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Abstract: Standard estimators of the global average treatment effect can be biased in the presence of interfer-
ence. This paper proposes regression adjustment estimators for removing bias due to interference inBernoulli
randomized experiments. We use a fitted model to predict the counterfactual outcomes of global control and
global treatment. Our work differs from standard regression adjustments in that the adjustment variables are
constructed from functions of the treatment assignment vector, and that we allow the researcher to use a
collection of any functions correlated with the response, turning the problem of detecting interference into a
feature engineering problem.We characterize the distribution of the proposed estimator in a linearmodel set-
ting and connect the results to the standard theory of regression adjustments under SUTVA.We then propose
an estimator that allows for flexiblemachine learning estimators to be used for fitting a nonlinear interference
functional form. We propose conducting statistical inference via bootstrap and resampling methods, which
allow us to sidestep the complicated dependences implied by interference and instead rely on empirical co-
variance structures. Such variance estimation relies on an exogeneity assumption akin to the standard un-
confoundedness assumption invoked in observational studies. In simulation experiments, our methods are
better at debiasing estimates than existing inverse propensity weighted estimators based on neighborhood
exposure modeling. We use our method to reanalyze an experiment concerning weather insurance adoption
conducted on a collection of villages in rural China.

Keywords: causal inference, peer effects, SUTVA, A/B testing, exposure models, off-policy evaluation

1 Introduction

The goal in a randomized experiment is often to estimate the total or global average treatment effect (GATE) of
a binary treatment variable on a response variable. The GATE is the difference in average outcomes when all
units are exposed to treatment versus when all units are exposed to control. Under the standard assumption
that units do not interfere with each other [1], which forms a key part of the stable unit treatment value as-
sumption (SUTVA) [2, 3], the global average treatment effect reduces to the standard average treatment effect.

However, inmany social,medical, and online settings the no-interference assumptionmay fail to hold [4,
5, 6, 7]. In such settings, peer and spillover effects can bias estimates of the global average treatment effect.
In the past decade, there has been a flurry of literature proposing methods for handling interference, mostly
focusing on cases in which structural assumptions about the nature of interference are known. For example,
if there is a natural grouping structure to the data, such as households or schools or classrooms, it may be
reasonable to assume that interference exists within but not across groups. Versions of this assumption are
knownaspartial or stratified interference [8]. In this case two-stage randomizeddesigns canbeused todecom-
posedirect and indirect effects,which is anapproach studiedbyVanderWeele andTchetgenTchetgen [9], Tch-
etgen and VanderWeele [10], Liu and Hudgens [11], Baird et al. [12], Basse et al. [13], among others. Baird et al.
[12] study how two-stage, random saturation designs can be used to estimate dose response curves under the
stratified interference assumption. Basse and Feller [14] study two-stage experiments in which households
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with multiple students are assigned to treatment or control. Other works that propose methods of handling
interference include [15], which maps out causal diagrams for interference; van der Laan [16], Ogburn et al.
[17], Tchetgen Tchetgen et al. [18], which propose estimators for causal effects using observational data from
a single social network with interference along paths of network ties; Choi [19], which shows how confidence
intervals can be constructed in the presence of monotone treatment effects; and Jagadeesan et al. [20], which
studies designs for estimating the direct effect that strive to balance thenetworkdegrees of treated and control
units.

Themodus operandi for general or arbitrary interference is themethod of exposuremodeling, inwhich the
researcher defines equivalence classes of treatments that inform the interference pattern. Aronow and Samii
[21] develop a general framework for analyzing inverse propensity weighted (Horvitz-Thompson- and Hájek-
style) estimators under correct specification of local exposuremodels. The exposuremodel often used is some
version of an assumption that the potential outcomes of unit i are constant conditional on all treatments in
a local neighborhood of i, or that the potential outcomes are a monotone function of such treatments. This
assumption, known as neighborhood treatment response (NTR), is a generalization of partial and stratified
interference to the general network setting [22].Methods for handling interference often rely onneighborhood
treatment response as a core assumption. For example, SussmanandAiroldi [23] developunbiased estimators
for various parametric models of interference that are all restrictions on the NTR condition, and Forastiere
et al. [24] propose propensity score estimators for observational studies using the NTR assumption.

Aronow and Samii [21] use their methods to analyze the results of a field experiment on an anti-conflict
program inmiddle schools inNew Jersey. Bydefining appropriate exposuremodels, they are able to estimate a
direct effect (the effect of receiving the anti-conflict intervention), a spillover effect (the effect of being friends
with some students who received the anti-conflict intervention), and a school effect (the effect of attending
a school in which some students received the anti-conflict intervention). The network structure consists of
56 disjoint social networks (schools), comprising 24,191 students in the original Paluck et al. [25] study and a
subset of 2,050 students studied in the Aronow and Samii [21] analysis. There are a number of similar studies
in which the target of scientific inquiry is the quantification of peer or spillover effects and where the dataset
permits doing so by being comprised of “many sparse networks.” Studies which consist of randomized ex-
periments on such social networks include Banerjee et al. [26], which studies a microfinance loan program
in villages in India; Cai et al. [27], which studies a weather insurance program for farmers in rural China; Kim
et al. [28], which concerns public health interventions such as water purification andmicrovitamin tablets in
villages in Honduras; and Beaman et al. [29], which explores social diffusion of a new agricultural technol-
ogy among farmers inMalawi. (Some studies thereof do not explicitly aim to understand spillover effects—for
example Kim et al. [28] and Beaman et al. [29] are concerned primarily with strategies for targeting influential
individuals—but the presence of such effects is still crucial for their purposes.) In these settings, exposure
modeling may be (and has been) a successful way of decomposing direct and spillover effects.

