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Abstract: Within the field of causal inference, it is desirable to learn the structure of causal relationships
holding between a system of variables from the correlations that these variables exhibit; a sub-problem of
which is to certify whether or not a given causal hypothesis is compatible with the observed correlations. A
particularly challenging setting for assessing causal compatibility is in the presence of partial information;
i.e. when some of the variables are hidden/latent. This paper introduces the possible worlds framework as a
method for deciding causal compatibility in this difficult setting. We define a graphical object called a possible
worlds diagram, which compactly depicts the set of all possible observations. From this construction, we
demonstrate explicitly, using several examples, how to prove causal incompatibility. In fact, we use these
constructions to prove causal incompatibility where no other techniques have been able to. Moreover, we
prove that the possible worlds framework can be adapted to provide a complete solution to the possibilistic
causal compatibility problem. Even more, we also discuss how to exploit graphical symmetries and cross-
world consistency constraints in order to implement a hierarchy of necessary compatibility tests that we prove
converges to sufficiency.

Keywords: causal inference, causal compatibility, quantum non-classicality

1 Introduction

A theory of causation specifies the effects of actions with absolute necessity. On the other hand, a probabilis-
tic theory encodes degrees of belief and makes predictions based on limited information. A common fallacy
is to interpret correlation as causation; opening an umbrella has never caused it to rain, although the two
are strongly correlated. Numerous paradoxical and catastrophic consequences are unavoidable when prob-
abilistic theories and theories of causation are confused. Nonetheless, Reichenbach’s principle asserts that
correlations must admit causal explanation; after all, the fear of getting wet causes one to open an umbrella.

In recent decades, a concerted effort has been put into developing a formal theory for probabilistic cau-
sation [43, 53]. Integral to this formalism is the concept of a causal structure. A causal structure is a directed
acyclic graph, or DAG, which encodes hypotheses about the causal relationships among a set of random
variables. A causal model is a causal structure when equipped with an explicit description of the parame-
ters which govern the causal relationships. Given a multivariate probability distribution for a set of variables
and a proposed causal structure, the causal compatibility problem aims to determine the existence or non-
existence of a causal model for the given causal structure which can explain the correlations exhibited by the
variables. More generally, the objective of causal discovery is to enumerate all causal structure(s) compati-
ble with an observed distribution. Perhaps unsurprisingly, causal inference has applications in a variety of
academic disciplines including economics, risk analysis, epidemiology, bioinformatics, and machine learn-
ing [29, 42, 43, 48, 62].
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For physicists, a consideration of causal influence is commonplace; the theory of special/general rela-
tivity strictly prohibits causal influences between space-like separated regions of space-time [57]. Famously,
in response to Einstein, Podolsky, and Rosen’s [19] critique on the completeness of quantum theory, Bell [7]
derived an observational constraint, known as Bell’s inequality, which must be satisfied by all hidden vari-
able models which respect the causal hypothesis of relativity. Moreover, Bell demonstrated the existence of
quantum-realizable correlations which violate Bell’s inequality [7]. Recently, it has been appreciated that
Bell’s theorem can be understood as an instance of causal inference [61]. Contemporary quantum founda-
tions maintains two closely related causal inference research programs. The first is to develop a theory of
quantum causal models in order to facilitate a causal description of quantum theory and to better under-
stand the limitations of quantum resources [3, 6, 13, 17, 25, 30, 36, 38, 44, 47, 60]. The second is the con-
tinued study of classical causal inference with the purpose of distinguishing genuinely quantum behaviors
from those which admit classical explanations [1, 2, 11, 23-25, 50, 58, 60]. In particular, the results of [30]
suggest that causal structures which support quantum non-classicality are uncommon and typically large in
size; therefore, systematically finding new examples of such causal structures will require the development
of new algorithmic strategies. As a consequence, quantum foundations research has relied upon, and con-
tributed to, the techniques and tools used within the field of causal inference [13, 30, 50, 60]. The results of
this paper are concerned exclusively with the latter research program of classical causal inference, but does
not rule out the possibility of a generalization to quantum causal inference.

When all variables in a probabilistic system are observed, checking the compatibility status between a
joint distribution and a causal structure is relatively easy; compatibility holds if and only if all conditional
independence constraints implied by graphical d-separation relations hold [39, 43]. Unfortunately, in more
realistic situations there are ethical, economic, or fundamental barriers preventing access to certain statis-
tically relevant variables, and it becomes necessary to hypothesize the existence of latent/hidden variables
in order to adequately explain the correlations expressed by the visible/observed variables [21, 43, 60]. In the
presence of latent variables, and in the absence of interventional data, the causal compatibility problem, and
by extension the subject of causal inference as a whole, becomes considerably more difficult.

In order to overcome these difficulties, numerous simplifications have be invoked by various authors in
order to make partial progress. A particularly popular simplification strategy has been to consider alternative
classes of graphical causal models which can act as surrogates for DAG causal models; e.g. MC-graphs [34],
summary graphs [59], or maximal ancestral graphs (MAGs) [46, 63]. While these approaches are certainly
attractive from a practical perspective (efficient algorithms such as FCI [53] or RFCI [16] exist for assessing
causal compatibility with MAGs, for instance), they nevertheless fail to fully capture all constraints implied
by DAG causal models with latent variables [22].! The forthcoming formalism is concerned with assessing the
causal compatibility of DAG causal structures directly, therefore avoiding these shortcomings.

Nevertheless, when considering DAG causal structures directly (henceforth just causal structures), mak-
ing assumptions about the nature of the latent variables and the parameters which govern them can sim-
plify the problem [28, 54, 56]. For instance, when the latent variables are assumed to have a known and
finite cardinality?, it becomes possible to articulate the causal compatibility problem as a finite system of
polynomial equality and inequality equations with a finite list of unknowns for which non-linear quanti-
fier elimination methods, such as Cylindrical Algebraic Decomposition [31], can provide a complete solution.
Unfortunately, these techniques are only computationally tractable in the simplest of situations. Other tech-
niques from algebraic geometry have been used in simple scenarios to approach the causal compatibility
problem as well [27, 28, 35]. When no assumptions about the nature of the latent variables are made, there
are a plethora of methods for deriving novel equality [21, 45] and inequality [2, 4, 8, 11, 20, 23, 26, 30, 55, 58, 60]
constraints that must be satisfied by any compatible distribution. The majority of these methods are unsat-

1 For concrete and relevant example of this weakness, note that there are observable distributions incompatible with the DAG
causal structure in Figure 11 (which admits of no observable d-separation relations), whereas its associated MAG is compatible
with all observed distributions. An analogous statement happens to be true of the DAG causal structure in Figure 13.

2 The cardinality of a random variable is the size of its sample space.
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isfactory on the basis that the derived constraints are necessary, but not sufficient. A notable exception is
the Inflation Technique [60], which produces a hierarchy of linear programs (solvable using efficient algo-
rithms [9, 18, 32, 33, 51]) which are necessary and sufficient [37] for determining compatibility.

In contrast with the aforementioned algebraic techniques, the purpose of this paper is to present the
possible worlds framework, which offers a combinatorial solution to the causal compatibility problem in the
presence of latent variables. Importantly, this framework can only be applied when the cardinalities of the
visible variables are known to be finite.? This framework is inspired by the twin networks of Pearl [43], parallel
worlds of Shpitser [52], and by some original drafts of the Inflation Technique paper [60]. The possible worlds
framework accomplishes three things. First, we prove its conceptual advantages by revealing that a number
of disparate instances of causal incompatibility become unified under the same premise. Second, we provide
a closed-form algorithm for completely solving the possibilistic causal compatibility problem. To demonstrate
the utility of this method, we provide a solution to an unsolved problem originally reported [22]. Third, we
show that the possible worlds framework provides a hierarchy of tests, much like the Inflation Technique,
which solves completely the probabilistic causal compatibility problem.

Unfortunately, the computational complexity of the proposed probabilistic solution is prohibitively large
in many practical situations. Therefore, the contributions of this work are primarily conceptual. Nevertheless,
it is possible that these complexity issues are intrinsic to the problem being considered. Notably, the hierar-
chy of tests presented here has an asymptotic rate of convergence commensurate to the only other complete
solution to the probabilistic compatibility problem, namely the hierarchy of tests provided in [37]. Moreover,
unlike the Inflation Technique, if a distribution is compatible with a causal structure, then the hierarchy of
tests provided here has the advantage of returning a causal model which generates that distribution.

This paper is organized as follows: Section 2 begins with a review of the mathematical formalism behind
causal modeling, including a formal definition of the causal compatibility problem, and also introduces the
notations to be used throughout the paper. Afterwards, Section 3 introduces the possible worlds framework
and defines its central object of study: a possible worlds diagram. Section 4 applies the possible worlds frame-
work to prove possibilistic incompatibility between several distributions and corresponding causal struc-
tures, culminating in an algorithm for exactly solving the possibilistic causal compatibility problem. Finally,
Section 5 establishes a hierarchy of tests which completely solve the probabilistic causal compatibility prob-
lem. Moreover, Section 5.1 articulates how to utilize internal symmetries in order to alleviate the aforemen-
tioned computational complexity issues. Section 6 concludes.

