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Abstract: We demonstrate how counterfactuals can be used to compute the probability that one event was/is
a sufficient cause of another, and how counterfactuals emerge organically from basic scientific knowledge,
rather than manipulative experiments. We contrast this demonstration with the potential outcome framework
and address the distinction between causes and enablers.
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1 Introduction

This note illustrates the use of structural models in counterfactual reasoning. In particular, it demonstrates
the computation of a quantity denoted PS - the probability of sufficiency, which plays an important role in
commonsense reasoning, as well as in legal and medical applications [1, 2, 3, 4].

To motivate the analysis, we will use the classical example of Oxygen, Matches, and Fire which The Book
of Why [5, p. 289] describes as follows:

“A fire broke out after someone struck a match, and the question is ‘What caused the fire, striking the match or the presence
of oxygen in the room?’ Note that both factors are equally necessary, since the fire would not have occurred absent one of
them. So, from a purely logical point of view, the two factors are equally responsible for the fire. Why, then, do we consider
lighting the match a more reasonable explanation of the fire than the presence of oxygen?”

The intuitive explanation invokes the notion of prevalence, or anticipation:

“The person who lit the match ought to have anticipated the presence of oxygen, whereas nobody is generally expected to
pump all the oxygen out of the house in anticipation of a match-striking ceremony.”

This intuition can also be captured by the notion of sufficiency; striking a match is more likely to be sufficient
for the fire than the presence of oxygen. The language of counterfactuals permits us to make this distinction
precise as follows: For any two variables, X and Y, define a quantity PS as “the probability that event X = 1
would be sufficient to producing outcome Y = 1.” Using parenthetical counterfactual notation Y(X = 1) to
denote “the value that Y would attain had X been 1,” PS can be written as [2, Definition 9.2.1]:

PS=P[YX=1)=1X=0,Y =0]. M

In words, PS asks us to imagine a situation where X = 0 and Y = 0 and to test how likely it is for Y to turn into
Y = 1if X were to change (counterfactually) from X = 0 to X = 1. Eq. (1) thus quantifies the capacity of X to
produce an outcome Y = 1in situations where the outcome is absent. The reason that we must quantify this
hypothetical event with probabilities is that both X and Y are random variables, subjected to the whims of
unknown factors, some creating situations in which X produces Y, and some creating other situations where
X does not produces Y. Eq. (1) quantifies production over all situations, weighted by their likelihood.
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We will now compute PS for each of Oxygen and Match and compare their magnitudes. We start by spec-
ifying a structural causal model (SCM) for the variables

F = Fire, M = Match, O0X = Oxygen

assuming that F responds to M and OX through the logical ‘AND’ function

1 if OX=1andM =1 @
0 otherwise
Additionally, we assume that, prior to observing the fire, the probabilities for M and OX were:
P(OX=1)=p,, PM=1)=p, 3)

with p,, > p,,, since match-lighting is a rare event and the presence of oxygen is common.

We are now set to derive the probability of sufficiency (Eq. (1)) for both Oxygen and Match using a three-
step procedure developed in [2, p. 206]. But before presenting this derivation, it is important that we step back
and understand the significance of this exercise. Note that we are about to derive a counterfactual expression,
Eg. (1), from a model that is totally void of such expressions. Instead, the model depicts the science behind the
fire story in the form of a Boolean function, Eq. (2), and two probabilities, Eq. (3), that can be estimated from
the data. This stands in sharp contrast to conventional methods of estimating counterfactual quantities in the
potential outcome framework which, invariably, start with counterfactual assumptions justified by drawing
analogies to treatments assignments, or “well-defined” manipulations in controlled randomized experiments
[6,7,8,9,10,11].

There is nothing resembling treatments or experimental manipulation in the function of Eq. (2). One can,
of course envision a variety of experiments on the process described in Eq. (2) but those would be conducted
to interrogate the process, not to define it. The process itself is specified independently of any envisioned
manipulations. See [5, pp. 144-150] for discussion of how experiments interrogate Nature, rather than define
it.

This difference between causal models and manipulation-based models is essential for understanding
the significance of the exercise described in this note. We will assess counterfactual quantities (Eq. (1)) directly
from Nature (Eq. (2)) without asking an investigator to translate Nature into a set of counterfactual statements,
prior to commencing the analysis. This we now demonstrate using the three-step procedure derived in [2,
p. 206]. 1. Abduction, 2. Action, and 3. Prediction.

Metaphorically, these steps call for: 1. Updating history in light of the available evidence, 2. Bending the
course of history (minimally) to comply with the antecedent, and 3. Predicting the outcome based on the
updated past and modified model.