The difficulties of using exposure models for global effects
How should one proceed if the goal is estimation of the global treatment effect rather than a decomposition
into direct and spillover effects? In this setting interference is a nuisance, not an object of intrinsic scientific
interest. Unbiased estimation would result from using an exposure model that accurately represents the true
data-generating process. However, the complicated nature of social interactionsmakes it difficult to select an
exposure model that is both tractable and well-specified. Eckles et al. [30] discuss some of the difficulties of
working in this setting in the context of “implausibility of tractable treatment response assumptions”:

It is unclear how substantive judgment can directly inform the selection of an exposure model for interference in networks—
at least when the vast majority of vertices are in a single connected component. Interference is often expected because of
social interactions (i. e., peer effects) where vertices respond to their neighbors’ behaviors: in discrete time, the behavior of
a vertex at t is affected by the behavior of its neighbors at t − 1; if this is the case, then the behavior of a vertex at t would
also be affected by the behavior of its neighbors’ neighbors at t − 2, and so forth. Such a process will result in violations of
the NTR assumption, and many other assumptions that would make analysis tractable.
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In this setting, one primary tool that has developed in the literature is themethod of graph cluster randomiza-
tion [31], where researchers use a clustered design inwhich the clusters are selected according to the structure
of the graph in order to lower the variance of NTR-based inverse propensity estimators. Eckles et al. [30] pro-
vide theoretical results and simulation experiments to show how clustered designs can reduce bias due to
interference. Clusters can be obtained using algorithms developed in the graph partitioning and community
detection literature [32, 33].

While the graph clustering approach can be effective at removing some bias, the structure of real-world
empirical networks may make it difficult to obtain satisfactory bias reduction via clustering, which relies on
having good quality graph cuts. The “six degrees of separation” phenomenon is well-documented in large so-
cial networks [34, 35], and the average distance between twoFacebookusers in February 2016was just 3.5 [36].
Furthermore, most users belong to one large connected component and are unlikely to separate cleanly into
evenly-sized clusters. In a graph clustered experiment run at LinkedIn, the optimal clustering strategy used
maintained only 35.59% of edges between nodes of the same cluster [37, Table 1], suggesting that bias re-
mains even after clustering. Figure 1 provides an example illustration of how the structure of the network can
markedly affect how much we might expect cluster randomization to help.

Figure 1: (left) A subset of 16 nearly-disjoint Chinese villages, comprising 822 nodes, from an experiment regarding weather
insurance adoption conducted by Cai et al. [27]. The setup of many, sparse networks is similar to that in the anti-conflict school
dataset from Paluck et al. [25]. (right) The largest connected component of the Caltech Facebook network, with 762 nodes, from
a single day snapshot in September 2005, taken from the facebook100 dataset [38, 39]. Networks were plotted with the ggnet2
function [40] in the GGally package, using the default Fruchterman-Reingold force-directed layout [41]. We should not be sur-
prised if methods for handling interference that might work well in the collection of networks on the left, such as exposure
modeling and graph clustering, do not work so well in the network on the right.

Such experimental designs also face practical hurdles. Though cluster randomized controlled trials are
commonly used in science and medicine, existing experimentation platform infrastructure in some organi-
zations may only exist for standard (i. i. d.) randomized experiments, in which case adapting the design and
analysis pipelines for graph cluster randomization would require significant ad hoc engineering effort. In
regimes of only mild interference, it may simply not be worth the trouble to run a clustered or two-stage
experiment, especially if there is no way to know a priori how much bias from interference will be present.
Instead, the practitioner would prefer to have a data-adaptive debiasingmechanism that can be applied to an
experiment that has already been run. Ideally, such estimators provide robustness to deviations from SUTVA
yet do not sacrifice too much in precision loss if it turns out interference was weak or non-existent.
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Towards an agnostic regression approach
We can take advantage of the fact that the global treatment effect estimand, as opposed to a peer or spillover
effect estimand, can be defined agnostically without regard to any exposure model. The exposure model
used, therefore, matters only insofar as it informs the corresponding estimator used. An appropriate expo-
sure model is one that leads to estimates of the global treatment effect that are approximately unbiased,
even if it is not the exposure model corresponding to the true data-generating process. This agnostic perspec-
tive gives us hope because of the decoupling between data generation and estimation: We can believe in a
complex interference pattern without having to use the corresponding intractable exposure model for esti-
mation.

Our approach is motivated by the rich literature on regression adjustment estimators in the non-
interference setting. In randomized controlled trials, regressionadjustments areused to adjust for imbalances
due to randomized assignment of the empirical covariate distributions of different treatment groups, and
thus improve precision of treatment effect estimators. In the observational studies setting, regression adjust-
ments are used to adjust for inherent differences between the covariate distributions of different treatment
groups. We heavily borrow tools from that literature, both in the classical regime of using low-dimensional,
linear regression estimators [42, 43, 44, 45] andmore recent advancements that can utilize high-dimensional
regression and machine learning techniques [46, 47, 48, 49, 50]. This recent literature adopts the agnos-
tic perspective that properties of least squares and machine learning estimators can be utilized without
assuming the parametric model itself.