Appendix A summarizes relevant results from [22] needed in Section 2. Appendix B generalizes the results
of [50], placing new upper bounds on the maximum cardinality of the latent variables, required for Sections 2
and 5.

2 A Review of Causal Modeling

This review section is segmented into three portions. First, Section 2.1 defines directed graphs and their prop-
erties. Second, Section 2.2 introduces the notation and terminology regarding probability distributions to be
used throughout the remainder of this article. Finally, Section 2.3 defines the notion of a causal model and
formally introduces the causal compatibility problem.

2.1 Directed Graphs

Definition 1. A directed graph § is an ordered pair § = (Q, &) where Q is a finite set of vertices and € is a set
edges, i.e. ordered pairs of vertices € C Q x Q. If (¢, u) € € is an edge, denoted as g — u, then u is a child

3 Regarding the latent variables, Appendix B.2 demonstrates that the latent variables can be assumed to have finite cardinality
without loss of generality whenever the visible variables have finite cardinality.
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of g and q is a parent of u. A directed path of length k is a sequence of vertices q;y — q@) — **+ = 4y
connected by directed edges. For a given vertex g, pag(q) denotes its parents and chg(q) its children. If there
is a directed path from g to u then q is an ancestor of u and u is a descendant of g; the set of all ancestors
of g is denoted ang(g) and the set of all descendants is denoted desg(q). The definition for parents, children,
ancestors and descendants of a single vertex g are applied disjunctively to sets of vertices Q C Q:

chg(Q) = U chg(q), pag(Q) = U pag(q), M
geqQ qeqQ

ang(Q) = U ang(q), desg(Q) = U desg(q). 2
qeqQ qeqQ

A directed graph is acyclic if there is no directed path of length k > 1 from g back to g for any g € Q and
cyclic otherwise. For example, Figure 1 depicts the difference between cyclic and acyclic directed graphs.

Definition 2. The subgraph of § = (Q, &) induced by W C Q, denoted subg (W), is given by,
subg(W) = (W, En (W xW)), 3)

i.e. the graph obtained by taking all edges from & which connect members of W.

(a) A directed cyclic graph. (b) A directed acyclic graph.

Figure 1: The difference between a directed cyclic graph and a directed acyclic graph.

2.2 Probability Theory

Definition 3 (Probability Theory). A probability space is a triple (Q, =, P) where the state space Q is the set
of all possible outcomes, = C 292 is the set of events forming a g-algebra over Q, and P is a g-additive function
from events to probabilities such that P(Q) = 1.

Definition 4 (Probability Notation). For a collection of random variables X5 = {Xy, X3, ..., X;} indexed by
ieJ={1,2,...,k}whereeach X; takes values from Q;, a joint distribution P = Py, _ assigns probabilities
to outcomes from Qg = J];.; Q;. The event that each X; takes value x;, referred to as a valuation of X;*, is
denoted as,

Pj(Xj) = PlZ...k (X1X2 . .Xk) =P (X1 = X1, Xz =X2y .0 'Xk = Xk) . (4)
A point distribution P4(y4) = 1 for a particular event y; € Q4 is expressed using square brackets,

Py(yg) = 1 & Py(xg) = [ysl(xg) = 6(yy, x9) = H 6(yi, xi). (5)
ied

4 Avaluation is a particular type of event in £ where the random variables take on definite values.
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The set of all probability distributions over Q5 is denoted as IP5. Let k; denote the cardinality or size of Q;. If
X; is discrete, then k; = |Q;|, otherwise X; is continuous and k; = oo.

2.3 Causal Models and Causal Compatibility

A causal model represents a complete description of the causal mechanisms underlying a probabilistic pro-
cess. Formally, a causal model is a pair of objects (G, P), which will be defined in turn. First, G is a directed
acyclic graph (Q, &), whose vertices g € Q represent random variables Xo = {Xq | ¢ € Q}. The purpose
of a causal structure is to graphically encode the causal relationships between the variables. Explicitly, if
g — u € € is an edge of the causal structure, X is said to have causal influence on X,°. Consequently, the
causal structure predicts that given complete knowledge of a valuation of the parental variables Xpag(u) =
{Xq | g e pag(u)}, the random variable X, should become independent of its non-descendantsé [43]. With
this observation as motivation, the causal parameters P of a causal model are a family of conditional prob-
ability distributions Pgipag (@) for each g € Q. In the case that g has no parents in G, the distribution is simply
unconditioned. The purpose of the causal parameters are to predict a joint distribution Po over the configu-
rations Q¢ of a causal structure,

VX0 € Qa,  Palxa) = [ Pgpag@®alpag@)- 6)
qeQ

If the hypotheses encoded within a causal structure G are correct, then the observed distribution over Qg
should factorize according to Equation 6. Unfortunately, as discussed in Section 1, there are often ethical,
economic, or fundamental obstacles preventing access to all variables of a system. In such cases, it is cus-
tomary to partition the vertices of causal structure into two disjoint sets; the visible (observed) vertices V,
and the latent (unobserved) vertices £ (for example, see Figure 2). Additionally, we denote visible parents
of any vertex g € VU L as vpag(q) = VN pag(g) and analogously for the latent parents 1pag(g) = £ Npag(q).

Figure 2: The causal structure G, in this figure encodes a causal hypothesis about the causal relationships between the visible
variables V = {v1,v2, v3, v4, vs} and the latent variables £ = {¢1, £, ¢3}; e.g. v, experiences a direct causal influence from
each of its parents, both visible vpag, (v2) = {v1, v4} and latent 1pag, (v2) = {{1, {2 }. Throughout this paper, visible variables
and edges connecting them are colored blue whereas all latent variables and all other edges are colored red.

In the presence of latent variables, Equation 6 stills makes a prediction about the joint distribution
Pyus (xv, Ag)? over the visible and latent variables, albeit an experimenter attempting to verify or discredit

5 It is seldom necessary to make the distinction between the random variable X4 and the index/vertex g; this paper henceforth
treats them as synonymous.

6 This is known as the local Markov property.

7 This paper adopts the notational convenient of using A, € Q, for valuations of latent variables ¢ € £ to differentiate them from
valuations x, € Q, of observed variablesv € V.
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a causal hypothesis only has access to the marginal distribution Py (xy). If Q is continuous,

Vxy € Qv, Py(xy) = / dPyyc(xv, Ag) @)
A€
If Q is discrete,
Vxy € Oy, Py(xy) = > Pyuclxy, Ag). (8)
Az €Q

A natural question arises; in the absence of information about the latent variables £, how can one determine
whether or not their causal hypotheses are correct? The principle purpose of this paper is to provide the reader
with methods for answering this question.

In general, other than being a directed acyclic graph, there are no restrictions placed on a causal struc-
ture with latent variables. Nonetheless, [22] demonstrates that every causal structure G can be converted into
a standard form that is observationally equivalent to G where the latent variables are exogenous (have no
parents) and whose children sets are isomorphic to the facets of a simplicial complex over V8. Appendix A
summarizes the relevant results from [22] necessary for making this claim. Additionally, Appendix B demon-
strates that any finite distribution Py, which satisfies the causal hypotheses (i.e. Equation 7) can be generated
using deterministic causal parameters for the visible variables and moreover, the cardinalities of the latent
variables can be assumed finite®. Altogether, Appendices A and B suggest that without loss of generality, we
can simplify the causal compatibility problem as follows:

Definition 5 (Functional Causal Model). A (finite) functional causal model for a causal structure § =
(VU L, &)isatriple (9, Fy, P,) where

9jv={fv:9pas(v)—>0vlve'\7} (9)
are deterministic functions for the visible variables V in G, and
?L={PZZQZ%[O,1]|A€EL} (10)

are finite probability distributions for the latent variables £ in G. A functional causal model defines a proba-
bility distribution Py, : Qy — [0, 1],

Vxy € Qy, Pylv) = [T D Pead) ] 800, frlspa, s Arpag )- (11)

LeL A€y veLl

Definition 6 (The Causal Compatibility Problem). Given a causal structure § = (VU £, &) and a distribution
Py over the visible variables V, the causal compatibility problem is to determine if there exists a functional
causal model (S, Fy, P ) (defined in Definition 5) such that Equation 11 reproduces Pv. If such a functional
causal model exists, then Py is said to be compatible with G; otherwise Py, is incompatible with G. The set
of all compatible distributions on V for a causal structure § is denoted My, (9).

3 The Possible Worlds Framework

Consider the causal structure in Figure 3a denoted G3,. For the sake of concreteness, suppose one is promised
the latent variables are sampled from a binary sample space, i.e. ky = ky = 2. Let z;, = P»(0,) and z, = P,(0y).

