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Abstract:Doubly robust (DR) estimators are an important class of statistics derived froma theory of semipara-
metric efficiency. They have become a popular tool in causal inference, including applications to dynamic
treatment regimes. The doubly robust estimators for the mean response to a dynamic treatment regime may
be conceived through the augmented inverse probability weighted (AIPW) estimating function, defined as the
sum of the inverse probability weighted (IPW) estimating function and an augmentation term. The IPW esti-
mating function of the causal estimand via marginal structural model is defined as the complete-case score
function for those subjects whose treatment sequence is consistent with the dynamic regime in question di-
vided by the probability of observing the treatment sequence given the subject’s treatment and covariate
histories. The augmentation term is derived by projecting the IPW estimating function onto the nuisance tan-
gent space and has mean-zero under the truth. The IPW estimator of the causal estimand is consistent if (i)
the treatment assignment mechanism is correctly modeled and the AIPW estimator is consistent if either (i)
is true or (ii) nested functions of intermediate and final outcomes are correctly modeled.
Hence, the AIPW estimator is doubly robust and, moreover, the AIPW is semiparametric efficient if both (i)
and (ii) are true simultaneously. Unfortunately, DR estimators can be inferior when either (i) or (ii) is true and
the other false. In this case, the misspecified parts of the model can have a detrimental effect on the variance
of the DR estimator. We propose an improved DR estimator of causal estimand in dynamic treatment regimes
through a technique originally developed by [4] which aims to mitigate the ill-effects of model misspecifica-
tion through a constrained optimization.
In addition to solving a doubly robust system of equations, the improved DR estimator simultaneously mini-
mizes the asymptotic variance of the estimator under a correctly specified treatment assignment mechanism
but misspecification of intermediate and final outcome models. We illustrate the desirable operating char-
acteristics of the estimator through Monte Carlo studies and apply the methods to data from a randomized
study of integrilin therapy for patients undergoing coronary stent implantation. The methods proposed here
are new and may be used to further improve personalized medicine, in general.
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1 Introduction
Estimating population parameters in the presence of missing data is a common but challenging problem
when one desires robust precise estimates under amissing at randomassumption [e.g. 22]. Horvitz-Thompson
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[1952] estimators, defined by multiplying the outcome by the reciprocal of the missingness probability and
also called inverse-probability weighted (IPW) estimators, are popular because they are straightforward to
implement and consistent if the missingness probability is modeled correctly. At the same time, Horvitz-
Thompson estimators can be imprecise and sensitive to estimated missingness probabilities that are very
close to zero. Augmented inverse probability weighted (AIPW) estimating functions [16] are constructed as
the sum of the IPW estimating function and a mean-zero augmentation term. The optimal augmentation is
the orthogonal projection of the IPW estimating function onto the nuisance tangent space [2, 26] and is a
function of one or more regression functions, i.e. mean outcomes modeled as a function of covariates and
also called outcome regression (OR) models. The AIPW estimators are doubly robust (DR) which implies they
are consistent whether the missingness probability is modeled correctly or the OR models in the augmenta-
tion term aremodeled correctly. Moreover, if bothmodels are correctly specified, the AIPW is semiparametric
efficient [2, 16, 22]. However, this adaptive estimator is not optimal when only somemodels are correctly spec-
ified [e.g. 9, 19, 27].

In this paper, our contribution is to propose a coefficient estimator of the causal parameters in amarginal
model for dynamic regimes that has better operating characteristics than the doubly robust estimator pro-
posed by [11]. In particular, we seek to define an estimator that has two properties:

(P1) doubly robust;
(P2) minimumasymptotic variancewithin a class of augmented estimator assuming the PSmodel is correct,

but the assumed OR model may or may not be correct.

The first optimal doubly robust estimators formissing data problems satisfying properties (P1)-(P2) was Tan’s
[2006] restricted maximum likelihood estimator (MLE) and the targeted MLE by [27]. Later, [4] proposed a
competing estimator that had better finite sample performance than the estimator by [19]. Other improved DR
estimators available in the literature include the augmented restricted MLE [21], the augmented OR estimator
[17], numerically-derived locally efficient estimators [5], and an adaptation of Godambe’s [1960] optimal esti-
mating equation for missing data [13]. Most of the aforementioned techniques demonstrate the principles of
theirmethod in the problem of estimatingmean outcomewhen the outcomemay bemissing due tomeasured
covariates or, analogously, estimating the average causal effect fromobservational data. These principles can,
in theory, be extended to newproblems but the details for any given strategy are a substantial challengewhen
working with complex temporal data.

Our proposed estimator is developed by applying a constrained augmentation technique [4] to the DR
estimator inMurphy et al.The challengeof this extension is deriving the correct expression for the constrained
augmentation. Although both our estimator and the estimator byMurphy et al. possess the double robustness
property in (P1), our proposed estimator hasminimumasymptotic variancewhen theORmodels are incorrect
in property (P2) while the estimator by Murphy et al. does not. The reason property (P2) is important for
this problem, in particular, is because it is extremely difficult to specify OR models that satisfy the nested
constraints induced by the marginal model much less to expect that they are specified correctly (See the
constraints in (6) and our discussion in Section 3.3). Thus, the proposedmethod is a hedge against imprecise
parameter estimation due to OR model misspecification, which seems more likely than not in the case of
marginal models for dynamic regimes.

The remainder of this paper is organized as follows. Section 2 reviews DR estimation of causal estimands
in dynamic treatment regimes via marginal models [11] whereas Section 3 details our new methodological
contribution. In Section 4, we demonstrate the operating characteristics of our methods through simulation
studies and illustrate the utility of ourmethods through application to data from an infusion study conducted
at Duke University. Proofs of technical results are relegated to the Web Appendix.
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2 Doubly Robust Estimation in Marginal Models for Dynamic
Regimes

2.1 Notation and Assumptions

Without loss of generality,we followmuch the samenotationgiven in [11]. LetAj , j = 1, . . . , K, be the stochas-
tic treatment decision at time tj and Aj = (A1, . . . , Aj) be the history of treatment decisions through time tj.
Similarly, define tailoring and auxiliary variables, Sj and Xj, respectively, for j = 0, . . . , K −1, as well as their
histories Sj = (S0, . . . , Sj) and Xj = (X0, . . . , Xj). Let G denote subgroups of interest. The set of all possible
potential outcomes is {Y(aK) | aK ∈ AK}, where AK is the collection of all possible treatment allocation
vectors; similarly, the set of potential intermediate outcomes is {SK(aK) | aK ∈ AK}. Hence, we assume that
the potential outcome does not depend on the treatment assignment mechanism nor is affected by others’
treatment [14, 18]. We also assume a sequential randomization assumption [14], that is, the treatment assign-
ment Aj is conditionally independent of {G, S0, . . . , SK(aK−1), Y(aK−1)} given {L0, A1, L1, . . . , Aj−1, Lj−1},
with Lj = (Sj , Xj). In words, the sequential randomization implies (i) that at no point in time does treatment
assignment depend on future outcomes, and (ii) that the history of auxiliary variables Xj−1 is sufficiently rich
to ensure that treatment assignment Aj does not vary systematically by intermediate or potential outcomes
within levels of (Aj−1, Lj−1). The observed data is O = {G, L0, A1, L1, A2, . . . , LK−1, AK , Y}, where Y = Y(AK),
Sj = Sj(Aj), Xj = Xj(Aj) for all j = 1, . . . , K.