This paper contains two main contributions: (a) a regression adjustment strategy for debiasing global
treatment effect estimators, and (b) a class of bootstrapping and resampling methods for constructing vari-
ance estimates of such estimators.We explore howwell the analysis side of an experiment can be improved in
independently-assigned (non-clustered) experiments. Our approach can be loosely motivated by the linear-
in-means (LIM) family of models from the econometrics literature [51]. In a simple version of this model, an
individual’s outcome is said to depend on the average of her peer’s exogenous features. If this is true, then the
peer average feature “statistic” can be adjusted for when estimating the global treatment effect, even if the
linear-in-means model itself does not hold. We note that much of the linear-in-means literature focuses on
the identifiability of various peer effect parameters within the LIM model [52]; our goal instead is estimation
of the agnostic global effect.

Generally, our strategy is to learn a statistical model that captures the relationship between the outcomes
and a set of unit-level statistics constructed from the treatment vector and the observed network. These statis-
tics can be viewed as features or adjustment variables, and are to be constructed by the practitioner using
domain knowledge. The model is then used to predict the unobserved potential outcomes of each unit un-
der the counterfactual scenarios if the unit had been assigned to global treatment, and global control. The
approach is thus reminiscent of regression adjustment estimators and off-policy evaluation. Figure 2 demon-
strates how feature distributions differ between the observed design distribution and the unobserved global
counterfactual distributions of interest.

In Section 3 we present estimators in the context of a generative linear model and in Section 4 we discuss
the non-linear analog. Even though the results in this paper are presented within the context of a genera-
tive model, they still make progress towards a fully agnostic solution. First, the models considered here are
considerably more flexible, and more easily extended, than exposure models (which are also assumed to be
generative). Second, the assumptions on the errors can be relaxed and we show via simulation experiments
(Section 5) that these linear methods can work well in more general contexts. The non-linear context, which
allows the use of arbitrary machine learning estimators, also moves closer to a fully agnostic approach by al-
lowing a nonparametric generativemodel. Third, by connecting these results to analogous ones in the SUTVA
case we lay the foundation for how to think about an agnostic approach, which is not possible using pure
exposure modeling methods. Indeed, agnostic perspectives have emerged only recently even in the SUTVA
setting [42, 43, 44]. This paper, therefore, can be viewed as a conceptual stepping stone between existing
methods that assume exposure models are generative, and future work that would establish a fully agnostic
presentation.
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Figure 2: (left) Distributions for fraction of treated neighbors d−1i ∑j∈Ni
Wj . (right) Distributions for number of treated neighbors

∑j∈Ni
Wj . Feature distributions are under global exposure to controlW = 0 (orange), global exposure to treatmentW = 1 (green),

and a single observed treatment instance from an iid Bernoulli(0.5) distribution (blue). Network is the Caltech social graph from
the facebook100 dataset [38, 39]. If the response is correlated with one or both of these features, then ideas from off-policy
evaluation of the counterfactual outcomes can guide estimation of the global treatment effect. Even if the distributions are quite
different, as in the left hand picture, if the response can be modeled by low dimensional model then extrapolation may not be
too unreasonable.

It is shown in this paper that an assumption of exogeneity is required, even though the treatment is ran-
domized. Suchanassumption canbe likened to anunconfoundedness, ignorability, or selection onobservables
assumption. A curious feature of randomized experiments under interference, then, is that they display char-
acteristics of observational studies as well. It is helpful to think of estimators used in SUTVA observational
studies that require the estimation of both a propensity model and a response model. (Doubly-robust estima-
tors allowmisspecification of one but not both of these models.) In a randomized experiment under interfer-
ence the propensity model is fully known and does not need to be estimated; however, the response can be
affected by confounding variables. In randomized experiments under interference, then, researchersmust be
wary of the same challenges that beset drawing causal conclusions from observational datasets, even though
the treatments were assigned randomly. The exogeneity assumption is not generally verifiable from the data
but is necessary in order to make any progress. Ideally, one has access to methods for conducting sensitivity
analyses for interference, but such methods are in their infancy and we refrain from addressing this issue
here.

Our estimators have several advantages over existing exposure modeling estimators. The correct speci-
fication of an exposure model is also a form of exogeneity assumption, yet our approach admits much more
flexible formsof interference. It canhandlemultiple types of graph features,whichdonot evenhave to be con-
structed from the same network. Adjusting for interference becomes a feature engineering problem in which
the practitioner is free to use his or her domain knowledge to construct appropriate features. If a feature turns
out to be noninformative for interference, no additional bias is incurred (though a penalty in variance may
be paid). Our adjustment framework also reduces to the standard, SUTVA regression adjustment setup in the
event that static, baseline characteristics are used.

