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Abstract: Estimating the effect of a randomized treatment and the effect that is transmitted through a me-
diator is often complicated by treatment noncompliance. In literature, an instrumental variable (IV)-based
method has been developed to study causal mediation effects in the presence of treatment noncompliance.
Existing studies based on the IV-based method focus on identifying the mediated portion of the intention-
to-treat effect, which relies on several identification assumptions. However, little attention has been given
to assessing the sensitivity of the identification assumptions or mitigating the impact of violating these as-
sumptions. This study proposes a two-stage joint modelingmethod for conducting causal mediation analysis
in the presence of treatment noncompliance, in which modeling assumptions can be employed to decrease
the sensitivity to violation of some identification assumptions. The use of a jointmodelingmethod is also con-
ducive to conducting sensitivity analyses to the violation of identification assumptions. We demonstrate our
approach using the Jobs II data, in which the effect of job training on job seekers’ mental health is examined.

Keywords: Treatment noncompliance, Two-stagemethod, Sensitivity analysis, Compliers-average causalme-
diation effect
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1 Introduction
In randomized experiments, the interest is often not only in the effect of a randomized treatment but also in
the effect transmitted through a mediator. This is because investigating mediating mechanisms provides a
complete explanation of the effect of the treatment. Recently, there have been many studies on causal medi-
ation analysis, which focuses on how to identify and estimate the average effect of a treatment transmitted
through a mediator (See, e.g., [1–4]). One complication that arises when conducting this type of analysis is
non-ignorability of a mediator because mediators are seldom randomized, even in randomized experiments.

Another complication in randomized experiments is that someparticipants do not adhere to the assigned
treatment. In this article, we refer this non-adherence to the assigned treatment to treatment noncompliance.
In the presence of treatment noncompliance, the treatment receipt status is no longer random even when
the treatment is assigned randomly because participants self-select to adhere to the treatment or not. One
analytical option to address this issue is to focus on the effect of the assigned treatment, namely, intention-
to-treat (ITT) effects.Under a randomized treatment and the stableunit treatment value assumption (SUTVA),¹
the ITT effect is identified as the difference in the average outcome value between those who are assigned to
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the treatment and those who are not. ITT analysis avoids the problem of treatment noncompliance because
inference relies only on the randomization of the treatment [5].

Further challenge arises when identifying the mediated portion of this ITT effect. Simply employing the
mediation formula [6] with the assigned treatment (as if the assigned treatment is actual receipt of the treat-
ment) does not provide a valid result [7] because this approach violates an important assumption of causal
mediation analysis: no treatment-inducedmediator and outcome confounding [1, 3, 6]. In the presence of treat-
ment noncompliance, the actual treatment receipt status impacts both mediator and outcome and is influ-
enced by the assigned treatment (i.e., treatment-induced mediator and outcome confounding). One way of
circumventing this issue is to identify thismediatedportionof the ITT effects on thebasis of the average causal
mediation effect (ACME) among compliers. Among compliers, the assigned treatment always coincides with
the treatment received and thus, the ACME can be estimatedwithout this issue of treatment inducedmediator
and outcome confounding. Yamamoto [7] proposed this way of identifying the mediated portion of the ITT
effect using the instrumental variables (IV) approach.

While the IV approach successfully addresses the issue of identifying the mediated ITT effect, a concern
remains. Estimating the mediated ITT effect on the basis of the ACME among compliers requires multiple
identification assumptions. Due to these multiple identification assumptions, validating results in the IV ap-
proach is often challenging. Previous research by Yamamoto [7] left assessing the validity of results to the
violation of identification assumptions to future study. Another study by Park and Kürüm [8] assessed the
validity of results by assuming a worst case scenario but failed to assess the sensitivity of the results system-
atically to all possible scenarios. Therefore, it is necessary todevelopanapproach that canmitigate the impact
of violations of identification assumptions and/or be more conducive to conducting sensitivity analyses.

In this article, we propose a two-stage jointmodelingmethod to estimate themediated ITT effect because
of its potential benefit of employing modeling assumptions such as distributional assumptions [9] and ad-
ditional covariates [10, 11] that can mitigate the impact of the violation of some identification assumptions.
Another benefit of thismethod is that it provides a relatively convenient setting to conduct sensitivity analyses
to the violation of identification assumptions, compared to the IV-based method. These benefits are demon-
strated using the JOBS II data, in which the effect of job training on job-seekers’ mental health is examined.

The rest of the article is organizedas follows.We introduceourmotivating example inSection 2. In Section
3, we present the identification result of the mediated and unmediated ITT effects. In Section 4, we propose a
two-stage joint modeling estimation method, which is followed by a simulation study that examines the role
of modeling assumptions when identification assumptions are violated (Section 5). In Section 6, we propose
sensitivity analyses based on the proposed joint modeling method. In Section 7, we show how sensitivity
analyses to the violation of identification assumptions can be conducted in the context of our example. We
conclude with a discussion.

2 JOBS II Intervention Project
This study is motivated by the JOBS Search Intervention Study (JOBS II) [12]. Job loss can lead to harmful
effects on a worker’s mental, physical, and social health [13–15]. The JOBS II study was designed as a ran-
domized trial to examine the effects of a job training intervention on unemployed individuals’ mental health.
The goal of this intervention was to prevent the negative effects of job loss by equipping job seekers with
efficient job search strategies. The randomized treatment group was assigned to five half-day job searching
seminars. Both treatment and control groups received a booklet describing job searching skills. In the JOBS II
study, the job training intervention seminars were only available to subjects in the treatment group; subjects
in the control group had no way of participating in the seminars. In line with many previous studies [16–18],
we define the treatment receipt status as attending at least one out of five job-searching seminars. Forty-eight
percent of those who were assigned to the treatment did not attend any job searching seminars.

Project recruitment consisted of a short screening questionnaire (T0) to determine eligibility, resulting in
1,801 participants. The pre-treatment survey wasmailed (T1), and follow-up surveys weremailed twomonths
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(T2), six months (T3), and two years (T4) after the week of job training seminars. Data collected in this study
included demographic variables such as age, gender, race, and marital status, as well as measures of de-
pression, self-esteem, job-search efficacy, internal control orientation, and reemployment status. Descriptive
statistics for the variables used in our analysis are presented in Table 1.

Previous analysis of JOBS II data showed that the job-training intervention produced beneficial effects,
including increased reemployment rates and improvedmental health [8, 19, 20]. More specifically, Price et al.
[21] showed that the intervention had beneficial effects on those who were identified as being at high risk for
experiencing mental health setbacks such as episodes of depression. They also identified sense of mastery
as a mediator for the relationship between the intervention and depression. Our analysis will differ from
these analyses in that we will investigate the association between job-training seminars and depression in
the presence of the mediator, sense of mastery, and by addressing treatment noncompliance using a two-
stage joint method, which provides a convenient setting for systematic analyses of sensitivity to the violation
of identification assumptions. The outcome variable, depression,wasmeasured using responses to an 11-item
list based on the Hopkins Symptom Checklist [22]. The mediator variable, sense of mastery, was computed as
the mean score of job-search efficacy, self-esteem, and internal control orientation.

