. This variance o? can thus be written as:

= Y i, Oa(ds, DE[1AE) = dNCAE) = a2 L D)
dids 8o

AW, L)) |

where
S, d)AE), L) = E[(Q% - @) (Q% - Q™)IA®), L(t)]

is the conditional covariance of Qﬁl and Q_[‘fz, given (A(t7), L(t7)). Note that this can be obtained by regres-
sing this cross-product on (A(t7), L(¢t7)). The latter sum can be further worked out giving us

= Z h1(d1, t)[EZd1(d1a t)’

dieD

where

Z(d, £ =[ Y hy(ds, OMN(A(E(E) = do((t )))) 2 d) (g, (L), L)),
0

dyeD

so that the counterfactual of Z; under intervention d, is given by:

Zadh, t)—( Y hy(ds, 1 (d(La()) = do(La(t )))J 2dd, dz)(d (La(®)), La().

dyeD

With this expression, we can now use a TMLE to estimate EZ,;(d,, t) for each d; € D by using
the longitudinal data structure with final outcome Z(d,, t), for each d; separately. To create the observed
outcome Z(dj, t), we need a fit of the treatment mechanism Samy:m=0,1,...,t, evaluated at

A(t") = di~(L(t)), and for each rule compatible with d; (for that subject), we need to have an estimate
of Xi(d, d>). Thus, given a priori estimates of the full treatment mechanism and all
(Z(dy, dy) = dy, dy € D), we can construct this observed outcome Z(dy, t) and run the TMLE.
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A.3 Estimation of the variance of the EIF

The aforementioned approach defines for each time point ¢ and each rule d an observed longitudinal outcome
Z(d, t), where Z(d, t) is a function of (A(t), L(t)). The TMLE of EZ,(d, t) can then be computed based on the
longitudinal data structure (L(0), A(0), ...,L(t), A(t), Z(d, t)) for each d and each t € {0,1, ...,K + 1}. As a

result, we have that 67 = ¥, hi(d, t)EZy(d, t) and

K+1
02=Y0of
t=0

K+1
- Z ( Z hi(d, tEZy(d, t))

deD\ t=0

K+1
= Y E| Y h(d, )Zy(d, t)].

deD t=0

Let us now define the counterfactual outcome

K+1

Zy(d) = Y h(d, t)Z4(d, t),
t=0
and the corresponding observed outcome
K+1
Z(d) = Zh1(d, t)Z(d, t).
t=0

We could apply the TMLE to estimate EZi(d) based on the longitudinal data structure
(L(0), A(0), ...,L(K), A(K), Z(d, K + 1)), for each d € D, and use that

02 = Y EZyd).

deD

In applying TMLE here, we should be using that

E[ZaA(m), Lm)] = ) h(d, )Z(d, t) + E| Y h(d, )Z(d, t)|A(m), L(m) |.

t<m t>m

To start with, let

Q7Y = E[Z@IAE), L] = Y h(d, ©Z(d, ¢) + E[hy(d, K + 1) + Z(d, K + DIAK), LEK)].
t<K

s Z(K+1),d

Denote the last conditional expectation with Qg so that

Q" = ¥ (d, 0z(d, ) + Qf* .

t<K
Then,
QF9 = E[QZ " ™MAK - 1), LK - )]
= Y h(d, 0)Z(d, t) + E[h(d, K)Z(d, K) + QF “" AKX - 1), LK - D).
t<K-1
Again, denote the latter conditional expectation by Q_dz @4 o5 that

Qi = Y h(d 02,0 + f ",
t<K-1

Then,
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QL% S E[QF®IAK - 2), LK - 2)]
= Y h(d, 0Z(d, t) + E[hy(d, K - DZ(d, K - 1) + 07"V YAK - 2), LK - 2)].

t<K-2

Z(K-1),d

Again, denote the latter conditional expectation with Q; so that

V=Y m@d vz, v + Q7€
t<K-2

This is then iterated:

™=y md mzd, m +Qi™,

t<m-1

where Q7™ = E[h(d, m)Z(d, m) + Q"™ Y A(m - 1), L(m - 1)].
Before we go to the next conditional expectation, we need to target with a parametric submodel, such as

1(A(m - 1) = d(L(m - 1)))

gO:m—l

Logit Q'(¢) = Logit Q) + ¢

In this way, we will only have to run one TMLE for each rule d, which still utilizes that the outcome is a sum
of outcomes that are known for histories including that outcome.