2 Formal derivation

Problem: Compute PS(M) and PS(0X), where (from (1)):

PS(0X) = P[F(OX =1) =1|0X = 0,F = 0]
PS(M) =P[FM=1)=1M =0,F =0]

Assumptions:
P(OX =1)=p,, PM=1)=py,,

The model is given by the graph G below, where U; and U, represent unobserved factors which affect OX
and M, respectively. For simplicity, we will assume these factors to be independent, as shown in Fig. 1.
We shall now derive PS(0X) and PS(M) by applying the three-step algorithm to the model of Fig. 1.
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Figure 1: A graph G representing the structural model of Eq. (2) driven by two unobserved factors, U; and U,.

1. Abduction: We need to update the prior probabilities p,, and p,, in light of the evidence F = 0. This

amounts to computing p,  and p;, for model G, in which F is known to be False (F = 0) (the situation
prior to observing fire, as in Fig. 2.

Ui U,

‘I
.

.
F=0

Figure 2: A graph G’ representing the model of Eq. (2) in the absence of fire.

Derivation:

p., =P(OX =1F=0)=P(0X =1F =0)/P(F=0) =
= P(0X =1,M = 0)/1-P(OX = 1,M = 1)
= Pox(1 = Pp) /(1 = PoxPr)

pl=P(M=1|F =0) = P(M = 1,F = 0)/P(F = 0) =
=P(M =1,0X = 0)/1-P(0X = 1,M = 1)
= Pm(1 = Pox)/ (1 = PoxPrm)

For p,, « 1and p,, = 1 we obtain:

p’ox:pox and p;n = Pm (4)

The reason is clear; the updated priors are simply the old priors re-normalized, after excluding the event
F = 1, which is very rare. An identical result holds therefore when U; and U, are dependent (see Ap-
pendix A).

2. Action: To compute PS(M), we take the updated model of Fig. 2 and simulate the action do(M = 1). This
results in the graph Gy,_;, of Fig. 3:
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Figure 3: A graph Gy, representing the simulated action do(M = 1) on the updated model of Fig. 2, yielding P(F = 1) = p,,_..

Similarly, to compute PS(0X), we simulate the action do(OX = 1), leading to graph Gox_;, of Fig. 4.
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F

Figure 4: A graph Goy_, representing the simulated action do(OX = 1) on the updated model of Fig. 2, yielding P(F = 1) = p/,..

3. Prediction: To complete the derivation of PS(M), we now compute P(F = 1) in Gy;_;, yielding:
PS(M) = P(F = 1) in Gy,
= p;x
= Dox
Likewise, to compute PS(0X), we compute P(F = 1) in Ggx_; giving:
PS(0X) = P(F =1) in Gpx_;
= P;n
= Pm

Thus, we have
PS(M) = p,, and PS(0X) = py, )

and PS(M) > PS(OX) as expected.

3 Conclusions and related works

The primary purposes of this note have been: (1) To demonstrate that counterfactuals are derivable algorith-
mically from common scientific knowledge, and are not needed as inputs for causal analysis. (2) To empower
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researchers with methods of estimating counterfactuals directly from functional description of their prob-
lems. We have demonstrated these two capabilities by computing PS, the probability of sufficiency, in the
context of the classical Oxygen-Match-Fire example, which is pivotal for understanding causal explanations.
Using this computation we obtained a formal confirmation of the intuition that lighting the match is the more
plausible cause of the fire, not the presence of oxygen.

A brief historical overview of this problem and previous works towards its solution should help the reader
appreciate its context and importance.

The most common conception of causation — that the effect E would not have occurred in the absence of
the cause C — goes back to Hume (1748) [12], and captures the notion of “necessary causation.” The probabilis-
tic version of necessary causation (PN) is behind many judicial standards. In tort law, for example, damage
should be paid if and only if it is more probable than not that damage would not have occurred but for the
defendant action.

But causation has two faces, necessary and sufficient. The distinction between the two was first artic-
ulated by John Stuart Mill (1843) [13], and has received semi-formal explications in the 1960s, first using
conditional probabilities [14] and then using logical implications [15]. Both explications suffer from basic
semantical difficulties, since probabilities and classical logic are too crude to capture the logic of counter-
factual conditionals ([16]; [2, pp. 249-256, 313-316]). The popular “Sufficient Component” model of Kenneth
Rothman [17] is essentially equivalent to Mackie’s “INUS condition” and inherits the semantical difficulties
noted in [16]. Nevertheless, the graphical schematics of Rothman’s “causal pies” were found very effective in
teaching epidemiologists how to represent interacting causes as Boolean functions in disjunctive form. Ad-
ditionally, counterfactual interpretations of Rothman’s model (VanderWeele and Hernan [18] have resolved
some of its semantical difficulties. In particular, these interpretations restrict variables from entering the suf-
ficient cause model unless they are parents of the outcome variable in the causal diagram, as depicted in
Fig. 1.