Table 1: Descriptive Statistics for JOBSII data

Variables Mean Variance Min.¹ Max. ²

Depression (post)³ 1.755 0.442 1 4.9

Sense of Mastery 2.591 1.211 1 4

Sex (X1) 0.531⁴ - 0 1

Motivation (X2) 5.228 0.732 1 6.5

Nonwhite (X3) 0.762⁵ - 0 1

Marital (X4) 1.142 1.265 0 4

Education (X5) 1.845 1.171 0 4

Assertiveness (X6) 3.453 0.838 1 5

Age (X7) 36.12 18.8 16.5 76.9

Depression (pre)⁶ (X8) 1.863 0.331 1 3.5

Economic Hardship (X9) 3.092 0.979 1 5

1. Minimum value, 2. maximum value, 3. depression levels measured after (T3) the training, 4. represent the
ratio of males in our data,

5. represent the ratio of nonwhite subjects in our data, and 6. depression levels measured before the training.

3 Identification
In order to precisely define the effects of interest, consider an experimental setting that mimics the JOBS
II project, where some subjects did not comply with the assigned treatment. Let Zi represent the assigned
treatment, where Zi = 0 if individual i is assigned to the control condition and Zi = 1 otherwise; let Ti
represent the actual treatment received, where Ti = 0 if individual i did not receive the treatment and Ti = 1
if individual i attended at least one job training seminar; Mi and Yi represent the mediator and outcome,
respectively; and X is a vector ofmultiple observed pre-treatment covariates. The supports of the distributions
of Xi,Mi, and Yi are represented asX,M andY, respectively. Under the SUTVA, Ti(z) represents the treatment
receipt status if individual iwas assigned to Zi = z;Mi(z) represents the potential mediator ofM under Zi = z;
Yi(z,m) represents the potential outcome Y under Zi = z, and Mi = m for individual i for z ∈ {0, 1} and
m ∈ M. Pi is an indicator for compliance type that includes compliers (Pi = c) and never takers (Pi = n).

Throughout the paper, we assume the randomization of the treatment assignment.
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Assumption 1: Randomization. Treatment assignment is random.

Effects of Interest.Our primary effects of interest are the mediated and unmediated portion of the ITT effect.
These are the average effect of offering the treatment on the outcome transmitted through (mediated ITT) or
not through (unmediated ITT) a mediator. Since the decomposition is based on the average effect of offering
the treatment, we include both those who did and did not comply with the assigned treatment in the analy-
sis. In other words, ITT analysis tests the effectiveness of a randomized intervention regardless whether the
subjects actually received the treatment or not. Therefore, the mediated and unmediated ITT effects are of
interest for those who want to evaluate the overall effect of an intervention and investigate underlying mech-
anisms of the effect in a usual setting, in which not every subject complied with the treatment. Throughout
this paper, we focus on the mediated and unmediated portion of the ITT effects that include both compliers
and non compliers.

Following Yamamoto [7], the mediated and unmediated portion of the ITT effect will be identified and
estimatedon thebasis of theACMEandaveragenatural direct effect among compliers, respectively. Therefore,
we first define the complier average causal mediation effect (CACME) and complier average natural direct
effect (CANDE), as

δc(z) ≡ E[Yi(z,Mi(1)) − Yi(z,Mi(0))|Pi = c] and
ζc(z) ≡ E[Yi(1,Mi(z)) − Yi(0,Mi(z))|Pi = c],

(1)

where z ∈ {0, 1}. In our example, δc(1) indicates among the compliers to what degree the level of depressive
symptoms has changed in response to the change in the sense of mastery (from the value that would have
resulted under the training to the value that would have resulted under the control) under the job training
condition. Likewise, ζc(1) indicates among compliers the average change in the level of depressive symptoms
in response to the change in treatment status (that is, frombeing assigned to job training vs no training),while
holding the mediator at the value under the job training condition.

In order to obtain the CACME and CANDE, distributions of mediator and outcome need to be modeled.
We use the likelihood to model the distribution of Y ,M, and T, given X and Z. For t ∈ {0, 1} and z ∈ {0, 1},
let STZtz denote a set of observations with T = t and Z = z. Under assumption 1, the likelihood is

L(α, β, λ|data) =
∏︁
t,z

∏︁
i∈STZtz

f{Y(zi ,M(zi)) = yi ,M(zi) = mi , T(zi) = ti|Z = zi , X = xi; βtz , αtz , λ}

=
∏︁
t,z

∏︁
i∈STZtz

f{Y(zi ,mi) = yi|M(zi) = mi , T(zi) = ti , Z = zi , X = xi; βtz}

× f{M(zi) = mi|T = ti , Z = zi , X = xi; αtz}f{T(zi) = ti|X = xi; λ},

(2)

where f (·|·) is a conditional probability density function of a random variable ofM and Y; αtz and βtz are the
vectors of coefficients in the mediator and outcome models, respectively, when T = t and Z = z; and λ is the
vector of coefficients for treatment receipt status.

From this likelihood, however, it is not possible to model the distributions within the subpopulation of
compliers because compliance type is unknown. According to Angrist et al. [23], an individual compliance
type can be expressed as the difference in the actual treatment receipt status that would have been observed
under the treatment and control conditions. For example, compliers are those who adhere to their assigned
treatment (that is, Ti(1) − Ti(0) = 1). Always takers are those who receive the treatment regardless of as-
signment, and never takers are those who do not receive the treatment regardless of assignment (that is,
Ti(1) − Ti(0) = 0). Defiers are those who do not comply with the treatment protocol and do the opposite of
what they are assigned to (that is, Ti(1) − Ti(0) = −1). The compliance type for each individual is unknown
because subjects are assigned to either the treatment or control condition but not to both (that is, Ti(1) or
Ti(0)). Therefore, we need to invoke more assumptions to identify the distributions of mediator and outcome
by compliance type, which are strong monotonicity and exclusion restriction for never takers.

Assumption 2: Strong Monotonicity [23]. This assumption states that there are no defiers or always
takers. Formally, Ti(0) = 0 for all i.
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In a study where program protocol prohibits subjects in the control group from having access to the interven-
tion, Ti(0) = 0 for all i. This implies that we can rule out the possibility of defiers and always takers. After
excluding defiers, thosewho are assigned to the training but did not attend (Ti(1) = 0) are uniquely identified
as never takers. After excluding always takers, thosewho are assigned to the training and attended (Ti(1) = 1)
are uniquely identified as compliers. However, the compliance type for those who are assigned to the control
group is still not identified. Therefore, we make the exclusion restriction assumption for never takers.

Assumption 3: Exclusion restriction (ER) for never takers. This assumption was discussed by Little
and Yau [16] in the absence of amediator, andwe extend it to amediation setting. This assumption states
that the never-taker distribution in terms of the mediator (or the outcome) is the same under either as-
signment, given covariates. In formal expression,

f (M(z)|P = n, X = x; αnz) = f (M(z′)|P = n, X = x; αnz′ ), and
f (Y(z,m)|M = m, P = n, X = x; βnz) = f (Y(z′,m)|M = m, P = n, X = x; βnz′ ),

(3)

for z ∈ {0, 1}, z′ = 1 − z, m ∈ M, and x ∈ X, where αpz and βpz are the vector of coefficients in the
mediator and outcome models, respectively, when P = p and Z = z.

This assumption implies that the direct and indirect effects are allowed only for compliers (but not for never
takers), given baseline covariates. This assumption enables us to identify the complier distributions of the
mediator and the outcome by fixing the parameters for never-taker distributions at the same value under
either assignment, given covariates.

The plausibility of this assumption is often questionable due to psychological effects unless a double-
blind design was used to prevent these effects. For example, this assumption would be violated if those who
are assigned to but did not receive the job training (i.e., never takers) regretted their failure to take advantage
of the intervention and improved job-searching skills by reading a book. Therefore, we develop a sensitiv-
ity analysis to assess the effect of violating this assumption for studies in which this assumption might be
violated or not plausible, and we demonstrate this sensitivity analysis approach in the JOBS II example.