Let dj(Lj−1) be a treatment decision or treatment assignment rule at time tj , j = 1, . . . , K, and the se-
quence of decision rules for the entire treatment allocation period defines the dynamic treatment regimen,
i.e. dK = (d1, . . . , dK). Now, define the product

Wdj (Aj , Lj−1; πj0) =
j∏︁

m=1

I{Am = dm(Lm−1)}
πm0(Am | Am−1, Lm−1)

, (j = 1, . . . , K), (1)

where, at time tm, πm0(· | Am−1, Lm−1) is the treatment assignment probability in the observational data and
treatment assignment in the dynamic regime is degenerate according to the treatment decision rule dm(Lm−1).
Without loss of generality, we define πj = (π1, . . . , πj) and the vector of true treatment assignment probabil-
ities πj0 = (π10, . . . , πj0) for j = 1, . . . , K. The product in (1) plays a critical role in our ability to estimate
causal estimands from the observed data and is a version of the non-stabilized inverse PS weight. Let PdK
and EdK be probability distribution and expectation under the dynamic regime, respectively, and P and E
be the probability distribution and expectation in the observed data, respectively. Then, if there is non-trivial
probability that a randomly selected subject can follow the regime dK in the observational, then by Lemma4.1
of [11], the distribution of (Y , SK−1, AK , G) under PdK is absolutely continuous with respect to the distribution
of (Y , SK−1, AK , G) under P and a version of the Radon-Nikodym derivative is

E
[︁
WdK (AK , LK−1; πK0) | Y = y, SK−1 = sK−1, AK = aK , G = g

]︁
.

2.2 Ordinary doubly robust estimation

Suppose that we are interested in estimating the parameter vector β from the marginal model,

EdK (Y | G) = µ(β, G), (2)

where µ(β, G) is a parameterization of the conditionalmeanof Y given subgroupsGunder the dynamic regime
dK . Then, under regularity assumptions outlined in Section 2.1 as well as in Lemma 4.1 of [11], the statistic

WdK (AK , LK−1; πK0)µ̇(β, G)(Y − µ(β, G)),

where µ̇(β, G) = (∂/∂β)µ(β, G), has mean zero at the true marginal parameter β = β0. If the treatment as-
signment probabilities {πj0} were known a priori, this statistic could be used to define an estimator for β.
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However, in observational studies, the treatment assignment probabilities are unknown a priori and instead
one posits a statistical model. To this end, we model the treatment assignment probabilities through a finite-
dimensional vector of parameters 𝛾 and estimate it through the estimating function,

U𝛾(O; 𝛾) =
K∑︁
j=1

∑︁
aj

I(Aj = aj)uj(aj | Aj−1, Lj−1; 𝛾) (3)

where uj(aj | Aj−1, Lj−1; 𝛾) = π̇j(aj | Aj−1, Lj−1; 𝛾)V−1j (aj | Aj−1, Lj−1; 𝛾){aj − πj(aj | Aj−1, Lj−1; 𝛾)}, π̇j(aj |
Aj−1, Lj−1; 𝛾) = (∂/∂𝛾)πj(aj | Aj−1, Lj−1; 𝛾) andVj(aj | Aj−1, Lj−1; 𝛾) is the conditional variance of aj given Aj−1
and Lj−1. The estimating functionU𝛾(O; 𝛾)maybe regarded as proportional to the first-order partial derivative
of the log likelihoodwith respect to 𝛾 for the treatment assignmentmechanism.As such, EU𝛾(O; 𝛾0) = 0when
the treatment assignment probabilities are correctlymodeled. Let̂︀𝛾 denote themaximum likelihood estimator
of 𝛾0, i.e. the solution to the estimating equations, 0 = PnU𝛾(O; 𝛾). Then, the inverse probability weighted
estimator (IPW) for β is ̂︀βipw, the solution to the system of estimating equations,

0 = Pn
[︀
ψipw(O; β, πK(̂︀𝛾))]︀ ,

where
ψipw(O; β, πK(𝛾)) = WdK (AK , LK−1; πK(𝛾))µ̇(β, G)(Y − µ(β, G)), (4)

πj(𝛾) = (π1(𝛾), . . . , πj(𝛾)) and πj(𝛾) = πj(aj | Aj−1, Lj−1; 𝛾)) for j = 1, . . . , K. The IPW estimator ̂︀βipw is
consistent as long as the treatment selection probabilities {πj} are correctly modeled such that derivative is
consistently estimated, i.e. WdK (AK , LK−1; πK0) = WdK (AK , LK−1; πK(𝛾0)).

A concern of IPW estimators, assuming {πj} are correctly modeled, is their efficiency. Briefly, the likeli-
hoodmay bewritten as the product of two expressions,L(O) = Lor(O)Lps(O), whereLps(O) =

∏︀K
j=1 πj0(Aj |

Aj−1, Lj−1) and Lor(O) is the product of conditional densities,
∏︀K
j=1 P(L*j ∈ dLj | Aj−1, Lj−1), where Y ≡ LK

and P(L*j ∈ B | ·) = P(Lj ∈ B | ·) for every measureable rectangle B. The causal estimand EdK (Y | G) is a func-
tion of the conditional densities inLor but not {πj0} inLps; hence, the treatment selection probabilities are
nuisance parameters for the estimand of interest. The efficient estimator for β will be orthogonal to the score
function for the nuisance parameters and, hence, the IPW estimator can be improved by subtracting from
ψipw its projection onto the score function of the treatment selection probabilities. The projection of ψipw
onto the score function of the treatment selection probabilities [15] is

A(O; β, πK0, gK0}) =
K∑︁
j=1

Wdj (Aj , Lj−1; πj0)µ̇(β, G)
{︀
gj0(Aj , Lj−1) − µ(β, G)

}︀
(5)

−
K∑︁
j=1

⎡⎣∑︁
aj

πj0(aj | Aj−1, Lj−1) ×Wdj (aj , Aj−1, Lj−1; πj0)µ̇(β, G){gj0(aj , Aj−1, Lj−1) − µ(β, G)}

⎤⎦ ,

where the regression functions are nested within one another through the following relationship:
gK0(AK , LK−1) = E(Y | AK , LK−1) and for j = 1, . . . , K − 1,

gj0(Aj , Lj−1) = E

⎡⎣∑︁
aj+1

I{aj+1 = dj+1(Lj)}gj+1,0(aj+1, Aj , Lj) | Aj , Lj−1

⎤⎦ . (6)

Again,we adopt the notation gj = (g1, . . . , gj) and the history of true regressionmodels is gj0 = (g10, . . . , gj0).
In semi-parametric theory for missing data problems [22, 26], the augmentation termA(O; β, πK0, gK0) in (5)
has mean zero by construction when evaluated at β = β0, and the treatment assignment probabilities are
modeled correctly so that {πj0} ≡ {πj(𝛾0)}.