8 Appendix A.1 briefly discusses what it means for two causal structures to be observationally equivalent.
9 We prove this result in Appendix B by generalizing the proof techniques used in [50].
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The causal hypothesis G3, predicts (via Equation 11) that observable events (xq, X5, Xc) € Qq x Q) x Q¢ will
be distributed according to,

Pabe = Zuzvlobsgpc(040v)] + zu(1 - zv)[obs (04 10)]+

(12)
+(1- Zy)Zv[ObSabc(lyOV)] +(1- Z}x)(l - Zv)[ObSabc(ly 1)1,

where obs gp(ApAv) € QaxQy,xQ is shorthand for the observed event generated by the autonomous functions
fas fp, fc for each (Ay, Ay) € Qy x Qy. In the case of 34,

ObSabc(AyAv) = (fa (/\}1), fb(fa(}ly), Av), fC(fb(fa(Ay); ), Av)). (13)

For each distinct realization (Ay, Av) € Qu x Qv of the latent variables, one can consider a possible world
wherein the values Ay, Ay are not sampled according to the respective distributions P, Py, but instead take
on definite values. From the perspective of counterfactual reasoning, each world is modelling a distinct coun-
terfactual assignment of the latent variables, but not the visible variables.!® In this particular example, there
are ky x ky = 2 x 2 = 4 distinct, possible worlds. Figure 3b represents, and uniquely colors, these possible
worlds. Note that the definite valuations of the latent variables in Figure 3b are depicted using squares''.
Critically, regardless of the deterministic functional relationships fa, f3, fc, there are identifiable consistency
constraints that must hold between these worlds. For example, a is determined by a function fq : Qy — Qq
and thus the observed value for a in the yellow (0,,0,)-world must be exactly the same as the observed value
for a in the green (0, 1,)-world. This cross-world consistency constraint is illustrated in Figure 3c by embed-
ding each possible world into a larger diagram with overlapping A, — a subgraphs. It is important to remark
that not all cross-world consistency constraints are captured by this diagram; the value of b in the yellow
(040v)-world must match the value of b in the orange (1,0,)-world if the value of a in both possible worlds is
the same.

For comparison, in the original causal structure Gs,, the vertices represented random variables sampled
from distributions associated with causal parameters; whereas in the possible worlds diagram of Figure 3c,
every valuation, including the latent valuations are predetermined by the functional dependences f, f, fc.
For example, Figure 3d populates Figure 3c with the observable events generated by the following functional
dependences,

fa(oy) = 0q fa(ly) = 1gq,
fb(OtJOV) = 3b fb(oalv) = 1b fb(laov) = 2b fb(lalv) = Ob’ (14)
fc(3b0u0v) = Oc fc(lboylv) = 1c fc(zblyov) = 2c fc(obly 1v) = 36-

The utility of Figure 3d is in its simultaneous accounts of Equation 14, the causal structure G3, and the
cross-world consistency constraints that §3, induces. Nonetheless, Figure 3d fails to specify the probabilities
zy, zv associated with the latent events. In Section 4, we utilize diagrams analogous to Figure 3d to tackle
the causal compatibility problem. Before doing so, this paper needs to formally define the possible worlds
framework.

Definition 7 (The Possible Worlds Framework). Let § = (VU £, &), be a causal structure with visible vari-
ables V and latent variables £. Let &, be a set of functional parameters for V defined exactly as in Equation 9.
The possible worlds diagram for the pair (G, Fv) is a directed acyclic graph D satisfying the following prop-
erties:

1. (Valuation Vertices) Each vertex in D consists of three pieces (consult Figure 4 for clarity):

10 It is conceivable that this framework, and its associated diagrammatic notation, could be extended to accommodate counter-
factual assignments to the visible variables as well. Such an extension could be useful for assessing compatibility with interven-
tional data, in addition to the purely observational data being considered here.

11 This diagrammatic convention is imminently explained in more depth by Definition 7 and associated Figure 4.
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(a) asubscript g € VUL corresponding to a vertex in G (indicated inside a small circle in the bottom-
right corner),

(b) an integer w corresponding to a possible valuation/outcome wq of g where wy € {04, 14, ...} =
Qg (indicated inside the square of each vertex),

(c) and a decoration in the form of colored outlines!? indicating which worlds (defined below) the
vertex is a member of'3.

(a) An example causal
structure Gs4.

(c) Identifying consistency constraints among (d) Populating a possible worlds diagram
possible worlds for G3,. with the deterministic functions fg, f},, fc in
Equation 14.

Figure 3: A causal structure G3, and the creation of the possible worlds diagram when ky, = ky, = 2.

colors indicate world membership

valuation w, € €,

original variable v € V

Figure 4: A vertex of a possible worlds diagram dissected.

12 The order of the colored outlines is arbitrary.
13 Every valuation vertex belongs to at least one world.
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2. (Ancestral Isomorphism)* For every valuation vertex wq in D, the ancestral subgraph of wq in D is
isomorphic to the ancestral subgraph of g in § under the map wgq > q.

subp (anp (wgq)) ~ subg(ang(q)) (15)

3. (Consistency) Each valuation vertex x, of a visible variable v € V is consistent with the output of the
functional parameter f, € ¥, when applied to the valuation vertices pa, (xv),

Xy = fv(PaD(Xv)) (16)

4. (Uniqueness) For each latent variable ¢ € £, and for every valuation A, € Q, there exists a unique
valuation vertex in D corresponding to A,. Unlike latent valuation vertices, the valuations of visible
variables x, € Q, may be repeated (or absent) from D depending on the form of Fv. In such cases,
duplicated x,’s are always uniquely distinguished by world membership (colored outline).

5. (Worlds) A world is a subgraph of D that is isomorphic to § under the map wq — g. Let wor(d;) C D
denote the world containing the valuation 1, € Q,%. Furthermore, for any subset V C 'V of visible
variables, let obsy(A;) € Qy denote the observed event supported by wor(A.).

6. (Completeness) For every valuation of the latent variables A, € Q, there exists a subgraph corre-
sponding to wor(A;).16

It is important to remark that although a possible worlds diagram D can be constructed from the pair (G, Fy),
the two mathematical objects are not equivalent; the functional parameters ¥, can contain superfluous in-
formation that never appears in D. We return to this subtle but crucial observation in Section 5.1.

The essential purpose of the possible worlds construction is as a diagrammatic tool for calculating the
observational predictions of a functional causal model. Lemma 1 captures this essence.

Lemma 1. Given a functional causal model (5= (VU L, &), Fy, P) (see Definition 5), let D be the possible
worlds diagram for (G, Fv ). The causal compatibility criterion (Equation 11) for G is equivalent to a probabilistic
sum over worlds in D:

Py= Y ][I PAlobsy@L)l. (17)

A €Qp LeL

The remainder of this paper explores the consequences of adopting the possible worlds framework as a
method for tackling the causal compatibility problem.

4 A Complete Possibilistic Solution

Section 3 introduced the possible worlds framework as a technique for calculating the observable predictions
of a functional causal model by means of Lemma 1. In this section, we use the possible worlds framework to
develop a combinatorial algorithm for completely solving the possibilistic causal compatibility problem.

Definition 8. Given a probability distribution Py, : Qy — [0, 1], its support o(Py) is defined as the subset
of events which are possible,

O'(Pv) = {XV S QV | Pv(Xv) > O} . (18)

14 Readers who are familiar with the Inflation technique [60] will recognize this ancestral isomorphism property from the defini-
tion of an Inflation of a causal structure. The critical difference between a possible worlds diagram and an Inflation is that vertices
in the former represent valuations of variables whereas vertices in the latter represent independent copies of the variables.

15 The uniqueness property guarantees that each world wor(A ;) is uniquely determined by A .

16 Sometimes it is useful to construct an incomplete possible worlds diagram; for example, Figure 10.
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An observed distribution Py, is said to be possibilistically compatible with G if there exists a functional causal
model (G, Fy, P) for which Equation 11 produces a distribution with the same support as P. The possi-
bilistic variant of the causal compatibility problem is naturally related to the probabilistic causal compati-
bility problem defined in Definition 6; if a distribution is possibilistically incompatible with G, then it is also
probabilistically incompatible. We now proceed to apply the possible worlds framework to prove possibilistic
incompatibility between a number of distribution/causal structure pairs.

4.1 A Simple Example Causal Structure

Consider the causal structure Gs depicted in Figure 5. For G5, the causal compatibility criteria (Equation 11)
takes the form,

Papc(XaXpxc) = Z Z P}.l(/ly)Pv(Av)(s(Xa,fa(/ly))s(xb»fb(/lyy/lv))ﬁ(xc,fc(/lv))- (19)

MEQ L eEQ,
The following family of distributions for arbitrary x;, y, € Qp,

PO = Z[0axp1c] + (1 - 2)[1ayp0c), 0<z<1, (20)

are incompatible with Gs. Traditionally, distributions like Pgboc) are proven incompatible on the basis that they
violate an independence constraint that is implied by G5 [43], namely,

VPabe € M(G5), Pac(XaXc) = Pa(xa)Pc(xc). (21)

Intuitively, G5 provides no latent mechanism by which a and ¢ can attempt to correlate (or anti-correlate). We
now prove the possibilistic incompatibility of the support o(PfbeC)) with G5 using the possible worlds frame-

work.