Under assumptions 1-3, the likelihood can be rewritten as

L(β, α, λ|data)

=
∏︁
i∈STZ11

f{Y(zi ,mi) = yi|M(zi) = mi , P = c, X = xi; βc1}f{M(zi) = mi|P = c, X = xi; αc1}πc(xi; λ)

×
∏︁
i∈STZ01

f{Y(zi ,mi) = yi|M(zi) = mi , P = n, X = xi; βn1)f{M(zi) = mi|P = n, X = xi; αn1}πn(xi; λ)

×
∏︁
i∈STZ00

[f{Y(zi ,mi) = yi|M(z) = mi , P = c, X = xi; βc0)f{M(z) = mi|P = c, X = xi; αc0}πc(xi; λ)

+ f{Y(zi ,mi) = yi|M(zi) = mi , P = n, X = xi; βn1}f{M(zi) = mi|P = n, X = xi; αn1}πn(xi; λ)],

(4)

where πp is the probability of Pi = p, given covariates. We offer four remarks regarding this likelihood. First,
the compliance type for those who are assigned to the treatment is uniquely identified under strong mono-
tonicity. Second, evenwith strongmonotonicity, the compliance type for thosewhoare assigned to the control
condition is not uniquely identified. Therefore, the likelihood is expressed as the mixture between complier
and never taker distributions, as shown in the last two lines of equation (4). Third, under the exclusion re-
striction for never takers, parameters for never-taker distributions are fixed to αn1 and βn1 under either as-
signment. Fourth, parameters by compliance type for themediators and outcomemodels can be consistently
estimated from this likelihood although the estimates may not be necessarily given a causal interpretation.
Since Assumption 4 (LSI) is not assumed, the estimates are obtained given the correlation between the errors
in the mediator and outcome models generated from the data.
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Basedon theparameters among compliers obtained from the likelihood,we canwrite the following linear
structural equation models (LSEM) with varying coefficients as

Yi(z) =𝛾c,i + 𝛾cz,iz + 𝛾x,iXi + ec1,i
Mi(z) =αc,i + αcz,iz + αx,iXi + ec2,i

Yi(z,m) =βc,i + βcz,iz + βcm,im + βczm,izm + βx,iXi + ec3,i ,
(5)

for z ∈ {0, 1} and m ∈ M, where ecj,i ∼ N(0, σcj), in which j ∈ {1, 2, 3}. We define 𝛾c ≡ E(𝛾c,i), 𝛾cz ≡
E(𝛾cz,i), 𝛾x ≡ E(𝛾x,i), αc ≡ E(αc,i), αcz ≡ E(αcz,i), αx ≡ E(αx,i), βc ≡ E(βc,i), βcz ≡ E(βcz,i), βcm ≡
E(βcm,i), βczm ≡ E(βczm,i), and βx ≡ E(βx,i) where these terms are the mean parameters of correspond-
ing varying coefficients.

Under assumption 1, we can causally identify the complier average effect of treatment on the mediator
(i.e., αcz) and on the outcome (i.e., 𝛾cz). However, the complier average effect ofmediator on the outcome (i.e.,
βcm and βczm) is not causally identifieddue topossible confounding in themediator andoutcome relationship
among compliers. Therefore, we need to additionally invoke the local sequential ignorability assumption.

Assumption 4: Local sequential ignorability (LSI) [7]. This assumption asserts ignorability of the me-
diator with respect to the potential outcome among compliers, given treatment and pretreatment covari-
ates. This assumption implies that 1) among compliers, there is no pre-treatment confounding between
M and Y, given baseline covariates and 2) among compliers, there is no treatment-induced confounding
in the M and Y relationship, given baseline covariates. In formal expression,

Yi(z′,m) ⊥ Mi(z)|Zi = z, Pi = c, Xi = x,

for z ∈ {0, 1}, z′ = 1 − z, and m ∈ M.

Instead of requiring no unmeasured confounding in the M − Y relationship for every participant as in
standard causal mediation literature, the local sequential ignorability assumption requires the unconfound-
ness between the mediator and outcome to be met only for compliers. Although LSI is required for a smaller
subset of participants, this assumption is still challenging to meet in practice. Therefore, it is essential to
examine the sensitivity of results against this assumption.

Under assumptions 1-4 and given the LSEM, we can identify the CACME and CANDE as δc(z) = αcz ×
(βcm + βczmz) and ζc(z) = βcz + βczm(αc + αczz), respectively². Under assumptions 2 and 3, the mediated and
unmediated ITT effects are estimated by multiplying the proportion of compliers to the CACME and CANDE
estimate respectively, as δ(z) = δc(z) × πc and ζ (z) = ζc(z) × πc. The proof is provided in Appendix A.

4 Estimation
In this section, we propose a two-stage estimation method based on a joint modeling approach, in which
distributional assumptions or additional covariates can be used to reduce the impact of violating some iden-
tification assumptions. The proposed estimation method consists of two stages. In the first stage, using joint
modeling, we estimate the densities of f (y|m, x, p; βpz) and f (m|x, p; αpz), which depend on parameters βpz
and αpz, respectively; and the probability of compliers πc(x, λ), which depend on parameters λ. In the sec-
ond stage, the CACME and CANDE are estimated based on the identification results presented in the previous
section. Subsequently, themediated and unmediated ITT effects are estimated on the basis of the CACME and
CANDE estimates, respectively.

First Stage. In the first stage, we use joint modeling, which has been used for estimating the complier-
average causal effect (CACE) [16, 23].We generalize that work by formulating and fitting amodel to investigate

2 We assume that X is mean-centered for convenience.
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CACME and CANDE. The estimation procedure of this joint modeling approach is based on the expectation-
maximization (EM) algorithm, inwhich the unobserved compliance type for each subject in the control group
is treated asmissing data. The E-step computes the expected values of sufficient statistics, given data and cur-
rent estimates, and the M-step maximizes the likelihood shown in equation (4), given the updated sufficient
statistics obtained from the E-step. These steps iterate until the estimates of the parameters become stabilized
(See [11, 16, 24, 25] for further details on this procedure).

Using the EM algorithm,we can obtain the probability of compliers.We assume that the distribution of Pi
given covariates is assumed to have a Bernoulli distribution with a probability of compliance πc(xi; λ), where

πc(xi; λ) =
exp(xiλ)

1 + exp(xiλ)
, and πn(xi; λ) = 1 − πc(xi; λ), for x ∈ X, (6)

where λ is a vector of logistic regression coefficients. Compared to the previous IV-based method [7, 8], the
proposed method provides additional information about the probability of compliers. This information will
be used to create a pseudo-population of compliers in order to conduct a sensitivity analysis to violation of
LSI.