In order to use the augmentation in practice, the true regression functions {gj0}must be known or mod-
eled. Often, gj0(A, Lj−1) is modeled parametrically or semi-parametrically as gj(Aj , Lj−1; α) through the finite
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dimensional parameter α. For example, Murphy et al. [2001] suggested the semi-parametric estimator ̂︀αmlr,
the solution to the estimating equations, 0 = Pn[Uα(O; α)],

Uα(O; α) = ġK(AK , LK−1; α)(Y − gK(AK , LK−1; α)) +
K∑︁
j=1

ġj(Aj , Lj−1; α) (7)

×

⎡⎣∑︁
aj+1

I{aj+1 = dj+1(Lj)}gj+1(aj+1, Aj , Lj; α) − gj(Aj , Lj−1; α)

⎤⎦ ,

where ġj(Aj , Lj−1; α) = (∂/∂α)gj(Aj , Lj−1; α) for j = 1, . . . , K. Using ̂︀αmlr defined through (7), then the usual
augmented inverse probability weighted (AIPW) estimator, ̂︀βusual, is defined as the solution to the system
of equations

0 = Pn
[︀
ψaipw(O; β, πK(̂︀𝛾), gK(̂︀αmlr))]︀ ,

where

ψaipw(O; β, πK(𝛾), gK(α)) = ψipw(O; β, πK(𝛾)) −A(O; β, πK(𝛾), gK(α)),

and {gj(α)} = {gj(Aj , Lj−1; α)}. The AIPW estimator has the double robustness property: that is, ̂︀βusual
is consistent if one of either the treatment selection probabilities {πj} or the regression functions {gj} are
modeled correctly. If both functions are modeled correctly, the AIPW estimator is semi-parametric efficient
[16, 22].

3 New methods
When only one set of functions {πj} or {gj} are modeled correctly, the incorrect model can have an adverse
effect on the precision of ̂︀βUSUAL unless steps are taken to mitigate the ill-effects of model misspecification.
Without loss of generality, suppose that the PS model {πj} is correctly modeled but {gj}may or may not be.
Under the true {gj0}, EUα(O; α0) = 0 and ̂︀αMLR →p α0. Under incorrectly modeled {gj}, however, ̂︀αmlr →p

α*, for some α* ≠ α0. Even though the usual estimator ̂︀βUSUAL is consistent regardless of whether {gj} is
correctly modeled or not, the variance of ̂︀βUSUAL is only optimal when {gj} is modeled correctly. Thus, we aim
to construct an estimator of β that will:

(P1) be doubly robust;
(P2) have smallest asymptotic variance among the class of AIPW estimators when the PS is modeled cor-

rectly regardless of whether {gj}Kj=1 are modeled incorrectly.

3.1 New Estimation with {πj} as Known Functions

In this subsection, we consider constrained doubly robust estimation of β when {πj} are known functions of
(Aj−1, Lj−1), i.e., when 𝛾 = 𝛾0 is known. To begin, consider the coefficient estimator β̃ defined as the solution
to

0 = Pn[ψAIPW(O; β0, πK0, gK(α*))], (8)

where α* is the limiting value of the estimator ̂︀α regardless of whether {gj} are modeled correctly or not. The
asymptotic variance of n1/2(β̃ − β0) is

Ṽ(α*) = Γ−1
{︁
var lim

n→∞
n1/2Pn[ψAIPW(O; β0, πK0, gK(α*))]

}︁
(Γ−1)⊤,

where Γ is the asymptotic slope matrix of the right-hand side of (8) with respect to β0, say,

Γ = E
{︃
∂
∂βψAIPW(O; β, πK0, gK(α))

⃒⃒⃒⃒
β=β0 ,α=α*

}︃
.
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The asymptotic slope matrix is invariant to the choice of α* either directly or in the limit. Therefore, when the
{πj0} are modeled correctly, minimizing the asymptotic variance Ṽ(α*) reduces to a problem of minimizing
var[ψAIPW(O; β0, πK0, gK(α*))] as a function in α*. [For a related problem, see expression (4) on p.8 of [23]].

Now, because ψAIPW(O; β0, πK0, gK(α*)) hasmean zerowhen evaluated at the true parameters, thenmin-
imizing var[ψAIPW(O; β0, πK0, gK(α*))] is equivalent to minimizing

E
[︁
ψAIPW

(︀
O; β0, πK0, gK(α*)

)︀2]︁ , (9)

where α* is the probabilistic limit of some estimator ̂︀α. Define αopt as the minimizer of (9) as a function in α*.
Note that αopt also satisfies the following system of equations,

0 = E
[︁
Ȧ(O; β0, πK0, gK(α*))ψaipw(O; β0, πK0, gK(α*))

]︁
, (10)

where

Ȧ(O; β, πK , gK(α*)) =
K∑︁
j=1

∑︁
aj

{I(Aj = aj) − πj(aj | Aj−1, Lj−1)} ×Wdj (aj , Aj−1, Lj−1; πj)µ̇(β, G)ġj(Aj , Lj−1; α*).

When {gj} are correctly specified, αopt = α0; otherwise, αopt is some other value in the parameter space. To
satisfy (P2), we wish to define an estimator ̂︀αopt →p αopt while, at the same time, ̂︀αopt →p αopt ≡ α0 when
{gj} are correctly specified, so that (P1) is satisfied.