Proof. Proof by contradiction; assume that a functional causal model Fy, = {fq, fp, fc} for G5 exists such that
Equation 19 produces Pilzboc). Since there are two distinct valuations of the joint variables abc in PEIZOC), namely
Oaxplc and 14y,0c, consider each as being sampled from two possible worlds. Without loss of generality??,
let 0,0y € Q) x Qy denote any valuation of the latent variables such that obs,;,.(0,0y) = OqX}1c. Similarly,
let 141y € Qy x Qy denote any valuation of the latent variables such that obsgpc(1u1v) = 1ay}0c. Using these
observations, initialize a possible worlds diagram using wor(0,0v), colored green, and wor(lulv), colored
violet, as seen in Figure 6a. In order to complete Figure 6a, one simply needs to specify the behavior of b
in two of the “off-diagonal” worlds, namely wor(0,1v), colored orange, and wor(1,0y), colored yellow (see
Figure 6b). Regardless of this choice, the observed event obsac(0,1v) = 040¢ in the orange world wor(0,1v)
predicts Pqc(040¢) > 08 which contradicts PEIZbOC). Therefore, because the proof technique did not rely on the
value of 0 < z < 1, P2% is possibilistically incompatible with Gs. O

Figure 5: A causal structure G5 with three visible vertices V = {a, b, c} and two latent vertices £ = {u, v}.

17 Thereisnoloss of generality in choosing 0,0, and 1,1, (instead of 05,1, and 1 HOV) as the valuations for the worlds because the
valuation “labels” associated with latent events are arbitrary. The valuations can not be 0,1, and 1, 1, because of the cross-world
consistency constraint obs¢(0,1y) = obsc(1,1y) = fe(1v).

18 The probabilities associated to each world by Lemma 1 can always be assumed positive, because otherwise, those valuations
would be excluded from the latent sample space Q.
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(a) An incomplete possible worlds diagram (b) Considering possible worlds produces a

for G5 initialized by szzboc). The worlds are contradiction with szzboc)_ The additional worlds

colored: wor(0,0y) green, wor(1,1,) violet. are colored: wor(O! 1,) orange, wor(1,0y)
yellow.

Figure 6: The possible worlds diagram for G5 (Figure 5) is incompatible with pQ20) (Equation 20).

abc

4.2 The Instrumental Structure

The causal structure G, depicted in Figure 7 is known as the Instrumental Scenario [8, 40, 41]. For G7, Equa-
tion 11 takes the form,

Pabe (aXpxe) = > > Pup)Pv(A)8(xa, fa(hu))B(xp, fiy(a, A)B(xe, felb, Av)). (22)

AEQU A EQ,
The following family of distributions,

P2~ 2[0a0,0c] + (1 - 2)[1a0p1c], 0<z< 1, @3)

abc

are possibilistically incompatible with G;. The Instrumental scenario G; is different from Gs in that there
are no observable conditional independence constraints which can prove the possibilistic incompatibility of
Pffb3c). Instead, the possibilistic incompatibility of PEIZ;C) is traditionally witnessed by an Instrumental inequality
originally derived in [41],

VPabC S M(97), Pbc\a(0b0C|00) + Pbcla(0b10|1a) < 1. (24)

(23)

Independently of Equation 24, we now prove possibilistic incompatibility of P,;, -

worlds framework.

with G7 using the possible

Proof. Proof by contradiction; assume that a functional model vy = {fq, f}, fc} for G; exists such that Equa-

tion 22 produces PEZZ;C) (Equation 23). Analogously to the proof in Section 4.1, there are only two distinct

valuations of the joint variables abc, namely 0,0,0, and 1,0,1.. Therefore, define two worlds one where
0bsgpc(0x0v) = 04050 and another where obsgpc(1u1v) = 1405 1¢. Using these two worlds, a possible worlds

Figure 7: The Instrumental Scenario.
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(a) Worlds wor(0,0v), and wor(1,1,) are initial- (b) Populating the events in wor(0,1,) and
ized by the observed events in Equation 23. wor(luov) leads to a contradiction with Equa-
tion 23.

Figure 8: A possible worlds diagram for G7 (Figure 7). The worlds are colored: wor(0,0y) yellow, wor(1,1,) orange, wor(1,0y,)
violet, wor(0,1,) green.

diagram can be initialized as in Figure 8a where wor(0,0y) is colored yellow and wor(1,1,) is colored orange.
In order to complete the possible worlds diagram of Figure 8a, one first needs to specify how b behaves in
two possible worlds: wor(0y1v) colored green and wor(1,0v) colored violet.

0bsp(140v) = f3(120v) =2, (25

ObSb(OH].V) =fb(0a1v) =?b'

By appealing to PSIZ;C), it must be that obs;,(1,0v) = obs,(0,1y) = 0, as no other valuations for b are in

the support of szlfc) . Finally, the remaining ‘unknown’ observations for c¢ in the violet world obsc(luov) =
fe(0,0v), and green world obsc(0u1v) = fc(0,1v) are determined respectively by the behavior of c in the
orange wor(1,1y) and yellow wor(0,0y) worlds as depicted in Figure 8b. Explicitly,

ObSc(lHO\/) =f(_'(0b0v) = ObSC(Oy()v) = Oc,

obsc(Oﬂlv) = fe(0u1y) = obsc(lulv) =1c. (26)

Therefore the observed events in the green and violet worlds are fixed to be,
0bsgpc(140v) = 14050c,  0bsgp(0uly) = 040 1c. (27)
Unfortunately, neither of theses events are in the support of Pffb?, which is a contradiction; therefore PS;C) is
possibilistically incompatible with G;. O

Notice that unlike the proof from Section 4.1, here we needed to appeal to the cross-world consistency con-
straints (Equation 26) demanded by the possible worlds framework.

4.3 The Bell Structure

Consider the causal structure Gy depicted in Figure 9 known as the Bell structure [7]. From the perspective of
causal inference, Bell’s theorem [7] states that any distribution compatible with 9 must satisfy an inequality
constraint known as a Bell inequality. For example, the inequality due to Clauser, Horne, Shimony and Holt,
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Figure 9: The Bell causal structure has variables a, b ‘measuring’ hidden variable p with ‘measurement settings’ x, y deter-
mined independently of p.

referred to as the CHSH inequality, constrains correlations held between a and b as x, y vary [15]%,
VPyaby € M(S9), S = (ab|0x0y) + (ab|Ox1y) + (ab|1x0y) - (ab|1x1ly), |S|<2 (28)

Correlations measured by quantum theory are capable of violating this inequality up to S = 2+/2 [14]. This
violation is not maximum; it is possible to achieve a violation of S = 4 using Popescu-Rohrlich box correla-
tions [49]. The following distribution is an example of a Popescu-Rohrlich box correlation,
1
pl29) 5([0x040;,04] + [0x1a1,0y] + [0x0a05 1] + [0xTaly1y]+

xaby ~ (29)

+[1x0a0b0y] + [1x1a1b0y] + [1x0a1b1y] + [1x1a0b1y]).

Unlike G, there are conditional independence constraints placed on correlations compatible with §9, namely
the no-signaling constraints P, = P4, and Py, = Py, Because ngb)y satisfies the no-signaling constraints,
the incompatibility of Pf(za?y with Gy is traditionally proven using Equation 28. We now proceed to prove its
incompatibility using the possible worlds framework.

Proof. Proof by contradiction; assume that a functional causal model Fy = {fa, fp, fx, fy} for G9 exists which
supports Pf(zat’z)y and use the possible worlds framework. Unlike the previous proofs, we only need to consider

a subset of the events in nggy to initialize a possible worlds diagram. Consider the following pair of events
and associated latent valuations which support them?°,

0bsyapy(040p0v) = 020,0x0y,  obsyapy(1u1p1y) = 1405 1x1y. (30)

Using Equation 30, initialize the possible worlds diagram in Figure 10 with worlds wor(0,0,0v) colored green
and wor(lu 1p 1,) colored violet. An unavoidable contradiction arises when attempting to populate the val-
ues for f4(0x1p) in the yellow world wor(0u1,1v) and f;(0y1,) in the magenta world wor(1,1,0y). First,
the observed event obs,qpy(0u1p1y) = 0x?a1j1y in the yellow world wor(0y1,1v) must belong to the list

of possible events prescribed by Pf(zci)y; a quick inspection leads one to recognize that the only possibility

is obsa(Ou1p1v) = fa(Ox1p) = la. An analogous argument in the magenta world wor(1,1,0v) proves that
obs b(llf 1,0v) = f,(0y 1p) = 0. Therefore, the observed event in the orange world wor(0,1,0v) must be,

0bSapca(0u1p0v) = 0x140,0y, (31)

and therefore P}, (0x140,0y) > O which contradicts Pfa%)y. Therefore, Pizaggy is possibilistically?! incompatible
with Go. O

19 The two variable correlation is defined as (ab|xxxy) = Ziz,izl (—1)“1'Pab‘xy(iajb [xxxy).

20 Clearly, the values of A, and A, that support these worlds must be unique. Less obvious is the possibility for these worlds to

share a A, value. Albeit if they do, the event 0,041, 1y becomes possible, contradicting Pf(zagb)y as well.

21 The proof holds if the probabilities of the events in Pfjfb)y are any positive value.
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Figure 10: An incomplete possible worlds diagram for the Bell structure Go (Figure 9) initialized by the observed events
0bSyab) (040p0y) = 0x040,0y and obsygpy (141p1y) = 1x04q1,1y. The worlds are colored: wor(0,0,0y) green, wor(1,1,1y)
violet, wor(ll 120‘,) magenta, wor(0y1,1,) yellow, and wor(Oulgov) orange.