The conditional probability density functions of randomvariablesM and Y are obtainedusing the follow-
ing parametric models. Given that we have two compliance types (compliers and never takers), the mediator
and outcome models can be expressed as a mixture distribution between these two compliance types as

Mi =Niαn + Ciαc + NiαnzZi + CiαczZi + αxXi + Nien2,i + Ciec2,i , and
Yi =Niβn + Ciβc + NiβnzZi + CiβczZi + NiβnmMi + CiβcmMi+

NiβnzmZiMi + CiβczmZiMi + βxXi + Nien3,i + Ciec3,i ,
(7)

where Ci and Ni are indicators for compliers and never takers, respectively; αp, and αpz are the mean param-
eters of the mediator model coefficients; and βp, βpz, βpm, and βpzm are the mean parameters of the outcome
model coefficients when p ∈ {c, n}. The error terms for the mediator and outcome models are ep2,i and ep3,i
for p ∈ {c, n}, respectively. These error terms follow a bivariate normal distribution with a mean of zero and
covariance of

∑︀
p =

(︀ σ2p2 ρpσp2σp3
ρpσp3σp3 σ2p3

)︀
, where ρp is the correlation between ep2,i and ep3,i; and σp2 and σp3

are standard deviations of the two error terms.
To impose ER, we fixed the effect of treatment on the mediator and the outcome among never takers to

zero (that is, αnz = βnz = βnmz = 0) thus not allowing a treatment effect among never takers. To impose LSI,
we fixed the the covariance among compliers between errors obtained frommediator and outcomemodels to
be zero as

∑︀
c =
(︀ σ22c 0

0 σ23c

)︀
.

Second Stage. Based on parameter estimates obtained from the first stage, the CACME and CANDE can
be estimated as δ̂c(z) = α̂cz × (β̂cm + β̂czmz) and ζ̂c(z) = β̂cz + β̂czm(α̂c + α̂czz), respectively. The mediated and
unmediated ITT effects are estimated by multiplying the proportion of compliers to the CACME and CANDE
estimates respectively, as δ̂(z) = δ̂c(z)×π̂c and ζ̂ (z) = ζ̂c(z)×π̂c. Two-stage estimation is known to be inefficient
in terms of standard errors [24], so we employed a bootstrap procedure to obtain correct standard errors for
mediated and unmediated ITT effects.

5 Simulation Study
The purpose of this simulation study is to 1) assess the performance of the proposed joint modeling method
and 2) examine statistical power in themethod. In addition, we examine the sensitivity of the estimates to vi-
olations of identification assumptions andwe explore changes in this sensitivitywhen the normality assump-
tion is met or when a strong predictor of compliance exists. In the context of CACE, the impact of violation of
ER can be mitigated by using additional covariates [11]. However, the reliance on modeling assumptions in
case of violating the ER assumption is not well known in a mediation setting. This will be addressed in our
simulation study. For simplicity, we focus on the decomposition of τ = δ(1) + ζ (0) in this simulation study.
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Data Generation. Our simulation results are based on 1000 replications with the sample sizes of 200,
400, and 600. The assigned treatment Z is a binary variable that takes the value of 1 or 0. The two values
of Z are randomly assigned for each observation with the proportion of 0.5. In line with the JOBS II data,
we assume that there are two compliance types: compliers and never takers. The compliance type for each
observation is determinedby apretreatment covariate following the logistic regression shown in equation (6),
in which the pretreatment covariate (X) is generated to follow a standard normal distribution. The true ratio
of compliers and never takers is 50 : 50. Themediator (M) and outcome (Y) are generated for each compliance
type following the regression shown in equation (7). For simplicity, the average complier treatment effect on
the mediator is set to αcz = 1, and the average complier mediator effect and its interaction with the treatment
on the outcome are set to βcm = βczm = 1, respectively. Thus, the true values of themediated and unmediated
ITT effects are assumed to be δ(1) = ζ (0) = 1. The true residual variance is 1 for compliers and never takers
(i.e., σ2p2 = σ2p3 = 1, where p ∈ {c, n}).

One of the important conditions that we vary is the strength of the predictor (X) of compliance. In
order to reflect the strong, medium, and small impact of the predictor, we vary the true values of λn =
{2.3, 1.2, and0.7}, which are equivalent to the odds ratios of 0.1, 0.3, and 0.5. This setting is in line with Jo
andStuart [25] andStuart and Jo [26],which investigated the impact of predictors of compliance on estimating
treatment effects conditional on compliance types.

In addition, we generated three types of data in which 1) bothmediator and outcome follow a normal dis-
tribution, 2) the outcome follows a normal distribution but themediator does not, and 3) themediator follows
a normal distribution but the outcome does not. For the case in which both mediator and outcome follow a
normal distribution, we generated errors for the mediator and outcome from the standard normal distribu-
tion. When either the mediator or the outcome violated the normality assumption, we generated two normal
distributions that follow N(−1, 1) and N(3, 1) separately and combined them, which generates a bimodal
distribution.

In order to create a situation in which the ER is violated, the effect of the treatment on the mediator and
outcome among never takers is varied to αnz = βnz = βnzm = {−0.5, 0.25, 0, 0.25, 0.5}. Since the residual
variance is 1, these deviations of the ER can be considered as standard deviation (SD) units. We chose these
ranges of values because the treatment effect on the mediator and the outcome for compliers is set to 1. We
set the maximum values of αnz and βnz to half the size of the corresponding complier effect (i.e., αcz and βcz)
because never takers did not actually receive the treatment. In the analytical model in which we estimate
mediated and unmediated ITT effects using the generated model, we assumed the ER and LSI. The rest of the
parameters are specified as follows: αx = βx = βnm = 1.

To assess the performance of the proposed method in various settings, we first examine the bias of the
probability of compliers. This is crucial because this information will be used for sensitivity analysis in the
later section. Then, we examine the percent bias (%bias), the percent normalized root mean square errors
(%nRMSE), and coverage rate for the mediated and unmediated ITT effects to summarize our simulation re-
sults. The %bias measures the difference between the average of estimates and the true value relative to the
true value. The%nRMSEmeasures the square root of the average of squared difference between the estimate
and the true value relative to the true value. The coverage rate is defined as the proportion of replications
where the true value is covered by the 95% confidence interval out of 1000 replications. To examine the sta-
tistical power in the method, we calculate the power under different sample sizes and distributions of the
mediator and the outcome. The power is defined as the proportion of replications where the effect estimate
is significantly different from zero (α = 0.05) out of 1000 replications.

Simulation Results. The simulation results are summarized in Figures 1a-1c. The top plots present the
bias of P(c) as well as %bias, %nRMSE, and 95% confidence interval coverage rates of δ(1) with a normally
distributed mediator and outcome. The middle and bottom plots present the same quantities with a non-
normally distributed mediator and a non-normally distributed outcome, respectively.

The estimates of P(c) under the deviation of zero from ER are unbiased regardless of whether or not
normality holds. The estimates of P(c) tends to be biased when the data deviate from ER although the bias is
relatively small. Even when the ER is violated by the 0.5 S.D, the bias is less than 0.07 with the small impact
of covariates (OR of 0.5).
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(a) Normal mediator and Normal outcome
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(b) Nonnormal mediator and normal outcome
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Figure 1: Sensitivity of the estimates (P(c) and δ(1)) when the ER is violated
Note. 1) True effect: P(c) = 0.5 and δ(1) = 1, sample size: 600. 2) The results for ζ (0) are similar to the ones for δ(1). Given the

similarity, we present the results for ζ (0) in the e-Appendix.
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Not surprisingly, the estimates of δ(1) under the deviation of zero from ER are unbiased, and the 95%
coverage rate reaches the nominal level even when normality is not met. Although the bias is almost zero
regardless of whether or not normality holds, the nRMSE tends to be large if the normality does not hold for
either themediator or outcome distribution.When normality holds, the nRMSE is less than 19%with a strong
predictor of compliance. With the same setting, the nRMSEs are 32% and 22%, respectively, when normality
is violated for the mediator and outcome. This indicates that standard errors tend to be large if normality is
violated for the mediator or outcome distribution when all identification assumptions are met.