B TMLE bootstrap consistency

Theorem 1. Let P? be the initial estimator and P2(e,) be the parametric TMLE update so that B,.D*(P)(e,)) = O
Suppose the following:
(BO) D*(P?) falls in a Py Donsker class with probability tending to 1,
(B1) Ro(Py(en), Po) = op(n'/2),
(B)) Po(D*(PY(en)) - D*(Po))* 5 O.
Then,
n'/2(¥(P(en)) — Y(Po)) = n'/?RD*(Py) + 0p(1) — N(O, 05 = PoD*X(Py)),

where the empirical measure of the bootstrap sample O} “ B, is denoted with P# and &} is the maximum
likelihood estimate of € for PX(¢) based on P}.

Moreover, let now P(¢}) be TMLE update based on bootstrap sample P} so that P/D*(P2(¢})) = 0

We have n'/2¥(P(g!)) — W(P2(ey)) = n'/2(P¥ — B)D*(P,) + 0p(1), which (conditional on B,) converges to
N(0, 62). This proves the consistency of the non-parametric bootstrap for the TMLE that treats the initial
estimator P? as fixed.

Note that we do not require more than BO, Bl, and B2, which are the assumptions under which TMLE is
asymptotically linear and efficient.

Proof. Let P? be the initial estimator. Let P; = PY(g,) be the TMLE and W(P?(g,)) be the plug in for the TMLE.
Let us first analyze the TMLE.
By the usual identity for TMLE, we have

W(PX(en) — ¥(Py) = (B — Po)D*(PX(en)) + Ro(PY(en), Po).

Since for TMLE we assume the initial estimator converges fast enough, we have Ry(P2(g,), P) = op(n"'/2)
(B1). Moreover,

(B — Po)D*(Py(en)) = (B — Po)(D*(Py(en)) — D*(Po)) + (B — Po)D*(Po).
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Our assumption of Donsker classes (BO) and (B1) results in the first term (P, — Py)D*(P2(g,)) being an
empirical process term op(n~1/2). Thus, we now have

W(PR(en)) — Y(Po) = (B — Po)D*(Po) + op(n'/?)

proving asymptotic efficiency. The remainder of the proof essentially just repeats this proof for the TMLE
that treats P? as fixed but now we base this TMLE on a sample from B,, whose empirical distribution we
denote with P¥ and the target is ¥(P?(g,)) (i.e., the truth under sampling from B,). This results in the TMLE
on the bootstrap sample being W(P2(¢})) and

Y(P(e])) — ¥(Po) = (B — PO)D*(PR(e)) + Rpy(Pa(es)) Po)
W(P(en) — ¥(Po) = (B — Po)D*(Py(en)) + Rpy(Pr(en), Po)-
Subtracting the two equations gives
W(PR(el) — ¥(P(en) = (P — PO)D*(PR(e])) — (B — PoO)D*(P(en)) + 0p(n!/2)

since both remainder terms are op(n~'/2). Note that the left-hand side is our bootstrapped centered esti-
mator. However, since (Pf — Py)D* = (P} — B)D* + (B, — P,)D*, the difference of the two empirical process
terms equals

(P = B)D*(PY(e})) + (B, — Po)D*(PR(ef)) — D*(PY(en)-

The second term is an empirical process term op(n1~'/2) due to & — €, converging to zero and Donsker class
condition (B0, B1). Thus, we have

Y(PY(el)) — W(P(en)) = (P — R)D*(PY(e[)) + op(n™!/2).
Finally, the latter empirical process term is
(P = BID*(Po) + (P = B)(D"(PL(])) - D*(Py)),

and the latter term is again op(n~1/2) by the consistency of P2(¢/) to P, and Donsker holding automatically
since P? is fixed to only a parametric model. We have therefore shown

(PR — ¥(Pi(en) = (P — BYD*(Ro) + op(n™/?)

since P is fixed, so that the class of functions covering D*(PJ(¢})), conditional on P,, is just a parametric
class. Conditional on P, and multiplying by n!/2, we have that this converges to the same N(0, ¢2) proving
consistency for the bootstrap. O
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