To proceed with construction of the improved DR estimator via constrained augmentation, it is conve-
nient to re-express (10). Using Lemmas 1-3 in Appendix A, we show that the estimating function on the right-
hand side of (10) can be written as

E
[︃
{Y − µ(β0, G)} ×

K∑︁
j=1

1 − πj0(dj(Lj−1) | Aj−1, Lj−1)∏︀j
m=1 πm0(Am | Am−1, Lm−1)

µ̇2(β0, G)ġj(dj(Lj−1), Aj−1, Lj−1; α*) (11)

−
K∑︁
j=1

[︃{︀
gj(dj(Lj−1), Aj−1, Lj−1; α*) − µ(β0, G)

}︀
×

{︃
1 − πj0(dj(Lj−1) | Aj−1, Lj−1)∏︀j
m=1 πm0(Am | Am−1, Lm−1)

µ̇2(β0, G)ġj(dj(Lj−1), Aj−1, Lj−1; α*)
}︃]︃

We can then use (11) to propose an estimator for α. We propose to estimate α by solving the system of estimat-
ing equations,

0 = Pn

[︃ K−1∑︁
j=1

Wdj

(︀
Aj , Lj−1; πj0

)︀
µ̇2(β0, G)qj(Lj−1; πj0, α) (12)

×
{︀
gj+1(dj+1(Lj), Aj , Lj; α) − gj(dj(Lj−1), Aj−1, Lj−1; α)

}︀
+WdK

(︀
AK , LK−1; πK0

)︀
µ̇2(β0, G)qK(LK−1; πK0, α)

×
{︀
Y − gK(dK(LK−1), AK−1, LK−1; α)

}︀]︃
,

where, for r = 1, . . . , K,

qr(Lr−1; πr , α) =
r∑︁
j=1

1 − πj(dj(Lj−1) | Aj−1, Lj−1)∏︀j
m=1 πm(Am | Am−1, Lm−1)

ġj(dj(Lj−1), Aj−1, Lj−1; α). (13)

In Appendix A, we show that the estimating function on the right-hand side of (12) has mean zero when
one of either {πj} or {gj} are correctly specified and, hence, the double robustness property (P1) is satisfied.
Furthermore, when the PSmodel is correctly specified and (12) is evaluated with {πj0}, we show that (12) has
mean zero at α = αopt, and therefore, the constrained augmentation improved doubly robust (IDR) estimator
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̂︀βIDR has the smallest asymptotic variance among the class of AIPW estimators with correctly specified {πj},
where ̂︀βIDR is the solution to the AIPW estimating equations with ̂︀α solving (12). Thus, both properties (P1)
and (P2) are satisfied.

Remark 1. The right-hand side of the proposed estimating equation in (12) is a function of the unknown causal
estimand β0. In practice, when the {πj} are known, the unknown parameters (β0, α*) are estimated jointly by
augmenting the estimating equation in (12)with theAIPWestimating equation in (8). The root-solvingmethod
one uses in practice may depend, in part, by the complexity of themarginal mean µ(β0, G) as a function in β0
and G in (12). An alternative asymptotically-equivalent practical solution would be to replace β0 in (12) with
a consistent estimator ̂︀β of β0, e.g., the usual AIPW estimator, and then estimate (β0, α*) together by solving
the pair of estimating equations (12) and (8).

3.2 New Estimation with {πj} as Functions of Unknown 𝛾

We now consider the case where the probabilities {πj} are functions of an unknown parameter vector 𝛾. In
general, var[ψAIPW(O; β, πK(𝛾0), gK(α)] is not equal to var[ψAIPW(O; β, πK(̂︀𝛾), gK(α)] in either finite or large
samples. Exceptions include when {πj} are known by design or when the estimators ̂︀𝛾 are constructed to
be asymptotically orthogonal. The details given in this subsection are appropriate for a majority of cases
where there is a non-negligible effect on var[ψAIPW(O; β, πK(𝛾0), gK(α)] when 𝛾0 is replaced with a consistent
estimator ̂︀𝛾. When the variance cost to the estimating function ψAIPW is zero or asymptotically negligible,
methods described in Section 3.1 are appropriate exactly or in the limit.

For j = 1, . . . , K, let πj(𝛾) = πj(aj | Aj−1, Lj−1; 𝛾) and πj(𝛾) = {π1(𝛾), . . . , πj(𝛾)}. Similar to the outline in
Section 3.1, we aim to define an estimator ̂︀β that solves the AIPW estimating equations,

0 = Pn
[︀
ψAIPW(O; β, πK(̂︀𝛾), gK(̂︀α))]︀ , (14)

where ̂︀𝛾 and ̂︀α are estimators of 𝛾 and α, respectively, such that the double robustness property in (P1) and op-
timality property in (P2) are both satisfied. From Theorem 9.1 in [22], when the PSmodel is correctly specified,
the AIPW estimating equations in (14) are asymptotically equivalent to

0 = Pn
[︁
ψAIPW(O; β, πK(𝛾0), gK(α*)) − H

⊤
0 (β, 𝛾0, α*)I−1𝛾 U𝛾(O; 𝛾0)

]︁
, (15)

where α* is the limiting value of some estimator ̂︀α and
H0(β, 𝛾0, α*) = E

{︃
∂
∂𝛾ψAIPW(O; β, πK(𝛾), gK(α))

⃒⃒⃒⃒
β=β0 ,𝛾=𝛾0 ,α=α*

}︃
,

I𝛾 = E
{︁
U𝛾(O; 𝛾0)U⊤

𝛾 (O; 𝛾0)
}︁
.

Let c* be the value of c that minimizes

E
[︁
ψAIPW

(︀
O; β0, πK(𝛾0), gK(α)

)︀
− c⊤U𝛾(O; 𝛾0)

]︁2
(16)

when α* is substituted for α. Our objective is thus to find ζopt that minimizes (16) where ζ = (a, c), and the
procedure is analogous to finding αopt that solves (10) in Section 3.1. However, in the current scenario, we
allow for the fact that {πj0} are functions of the unknown parameter 𝛾 that is estimated from the data. We
can then use this correspondence to Section 3.1 to propose an estimator of ζopt, say ̂︀ζopt, that will in turn lead
to the improved doubly robust (IDR) estimator ̂︀βIDR by solving (14) with smallest asymptotic variance when
the PS models are correctly specified but the OR models may or may not be; see Appendix B for a detailed
derivation of this section.
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Building on the principles and logic laid out above, we therefore propose to estimate ζ by solving the
following estimating equation,

0 = Pn
[︂ K−1∑︁
j=1

Wdj (Aj , Lj−1; πj(̂︀𝛾))µ̇2(β, G)q̃j(Lj−1; ζ , ̂︀𝛾) (17)

× {g̃j+1(dj+1(Lj), Aj , Lj; ζ , ̂︀𝛾) − g̃j(dj(Lj−1), Aj−1, Lj−1; ζ , ̂︀𝛾)}]︂
+WdK (AK , LK−1; πK(̂︀𝛾))µ̇2(β, G)q̃K(LK−1; ζ , ̂︀𝛾)
× {Y − g̃K(dK(LK−1), AK−1, LK−1; ζ , ̂︀𝛾)}]︂,

where

q̃r(Lr−1; ζ , 𝛾) =
r∑︁
j=1

1 − πj(dj(Lj−1) | Aj−1, Lj−1; 𝛾)∏︀j
m=1 πm(Am | Am−1, Lm−1; 𝛾)

[︃
g̃jα(dj(Lj−1), Aj−1, Lj−1; ζ , 𝛾)
g̃jc(dj(Lj−1), Aj−1, Lj−1; ζ , 𝛾)