As expected, the effect estimates of δ(1) become biased when the data deviate from ER regardless of
whether or not normality holds. If normality does not hold, the nRMSE becomes larger. When normality is
met for both the mediator and outcome and the ER is violated by the 0.25 S.D, the bias is less than 10% and
the nRMSE is 21% with the medium impact of covariate (OR of 0.3) (Figure 1a). With the same setting but
when the normality is violated for the mediator, the bias is same as 10% but the nRMSE is 35% (Figure 1b).
The nRMSE is also larger (24%) when normality is violated for the outcome (Figure 1c).

Also, the bias is smaller in cases with a stronger predictor of compliance. In cases with a covariate with
a strong effect size (OR of 0.1), the biases are about half what they are with a covariate with a medium effect
size. In the same setting (with a covariate with amedium effect size), the bias is less than 5%when normality
is met (Figure 1a), and the bias is same when normality is not met for the mediator and outcome (Figure 1b
and Figure 1c).

In summary, when normality is met and a strong predictor of compliance exists, the bias due to the rela-
tively smaller deviation from ER (one fourth of the complier average effect) may be negligible given that the
bias is less than 5%of the true value. However, when normality is violated for either themediator or outcome,
the nRMSE becomes larger, which will result in large standard errors.

The statistical power for the mediated ITT effect (δ(1)) under different sample sizes and distributions of
the mediator and the oucome is shown in Figure 2. The figure illustrates that statistical power to detect the
mediated ITT effect is greatly influenced by whether or not normality holds (Figure 2a). For example, if nor-
mality holds, statistical power is greater than 0.8 regardless of whether strong or small impact of covariates
were used. If normality in the mediator does not hold, statistical power ranges from 0.4 (sample size of 200)
to 0.9 (sample size of 600) (Figure 2b). Statistical power does not appear to be different if normality in the
outcome does not hold. In summary, statistical power to detect the mediated ITT effect reaches a desirable
level if normality holds even with a small sample size (N=200).
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Figure 2: Statistical power of δ(1)
Note. 1) True effect: δ(1) = 1. 2) The results for ζ (0) are similar to the ones for δ(1). Given the similarity, we present the results for

ζ (0) in the e-Appendix.
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6 Joint Modeling-based Sensitivity Analysis
In this section, we propose sensitivity analyses that can assess the validity of results to a possible violation of
ER for never takers and LSI. We focus on sensitivity analyses with respect to these two assumptions because
the identification of themediated and unmediated ITT effects crucially rely on them. The proposed sensitivity
analyses can be employed when investigating a mediating mechanism with any randomized experiments
that suffer from treatment noncompliance, in which access to the treatment is prohibited for those who are
assigned to the control condition.

Sensitivity analysis for ER for never takers. The ER assumption for never takers requires that there is
no effect of the assigned treatment on the mediator (or on the outcome) and, hence, the treatment effect is
zero for never takers. As shown in our simulation study, the impact of violation of ER is smaller if there is a
strong predictor of compliance and the normality assumption ismet. However, the validity of resultsmay still
be questioned if these modeling assumptions do not hold and/or the degree to which ER is violated could be
severe.

Although many sensitivity analyses have been developed for ER, very few sensitivity analyses are avail-
able for a mediation setting. For example, an alternative sensitivity analysis technique has been developed
by Park and Kürüm [8] on the basis of the IV-based method. This technique involves specifying a ratio of the
predicted outcome (mediator) value given Z=1 to the predicted outcome (mediator) value given Z=0 among
never takers relative to a corresponding ratio among compliers. This approach is similar to our proposed sen-
sitivity analysis technique. However, an IV-based sensitivity analysis technique does not have any means to
decrease the impact of violating ER and thus provides a relatively large range of estimates for the change in
the sensitivity parameters. In contrast, our proposed sensitivity analysis technique provides a smaller range
of results for the change in the sensitivity parameters when normality is met or additional covariates exist.

If ER is violated, we can no longer assume that the distributions of mediator and outcome among never
takers are the same under either assignment. Therefore, our sensitivity parameters are based on expected
difference in the mediator and outcome distributions among never takers between those who are assigned
to the treatment and control conditions. Specifically, let ϵm be the expected difference in the mediator value
amongnever takers between thosewhoare assigned to the treatment andcontrol conditions, given covariates.
Let ϵy1 + ϵy2m be the expected difference in the outcome value among never takers between those who are
assigned to the treatment and control conditions, given covariates for every m ∈ M. Formally,

ϵm =E[M(1) −M(0)|P = n, X = x] and
ϵy1 + ϵy2m =E[Y(1,m) − Y(0,m)|P = n, X = x], for all m ∈ M and x ∈ X.

Suppose that ER is violated but other assumptions are met. Then, given particular values of ϵm , ϵy1, and
ϵy2, the mediated and unmediated ITT effects are identified, respectively, as

δ(z) =π̃c{α̃cz × (β̃cm + β̃czmz)} + π̃n{ϵm × (β̃nm + ϵy2z)}and
ζ (z) =π̃c{β̃cz + β̃czm(α̃c + α̃czz)} + π̃n{ϵy1 + ϵy2(α̃n + ϵmz)},

(8)

where π̃c , π̃n , α̃n , α̃cz , β̃cz , β̃cm , β̃nm, and β̃czm are obtained from the maximized complete-data likelihood
given particular values of ϵm , ϵy1, and ϵy2. The proof of this result is provided in Appendix B.

Sensitivity analysis for LSI. The first part of assumption 2 states that among compliers, there is no un-
measured confounding in the mediator and outcome relationship given baseline covariates. In many cases,
the more covariates we observe, the more plausible the assumption is. However, we may not be able to mea-
sure all the covariates to remove confounding between the mediator and outcome among compliers. Many
studies have addressed this issue of unmeasured mediator and outcome confounding when perfect compli-
ance was assumed (e.g., [1, 2, 29, 30]). However, very few studies have addressed this issue when perfect
compliance was not assumed. The previous study based on the IV-basedmethod [8] examined the sensitivity
of the results to the violation of LSI by assuming theworst case scenario. In this study,we provide a systematic
sensitivity analysis technique that can be used for all possible scenarios of unobserved confounding between
the mediator and the outcome.
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Imai et al. [1] identified the ACME given a value of the correlation between two error terms obtained from
the mediator and outcome models when perfect compliance to the treatment was assumed. However, we
cannot apply this approach in the presence of treatment noncompliance because the previously developed
IV-based method does not provide any information on individual compliance status. Unlike the IV-based
method, the joint modeling method provides the probability of an individual being a complier and this infor-
mation can be used to assess the sensitivity to a possible violation of LSI.

Development of the sensitivity analysis for LSI relies on using an individual’s probability of being a com-
plier as a weight to create a pseudo-population of compliers. The term “pseudo-population” is often used in
the field of survey sampling that mimics the original population by replicating sample units based on the
probability of being sampled. Here, we define pseudo-population as the original population of compliers,
which is partially observed. For the treatment group, those who attended the job training will be assigned a
weight of 1, and thosewho did not attend the trainingwill be assigned aweight of 0 because the probability of
being a complier is measured without any error under strong monotonicity. For the control group, we cannot
uniquely identify compliance types for each individuals because they are not observed; yet, we can create a
weighted sample based on the probability of compliers. Each individualwill be assigned aweight of πc(x)/πc ,
where πc(x) is the probability of being a complier given pretreatment covariates from equation (6) and πc is
the proportion of compliers. By giving a weight of πc(x), those who have a high chance of being a complier
will be given more weight and those who have low chance of being a complier will be given less weight. By
dividing the weight by the proportion of compliers (πc), we can recover the total sample size of the control
group. For example, an individual in the control groupwith the probability of compliers of πc(x) = 0.8will be
replicated 0.8

0.5 = 1.6 times (when πc = 0.5), delivering 1.6 clones for the pseudo-population. The same logic
was used in Ding and Lu [27].