Finally, we propose methods for quantifying the variance of the proposed estimators. Variance estima-
tion in the presence of interference is generally difficult because of the complicated dependencies created
by the propagation of interference over the network structure. Confidence intervals based on asymptotic ap-
proximations may not be reliable since the dependencies can drastically reduce the effective sample size. For
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example, the variance of the sample mean of the features may not even scale at a n−1 rate, where n is the
sample size. In this paper we propose a novel way of taking advantage of the randomization distribution to
produce bootstrap standard errors, assuming unconfoundedness. Since the features are constructed by the
researcher from the vector of treatments, and the distribution of treatments is known completely in a ran-
domized experiment, we can calculate via Monte Carlo simulation the sampling distribution of any function
of the designmatrix under the randomization distribution. This approach ensures that we properly represent
all of the dependencies exhibited empirically by the data, and can then be used to construct standard errors.

The remainder of this paper is structured as follows. In Section 2 we describe the problem and motivate
our approach with an informal discussion of a linear-in-means model. In Section 3 we develop the main
results for linear regression estimators and in Section 4 we show how to extend this to the non-linear setting.
In Section 5 we conduct simulation experiments, in Section 6 we consider an application to an existing field
experiment, and in Section 7 we conclude. All proofs are in the appendix.

2 Setup and estimation in LIM models
Wework within the potential outcomes framework, or Rubin causal model [2, 53]. Consider a population of n
units indexed on the set [n] = {1, . . . , n} and letW = (W1, . . . ,Wn) ∈ W = {0, 1}n be a random vector of binary
treatments. We will work only with treatments assigned according to a Bernoulli randomized experimental
design:

Assumption 1. Wi
iid∼ Bernoulli(π) for every unit i ∈ [n], where π ∈ (0, 1) is the treatment assignment probability.

Thegeneral spirit of our approach can likely be extended tomore complicateddesigns, but our goal in this
paper is to show that substantial analysis-side improvements can be made even under the simplest possible
experimental design.

Suppose that each response lives in an outcome spaceY, and is determined by amean function μi :W →
Y:

Yi = Yi(W) = μi(W) + εi (1)

In this section we limit ourselves to an informal discussion of point estimation and defer the question of
variance estimation to a future section. The only assumption we require on the residuals, therefore, is an
assumption of strict exogeneity:

E[εi|W1, . . . ,Wn] = 0.

In particular, no independence or other assumptions about the correlational structure of the residuals are
made in this section, though such assumptions will be necessary for variance estimation, which we address
in Section 3.

Because the units are assumed to belong to a network structure, distinguishing between finite population
and infinite superpopulation setups is not so straightforward. In the SUTVA setting, good estimators for finite
population estimands (or conditional average treatment effects) are usually good estimators for superpopu-
lation estimands, and vice versa [54]. In order to simplify the analysis, we do not work with a fixed potential
outcomes Yi(w) for w ∈ W, and allow the residuals εi to be random variables. We therefore consider addi-
tional variation of the potential outcomes coming from repetitions of the experiment, but we do not consider
the units to be sampled from a larger population. We do this because it is easier to discuss the behavior of εi
when they are random variables. This perspective is related to the intrinsic nondeterminism perspective dis-
cussed by Pearl [55] on page 220, as well as the idea of stochastic counterfactuals discussed previously in the
literature [56, 57, 58, 59].

In this paper we focus on estimation of the total or global average treatment effect (GATE), defined by

τ = 1
n

n
∑
i=1
[E[Yi(1)] − E[Yi(0)]]. (2)
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This parameter is called a global treatment effect because is a contrast of average outcomes between the cases
when the units are globally exposed to treatment (W = 1) and globally exposed to control (W = 0).

Under an assumption of strict exogeneity, in which E[εi|W] = 0, the treatment effect is the difference of
average global exposure means

τ = 1
n

n
∑
i=1
[μi(1) − μi(0)] ,

In order to proceed, we must make assumptions about the structure of the mean function μi.

2.1 A simple linear-in-means model

To illustrate our approach we start with a simple model. Let G be a network with adjacency matrix A. For
simplicity in this paper we will mostly assume that G is simple and undirected, but one can just as easily use
a weighted and directed graph. We emphasize that we assume G is completely known to the researcher. Let
Ni = {j ∈ [n] : Aij = 1} be the neighborhood of unit i and di = |Ni| be the network degree of unit i. Define

Xi =
1
di
∑
j∈Ni

Wj, (3)

the fraction of neighbors of i that are in the treatment group. Then take the mean function μi in equation (1)
to be as follows.

Model 1 (Exogenous LIM model).

μi(W) = α + γWi + δXi.

This model is a simple version of a linear-in-means model [51]. The model contains an intercept α as well
as a direct effect γ, which captures the strength of individual i’s response to changes in its own treatment as-
signment. Additionally, the response of unit i is correlated with mean treatment assignment of its neighbors;
Manski [51] calls δ an exogenous social effect, because it captures the correlation of unit i’s response with the
exogenous characteristics of its neighbors. The interactions are also assumed to be “anonymous” in that the
unit i responds only to the mean neighborhood treatment assignment and not the identities of those treated
neighbors. In this model, unit i responds to its neighbors’ treatments but not to its neighbors’ outcomes. Un-
der Model 1, the variable Xi is the mechanism by which interference affects the outcome and thus can be
viewed as playing a similar role as baseline characteristics or pretreatment covariates in an observational
study. However, in this paper we shall use the term statistic or feature rather than covariate to refer to Xi, in
order to remind the reader that Xi does not represent a baseline characteristic.