Robins and Greenland [3] gave a counterfactual definition for the probability of necessary causation tak-
ing counterfactuals as primitives, and assuming that one is in possession of a joint probability function over
counterfactual events. Pearl [19] gave definitions for the probabilities of necessary or sufficient causation (or
both) based on structural model semantics which, as we have seen in this note leads to effective procedures
for computing counterfactuals from a given causal theory [20, 21]. Additionally, this semantics can be char-
acterized by a complete set of axioms [22, 23], which can be used as inference rules in the analysis.

Pearl [19] and Tian and Pearl [24] have derived tight bounds on PS and PN when both observational
and experimental data are available. A tool kit for solving counterfactual parameters is given in [25, pp. 116—
126].

Our derivation of PS also bears on a recent debate concerning the role of non-manipulable variables in
causal inference, specifically, whether variables such as sex or race can be considered “causes” [26, 27]. In
our example, oxygen is practically non-manipulable, and yet, the structural model of Fig. 1 treats oxygen and
match on equal footing, with oxygen serving as an enabler of fire (see Appendix B). The model further allows
for the estimation of the counterfactuals PS(OX) and PS(M) by the same three-step procedure, regardless of
how manipulable they are. Such counterfactuals are considered “not well-defined” in the orthodox school of
potential outcome, an untenable stance that would prohibit our question “what caused the fire” from being
asked, let alone being answered.

Appendix A. The importance of the abductive step, from
interventions to counterfactuals

The infinitesimal probability of no oxygen, (1 - p,,) < 1, led to the approximate equalities

Doy ~Pox and ph =py
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which may give readers the impression that the abduction step is superfluous, and that we could have gotten
Eqg. (5) directly, by computing the causal effects P[Y(OX = 1) = 1] and P[Y(M = 1) = 1] instead of Eq. (1).
Indeed, intervening to secure oxygen in the house will have very low probability p,, of resulting in fire, and
intervening to light a match will result in fire with high probability, p,,. To appreciate the importance of the
abduction step: let us compute PS for a hypothetical scenario in which p,, and p,, are determined by two
independent fair coins, resulting in p,, = pp, = 1/2.

The causal effects in this case would compute to

P[Y(OX=1)=1]=P[YM=1)=1]=1/2 (6)

because once we assure the presence of oxygen fire will occur 50 % of the time, when a match is struck.
Conversely, once a match is struck, fire will occur 50 % of the time, when oxygen is present.

However, the probability of actually producing fire in situation where fire is initially absent is in fact lower
than 1/2. Going through the abduction exercise, we get

pl, =PM =1F =0)=P(U,=1U,=0 or U; =0) =1/3
p,, =P(0X=1F=0)=PU, =1U,=0 or U; =0) =1/3

and, accordingly, the probabilities of sufficiency become:
PS(M) = PS(0X) =1/3

lower than the causal effects in (6).

Much wider difference between p,, and p;, will obtain if we let U, affect U, in a significant way. For ex-
ample, let U; be a fair coin and let U, track U,. The marginal probabilities of OX and M will remain the same,
DPm = Pox = 1/2. and the causal effects, likewise, will be the same as in Eq. (6). However, the posterior proba-
bilities will be vastly different, yielding p;, = p), = 0, because both M = 1and OX = 1 must be false in any
situation where F = 0. Accordingly, the probabilities of sufficiency must both vanish

PS(M) = PS(0X) =0

as we can see from Figs. 3 and 4, using p;, = p, = 0. Indeed, prior to the fire, either U, or U, must be absent,
but since they track each other, both must be absent, so lighting a match will not trigger a fire.

What we see in this example is a profound difference between the information we obtain from interven-
tional studies and that obtained from counterfactual analysis. Interventional studies tell us that striking a
match raises the probability of fire from zero to 50, while counterfactual analysis tells us that, knowing that
currently the fire is off, had we struck a match it could not possibly have triggered a fire. Symmetrically, the
same holds for the hypothetical action: “Had we secured the presence of oxygen.” This retrospective infor-
mation cannot be obtained from interventional studies however elaborate.