4.4 The Triangle Structure

Consider the causal structure G, depicted in Figure 11 known as the Triangle structure. The Triangle has been
studied extensively in recent decades [10, 12, 23, 24, 30, 37, 55, 58, 60]. The following family of distributions
are possibilistically incompatible with G122,

3
P2 = p1[1a0,0c] + p2l0a10c] + p3[020p1c], > pi=1,p; > 0. (32)
i=1
Proof. Proof by contradiction: assume that a functional causal model Fy = {fa, f},, fc} for 911 exists support-
ing bezc) and use the possible worlds framework. For each distinct event in PSZC), consider a world in which it
happens definitely. Explicitly define,

0bsgpc(040p0v) = 14040c, (33)
Obsabc(lﬂ 1P1V) =0q4051c, (34)
0bsgpc(2u2p2v) = 0a1,0c, (35

corresponding to the exterior worlds in Figure 12. Consider magenta world wor(0,1,1,) with partially spec-
ified observation obsabc(Oﬂlglv) =?4?p1c. Recalling bezc), whenever c takes value 1., both a and b take
the value 0; i.e. 040;. Therefore, it must be that the observed event in the magenta world wor(0,1,1y) is

0bsgpe(Oulply) = 0a0p1c. An analogous argument holds for other worlds,

ObsabC(OHIQ:LV =?a?blc = ObSabC(Oulel\/) = 0a0blc,
0bSahe(2u2p1v) =2alp?c = 0bSapc(2u2p1v) = 0alp0c, (36)

ObSabC(()HZeOv) = 1a?b?c = ObSabC(O 2 Ov) = 1a0h0c.

Figure 11: The Triangle structure G171 involving three visible variables V = {a, b, c} each sharing a pair of latent variables from
L={uv,p}.

2)

22 The Inflation Technique first proved the incompatibility between Pffb . and G11.
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Figure 12: An incomplete possible worlds diagram for the Triangle structure G11 (Figure 11) initialized by the triplet of observed
events in Equation 35. The worlds are colored: wor(OHOVOg) brown, wor(1,1,1,) yellow, wor(zl 2V22) orange, wor(OHlvle)
magenta, wor(2,2,1,) blue, wor(0,2,0,) violet, and wor(OHZ.,le) green.

However, the conclusions drawn by Equation 36 predict the observed event in the central, green world
wor(0u2,1v) must be,

0bsgpc(042p1v) = 040,0¢, (37

and therefore P,;.(0405,0c) > 0 which contradicts bezc) . Therefore, bezc) is possibilistically incompatible with
911. O

4.5 An Evans Causal Structure

Consider the causal structure in Figure 13, denoted G3. This causal structure, along with two others, was first
mentioned by Evans [22] as one for which no existing techniques were able to prove whether or not it was sat-
urated; that is, whether or not all distributions were compatible with it. Here it is shown that there are indeed
distributions which are possibilistically incompatible with G5 using the possible worlds framework. As such,
this framework currently stands as the most powerful method for deciding possibilistic compatibility.

Figure 13: The Evans Causal Structure G13.
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Consider the family of distributions with three possible events:

3

P513b8c)d = P1[04050cy 4l + p2[1a0,1c04] + p3[0a1p1c1y], Zpi =1,p; >0. (38)
i=1

Regardless of the values for pq, p,, p3 (and y,; € Q, arbitrary), Pffbsc) 4 is incompatible with Gy3.

Proof. Proof by contradiction. First assume that a deterministic model ¥y = {fa, fp, fc, fq} for Pfhsc) 4 Exists
and adopt the possible worlds framework. Let wor(iyivip) for i € {1, 2, 3} index the possible worlds which

support the events observed in P4,
Obsabcd(ogovoe) =040,0cy4,
0bSghed(1ulvlp) = 1405104, (39)
Obsabcd(zﬂzvzp) = Oalblcld.

Only two additional possible worlds are necessary for achieving a contradiction. Consulting Figure 14 for
details, these possible worlds are wor(1,0v2,) colored violet and wor(1,2,2,) colored green. Notice that the
determined value for a must be the same in both worlds as it is independent of A,:

Xa =fa(1”2p) = ObSa(luOva) = ObSa(lyZva). (40)

There are only two possible values for x, in any world, namely x4 = O4 Or X4 = 14 as given by Pffbsc) - Firstsup-

pose that xa = 0q. Then in the violet world wor(1,0v2,), the value of b, to be obs;(1,0v2,) = f,(040v) = 0y,
is completely constrained by consistency with the magenta world wor(0,0,0,). Therefore, obs,;(1,0v2,) =
040y. By analogous logic, in the violet world the value of c is constrained to be obsc(lﬂovzg) = fc(0p1y) = Oc¢
by the orange world wor(lﬂlvlg). Therefore, obs,,:(1,0v2p) = 040,0, which is a contradiction because

04050, is an impossible event in PEbeg e Therefore, it must be that x, = 14. An unavoidable contradiction

Figure 14: A possible worlds diagram for G135 initialized by the distribution in Equation 38. The worlds are colored: wor(0“0v0¢_u)
magenta, wor(1,1,1,) orange, wor(2,2y2,) yellow, wor(1,0v2,) violet, and wor(1,02v2,) green.
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follows from attempting to populate the green world wor(1,2y2,) in Figure 14 with the established knowl-
edge that obsa(12v2p) = 14. The value of obs,(142+25) = f;(1a1v) has yet to be specified by any pos-
sible worlds, but choosing f,(141y) = 1, would yield an impossible event obsa(1,2+2p) = 141j. There-
fore, it must be that f;,(141v) = 05 and obsa(1,2v2p) = 140,. Similarly, the orange world wor(1,1,1,) fixes
fc(0p1y) = 1c and therefore obs g, (142v2p) = 140, 1c. Finally, the yellow world wor(2,2,2,) already deter-
mines obsy(142v2p) = f3(0c2v2p) = 1, and therefore one concludes that,

Obsabcd(lyzl/zl)) = 1a0b1c1d, (41)

(38)
Pabcd'

is possibilistically incompatible with Gq3. O

which is an impossible event in

: (38)
exists and therefore P abed

This contradiction implies that no functional model Fv, = {fa, f3, fc, fa}

To reiterate, there are currently no other methods known [22] which are capable of proving the incompatibility
of any distribution with G;523. Therefore, the possible worlds framework can be seen as the state-of-the-art
technique for determining possibilistic causation.

4.6 Necessity and Sufficiency

Throughout this section, we explored a number of proofs of possibilistic incompatibility using the possible
worlds framework. Moreover, the above examples communicate a systematic algorithm for deciding possi-
bilistic compatibility. Given a distribution Py with support o(Py) C Qv, and a causal structure § = (VU £, &),
the following algorithm sketch determines if Py, is possibilistically compatible with G.

1. Let W = |o(Py)| < |Qv]| denote the number of possible events provided by Py.
2. Foreach 1 =i < W, create a possible world wor(/lg)) where A(Li) = {i; | £ € L}, thus defining the latent

sample space Q.
N4
3. Attempt to complete the possible worlds diagram D initialized by the worlds {wor(A(L‘))} .
i=1
4, If an impossible event xy ¢ o(Pvy) is produced by any “off-diagonal” world wor(...i,...j, ...) where

i #j, or if a cross-world consistency constraint is broken, back-track.

Upon completing the search, there are two possibilities. The first possibility is that the algorithm returns
a completed, consistent, possible worlds diagram D. Then by Lemma 1, Py, is possibilistically compatible
with G. The second possibility is that an unavoidable contradiction arises, and Py is not possibilistically
compatible with G.2#

5 A Complete Probabilistic Solution

In Section 4, we demonstrated that the possible worlds framework was capable of providing a complete pos-
sibilistic solution to the causal compatibility problem. If however, a given distribution Py happens to sat-
isfy a causal hypothesis on a possibilistic level, can the possible worlds framework be used to determine if
Py satisfies the causal hypothesis on a probabilistic level as well? In this section, we answer this question
affirmatively. In particular, we provide a hierarchy of feasibility tests for probabilistic compatibility which
converges exactly. In addition, we illustrate that a possible worlds diagram is the natural data structure for
algorithmically implementing this converging hierarchy.

23 It is worth noting we have also proven the non-saturation of the other two causal structures mention in [22] using analogous
proofs.

24 A simple C implementation of the above pseudo-algorithm for boolean visible variables (|Q,| = 2,Vv € V) can be found
at github.com/tcfraser/possibilistic_causality. In particular, the provided software can output a DIMACS formatted CNF file for
usage in most popular boolean satisfiability solvers.


https://github.com/tcfraser/possibilistic_causality
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5.1 Symmetry and Superfluity

This aforementioned hierarchy of tests, to be explained in Section 5.3, relies on the enumeration of all prob-
ability distributions P which admit uniform functional causal models (S, ¥y, P ) for fixed cardinalities
kyuc = {kq = 1Q4| | g € VU L}. A functional causal model is uniform if the probability distributions P, € P
over the latent variables are uniform distributions; P, : Q, — k;'. Section 5.2 discusses why uniform func-
tional causal models are worth considering, whereas in this section, we discuss how to efficiently enumerate
all probability distributions Py, that are uniformly generated from fixed cardinalities kv .

One method for generating all such distributions is to perform a brute force enumeration of all determin-
istic strategies ¥y for fixed cardinalities kv, . Depending on the details of the causal structure, the number
of deterministic functions of this form is poly-exponential in the cardinalities kv, ;. This method is inefficient
because is fails to consider that many distinct deterministic strategies produce the exact same distribution
Py . There are two optimizations that can be made to avoid regenerations of the same distribution Py, while
enumerating all deterministic strategies Fy,. These optimizations are best motivated by an example using the
possible worlds framework.