Now consider the estimand (2) under Model 1. If all units are globally exposed to treatment then it is the
case for all units i thatWi = 1 and Xi = 1. Therefore

1
n

n
∑
i=1

μi(1) = α + γ + δ.

Similarly, if all units are globally exposed to control, thenWi = 0 and Xi = 0, and so

1
n

n
∑
i=1

μi(0) = α.

Therefore, the treatment effect under Model 1 is simply

τ = (α + γ + δ) − α = γ + δ.
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This parametrization suggests that if we have access to unbiased estimators γ̂ and δ̂ for γ and δ, then an
unbiased estimate for τ is given by

τ̂ = γ̂ + δ̂.

In particular, one is tempted to estimate γ and δwith an OLS regression of Yi onWi and Xi. Of course, using τ̂
as an estimator for τ only makes sense if Model 1 accurately represents the true data generating process. We
build up more flexible models in the following sections.

In contrast, we can easily see why the difference-in-means estimator, defined for sample sizes N1 =
∑ni=1Wi and N0 = ∑

n
i=1(1 −Wi) as

τ̂DM =
1
N1

n
∑
i=1

WiYi −
1
N0

n
∑
i=1
(1 −Wi)Yi, (4)

is biased under Model 1. The mean treated response is

E[Yi|Wi = 1] = α + γ + δE[Xi|Wi = 1] = α + γ + δE[Xi],

where Xi is independent ofWi since the treatments are assigned independently and there are no self-loops in
G. Similarly,

E[Yi|Wi = 0] = α + δE[Xi|Wi = 0] = α + δE[Xi].

Therefore, the difference-in-means estimator τ̂DM has expectation γ, which need not equal τ = γ+δ in general.
Only if δ = 0 do they coincide, in which case SUTVA holds and there is no interference. In other words, the
difference-in-means estimatormarginalizes out the indirect effect rather thanadjusting for it; it is anunbiased
estimator not for the GATE but for the expected average treatment effect (EATE), defined as

1
n

n
∑
i=1
[E[Yi|Wi = 1] − E[Yi|Wi = 0]].

The EATE was introduced in Sävje et al. [60] as a natural object of study for estimators which are designed
for the SUTVA setting. Sävje et al. [60], Chin [61] study the limiting behavior of estimators such as τ̂DM under
mild regimes of misspecification of SUTVA due to interference.

2.2 Linear-in-means with endogenous effects

Now we move to the more interesting version of the linear-in-means model, which contains an endogenous
social effect in addition to an exogenous one. Let

Zi =
1
di
∑
j∈Ni

Yj, (5)

the average value of the neighboring responses. Now consider the following model:

Model 2(a) (LIM with endogenous social effect).

μi(W) = α + βZi + γWi + δXi.

In addition to direct and exogenous spillover effects, unit i now depends on the outcomes of its neighbors
through the spillover effect β. It is conventional and reasonable to assume that |β| < 1. Model 2(a) is often
more realistic than Model 1; as discussed in the introduction, we often believe that interference is caused by
individuals reacting to their peers’ behaviors rather than to their peers’ treatment assignments.
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It is helpful to write Model 2(a) in vector-matrix form. Let G̃ be the weighted graph defined by degree-
normalizing the adjacency matrix of G; i. e., let G̃ be the graph corresponding to the adjacency matrix Ãwith
entries Ãij = d−1i Aij. Then the matrix representation of Model 2(a) is

Y = α + βÃY + γW + δÃW + ε, (6)

where Y ,W , and ε are the n-vectors of responses, treatment assignments, and residuals, respectively. Using
the matrix identity (I − βÃ)−1 = ∑∞k=0 β

kÃk, as in equation (6) of Bramoullé et al. [52], one obtains the reduced
form

Y = α
1 − β
+ γW + (γβ + δ)

∞
∑
k=0

βkÃk+1W +
∞
∑
k=0

βkÃkε.

Unlike Manski [51], Bramoullé et al. [52] and other works in the “reflection problem” literature, we are not
concerned with the identification of the social effect parameters β and δ; these are only nuisance parameters
toward the end of estimating τ. We do note, however, that conditions for identifiability are generally mild
enough to be satisfied by real-world networks. For example, [52] show that the parameters in Model 2(a) are
identified whenever there exist a triple of individuals who are not all pairwise friends with each other; such
a triple nearly certainly exists in any networks that we consider.

Now, let Xi,k be the i-th coordinate of ÃkW . That is,

Xi,1 =
1
di
∑
j∈Ni

Wj

Xi,2 =
1
di
∑
j∈Ni

1
dj
∑
k∈Nj

Wk

Xi,3 =
1
di
∑
j∈Ni

1
dj
∑
k∈Nj

1
dk
∑
ℓ∈Nk

Wℓ,

and in general, for any k ≥ 1,

Xi,k =
1
di
∑
j1∈Ni

1
dj1
∑

j2∈Nj1

. . .
1
djk
∑

jk−1∈Njk−1

Wjk .

Then Model 2(a) is the same as

Yi = α̃ + γ̃Wi +
∞
∑
k=0

β̃kXi,k + ε̃i, (7)

where we have reparametrized the coefficients as

α̃ = α
1 − β

γ̃ = γ

β̃k = (γβ + δ)β
k

ε̃ =
∞
∑
k=0

βkAkε.

Notice that equation (7) respects exogeneity, as

E[ε̃|W] =
∞
∑
k=0

βkAkE[ε|W] = 0.