Based on this pseudo-population of compliers, the sensitivity of the results will be examined across the
varying values of the correlation between the errors obtained from the mediator and the outcome models as
in Imai et al. [1].

Suppose that LSI is violated, but the other assumptions are met. Let the correlation between the error
terms from the mediator and outcome models fitted among the pseudo-population of compliers be denoted
as ρc. Then, given a value of ρc, the mediated and unmediated ITT effects are identified as

δ(z) =πcαcz

{︃
σc1
σc2

(︃
ρ̃cz − ρc

√︃
1 − ρ̃2cz
1 − ρ2c

)︃}︃
and

ζ (z′) =ITT − δ(z),

where z′ = 1 − z for z ∈ {0, 1}. The term ρ̃cz is the correlation between the error terms ϵc1,i and ϵc2,i (from
equations (5)) when Zi = z; and σc1 and σc2 are standard deviations of the error terms, respectively, which
are fixed to be constant across the values of Zi. The proof of this result is given in Appendix C.

7 Application to Jobs II Study
Our question of interest is whether the effect of the JOBS II intervention on reducing job-seekers’ depression
is transmitted through increased sense of mastery. To answer this question, we estimate the mediated and
unmediated portion of the ITT effect via sense of mastery using the proposed joint modeling method. We
then show how the sensitivity of the estimated mediated and unmediated ITT effects to the violation of ER
and LSI can be investigated using the results from the previous section.

Results. Table 2 shows the estimates of the mediated and unmediated ITT effects given assumptions 1-4.
The difference in the outcome value between treatment and control subjects of -0.07 estimates the ITT esti-
mand. The mediated portion of the ITT effect for treated and controlled conditions are negatively significant
as -0.03 and -0.04, which occupy the 43.1% and 61.1% of the ITT effect, respectively. In contrast, the unmedi-
ated ITT effects for the treated and controlled conditions are not significant. This implies that the mediating
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mechanism throughwhich the job training impacts job-seekers’ depression includes enhanced sense of mas-
tery under assumptions 1-4.

Table 2: Estimates of the mediated and unmediated ITT effects

Compliers effects ITT effects
Parameter Est. S.E. P-Value Parameter Est. S.E P-Value

δc(1) −0.057 0.020 0.005 δ(1) −0.031 0.011 0.005

δc(0) −0.081 0.032 0.012 δ(0) −0.044 0.017 0.012

ζc(1) −0.053 0.054 0.324 ζ (1) −0.029 0.029 0.322

ζc(0) −0.077 0.066 0.244 ζ (0) −0.041 0.035 0.242

CACE −0.134 0.069 0.052 ITT −0.072 0.037 0.050

Note. Est.=estimates; S.E.=standard errors; CACE=compliers average causal effect; ITT= intention-to-treat
effect

However, for a valid causal interpretation of the estimates, it is crucial to examine the sensitivity of the
estimates to a violation of the identification assumptions. We require randomization, strong monotonicity,
ER for never takers, and LSI. Randomization is satisfied because job training is assigned randomly. Strong
monotonicity is also guaranteed to be met because program protocol prohibits subjects in the control group
to have access to the job search seminar. However, ER for never takers is controversial. ER might be violated
due to psychological effects. For example, some participants who were assigned to the job training but failed
to attend (never takers) may feel more depressed, which violates ER. Another controversial assumption is
LSI because there could be unobserved confounding between sense of mastery and depression given the
treatment level and pretreatment covariates. Therefore, we conduct sensitivity analyses for ER and LSI.

Sensitivity analysis for ER. In our study, we assume that this psychological effect is unlikely to be large
because never takers did not actually attend the training. Hence, we limit the violation of ER to be at most
half the size of the complier average effect. The sensitivity parameters of ϵm , ϵy1, and ϵy2 were given a value
of one fourth (0.25) or half (0.5) the size of the corresponding complier average effect.

Table 3 shows the adjusted estimates of the mediated ITT effect by varying values of ϵm , ϵy1, and ϵy2.
It appears that the mediated ITT effect for those who are assigned to the treatment (δ(1)) is robust to the
violation of ERwith respect to bothmediator and outcome. For example, themediated ITT effect for thosewho
are assigned to the treatment is still negative and significant when the treatment effect among never takers is
half the size of the corresponding complier average effect for either mediator and outcome model (ϵm = 0.5,
or ϵy1 = ϵy2 = 0.5). In contrast, the mediated ITT effect for those who are assigned to the control (δ(0)) is
relatively vulnerable to the violation of ER with respect to both mediator and outcome. The mediated ITT
effect for those who are assigned to the control is still negative but loses its significance when the treatment
effect among never takers is the one fourth of the size of the complier average effect for either mediator and
outcome model (ϵm = 0.25 or ϵy1 = ϵy2 = 0.25).

Sensitivity analysis for LSI. We next examine whether our conclusion about the mediated ITT effect
changes if there are unmeasured pre-treatment covariates between the mediators and outcome among com-
pliers while assuming other assumptions are satisfied.

Figures 3a and 3b show the sensitivity of the mediated ITT effect estimates under treatment and control
conditions, respectively, to the violation of the LSI while assuming other assumptions are satisfied. These
figures show how the change in ρc affects the mediated ITT effect estimates. The sensitivity parameter ρc
represents the correlation among compliers between the errors obtained from the mediator and outcome
model, and a non-zero value of ρc indicates the existence of unmeasured confounding among compliers in
the mediator and outcome relationship. The bold line in the middle represents the changed mediated ITT
effect estimates depending on the value of ρc, and the solid lines represent the lower and upper values of
95% confidence intervals.
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Table 3: Sensitivity of estimates with the deviation from the ER

ϵY=0× c.e. ϵY=0.25× c.e. ϵY=0.5× c.e.
ϵM δ(1) δ(0) δ(1) δ(0) δ(1) δ(0)

0× c.e. -0.031** -0.044* -0.026** -0.033* -0.025* -0.026

(0.011) (0.017) (0.009) (0.016) (0.010) (0.015)

0.25× c.e. -0.032** -0.031* -0.031** -0.026 -0.030** -0.018

(0.009) (0.014) (0.010) (0.016) (0.010) (0.013)

0.5 × c.e. -0.037** -0.025 -0.037** -0.022 -0.036** -0.014

(0.010) (0.014) (0.011) (0.018) (0.011) (0.013)

Note. 1) Standard errors are in parentheses. 2) c.e.=corresponding complier-average effect.
3) **: p<0.01, and *: p<0.05

As shown in Figure 3a, the mediated ITT effect estimate for those who are assigned to the control will be
close to zero if ρc is -0.4. However, the 95% confidence interval of the effect estimate will cover zero with a
smaller value of ρc, which is -0.3. This value of ρc is equivalent to the amount of confounding that explains the
variances ofmediator and outcome, for example, by 25%and 36%, respectively³. This amount of confounding
can be considered very large given that the strongest covariate (i.e., pre-measured depression) in the existing
model explains the variances of mediator and outcome by 5.8% and 16.8%, respectively.