Consider the causal structure G;5, in Figure 15a with visible variables V = {a, b, c} and latent variables
L = {u,v}. Furthermore, for concreteness, suppose that ky = kv = ka = kqa = 2 and k¢ = 4. Finally let
Fv = {fa, fp, fc} be such that,

fa(oy) = Oq, fa(ly) =1q, fb(oy) = Ob, fb(ly) = 1b,
fc(OaObOv) = 25, fc(OaOblv) = Oc, fc(lalbOv) = 35, fc(lalbl\/) = 1c (42)
fc(Oalbov) = Oc, fc(oalblv) = 1(_‘; fc(laobov) = 26, fc(laoblv) = 3C-

The possible worlds diagram D for G15, generated by Equation 42 is depicted in Figure 15b. If the latent val-
uations are distributed uniformly, the probability distribution associated with Figure 15b (as given by Equa-
tion 17) is equal to,

Pabe = %([wor(OyOV)] + [wor(0,1v)] + [wor(1,0v)] + [wor(lulv)]) @)
43
= (1040,22] +[040,0c] + [1a1,3¢] + [1aly 1.

The first optimization comes from noticing that Equation 42 specifies how ¢ would respond if provided with
the valuation 1,01y of its parents, namely f:(1,0,1y) = 3. Nonetheless, this hypothetical scenario is ex-
cluded from Figure 15b (crossed out in the figure) because the functional model in Equation 42 never produces
an opportunity for a to be different from b. Consequently, the functional dependences in Equation 42 contain
superfluous information irrelevant to the observed probability distribution in Equation 43.

Therefore, a brute force enumeration of deterministic strategies would regenerate Equation 43 several
times, once for each assignment of ¢’s behavior in these superfluous scenarios. It is possible to avoid these
regenerations by using an unpopulated possible worlds diagram D as a data structure and performing a brute
force enumeration of all consistent valuations of D.

The second optimization comes from noticing that Equation 43 contains many symmetries. Notably, inde-
pendently permuting the latent valuations, my, : Oy <+ 1, or 7ty : Oy <> 1y, leaves the observed distribution in
Equation 43 invariant, but maps the functional dependences Fy, of Equation 42 to different functional depen-
dences S"f;‘ and F7'. These symmetries are reflected as permutations of the worlds as depicted in Figures 15c,
and 15d.

Analogously, it is possible to avoid these regenerations by first pre-computing the induced action on
D, and thus an induced action on Fv, under the permutation group S = ;e perm(Qp). Then, using the
permutation group S, one only needs to generate a representative from the equivalence classes of possible
worlds diagrams D under S.
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(a) A causal structure G5, with three
visible variables V = {a, b, c} and
two latent variables £ = {u, v}.

(b) A possible worlds diagram for G154. The crossed out vertex is excluded because
it fails to satisfy the ancestral isomorphism property.

(d) The image of Figure 15b under the permutation 0, <+ 1,.

Figure 15: Every permutation 7, : Q, — Q, of valuations on the latent variables maps a possible worlds diagram to an-
other possible worlds diagram with the same observed events. The worlds are colored: wor(0,0y) green, wor(0,1,) orange,
wor(1,0v) yellow, and wor(lﬂlv) violet.
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Importantly, the optimizations illuminated above, namely ignoring superfluous specifications and ex-
ploiting symmetries, are universal?’; they can be applied for any causal structure. Additionally, the possible
worlds framework intuitively excludes superfluous cases and directly embodies the observational symme-
tries, making a possible worlds diagram the ideal data structure for performing a search over observed dis-
tributions.

5.2 The Uniformity of Latent Distributions

The purpose of this section is motivate why it is always possible to approximate any functional causal model
(9, Fy, P) with another functional causal model (G, 5‘\7, P ) which has latent events A, € 0 ¢ uniformly
distributed. Unsurprisingly, an accurate approximation of this form will require an increase in the cardinality
|Q¢| > |Q | of the latent variables.

Definition 9 (Rational Distributions). A discrete probability distribution P over Q is rational if every proba-
bility assigned to events in Q by P is rational,

YAe Q, PQA)= %, where n,,d, € Z. (44)
A
Definition 10 (Distance Metric for Distributions). Given two probability distributions P, £ over the same sam-

ple space Q, the distance A(P, P) between P and P is defined as,

AP, B) = " |P(x) - P (45)

xen

Theorem 2. Let P, : Q, — [0, 1] be any discrete probability distribution on Q,, then there exists a rational
approximation B, : Q, — [0, 1],

e Qi B = 5 Y B g, (46)

‘ Wy EQy

[Qy|-1

where g : Qy — Q is deterministic and APy, By) < o

Proof. The proofisillustrated in Figure 16. In the special case that | Q| = 1, the proof is trivial; g simply maps
all values of wy to the singleton A, € Q,. The proof follows from a construction of g using inverse uniform
sampling. Given some ordering 1, < 2, < - -- of Q, and ordering 1, < 2, < - - - of Q, compute the cumulative
distribution function P_,(4,) = > oy P4(A}). Then the function g : Qu — Q, is defined as,

g(a)u) = min {Ag c .Qg | PSZ(AZ)|QH| > a)u} . (47)
Consequently, the proportion of w, € Qy values which map to A, € Q, has error &(A,),

e(A) = [Qu[P () - [ )], (48)

where ’8(/1@)| < 1forall A, € Q, with the exception of the minimum (1) and maximum (|Q;|,) values where
|£(/1@)} < 1/2. Therefore, the proof follows from a direct computation of the distance A(P,, ),

APy, B) = > PR - By, (49)
Ae€Qy
= 3 [P0 - e an|) (50)

Ae€Qy

25 As a special case, causal networks (which are causal structures where all variables are exogenous or endogenous) contain no
superfluous scenarios.
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Figure 16: Theorem 2: Approximately sampling a non-uniform distribution using inverse sampling techniques.

In terms of the causal compatibility problem, Theorem 2 suggests that if an observed distribution Py, is com-
patible with G, and there exists a functional causal model (G, Fv, P ) which reproduces P+, (via Equation 11),
then it must be close to a rational distribution £+, generated by a functional causal model (S, Fy, ? ) wherein
probability distributions for the latent variables P, are uniform. The following theorem proves this.

Theorem 3. Let (G, Fy, P) be a functional causal model with cardinalities c, = |Q,| for the latent variables
producing distribution P. Then there exists a functional causal model (G, Fv, P ;) with cardinalities k, = |Q,|
for the latent variables producing By, where the distributions P = {U; : Q, — k;' | ¢ € L} over the latent
variables are uniform. In particular, the distance between P+, and P+ is bounded by,

L n
APy, By) < €= Z% (L(CK' 1)> =30 (%) , (54)

n=1

where C =max{cy | ¢ € L}, K=min{k, | ¢ € L}, and L = |L| is the number of latent variables.

Proof. The proof relies on Theorem 2 and can be found in Appendix C. O

5.3 A Converging Hierarchy of Compatibility Tests

In Section 5.1, we discussed how to take advantage of the symmetries of a possible worlds diagram and the
superfluities within a set of functional parameters Fy in order to optimally search over functional models. In
Section 5.2, we discussed how to approximate any functional causal model (G, Fv, P ) using one with uni-
form latent probability distributions. Here we combine these insights into a hierarchy of probabilistic com-
patibility tests for the causal compatibility problem.
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Definition 11. Given a causal structure G, and given cardinalities?® k; = {k, = Q| | £ € £} for the latent
variables, define the uniformly induced distributions, denoted as uﬁ’;ﬁ)(g), as the set of all distributions
By € My(3) which admit of a uniform functional model (G, v, P ) with cardinalities k.

Recall that Section 5.1 demonstrates a method, using the possible worlds framework, for efficient generation
of the entirety of ug’?“ )(9).

Lemma 4. The uniformly induced distributions u%‘“(g) form an e-dense set in My, (9),

Py € My (§) = 3By e UK(G), APy,By)<ecO (%) (55)
where ¢ is a function of K = min {k, | £ € L}, the number of latent variables L = |L|, and C = max {c, | £ € L}

where c, is the minimum upper bound placed on the cardinalities of the latent variable ¢ by Theorem 9.

Proof. Since ¢ = {c; | ¢ € £} are minimum upper bounds placed on the cardinalities of the latent variables
by Theorem 9, any Py, € My (G) must admit a functional causal model with cardinalities for the latent vari-
ables at most ¢ ;. Then by Theorem 3, there exists a uniform causal model producing Py € u%ﬂ(g), within a
distance ¢ given by Equation 54. O

Lemma 4 forms the basis of the following compatibility test,

Theorem 5 (The Causal Compatibility Test of Order K). For a probability distribution Pv, and a causal struc-
ture G, the causal compatibility test of order K = min {k, | ¢ € L} is defined as the following question:

Does there exist a uniformly induced distribution B+ € ug’;‘) (9) such that A(Py, By) < € (K)?7

As K — oo, the distance tends to zero €(K) — 0 and the sensitivity of the test increases. If Py, ¢ M+ (9), then
P+ will fail the test for finite K. If Py, € M+ (S), then P+ will pass the test for all K. Moreover, for fixed K, the test
can readily return the functional causal model behind the best approximation P+.