Each feature Xi,k represents the effect of treatments from units of graph distance k on the response of unit i.
Since |β| < 1, the effects of the terms β̃kXi,k do not contribute much to equation (7) when k is large. Therefore,
for any finite integer K, we may consider approximating Model 2(a) with a finite-dimensional model.
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Model 2(b) (Finite linear-in-means).

Yi = α̃ + γ̃Wi +
K
∑
k=0

β̃kXi,k + ε̃i, (8)

The approximation error is of order β̃k+1 = (γβ + δ)βK+1 (recall that |β| < 1). Therefore, good estimates
of the coefficients in equation (8) should be good estimates of the coefficients in equation (7) as well. Unless
spillover effects are extremely large, the approximation may be quite good for even small values of K. In fact,
it may be reasonable to take equation (8) rather than equation (7) as the truth where K is no larger than the
diameter of the network G, as spillovers for larger distances may not make sense.

As in Model 1, we can consider the counterfactuals of interest. If all units are globally exposed to treat-
ment, thenWi = 1 and Xi,k = 1 for all i and k. Similarly, if all units are globally exposed to control, thenWi = 0
and Xi,k = 0 for all i and k. Therefore, by equation (7), the estimand τ under Model 2(a) is

τ = γ̃ +
∞
∑
k=0

β̃k ,

and under Model 2(b) it is

τ = γ̃ +
K
∑
k=0

β̃k .

Now, since Model 2(b) has only K + 3 coefficients, given n > K + 3 individuals one can estimate the
coefficients using, say, ordinary least squares. The treatment effect estimator

τ̂ = γ̂ +
K
∑
k=1

β̂k

is thenunbiased for τ underModel 2(b) and “approximately unbiased” for τ underModel 2(a). This discussion
is of course quite informal, and we make more formal arguments in Section 3.

One interpretation of the discussion in this section is that an endogeneous social effect in the linear-in-
means model manifests as a propogation of exogenous effects through the social network, with the strength
of the exogenous effect diminishing as the network distance increases. Therefore, adjusting for the exogenous
features within the first few neighborhoods is nearly equivalent to adjusting for the behavior implied by the
endogenous social effect.

2.3 Model assumptions and exposure models

The statements of themodels discussed in this section couple together an interferencemechanism restriction
with a functional form assumption. It is worth disentangling these assumptions and discussing why it may
be sometimes advantageous for the analyst to consider them jointly. First consider Model 1. It implies that
the interferencemechanism is restricted to influence from units only one step away in the graph, and further-
more, that this one-step influence is transmitted only through the statistic Xi. This interference mechanism
restriction can be framed in the language of constant treatment response (CTR) mappings [22]:

μi(w) = μi(w
�) for allw,w� ∈W such that wi = w

�
i , xi = x

�
i . (9)

The CTR statement (9) is equivalent to specifying an exposuremodel that the potential outcomes depend only
onW through Wi and Xi. However, it makes no assumptions about the functional form of μi(⋅), yet Model 1
goes further andmakes a strongparametric functional formassumption about the response. It is conceptually
useful to recognize the different meanings and implications of these assumptions.

One tempting approach, then, might be for an analyst to first consider verifying whether the exposure
model holds, using domain knowledge or otherwise. The analyst then separately proceeds to consider ap-
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propriate functional forms (and perhaps only if nonparametric estimators exhibit low power). This logic may
succeed for simple exposures of the form implied by Model 1 but can lead to issues for more complex data-
generating processes likely to be encountered in the real world.

This is made clear by the discussion of Models 2(a) and 2(b). By rewriting Model 2(a) as the infinite series
given by equation (7), we find that there is no data-reducing exposure model or CTR assumption that can
handle such endogenous social effects! This is discouraging unless the analyst jointly considers the paramet-
ric implications of an endogenous effect |β| < 1, which suggests a way forward via the finite approximation
Model 2(b). Even if the linearity in equation (8) is too strong, a natural relaxation might be a kind of general-
ized additive model of the form

Yi = α + γWi +
K
∑
k=0

f (k)g(Xi,k) + εi,

where g is arbitrary but f is restricted to be decreasing in k in order to ensure that spillovers decrease in graph
distance.

Furthermore, statisticians are well-versed in distinguishing and handling modeling violations of the
mean function (here, corresponding to the interference function form) and the covariance function (corre-
sponding to the interference restriction assumption), whereas statements like (9) may be a bit more abstruse
for the practicing statistician. The implications here are further clarified by the discussions in the following
sections as well as the simulation examples provided in Section 5.

3 Interference features and the general linear model

In Section 2, we showed that the mean function in the linear-in-means model is comprised of a linear combi-
nationof statisticsXi,k whichare constructed as functions of the treatment vector. This fact suggests extending
our approach to a linear model containing other functions of the treatment vector that are correlated with Yi,
not just the ones implied by the linear-in-means model. We now formulate the general linear model. We sup-
pose that each unit i is associatedwith a p-dimensional vector of interference features or interference statistics
Xi ∈ ℝp that inform the pattern of interference for unit i. We assume that the Xi are low-dimensional (p ≪ n).
Because Xi is to be used for adjustment, the main requirement is that it not be a “post-treatment variable”;
that is, that it not be correlated with the treatmentWi. Therefore, we require the following assumption:

Assumption 2. Xi ⊥⊥ Wi for all i ∈ [n].