]︃
,

and

g̃j(dj(Lj−1), Aj−1, Lj−1; ζ , 𝛾) = gj(dj(Lj−1), Aj−1, Lj−1; α) + c⊤ g̃jc(dj(Lj−1), Aj−1, Lj−1; ζ , 𝛾),
g̃jc(dj(Lj−1), Aj−1, Lj−1; ζ , 𝛾) =

−W−1
dj−1

(Aj−1, Lj−2; πj−1(𝛾))
πj(Aj | Aj−1, Lj−1; 𝛾)

∑︀
aj I(Aj = aj)uj(aj | Aj−1, Lj−1; 𝛾)

{I(Aj = dj(Lj−1)) − πj(dj(Lj−1) | Aj−1, Lj−1; 𝛾)}
,

and g̃jα(dj(Lj−1), Aj−1, Lj−1; ζ , 𝛾) = ġj(dj(Lj−1), Aj−1, Lj−1; α), and uj(aj | Aj−1, Lj−1; 𝛾) is defined in (3). We
observe that ̂︀𝛾 converges to 𝛾0 when the PS models {πj} are correctly specified regardless of whether the OR
models {gj} are correctly specified or not. Using similar arguments in Appendix A that show the results in
Section 3.1, ̂︀ζopt solving the system of estimating equations in (17), will converges to ζopt and thus satisfying
(P2). On the other hand, when the PSmodels are misspecified but the ORmodels are correct, the expectation
of (17) can be shown to be zero when ζ ≡ (α, c) = (α0, 0) and therefore the double-robustness property (P1) is
satisfied. Thus, our estimator ̂︀βIDR, defined as the solution to 0 = ψAIPW(O; β0, πK(̂︀𝛾), gK(̂︀αopt)) where ̂︀αopt is
defined througĥ︀ζopt via (17) and̂︀𝛾 is anM-estimator defined in (3), is DR andhas smallest asymptotic variance
among all DR estimators when the PS models are correct but OR models may not be.

We may use a theory of Z-estimation to describe the asymptotic properties of ̂︀βIDR. Specifically, we com-
bine the estimating equations for θ = (β⊤, 𝛾⊤, α⊤)⊤ and derive the asymptotic properties for ̂︀β from the
asymptotic properties of ̂︀θ = (̂︀β⊤, ̂︀𝛾⊤, ̂︀α⊤)⊤. Combining the estimating functions for β and 𝛾 with the pro-
posed estimating function (17) with respect to ζ = (α, c), ̂︀θ solves the system of estimating equations,

0 = Pn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψAIPW(O; β, πK(𝛾), gK(α))
U𝛾(O; 𝛾)[︂∑︀K−1

j=1 Wdj (Aj , Lj−1; πj(𝛾))µ̇
2(β, G)q̃j(Lj−1; ζ , 𝛾)

×{g̃j+1(dj+1(Lj), Aj , Lj; ζ , 𝛾) − g̃j(dj(Lj−1), Aj−1, Lj−1; ζ , 𝛾)}
+WdK (AK , LK−1; πK(𝛾))µ̇

2(β, G)q̃K(LK−1; ζ , 𝛾)

×{Y − g̃K(dK(LK−1), AK−1, LK−1; ζ , 𝛾)}
]︂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Under conditions used to derive the improved DR estimator [e.g., 11, Appendix], ̂︀θ is a Z-estimator with an
asymptotic normal distribution whose covariance follows standard formulae [e.g. 3, Ch. 7] and can be esti-
mated in various ways, including direct evaluation of the empirical covariance matrix and resampling meth-
ods.
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3.3 Caveats

The technique described above is general and applicable for all non-random dynamic treatment regimes via
the marginal model in (2). This development applies to the work by [4] and [23] who detailed the idea for a
population mean in the presence of missing outcome and monotone coarsening, respectively.

Although the principles behind locally efficient doubly robust estimation is technically sound, putting
the principles into practice can be a substantial challenge. Firstly, for K-stage trials with K even moderately
large and non-trivial treatment effect, there are many regression functions to specify. Such bookkeeping can
be an onerous task and encourages the use of a subclass of {gj} that restrict regression coefficients to be
common across stages. Second, the regression functions {gj} are highly constrained through their nested
definition in (6). This caveat led [11] to propose that {gj} depend on auxiliary variables Xj−1 but not on treat-
ment Aj−1, i.e. no treatment effect. Unfortunately, if there is a treatment effect, then one is relying entirely
on a correct PS model via {πj} for consistency of the AIPW estimator. As we demonstrated above, even if the
PS model is correct, incorrectly specified {gj} could have undesirable consequences on the precision of the
AIPW estimator and downstream statistical inference. Thus, efficiency of the AIPW estimator in the current
context is both germane and important.

4 Examples

4.1 The Setup: Adaptive Treatment Length Studies

Ournumerical and real-data examples are illustrations of our continuedwork indynamic regimes for infusion
studies, where a clinical goal of interest is to estimate the mean outcome if an attending physician stops the
infusion at a time of their choice or at the time of an unexpected random event (i.e. a time not of their choice),
whichever time comes first [8]. In these applications, as with many dynamic treatment regimes, evaluating
eligibility criteria for treatment assignment is a key feature of the analysis. Eligibility for treatment assignment
is evaluated sequentially at each stage or clinic visit at time tj and depends on treatment history, covariate
history, and the history of eligibility. In the infusion study, treatment assignment at tj is synonymous with a
physician’s decision to stop or continue treatment by choice at time tj provided the patient satisfies eligibility
criteria. In the observational study, treatment assignment depends on treatment history, covariate history,
and the history of eligibility whereas treatment assignment depends on treatment and eligibility history in
the non-random dynamic regime for our infusion study application.

To define the decision rule leading to our dynamic regime, let a target treatment length tr be given, r ∈
{1, . . . , K}. Let Sj be a binary tailoring variable. We consider the decision rule

dj(Lj−1) =
{︃
stop treatment, if tj = tr and Sj−1 = 0;
continue, otherwise.

(18)

In the infusion study application, a subject initiates infusion treatment at t0. According to the decision rule
in (18), at tj , j < r, the attending physician continues treatment as long as the subject satisfies the eligibility
criteria, i.e. Sj = 0,where Sj is a random (in)eligibility event in the interval (tj , tj+1]. If Y is the clinical endpoint
of interest in the infusion study, then our goal is to estimate the causal estimand, EdK (Y | G) = β, using the
data.