As shown in Figure 3b, the mediated ITT effect estimate for those who are assigned to the treatment will
be zero if ρc is -0.3. However, the 95% confidence interval of the effect estimate will cover zero if ρc is -0.2,
which is equivalent to the amount of confounding that explains the variances of mediator and outcome, for
example, by 16% and 25%, respectively⁴. This amount of confounding can still be considered very large.

(a)Mediated ITT effect under the control condition (b)Mediated ITT effect under the treatment condition

Figure 3: Sensitivity of the mediated or unmediated portions of ITT effects to the violation of LSI

3 This is because −0.3 = −0.5 × 0.6, and the corresponding R2 = (−0.5)2 = 0.25, and R2 = 0.62 = 0.36, respectively.
4 This is because −0.2 = −0.5 × 0.4, and the corresponding R2 = (−0.5)2 = 0.25, and R2 = 0.42 = 0.16, respectively.



Mediated ITT effects | 145

In summary, the significant mediation effect for those who are treated is robust to a potential violation
of ER and it is robust to a potential violation of LSI while other assumptions are assumed to be satisfied.
However, themediation effect for thosewho are controlledmay lose its significance if the effect of never takers
are as large as one fourth of the corresponding complier-average effect; however, it is robust to a potential
violation of the LSI when other assumptions are met. For these sensitivity analyses, we used Mplus [28].
Annotated Mplus code can be found in the online appendix.

8 Summary and Conclusions
In this article, we proposed a two-stage joint modeling method that combines a mediation analysis with a
mixture analysis to conduct causal mediation analysis in the presence of treatment noncompliance. On the
basis of the mediation analysis, the mediator and outcome models can be specified and estimated. On the
basis of themixture analysis, the compliance-specific parameters canbe specified and estimated, considering
the mixed distributions of compliers and never takers.

One useful feature of the joint modeling method is that it is conducive to conducting sensitivity anal-
yses to the violation of identification assumptions. In this study, we offer a systematic sensitivity analysis
that addresses the two identification assumptions (the ER and LSI), which was not available in the previ-
ous instrumental variables approach. Sensitivity analysis is an important component in any causal inference
framework because many identification assumptions are not verifiable with empirical data. The proposed
sensitivity analysis can be easily used by applied researchers to test their results against violation of these
identification assumptions.

Another useful feature of the joint modeling method is that we can invoke modeling assumptions such
as normality or the existence of strong predictors of compliance that can decrease the sensitivity of violat-
ing some identification assumptions such as the ER. In the context of CACE, including a strong predictor
of compliance can decrease the bias due to violation of the ER and increase precision of the estimates. We
demonstrate in our simulation study that these benefits also apply when estimating the mediated ITT effect.
Normality also plays a role in estimating compliance type more precisely, and the simulation study suggests
that estimating compliance type is more affected by the outcome distribution than the mediator distribution.

However, these benefits come with a cost. From the simulation study, we observe a large variance in
the estimates even when all identification assumptions are met if normality is violated. If normality is vio-
lated, advantages of the proposed jointmodelingmethod disappear. In this case, one should consider using a
propensity scoremethod, suggested by Jo and Stuart [25], Ding and Lu [27], which relies only on pre-treatment
covariates to identify unobserved compliance types and, thus, reduces reliance on particular parametric as-
sumption such as normality.

In this article, we introduced a two-stage joint modeling method to estimate the mediated and unmedi-
ated portion of the ITT effect and demonstrated the benefits of employing this method through simulation
and case studies. A next logical step for future research is to compare relative performance between the pro-
posed jointmodelingmethod and the previous approach using the IVmethod [7, 8]. Unlike the jointmodeling
method, the IVmethod does not requiremodeling assumptions and hence, the identification of themediated
ITT effect relies only on identification assumptions. Comparing relative performancewhenmodeling assump-
tions are met or not met would be an interesting subject for future study.
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9 Appendix A: Identification of δ(z) and ζ (z)
Themediated and unmediated portion of ITT effects are identified on the basis of CACME and CANDE, respec-
tively. Therefore, we first identify the CACME and CANDE. From equations (5), note that parameters in the
second line of equations (5) are identified under randomization because ec1(z) ⊥ Z|X = x holds. The parame-
ters in the third line of equations (5) are identified under randomization and LSI because ec3(z,m) ⊥ Z|X = x
and ec3(z,m) ⊥ M|Z = z′, X = x, P = c. Given these parameters, the CACME is identified as

δc(z) =E[Yi(z,Mi(1)) − Yi(z,Mi(0))|Pi = c]
=E[βc,i + βcz,iz + βcm,i{Mi(1)|Pi = c} + βczm,iz{Mi(1)|Pi = c}
− βc,i − βcz,iz − βcm,i{Mi(0)|Pi = c} − βczm,iz{Mi(0)|Pi = c}],

=E[(βcm,i + βczm,iz){Mi(1) −Mi(0)|Pi = c}]
=E[(βcm,i + βczm,iz)αcz,i]
=(βcm + βczmz)αcz

(A-1)

The first equality is from the definition of CACME. The second equality holds after incorporating the outcome
model (i.e., the third line of equations (5)). The fourth equality holds after incorporating the mediator model
(i.e., second line of equations (5)). The fifth equality holds due to LSI (assumption 2). Specifically, given com-
pliers, Yi(z,m) − Yi(z,m′) = βcm,i + βczm,iz is independent from Mi(z) for any z ∈ {0, 1} as in LSI.

Likewise, the CANDE is identified as

ζc(z) =E[Yi(1,Mi(z)) − Yi(0,Mi(z))|Pi = c]
=E[βc,i + βcz,i + βcm,i{Mi(z)|Pi = c} + βczm,i{Mi(z)|Pi = c} − βc,i − βcm,i{Mi(z)|Pi = c}]
=E[βcz,i + βczm,i{Mi(z)|Pi = c}]
=E[βcz,i + βczm,i(αc,i + αcz,iz)]
=βcz + βczm(αc + αczz).

(A-2)

The first equality is from the definition of CANDE. The second equality holds after incorporating the outcome
model (i.e., third line of equations (5)). The fourth equality holds after incorporating themediatormodel (i.e.,
second line of equations (5)). The fifth equality holds due to LSI (assumption 2). Specifically, given compliers,
Yi(1,m) − Yi(0,m) = βczm,iz is independent from Mi(z) for any z ∈ {0, 1} as in LSI.

Next, we identify the the mediated and unmediated ITT effects on the basis of CACME and CANDE as

δ(z) =δc(z)πc + δn(z)πn = δc(z)πc , and
ζ (z) =ζc(z)πc + ζn(z)πn = ζc(z)πc ,

where δn and ζn are ACME and average natural direct effects among never takers, respectively. The first equal-
ity holds because of strong monotonicity. The second equality holds because of ER for never takers. This
completes the proof.
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10 Appendix B: Sensitivity analysis for ER
Our sensitivity parameters depend on the deviation from the ER as

ϵm =E[M(1) −M(0)|P = n, X = x] and
ϵy1 + ϵy2m =E[Y(1,m) − Y(0,m)|P = n, X = x] for all m ∈ M, and x ∈ X.