This assumption essentially states thatXi is not post-treatment [62], in that it does not depend onWi. Note
that under non-Bernoulli (e. g. clustered or two-stage) designs, taking Xi to be something like the proportion
of treated neighbors would no longer satisfy Assumption 2, and would require more careful thought. In the
language of causal graphs, without Assumption 2 Xi could be a mediator betweenWi and Yi and adjustment
on Xi would thus lead to biased estimates. There is likely a more complete analysis that can be done regard-
ing possible causal graph structures [also cf. 15] and the implications for mediation analysis, collider bias,
M-bias, etc. under interference, which is outside the scope of the present study.

LetW−i denote the vector of indirect treatments, which is the n − 1 vector of all treatments except forWi.
The key feature of our approach is that even though Xi must be independent of Wi, it is not necessary that
Xi be independent of the vector of indirect treatments W−i. In fact, in order for Xi to be useful for adjusting
for interference, we expect that Xi will be correlated with some entries of W−i. In particular, Xi may be a
deterministic function xi(⋅) of the indirect treatments,

Xi = xi(W−i). (10)

Adjusting for such a variable Xi will not cause post-treatment adjustment bias as long as the entries ofW are
independent of each other. This holds automatically in a Bernoulli randomized design (Assumption 1).
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The features Xi may depend on static structural information about the units such as network information
provided byG, though sinceG is static we supress this dependence in the notation. For example,Xi defined as
in equation (3),which represents the proportion of treatedneighbors, captures a particular formof exogenous
social influence. Provided there are no self-loops in G so that Aii = 0,Wi does not appear on the right-hand
side of equation (3) and so Xi andWi are independent.

We assume that we can easily sample from the distribution of Xi. In particular, if Xi = xi(W−i), then
the distribution of Xi can be constructed by Monte Carlo sampling from the randomization distribution of
the treatment W. In this paper and in all the examples we use, we assume that Xi is a function of W−i as
in equation (10), so that conditioning onW−i removes all randomness in Xi. But the generalization is easily
handled.

In this section we assume that the response is linear in Xi; we address nonparametric response surfaces
in Section 4.

Model 3 (Linear model). Given Xi, let the response Yi follow

Yi = Wiμ
(1)(Xi) + (1 −Wi)μ

(0)(Xi) + εi,

where the conditional response surfaces

μ(0)(x) = E[Y (0)i |X = x], μ(1)(x) = E[Y (1)i |X = x]

satisfy

μ(0)(x) = β⊤0 x, μ(1)(x) = β⊤1 x

for x ∈ ℝp and β0, β1 ∈ ℝp. That is, they follow a “separate slopes” linear model in Xi. We assume p < n.

In the above parametrization, we assume that the first coordinate of each Xi is set to 1, so that the vectors
β0 and β1 contain coefficients corresponding to the intercept as in the classical OLS formulation.

3.1 Feature engineering

Before considering assumptions on the residuals εi, we pause here to emphasize the flexibility provided by
modeling the interference pattern as inModel 3. In this framework, the researcher can use domain knowledge
to construct graph features that are expected to contribute to interference. In essence, we have transformed
theproblemofdetermining the structure of the interferencepattern into a feature engineeringproblem,which
is perhaps a more intuitive and accessible task for the practitioner.

To elaborate, consider the problem of selecting an exposure model. Ugander et al. [31] propose and study
a number of different exposuremodels for targeting the global treatment effect, including fractional exposure
(based on the fraction of treated neighbors), absolute exposure (based on the raw number of treated neigh-
bors), and extensions based on the k-core structure of the network. In reality, itmay be the case that fractional
and absolute exposure both contribute partial effects of interference, so ideally one wishes to avoid having
to choose between one of the two exposure models. On the other hand, both features are easily included in
Model 3 by encoding both the fraction and raw number of treated neighbors in Xi. (Including both features
only makes sense when working with a complex network. If the interference structure is comprised of large,
disjoint, and equally-sized clusters, as in partial interference, then the fraction and number of treated neigh-
bors encode roughly the same information and one obtains a collinearity scenario that violates the full-rank
assumption of Proposition 1. The methods in this paper are primarily motivated by the complex network set-
ting.)

In a similar manner, the researcher may wish to handle longer-range interference, such as that coming
from two-step or greater neighborhoods. It is possible to handle two-step information by working with the
graph corresponding to the adjacency matrix A2, but this approach is unsatisfactory because presumably
one-step interference is stronger than two-step interference, and this distinction is lost by using A2. On the



A. Chin, Regression Adjustments for Estimating the Global Treatment Effect | 13

other hand, if one-step and two-step network information are encoded as separate features, both effects are
included and the magnitudes of their coefficients will reflect the strength of the corresponding interference
contributed by each feature.

Furthermore, nothing in our framework requires the variables to be constructed from a single network.
Often, the researcher has access to multiple networks defined on the same vertex set—i. e., a multilayer net-
work [63]—representing different types of interactions among the units. For example, social networking sites
such as Facebook and Twitter contain multiple friendship or follower networks based on the strength and
type of interpersonal relationship (e. g. family, colleagues, and acquaintances), as well as activity-based net-
works constructed from event data such as posts, tweets, likes, or comments. Often these networks are also
dynamic in time. Given the sociological phenomenon that the strength of a tie is an indicator of its capacity
for social influence [64] and that people use different mediums differently when communicating online [65],
any or all of these network layers can conceivably be a medium for interference in varying amounts depend-
ing on the treatment variable and outcomemetric in question. In our framework graph features fromdifferent
network layers are easily included in the model.