The observed data for the proposed application is outlined in Table 1. In contrast to a dynamic regime
whose treatment length is stopped at tr provided Sr−1 = 0, subjects may stop at any tj , j < K, in the obser-
vational study. In addition, the concept of eligibility for treatment assignment at tj is broader in the observa-
tional study. In order to be eligible for treatment assignment at tj, a subject must have not stopped treatment
at any prior time point tj′ , j′ < j, as well as avoided random adverse events {Sj′ = 1} for all j′ < j. In our
notation, Aj = 1 implies a decision to stop or “assign" treatment at tj by choice and the probability that a
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Table 1: The observed data in adaptive treatment length studies. Time t+j denotes the moment just after tj.

Innovation at tj Description
Treatment assignment,Aj Aj I(Aj−1 = 0, Sj−1 = 0) stop or continue at tj given subject is eligible at tj;
History of covariates and
tailoring variables, Lj(Aj)

(Xj , Sj)I(Aj = 0, Sj−1 = 0) covariate history and ineligibility indicator in
(tj , tj+1] given subject eligible at t+j ;

I(Aj = 0, Sj−1 = 0) indicator that subject is eligible for treatment as-
signment at t+j ;

Endpoint, Y(AK) NA outcome measured at end of study.

provider stops treatment at tj given a subject is eligible at tj is

λj(Xj−1) = P(Aj = 1 | Xj−1, Aj−1 = 0, Sj−1 = 0).

Then, the treatment assignment mechanism is modeled as

πj(aj | Aj−1, Lj−1) =
{︀
λj(X̄j−1)

}︀aj {︀1 − λj(X̄j−1)}︀I(Aj=0,Sj−1=0) . (19)

Adhering to the non-stochastic dynamic regime that defines the adaptive treatment length policy is given by
the degenerate treatment assignment mechanism,

I{aj = dj(Lj−1)} = I(tj = tr)aj × {1 − I(Ar = 0, Sr−1 = 0)}I(Aj=0,Sj−1=0).

Combining the degenerate treatment assignment mechanism above with the mechanism in (19) from the ob-
served data leads to the definition of the Radon-Nikodym derivative, i.e.,

Wdj (Aj , Lj−1) =
j∏︁

m=1

I{Am = dm(Lm−1)}
πm(Am | Am−1, Lm−1)

=
j∏︁

m=1

{︂
I(tm = tr)
λm(X̄m−1)

}︂Am {︂1 − I(Ar = 0, Sr−1 = 0)
1 − λm(X̄m−1)

}︂I(Am=0,Sm−1=0)
,

that is critical for estimating the causal estimand EdK [Y | G] from observational data.

4.2 Simulation Studies

We performed simulation studies to evaluate the finite sample performance of competing estimators of for
the causal parameter β in the marginal model µ(β, G), including outcome regression (OR), inverse proba-
bility weighted (IPW), ordinary double robust and improved double robust estimators. First, we partition
covariate history as Xj = ((V (1)

0 )⊤, (V (2)
j )⊤)⊤, where V (1)

0 baseline (time-invariant) covariates, and V (2)
j =

(V (2)
0 , V (2)

1 , . . . , V (2)
j ) is the history of time-varying covariate information, respectively. Next, treatment as-

signment probabilities are generated as Bernoulli random variables with success probability λj(Xj−1; 𝛾) =
H(𝛾j + 𝛾⊤X Xj−1), j = 1, . . . , K, where H(z) = 1/{1 + exp(−z)} and 𝛾X = (𝛾⊤V (1) , 𝛾⊤V (2) )⊤. Intermediate outcomes
Sj are similarly simulated as Bernoulli random variables with success probability λξj (Xj; α0) = P(Sj = 1 |
Xj , Aj−1 = 0, Sj−1 = 0), j = 0, . . . , K −1, where λξj (Xj; α) = H(αξ ,j + α

⊤
ξXXj) and αξX = (α⊤ξ ,V (1) , α⊤ξ ,V (2) )⊤. Finally,

the endpoint Y is assumed to follow a linearmodel, Y = gK0(AK , LK−1; α)+ϵ, where gK0(AK , LK−1; α0) = E(Y |
AK , LK−1),

gK0(AK , LK−1; α) = αy0 +
K∑︁
j=1

αyj I({Aj = 1} ∪ {Sj−1 = 1}) +
K∑︁
j=1

αySj−1 I{Sj−1 = 1} + α⊤yXXK−1,
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αyX = (α⊤yV (1) , α⊤yV (2) )⊤, and ϵ is an independent standard normal random variable. The parameters in the
conditional mean model gK0(AK , LK−1) have practical interpretation for our application. The parameters αyj
describe the adjusted effect of treatment length on the outcome Y irregardless of the reason why treatment
was stopped. Recall, treatment starts at t0 and must end in one of the intervals, (tj−1, tj], j = 1, . . . , K. The
parameters αySj allow for thepossibility that thepresenceor absenceof the intermediate events (S0, . . . , SK−1)
modifies the adjusted effect of treatment length onmean outcome. The parameters αyX describe the adjusted
effect of covariate history on mean outcome. An overview of the simulation scheme used to generate data in
Table 1 is outlined in Algorithm 1.

We generated data according to the aforementioned scenario for K = 2 stages, with two baseline co-
variates V (1)

0 and history of time-varying covariate information defined as its current value, i.e. V (2)
j = V (2)

j .
The parameter vector for treatment assignment is 𝛾 = (𝛾1, 𝛾⊤V (1) , 𝛾V (2) )⊤, 𝛾1 = 10/7, 𝛾V (1) = (−1/5, −1/5)⊤,
and 𝛾V (2) = −4/5. The parameter vector for intermediate outcomes is αξ = (αξ ,0, αξ ,1, α⊤ξ ,V (1) , αξ ,V (2) )⊤ with
αξ ,0 = 13/7, αξ ,1 = 26/7, αξ ,V (1) = (−1/10, −1/10)⊤, and αξ ,V (2) = −9/10. The outcome parameter vector is
αy = (αy0, αy1, αy2, α⊤yV (1) , αyV (2) )⊤, with (αy0, αy1, αy2) = (3/2, 1/2, 3/10), αV (1) = (1, 1/2)⊤, and αV (2) = 1/2
or 1. For the particular simulation results presented below, we set αySj = 0 which assumes that the adjusted
effect of treatment length onmean outcome is not modified by the reason for stopping treatment. True values
for causal estimands are computed by numerical integration via Monte Carlo method.