The extra information that enables us to compute PS requires the specification of the functional rela-
tionships between the variables involved (as in Eq. (2)) as well as the distribution of the unobserved error
terms U, and U,. These two specifications elevates SCM to the top level (rung 3) of the Ladder of Causation
[5] which supports counterfactuals. Lacking any of these two, as in the potential outcomes framework, or
in Causal Bayesian Networks [2, Sec. 1.3.1.] may allow us to evaluate causal effects, but not counterfactuals.
Using Causal Bayesian Networks, for example, one can estimate the effects of all possible actions, including
compound actions and action conditioned on observed covariates and, yet, none can capture the retrospec-
tive aspect of counterfactuals and infer “What if we had done things differently?”

This theoretical separation between interventions and counterfactuals has not been accepted by all an-
alysts. It is absent for example from the taxonomy used in [11], from the potential outcome framework [9], as
well as from most work on Reinforcement Learning (RL) [28].

The temptation in RL is to argue: If we can conclude (from interventional studies) that action A, tends to
bring about a reward R and action A, tends to inhibit that reward, why can’t we assert counterfactually, after
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acting A, and failing to achieve R, that “had we acted A; we would have gotten R?” This line of reasoning may
work in the deterministic case, that is, when the reward R is a deterministic function of the actions A, and 4,,
but not when it is averaged over a population or over unmeasured factors.

For an extreme yet simple example that proves the fallacy of drawing counterfactuals from interventional
studies consider a guessing game where a player wins a dollar upon guessing the outcome of a fair coin and
losing a dollar otherwise. The action “guess head” clearly has no effect on the expected outcome, neither has
the action “guess tail.” Both result in a 50 % chance of winning. Yet upon winning a dollar a player can safely
assert: “Had I acted differently I would have lost” ([2, p. 295]; [29]). The extents to which experimental and
observational studies can inform counterfactual probabilities are delineated in [24] and [2, p. 294].

Appendix B. Causes vs. enablers

Epidemiologists reading this article will note that the analysis of PS may confer causal power onto variables
that are merely “effect modifiers” but not genuine “causes.” Indeed, in ordinary epidemiological conversions
oxygen would be classified as an effect modifier, not as a cause of fire. So will variables such as humidity,
atmospheric pressure and wind velocity. They are perceived to be assisting or hindering the fire, not causing
it. From a chemical viewpoint however the opposite is true; fire is a process of oxidation, hence oxygen is
an active agent in the process, while match striking merely creates a local rise in temperature which is an
enabling condition, not an active cause of fire. If we further look at the logical function defining the process,
Eqg. (2), we find total symmetry. Moreover, examining Rothman’s “pie diagrams” which many epidemiologists
consider a faithful depiction of their conceptual framework, we find each of Match and Oxygen labeled a
“sufficient cause component” in a 2-component pie

{Oxygen, Match}.

What then governs the distinction between “cause” and “effect modifier” or “enabler” in epidemiology?
Is it the manipulability of the former, or the higher PS measure that the former earns from prevalence con-
siderations? I believe both considerations contribute to the distinctions and, certainly, we should not refrain
from calling a nonmanipulable effect modifier “a cause,” if its PS value justifies the name.

Effect modifiers, contrary to opinions of some epidemiologies [26] do have well defined causal effects,
defined by the do-operator and the model in which they are embedded. The same goes to notions such as
confounding and mediation. Whatever property the model bestows upon a manipulated variable it also be-
stows upon an effect-modifier, since the two are not marked differently in the model. The interpretation of
such causal effects may not translate into policies that directly manipulate these modifiers, yet they enter the
evaluation of policies that control the presence of these modifiers so as to regulate their consequences [27].

Lastly, it is interesting to note that the capacity of an event X = 1 to produce an outcome Y = 1 can be
uncovered directly from the structural equation model. We can proclaim X = 1a “producer” of Y = 1iff there
exists a context C such that

YX=0,)=0 and YX=1C)=1

For example, each of M = 1 and OX = 1is a producer of F = 1 in the model of Eq. (2), because 0X = 1
serves as a fire-enabling context for M = 1, and M = 1 serves as a fire-enabling context for OX = 1. Events
M = 0 and OX = 0 cannot be producers of F = 1 since no enabling contexts exist.

One may be tempted to surmise that the property of production coincides with the presence of an event as
a component in Rothman’s “sufficient component model.” But this is not the case. Consider the 3-pie model:

fA=0,B=1,C=1},{A=1,B=1,{A=1,B=0,C=0}

Event A = 0 appears in the first pie and, yet, it is not a producer of Y = 1 because no context exists which
would make Y switch from O to 1 as A switches from 1 to 0. The same is true for B = 0 which appears in the
3rd pie. All other events however are producers of Y = 1. For example, C = 0 is a producer of Y = 1 because
the context {A = 1,B = 0} will see Y switch fromY =0to Y = 1as C changes from C =1to C = 0.
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