First notice that Theorem 5 achieves the same rate of convergence as [37]. Unlike the result of [37], Theorem 5
returns a functional model which approximates P . It is interesting to remark that the distance bound ¢ €
O(LC/K) in Equation 55 depends on C = max {c, | £ € L} where ¢, is the minimum upper bound placed on
the cardinalities of the latent variable ¢ by Theorem 9. As conjectured in Appendix B, it is likely that there
are tighter bounds that can be placed on these cardinalities for certain causal structures. Therefore, further
research into lowering these bounds will improve the performance of Theorem 5.

6 Conclusion

In conclusion, this paper examined the abstract problem of causal compatibility for causal structures with
latent variables. Section 3 introduced the framework of possible worlds in an effort to provide solutions to the
causal compatibility problem. Central to this framework is the notion of a possible worlds diagram, which
can be viewed as a hybrid between a causal structure and the functional parameters of a causal model. It does
not however, convey any information about the probability distributions over the latent variables.

In Section 4, we utilized the possible worlds framework to prove possibilistic incompatibility of a number
of examples. In addition, we demonstrated the utility of our approach by resolving an open problem associ-
ated with one of Evans’ [22] causal structures. Particularly, we have shown the causal structure in Figure 13

26 The cardinalities for the visible variables, ky = {k, = |Qy| | v € V}, are also assumed to be known.
27 Here ¢ (K) is the value for € provided by Lemma 4.
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is incompatible with the distribution in Equation 38. Section 4 concluded with an algorithm for completely
solving the possibilistic causal compatibility problem.

In Section 5, we discussed how to efficiently search through the observational equivalence classes of
functional parameters using a possible worlds diagram as a data structure. Afterwards, we derived bounds
on the distance between compatible distributions and uniformly induced ones. By combining these results,
we provide a hierarchy of necessary tests for probabilistic causal compatibility which converge in the limit.
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A Simplifying Causal Structures

A.1 Observational Equivalence

From an experimental perspective, a causal model (5, P) has the ability to predict the effects of interventions;
by manually tinkering with the configuration of a system, one can learn more about the underlying mecha-
nisms than from observations alone [43]. When interventions become impossible, because experimentation
is expensive or unethical for example, it becomes possible for distinct causal structures to admit the same
set of compatible correlations. An important topic in the study of causal inference is the identification of ob-
servationally equivalent causal structures. Two causal structures G and G’ are observationally equivalent or
simply equivalent if they share the same set of compatible models My (§) = My (§'). For example, the direct
cause causal structure in Figure 17a is observationally equivalent to the common cause causal structure in Fig-
ure 17b. Identifying observationally equivalent causal structures is of fundamental importance to the causal
compatibility problem; if a distribution Py is known to satisfy the hypotheses of G, and My (3) = M+y(G’) then
it will also satisfy the hypotheses of §'.

D ©)
(D

(a) A direct cause from vy to v5. (b) A shared common cause ¢
between v and v,.

Figure 17: The causal structures of (a) and (b) are observationally equivalent.

A.2 Exo-Simplicial Causal Structures

In general, other than being a directed acyclic graph, there are no restrictions placed on a causal structure
with latent variables. Nonetheless, [22] demonstrated a number of transformations on causal structures which
leave My (G) invariant. Two of these transformations are the subject of interest for this section. The first con-
cerns itself with latent vertices that have parents while the second concerns itself with parent-less latent
vertices that share children. Each will be taken in turn.

Definition 12 (See Defn. 3.6 [22]). Given a causal structure § = (V U £, &) with latent vertex ¢ € £, the exog-
enized causal structure exog(¢) is formed by taking & and (i) adding an edge p — c forevery p € pag (¢) and
¢ € chg(¢) if not already present, and (ii) deleting all edges of the form p — ¢ where p € pag(¥). If pag(¢) is
empty, exog(f) = S.

Lemma 6 (See Lem. 3.7 [22]). Givena causalstructureG = (VU L, &) withlatentvertex{ € L, then My, (exoS(Z)) =
My (9).

Proof. See proof of Lem. 3.7 from [22]. O

The concept of exogenization is best understood with an example.
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Example 1. Consider the causal structure G5, in Figure 18a. In G134, the latent variable ¢ has parents pa(¢) =
{v1, V2, v3} and children ch(¢) = {v4, v5}. Since the sample space Q, is unknown, its cardinality could be
arbitrarily large or infinite. As a result, it has an unbounded capacity to inform its children of the valuations
of its parents, e.g. v, can have complete knowledge of v; through ¢ and therefore adding the edge v; — v, has
no observational impact. Applying similar reasoning to all parents of ¢, i.e. applying Lemma 6, one converts
G1sq to the observationally equivalent, exogenized causal structure exog,,, (¢) depicted in Figure 19.

Lemma 6 can be applied recursively to each latent variable ¢ € £ in order to transform any causal structure §
into an observationally equivalent one wherein the latent variables have no parents (exogenous). Notice that
the process of exogenization also works when latent vertices have latent parents, as is the case in Figure 18b.
Also, when a latent vertex ¢ has no children, the process of exogenization disconnects ¢ from the rest of the
causal structure, where it can be ignored with no observational impact due to Equation 7.

The next observationally invariant transformation requires the exogenization procedure to have been
applied first. In Figure 18d, ¢1 and ¢, are exogenous latent variables where chg,, (¢,) C chg,,,(¢1). Therefore,

A <

(a) A latent vertex with ob- (b) A latent vertex with la-
servable parents. tent parents

(c) A latent vertex with no (d) Latent vertices with nested children.
children.

Figure 18: Examples of causal structures which are not exo-simplicial.

Figure 19: The exogenized causal structure exog,, (£).
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because the sample space Q,, is unspecified, it has the capacity to emulate any dependence that v; and/or
v, might have on ¢,. This idea is captured by Lemma 7.

Lemma 7 (See Lem. 3.8 [22]). Let G be a causal structure with latent vertices ¢, ' € £ where { # ¢'. If pag(l) =
pag (') = 0, and chg(¢') C chg(¥) then My (G) = My (sub(g)\? Ul - {6/}).

Proof. See proof of Lem. 3.8 from [22]. O

An immediate corollary of Lemma 7 is that the latent variables {¢ | £ € £}, which are isomorphic to their
children {ch(@) | el }, are isomorphic to the facets of a simplicial complex over the visible variables.

Definition 13. An (abstract) simplicial complex, A, over a finite set V is a collection of non-empty subsets
of V such that:

1. {v} e Aforallv € V;and
2.ifC;CC, CV,C, e A= Cq €A

The maximal subsets with respect to inclusion are called the facets of the simplicial complex.

In [22], this concept led to the invention of mDAGs (or marginal directed acyclic graphs), a hybrid between
a directed acyclic graph and a simplicial complex. In this work, we refrain from adopting the formalism of
mDAGs and instead continue to consider causal structures as entirely directed acyclic graphs. Despite this re-
frain, Lemmas 6, 7 demonstrate that for the purposes of the causal compatibility problem, the latent variables
of a causal structure can be assumed to be exogenous and to have children forming the facets of a simplicial
complex. Causal structures which adhere to this characterization will be referred to as exo-simplicial causal
structures. Figure 20 depicts four exo-simplicial causal structures respectively equivalent to the causal struc-
tures in Figure 18.

@)~ @@@

B & ®
(c)

(@)

Figure 20: Examples of exo-simplicial causal structures which are observationally equivalent to their respective counterparts in
Figure 18.
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B Simplifying Causal Parameters

Recall that a causal model (G, P) consists of a causal structure G and causal parameters P. Appendix A sim-
plified the causal compatibility problem by revealing that each causal structure § can be replaced with an
observationally equivalent exo-simplicial causal structure §’ such that M+ (3) = M+(5’). The purpose of this
section is to simplify the causal compatibility problem in three ways. Section B.1 demonstrates that the visible
causal parameters {Pv‘pa(v) lve \7} of a causal model can be assumed to be deterministic without observa-
tional impact. Section B.2 shows that if the observed distribution is finite (i.e. |Qy| < oo), one only needs
to consider finite probability distributions for the latent variables. Moreover, explicit upper bounds on the
cardinalities of the latent variables can be computed.

B.1 Determinism

Lemma 8. IfPy € My (G) and § is exo-simplicial (see Appendix A), then without loss of generality, the causal
parameters P, , over the observed variables can be assumed to be deterministic, and consequently,

vy € Oy, Pyl = [ / 42,00 T 60vs oo, 0 Ao, ) (56)
teLy, L, veL ’

Proof. Since Py € My (9), by definition, there exists a joint distribution Py, (or density dP+, ) admitting
marginal Py via Equation 7. Since the joint distribution satisfies Equation 6, it is possible to associate to each
observed variable Xy an independent random variable Ee, and measurable function fy : Q.. 4)*Q1p. () *Qe,
such that forallv € V,

X = fo (Xigay 015 Arpag s Eer ) - (57)

Therefore, by promoting each ey to the status of a latent variable in § and adding an edge e, — vto &, each X,
becomes a deterministic function of its parents. Finally, making use of the fact that G is exo-simplicial, every
error variable ey has its children chg(ey) = {v} nested inside the children of at least one other pre-existing
latent variable. Therefore, by applying Lemma 7, ey is eliminated and one recovers the original G. O

Essentially, Lemma 8 indicates that any non-determinism due to local noise variables E, can be emulated by
the behavior of the latent variables £.