Algorithm 1 Pseudocode for simulated data

1: Simulate baseline covariate information: V (1)
0 ∼ N2(0, I2)

2: Set j = 0
3: while j < K do
4: Simulate time-dependent covariate information: if j = 0, V (2)

0 ∼ N(4, 1), else V (2)
j ∼ N(V (2)

j−1, 1)
5: Simulate tailoring variable: Sj ∼ Bern{λξj (Xj; α)}, where λ

ξ
j (Xj; α) = H(αξ ,j + α

⊤
ξ ,V (1)V (1)

0 + αξ ,V (2)V (2)
j )

6: if sj = 1 then
7: Infusion stopped in (tj , tj+1] due to terminating event; Simulate outcome Y = αy0 + αy(j+1) + αySj +
α⊤yV (1)V (1)

0 + αyV (2)V (2)
j + ϵ; Stop

8: if j = K − 1 then
9: Set aj+1 = K; Simulate outcome Y = αy0 + αyK + α⊤yV (1)V (1)

0 + αyV (2)V (2)
j + ϵ; Stop

10: else
11: Simulate treatment assignment at tj+1: Aj+1 ∼ Bern{λj+1(Xj; 𝛾)}, where λj(Xj; 𝛾) = H(𝛾j+𝛾⊤V (1)V (1)

0 +
𝛾V (2)V (2)

j )
12: if aj+1 = 1 then
13: Infusion stopped at tj; Simulate outcome Y = αy0 + αy(j+1) + α⊤yV (1)V (1)

0 + αyV (2)V (2)
j + ϵ; Stop

14: else Increment j = j + 1; Continue

In addition to studying the simulation scenario where all models are correctly specified, we also studied
scenarios when one or both of the propensity score (PS) or outcome regression (OR) models are incorrectly
specified. Specifically, we adopt the following:

– (PS incorrect): In the treatment assignmentmodel, the true success probability of the Bernoulli random
variable is modeled as a quadratic function in the time-dependent covariate V (2), i.e., λj0(Xj−1; 𝛾) =
H{𝛾j+𝛾⊤V (1)V (1)

0 +𝛾V (2) (V (2)
j )2}, where 𝛾V (2) = 0.2, but the procedure incorrectly fits themodel λj(Xj−1; 𝛾) =

H(𝛾j + 𝛾⊤V (1)V (1)
0 + 𝛾V (2)V (2)

j );
– (OR incorrect): We misspecify the model on Y by ignoring the time-dependent covariate V (2)

j in and
modeling baseline covariates V (1)

0 only.
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Note that the true causal estimands remain the same under potentially misspecified PS or OR models when
the regression parameter for the time-dependent covariate V (2)

j , i.e. αV (2) , is fixed at 1/2 or 1.
A total of five competing estimators are compared under each scenario. The inverse probability weighted

(IPW) and three variations of doubly robust estimators rely on a correctly specified treatment assignment
mechanism for optimal performance. Here, the treatment assignment probabilities are estimated via maxi-
mum likelihood, i.e., ̂︀𝛾 = −argmin𝛾 logLps(O; 𝛾),

logLps(O; 𝛾) = Pn[
K∑︁
j=1

Aj log λj(Xj−1; 𝛾) + I(Aj = 0, Sj−1 = 0) log{1 − λj(Xj−1; 𝛾)}],

In addition to the ordinary double robust (USUAL) and improved doubly robust (IDR) estimators, we also
computed a naïve improved doubly robust estimator, that ignores the variation in the estimator ̂︀𝛾 in optimiz-
ing α, i.e. ̂︀βidrnaive estimates α by minimizing the L2-norm Pn{ψaipw(O; β, 𝛾0, α)}2. An outcome regression
(OR) estimator is computed as

̂︀βor = Pn

[︃∑︁
a1
I{a1 = d1(L0)}g1(a1, L0; ̂︀α)]︃ ,

where ̂︀α = (̂︀α⊤y , ̂︀α⊤ξ )⊤. These estimators are compared inMonte Carlo studies through the following statistics:
Monte Carlo bias and standard deviation (SSE), the Monte Carlo average of the sample standard errors (SEE),
and empirical coverage probability (ECP) based on a Wald-type 95% confidence interval. Simulation results
for a sample size of n = 300 are presented in Table 2.

When both PS and OR models are correctly specified, all estimators have relatively small bias and ap-
proximately correct coverage probabilities. The OR estimators have smaller finite sample variance than IPW
and doubly robust (DR) estimators while the IPW estimator is least precise among all estimators, about 20%
larger than any of the DR estimators. When the PS model is incorrect but the OR model is correct, the IPW
estimator exhibits substantial finite sample bias while the other estimators do not. When the PS model is
correct but the ORmodel is incorrect, the OR estimator exhibits substantial finite sample bias while the other
estimators do not. These finite sample results agree with theoretical results and is the primary motivation for
doubly robust estimators.

The usual and improved doubly robust (IDR) estimators have similar performance when the OR model
is correct. The main advantage of the IDR estimator compared to the usual DR estimator occurs when the PS
model is correct but the ORmodel is incorrect. In this case, we see that Monte Carlo standard deviation of the
usual DR estimator is 6% larger when αV (2) = 0.5 and 37% larger when αV (2) = 1. Moreover, the simulation
results when αV (2) = 1 show clearly that the naïve IDR estimator yields suboptimal estimates of the causal
estimand even though the performance seems very similar to IDR when αV (2) = 0.5. The rationale for subop-
timal performance, in general, is that choosing ̂︀α to minimize the variance of the AIPW estimator when the
PS is correct and 𝛾0 known is not the same as the variance of the AIPW estimator when PS is correct but 𝛾0
is unknown and must be estimated [4, 19, 21, 23, 27]. Thus, because α is not estimated optimally in the naïve
IDR procedure, i.e. ̂︀α does not converge in probability to αopt, the naïve IDR estimator of the causal estimand
is not locally efficient.

Additionally, in our simulation studies, the DR estimators had considerably better performance than the
OR estimator evenwhen both the PS and ORmodels were incorrect. Similar results have been shown by other
authors [4, 23] and illustrate sensitivity of the DR estimators and scale of the bias when these estimators
are not guaranteed to be consistent. In short, OR estimators are superior when the OR model is specified
correctly. But if one is interested in guarding against possiblemisspecification of theORmodel, doubly robust
estimators are worth the effort.

As discussed in Section 3, the asymptotic covariance of ̂︀βidr can be estimated by the empirical sandwich
matrix. Alternatively, one can use resampling or perturbation methods to estimate the sampling variation of
the estimator and can be justified along the lines of Lu and Johnson [10, Appendix]. As we demonstrate in
Table 2, the empirical variance of the bootstrap resamples approximates well the sampling variation of the
estimator and results in confidence intervals with approximately nominal coverage.
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Table 2: Simulation results for estimating the mean potential outcome in a dynamic treatment regime. Table entries include
Monte Carlo bias, simulation standard error (SSE), standard error estimate (SEE), and empirical coverage probability (ECP) for a
95% confidence interval.