This implies that amongnever takers, theparameter for the treatment on themediator is fixed to αnz = ϵm,
and theparameters for the treatment on theoutcomeamongnever takers arefixed to βnz = ϵy1 and βnzm = ϵy2.
Given particular values of ϵm, ϵy1, and ϵy2, we can rewrite linear structural models as

Mi(z) =Ni α̃n,i + Ci α̃c,i + Niϵmz + Ci α̃cz,iz + α̃x,iXi + Nien2,i + Ciec2,i , and
Yi(z,m) =Ni β̃n,i + Ci β̃c,i + Niϵy1z + Ci β̃cz,iz + Ni β̃nm,im + Ci β̃cm,im+

Niϵy2zm + Ci β̃czm,izm + β̃x,iXi + Nien3,i + Ciec3,i ,
(A-3)

where α̃p,i , β̃p,i , β̃pm,i, and β̃x,i for p ∈ {c, n} are obtained from the maximized complete-data likelihood
given particular values of ϵm , ϵy1, and ϵy2. We define α̃p ≡ E(α̃p,i), α̃pz ≡ E(α̃pz,i), α̃x ≡ E(α̃x,i), β̃p ≡
E(β̃p,i), β̃pz ≡ E(β̃pz,i), β̃pzm ≡ E(β̃pzm,i), and β̃x ≡ E(β̃x,i) for p ∈ {c, n}.

Based on equations (A-3), the ACME among never takers given particular values of ϵm, ϵy1, and ϵy2 (δϵn(z))
is identified as

δϵn(z) =E[Yi(z,Mi(1)) − Yi(z,Mi(0))|Pi = n]
=E[β̃n,i + ϵy1z + β̃nm,i{Mi(1)|Pi = n} + ϵy2z{Mi(1)|Pi = n}
− β̃n,i − ϵy1z − β̃nm,i{Mi(0)|Pi = n} − ϵy2z{Mi(0)|Pi = n}],

=E[(β̃nm,i + ϵy2z){Mi(1) −Mi(0)|Pi = c}]
=E[(β̃nm,i + ϵy2z)ϵm]
=(β̃nm + ϵy2z)ϵm .

(A-4)

The first equality is due to the definition of ACME among never takers. The second equality holds after in-
corporating the second line of equations (A-3). The fourth equality holds after incorporating the first line of
equations (A-3). The fifth equality holds because ϵm is constant. In the same way, the ANDE among never
takers (ζ ϵn (z)) is identified as ϵy1 + ϵy2(α̃n + ϵmz).

Given equations (A-3), we can also obtain CACME and CANDE. Under LSI, δϵc(z) = α̃cz × (β̃cm + β̃czmz), as
in equations (A-1), and ζ ϵc (z) = β̃cz + β̃czm(α̃c + α̃czz), as in equations (A-2).

Based on δϵc(z), δϵn(z), ζ ϵc (z), and ζ ϵn (z), the mediated and unmediated ITT effects are identified, respec-
tively, as

δ(z) = π̃cδϵc(z) + π̃nδϵn(z) =π̃c{α̃cz × (β̃cm + β̃czmz)} + π̃n{ϵm × (β̃nm + ϵy2z)}, and
ζ (z) = π̃cζ ϵc (z) + π̃nζ ϵn (z) =π̃c{β̃cz + β̃czm(α̃c + α̃czz)} + π̃n{ϵy1 + ϵy2(α̃n + ϵmz))},

(A-5)

where π̃c , π̃n , α̃n , α̃cz , β̃cz , β̃cm , β̃nm, and β̃czm are obtained from the maximized complete-data likelihood
given particular values of ϵm , ϵy1, and ϵy2. The first equality is due to strongmonotonicity. The second equal-
ity is due to incorporating results for δϵp(z) and ζ ϵp (z) for p ∈ {c, n}. This completes the proof.
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11 Appendix C: Sensitivity analysis for LSI
For this proof,we follow Imai et al. [1]’swork.Weassumedhomogeneous effects as in Imai et al. [1] but expand
their work by conditioning on pseudo-population of compliers. We omit pre-treatment confounding in equa-
tion (5) for simplicity, but the result remains the same even with covariates. Under randomization (assump-
tion 1), we can consistently estimate 𝛾c , 𝛾cz , αc, and αcz as well as a variance measure for each error term σc1
and σc2, and the correlation between the errors ρ̃c1 = cor(ec1,i , ec2,i|Zi = 1) and ρ̃c0 = cor(ec1,i , ec2,i|Zi = 0).
We assume that σc1, σc2 are constant between Z = 1 and Z = 0.

Using equations (5), Yi(0,Mi(0)) among pseudo-population of compliers can be expressed as

Yi(0,Mi(0)) =βc + βcmMi(0) + ec3,i
=βc + βcm(αc + ec2,i) + ec3,i
=βc + βcmαc + ec3,i + βcmec2,i .

(A-6)

By comparing this result with Yi(0) = 𝛾c + ec1,i (using the first line of equations (5)), we know that ec1i =
ec3i + βcmec2i under Z = 0. Let ρc be the correlation among the pseudo-population of compliers between the
error terms obtained from the mediator and outcome models (the second and third lines of equations (5)).
Given a value of ρc, we have ρ̃c0σc1σc2 = ρcσc3σc2 + βcmσ22 and σ2c1 = σ2c3 + β2cmσ2c2 + 2βcmρcσc3σc2. Now
assume that ρc ≠ 0, which indicates the violation of LSI. Then, solving these equations with respect to the
value of βcm, we have

βcm =

⎧⎨⎩σc1σc2
⎛⎝ρ̃c0 − ρc

√︃
1 − ρ̃2c0
1 − ρ2c

⎞⎠⎫⎬⎭ . (A-7)

Likewise, Y(1,M(1)) among the pseudo-population of compliers can be expressed as

Y(1,M(1)) =βc + βcz + βcmM(1) + βczmM(1) + ec3,i
=βc + βcz + (βcm + βczm)M(1) + ec3,i
=βc + βcz + (βcm + βczm)(αc + αcz + ec2,i) + ec3,i
=βc + βcz + (βcm + βczm)(αc + αcz) + ec3,i + (βcm + βczm)ec2,i .

(A-8)

When comparing this result with Y(1) = 𝛾c + 𝛾cz + ec1,i (using the first line of equations (5)), we know that
ec1,i = ec3,i+(βcm+βczm)ec2,i under Z = 1. Given a value of ρc, we have ρ̃c1σc1σc2 = ρcσc3σc2+(βcm+βczm)σ2c2
and σ2c1 = σ2c3 + (βcm + βczm)2σ2c2 + 2(βcm + βczm)ρcσc3σc2. Then solving these equations with respect to the
value of βcm + βczm, we have

βcm + βczm =

⎧⎨⎩σc1σc2
⎛⎝ρ̃c1 − ρc

√︃
1 − ρ̃2c1
1 − ρ2c

⎞⎠⎫⎬⎭ . (A-9)

Therefore, given a particular value of ρc, the CACME and CANDE are identified as

δc(z) =αcz

{︃
σc1
σc2

(︃
ρ̃cz − ρc

√︃
1 − ρ̃2cz
1 − ρ2c

)︃}︃
, and

ζc(z′) =CACE − δc(z),

(A-10)

where z′ = 1 − z for z ∈ {0, 1}. Under assumptions 2 and 3, the mediated and unmediated ITT effects are
estimated by multiplying the proportion of compliers to the CACME and CANDE estimate respectively, as
δ(z) = δc(z) × πc = πcαcz

{︁
σc1
σc2

(︁
ρ̃cz − ρc

√︁
1−ρ̃2cz
1−ρ2c

)︁}︁
and ζ (z′) = ζc(z) × πc = ITT − δ(z). This completes the

proof.
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