B.2 The Finite Bound for Latent Cardinalities

In [50], it was shown that if the visible variables have finite cardinality (i.e. ky = |Qv]| is finite), then for
a particular class of causal structures known as causal networks, the cardinalities of the latent variables
could be assumed to be finite as well. A causal network is a causal structure where all latent variables have
no parents (are exogenous) and all visible variables either have no parents or no children [37]. The purpose
of this section is to generalize the results of [50] to the case of exo-simplicial causal structures. Although
the proof techniques presented here are similar to that of [50], the best upper bounds placed on k. = |Q|
depends more intimately on the form of G. It is also anticipated that the upper bounds presented here are
sub-optimal, much like [50]. It is also worth noting that the results presented here hold independently of
whether or not Lemma 8 is applied.

Theorem 9. Let (G, P) be a causal model with (possibly infinite) cardinalities k, = {k, | ¢ € L} for the latent
variables such that,

Vxy € Qy, Pylxy) = H / dpP,(A,) H Pv\pa(v)(xv|vaa(v)/(1pa(v)), (58)
ZGLMGQZ vev
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produces the distribution P~. Then there exists a causal model (9, i ) reproducing Py, with cardinalities k ;, =
{ky | £ € L} where each k, is a finite.

(p) V={a,b,c,de f}
D ={a,b,c,d, g}
©  (O—>—D D={ef}
Q D={f}
() () (D Do={ab}

A ={a,b,c}

(9) O @ B ={d,g}

Figure 21: A causal structure G,; that helps in visualizing the proof of Theorem 9.

Proof. The following proof considers each latent variable ¢ € £ independently and obtains a value for k, in
each case. Let £’ = £ - {¢} denote the set of latent variables with & removed. Let dP¢, = [],. ., dP, bea
probability density over Q. and consider the conditional probability distribution Py (xv|A;) given A,

PV\{(XVM.f) = / dP/(Ag) H Pv\pa(v)(XV|vaa(v)Alpa(v)) (59)
Qp vev

Consulting Figure 21 for clarity, define the district D C 'V of £ to be the maximal set of visible vertices v in §
for which there exists an undirected path from v to ¢ with alternating visible/latent vertices. Let D¢ =V - D,
D = pa(D) - D and D€ = pa(D€) — D°. The district D has the property that Py,¢ factorizes over D, D [22],

Py (xv|Ag) = Pppe(Xp[xp AP pe pe (Xpe [Xpe).- (60)

For varying A, consider a vector representation p, . of the conditional distribution P D|DE (x plx DAé') and define

U-= {p,lg | Ag € Qf}. By construction, the center of mass p” of U represents PD‘D(XD|XD),

p = dPs(Ag)pa, (61)
/

Ppip(xXplXp) = / dP¢(Ae)Pp pe(Xp|XpAs) (62)
Q¢

Therefore, by a variant of Carathéodory’s theorem due to Fenchel [5], if U is compact and connected, then p”
can be written as a finite convex decomposition,

aff(U)
p = Z w;pj, ij =1, Vi,w;20. (63)
j=1 j

where aff(U) is the affine dimension of U. Then by letting Q; = {0, 1¢, ..., aff(U),} be a finite sample
space for ¢ distributed according to P¢(A;) = wy, by Equations 58, 59, 60 and 62,

Py(xy) = Z Pe(Ag)Pyg(xv|Ag). (64)
Ae€Qy



DE GRUYTER A Combinatorial Solution to Causal Compatibility = 51

Therefore, causal parameters exist reproducing Py with cardinality k; = aff(U). What remains is to show
that U is compact and to find a bound on aff(U).

Because of normalization constraints on each p, o U is bounded. Moreover, [50] demonstrates that U can
be taken to be closed as well. Again consulting Figure 21 for clarity, partition D into subsets A = des(§) N D
and B = D - A. This partitioning enables one to identify the following linear equality constraint placed on all

points p, £

D> Poipglnlxpie) (65)
XA€Qy
= > Pa1pe(XalXBXpAg)Pp pe(Xp|XpAg) (66)
Xa€EQ
=PngXmXDAQ (6n
=pB\D(XB|XD)’ (68)

where the last equality holds because B is independent of ¢ given D28, Furthermore note that if U is not
connected, it can be made connected by a scheme due to [50] which adds noisy variants of each p, (toU.
Simply include a noise parameter v € [0, 1] such that A; = (A, v) and adjust the response functions for
variables in A such that,

1-v
PA|BD¢'(XA|XBXDA£V) = VPA|BD,5(XA|XBXDA¢') + 12 (69)

For each degree of noise 0 < v < 1, Equation 69 defines a noisy model Pigy which are added to U. As
special cases, no noise v = 0, yields Pr,o=Pr €U and complete noise v = 1 yields Pj,,1 Tepresenting
Ppp(xa|xp)/|Q24| € U which is independent of A;. Therefore, U is connected. Finally, the affine dimension
aff(U) is at most the affine dimension of P DID with the degrees of freedom associated with satisfying Equa-
tion 68 removed [50]. Therefore,

kg = af£(U) < af£(Ppp) — af£ (P p) (70

O

C Proof of Theorem 3

Proof. The proof first constructs the distribution Py which satisfies the error bound in Equation 54. After-
wards, a uniform functional model (G, v, P ) is constructed which produces P Begin by letting £, denote
the rational approximation of P, for each ¢ € £ as prescribed by Theorem 2. Then, let

Pe(e) = [[ P, Be@o) =] B0 71

el el

The joint distribution P+, and the rational approximation P are then given by,

Py(xy) = Z Pr(Ag)6(xv, Fy(dg)), (72)
A €Qp

Byley) = > Bre)8lxy, Tv(Ae)). (73)
A €Q

28 Every path from b € B to & must pass through an unconditioned collider in A and therefore the d-separation relation B L
{&} | D holds [43].
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The distance A(Pv, By) between the visible joint distributions is no greater than the distance A(P;, ;) be-
tween the latent joint distributions:

APy, By) = Z [Py (xy) = By (xy)| (74)
Xy EQy
= 3 | Y {Pe(e)-BeAg)} 60xy, Fr(Ae)) (75)
XyEQy |A €0
< DY Pelhe) -Bele)|8ey, Tv(Ae) (76)
A €Qp xvEQY
= > [Pe@e)-PBAg)] 77)
Ag€Qy
= AP, Pr) (78)

The bound in Equation 54 will be derived using Equation 48. For convenience of notation, let the latent vari-
ables be indexed £ = {¢1,(>,...,¢;} and let £’ = {uy, us, ..., u;} index the corresponding uniformly dis-
tributed variables as defined in Theorem 2. Then,

AP, Br) (79)

= > |Pe@e)-B(Ag)| (80)
A €Q¢

L L
= 3 IIPs@) - T8, @) (81)
Ac€Qy |j=1 j=1

L ~ e(Ag) L -
= > I (Pej(/lej)+ 0 I ) [18,() (82)
A €Qp |j=1 ’ u]{ j=1

Here it becomes advantageous to define helper variables Iy ; and I'; ; such that,

TojAe) = Py(Ay), Tyj(Ag) = ﬁ (83)
uj

Additionally, let b € {0, 1}L be a binary string of length L. Then Equation 82 becomes,

A(Ps,Br) (84)
L L
= Z H(Fo,j(/\z)+r1,j(/l,a)) _Hro,j(AL) (85)
A€y |j-1 j=1
k-1 L
= Z Iy, j(Ag) (86)
AceQe | b=1 j=1
b1 L
< I1 ‘rbi,j(AL)‘ (87)

Summing over I ; yields 1 due to normalization of 3 ¢;(A¢) in Equation 83. However, summing over [y ; yields
(]Q4| - 1)/|Qy| exactly as in Theorem 2. Therefore,

woro SRR

ki=1k;=1

In order to simplify Equation 88, let C, K be defined as,

C=max{|Q,||1<j<L}, K=min{|Qyu||1<j<L}. (89)
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Combining Equations 78, 88, and 89, one obtains the required result,

L n
a6y b0 2> 0 (M) 50)
n=1

To conclude the proof, one needs to prove the existence of a uniform functional model (G, f;"v, P ) which re-
produces P+ . To do so, substitute into Equation 73 the functional form of the rational approximations (Equa-
tion 46) from Theorem 2 for each ¢; € £,

L

N 1

Pv(Xv)=H Z m E 6y, gj(wy))) p 6(xy, Fy(Ag Ay, ... Ag))). 91)
jEl/\eiEQe}- / wul-eou}-

Perform the sum over all latent valuations to remove the inner delta function,

L
By(ew) =[] ﬁ S| 800, Folgr(@u)g2 @) - g1 (@u))). ©92)
jel Yj wuieguj

Finally, one can recursively define the functions in Fv to be such that Fy(w;/) = Fy(g(w)) and conse-
quently Equation 92 defines the uniform functional model (G, 5, ? ) which reproduces $,. O
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