αV (2) Bias SSE SEE ECP Bias SSE SEE ECP
0.5 PS correct, OR correct PS incorrect, OR correct

ipw −0.013 0.247 0.238 0.920 −0.103 0.306 0.253 0.842
or −0.003 0.114 0.110 0.934 −0.014 0.114 0.111 0.946
usual 0.003 0.192 0.193 0.962 −0.005 0.206 0.209 0.946
idrnaive 0.005 0.194 0.194 0.956 0.013 0.204 0.214 0.956
idr 0.006 0.193 0.196 0.954 0.017 0.207 0.220 0.960

PS correct, OR incorrect PS incorrect, OR incorrect
ipw −0.012 0.247 0.238 0.920 −0.102 0.306 0.253 0.842
or −0.263 0.111 0.110 0.360 −0.295 0.114 0.110 0.248
usual −0.001 0.207 0.216 0.936 −0.096 0.264 0.241 0.850
idrnaive 0.002 0.195 0.198 0.950 −0.003 0.209 0.229 0.960
idr 0.005 0.196 0.200 0.956 0.035 0.217 0.237 0.950

1.0 PS correct, OR correct PS incorrect, OR correct
ipw −0.014 0.299 0.276 0.920 −0.183 0.340 0.282 0.770
or −0.008 0.125 0.122 0.954 −0.009 0.126 0.124 0.942
usual 0.018 0.203 0.202 0.950 0.021 0.211 0.204 0.944
idrnaive 0.017 0.202 0.202 0.944 0.038 0.219 0.217 0.936
idr 0.019 0.202 0.206 0.948 0.040 0.220 0.226 0.954

PS correct, OR incorrect PS incorrect, OR incorrect
ipw −0.018 0.299 0.276 0.920 −0.187 0.340 0.282 0.770
or −0.530 0.133 0.132 0.014 −0.573 0.135 0.132 0.008
usual −0.001 0.288 0.293 0.926 −0.172 0.379 0.297 0.750
idrnaive 0.006 0.226 0.224 0.962 0.003 0.236 0.248 0.956
idr 0.013 0.210 0.218 0.954 0.071 0.241 0.259 0.932

4.3 Data Analysis

We also demonstrate the utility of the methods through an analysis of data from the Enhanced Suppression
of the Platelet IIb/IIIa Receptor with Integrilin Therapy (ESPRIT) trial [12]. Briefly, ESPRIT was designed to in-
vestigate a novel dosing regimen of eptifibatide infusion in patients undergoing elective stent percutaneous
coronary intervention (PCI). For those patients randomized to the experimental infusion arm, eptifibatidewas
delivered as two boluses plus an infusion, with infusion starting immediately after the first bolus and contin-
uing until it was stopped by physician discretion or treatment-competing event. Although the protocol pro-
vided general recommendations on when providers ought to stop infusion, the decision to stop infusion was
ultimately left to physician choice. The protocol also articulated when infusion must be discontinued due to
adverse events. Thus, the adaptive treatment length policy treats to the target time tj or infusion-terminating
event, whichever comes first. In the ESPRIT study, however, infusion continues until infusion-terminating
event or when the attending physician chooses to discontinue it, whichever come first. The study endpoint
is a composite endpoint of death, myocardial infarction (MI), or urgent target revascularization in 30 days.
The techniques described above in Section 2, coupled with the details in Section 4.1, allow us to estimate the
mean composite endpoint in the adaptive treatment length policy using data from the observed ESPRIT trial
data.

Results from our data analysis on 1040 patients receiving the experimental infusion regimen are pre-
sented in Table 3. All estimators of causal estimands adjust for potential confounders including angina and
weight at baseline as well as time-dependent enzyme level measured during post-surgery observation. Note
that the composite endpoint is a Bernoulli outcome but that the IPW estimator will work the same regardless
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Table 3: Results from the infusion trial. Table entries are multiplied by 104.

ipw usual idrnaive idr
t1 624 (92) 667 (163) 630 (93) 626 (93)
t2 866 (128) 864 (128) 870 (128) 877 (128)

of whether the outcome is continuous or discrete; other estimator rely on outcome regression (OR) models
via {gj}. To exemplify potential advantages of the improved doubly robust estimator, we adopt linear regres-
sion models in {gj} thus choosing a potentially poor link function in a generalized linear model for a binary
outcome. We computed proportions of the composite endpoint under adaptive treatment length policies at
t1 = 16 and t2 = 22hours.Wefirst observe that the range of estimates acrossmethods ismodest: 6.2−6.7%at
16 hours and 8.6−8.7% at 22 hours. However, the range in standard error estimates is huge by comparison.
The standard error of the ususal doubly robust estimator is 77% larger than all other estimators, including
the inefficient IPW estimator. We conjecture this large standard error of the usual doubly robust estimator is
likely due to our choice of link function in {gj}. But the improved doubly robust estimators counterbalance,
in part, the deficiencies in the outcome regression models and yields a precise estimate of the estimand as
the theory suggests ought to happen.

5 Conclusions
In this paper, we proposed an improved doubly robust estimator of causal estimands in marginal models for
dynamic treatment regimes [11] through a technique first proposed by [4]. The primary objective of the tech-
nique is to improve the precision of the doubly robust estimator when the propensity score (PS) via {πj} is
correctly specified but the outcome regression (OR) models via {gj}, gj = gj(Aj , Lj−1; α), may be incorrectly
specified. This is achieved by defining a new estimator for the regression parameter α tominimize the asymp-
totic variance of the modified AIPW estimator via (17).

Our numerical and real data examples in Section 4 illustrate potentially unnerving aspects of AIPW and
ordinary doubly robust estimation [19, 20, 27]. While the augmentation in AIPW estimation is intended to
improve the precision of the IPW estimator, specifying the ORmodelsmay not be straightforward for complex
data and incorrectly specifyingORmodels can have unfortunate consequences. The {gj} for dynamic regimes
are examples of complicated OR regression functions and, as shown in Section 4.3, can have a dramatic
adverse impact on statistical inference if modeled incorrectly. In our data example in Section 4.3, poor choice
of models for {gj} increased standard error estimates for one of the causal estimands by more than 75%
compared to other inverse-weighted estimators. Improved doubly robust estimators do not suffer from these
deficiencies but require more effort on the part of the data analyst.

As the proposedmethod aims to improve the efficiency of DR estimators in marginal models for dynamic
treatment regimes, there are other methods [e.g. 17, 19, 20, 27] that aim to improve the efficiency and robust-
ness of ordinary doubly robust (DR) estimators. It would be interesting to compare some of these competing
methods in examples of dynamic treatment regimes, such as the treatment length problem. Such investiga-
tion would take considerable programming effort and resources and it is beyond the scope of the current
manuscript.

In this paper, we have imposed finite-dimensional parametric models on the nuisance parameters. Al-
ternatively, one could relax this modeling assumption and use data-adaptive techniques to estimate the nui-
sance parameters. However, in this case, the asymptotic linearity of the resulting estimatorwill rely on certain
rate assumptions for all the nuisance parameter estimators. Targeted learning and undersmoothing of regu-
larization parameters offer a possible remedy to this issue [e.g. 1, 24, 25]. Generalizations of these methods to
treatment length policy settings merit further research.
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