3.2 Exogeneity assumptions

Consider the following assumptions on the residuals.

Assumption 3. (a) The errors are strictly exogenous: E[εi|X1, . . . ,Xn] = 0 for all i ∈ [n].
(b) The errors are independent.
(c) The errors are homoscedastic: Var(εi|X1, . . . ,Xn) = σ2 for all i ∈ [n].

Assumption 3(a) captures the requirement that the features contain all of the information needed to ad-
just for the bias contributed by interference, and thus is similar to an unconfoundedness or ignorability as-
sumption often invoked in observational studies. Point estimates can be constructed based only on Assump-
tion 3(a), but variance estimation requires Assumption 3(b) so that each data point contributes additional in-
dependent information. Note that in the SUTVA case Assumption 3(a) is all that is needed for valid inference.
However under interference, it is possible that conditioning on the features removes all bias but interference
is still present in the errors, in which case i. i. d.-based standard errors would be incorrect. These assump-
tions cannot be verified from the data, and so this setup borrows all of the problems that come with selecting
an exposure model or being able to verify unconfoundedness. However, our setup is slightly different be-
cause of the flexibility afforded by the features. Compared to what we envision as the usual observational
studies setting, our features are constructed from the treatment vector and social network rather than being
collected in the wild, and so they are quite cheap to construct via feature engineering. That said, more work
for conducting sensitivity analysis for interference or spillover effects is certainly needed.

Assumption 3(c) is the easiest to deal with if violated. One may use a heteroscedisticity-consistent es-
timate of the covariance matrix, also known as the sandwich estimator or the Eicker-Huber-White estima-
tor [66, 67, 68]. In this paper we invoke Assumption 3(c) mainly to simplify notation, but heteroscedasticity-
robust extensions are straightforward.

For Xi following equation (10), denote

X(0)i = xi(W−i = 0), X(1)i = xi(W−i = 1).

The variable X(0)i represents the context for unit i under the counterfactual scenario that i is exposed to global
control, and the variableX(1)i represents the context for unit i under the counterfactual scenario that i exposed
to global treatment. Both of these values are non-deterministic.1 For example, if Xi be the “mean treated”
statistic as defined in equation (3), then X(0)i = 0 and X

(1)
i = 1 for every unit i ∈ [n].

1 In the event Xi are not defined through a function xi(⋅), one may work with X(0)i = Xi|(W−i = 0) and X
(1)
i = Xi|(W−i = 1), where

this notation means that X(0)i follows the conditional distribution of Xi, conditionally on the event thatW−i = 0, and similarly for
X(1)i . In this case X(0)i and X(1)i may be random, and estimands can be defined using E[X(0)i ] and E[X

(1)
i ] instead.
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We now consider the estimand under Model 3 and Assumption 3. The GATE for Model 3 is

τ = 1
n

n
∑
i=1
[E[Yi|W = 1] − E[Yi|W = 0]]

=
1
n

n
∑
i=1
[μ(1)(X(1)i ) − μ

(0)(X(0)i )]

=
1
n

n
∑
i=1
[(X(1)i )

⊤β1 − (X
(0)
i )
⊤β0] ,

where the second equality is by Assumption 3(a). Now introduce the quantities

ω0 =
1
n

n
∑
i=1

X(0)i , ω1 =
1
n

n
∑
i=1

X(1)i ,

which are the mean counterfactual feature values for global control and global treatment, averaged over the
population. We emphasize that ω0 and ω1 are non-deterministic and known, because the distribution of Xi
is assumed to be known. We then have

τ = ω⊤1 β1 − ω
⊤
0β0. (11)

Such an estimand, which focuses on the statistics of the finite population at hand, is natural in the network
setting where there is no clear superpopulation or larger network of interest.

We now construct an estimator by estimating the regression coefficients with ordinary least squares. For
w = 0, 1, let Xw be the Nw × p design matrix corresponding to features belonging to treatment groupw, where
the first column of Xw is a column of ones. Let yw be the Nw-vector of observed responses Yi for treatment
group w. Then we use the standard OLS estimator

β̂w = (X
⊤
wXw)
−1X⊤wyw . (12)

The estimate of the treatment effect is taken to be the difference inmean predicted outcomes under the global
treatment and control counterfactual distributions,

τ̂ = ω⊤1 β̂1 − ω
⊤
0 β̂0. (13)

Assuming Model 3 holds, τ̂ is an unbiased estimate of τ, which follows from unbiasedness of the OLS coeffi-
cients.

Proposition 1. SupposeModel 3 and Assumptions 1, 2, and 3(a) hold. Let τ and τ̂ be defined as in equations (11)
and (13), and let β̂w for w = 0, 1 be OLS estimators as defined in equation (12). Then conditionally on Xw being
full (column) rank,2 β̂w is an unbiased estimator of βw and τ̂ is an unbiased estimator of τ.

(Proofs for Proposition 1 and other results are deferred to the appendix.) Notice that the treatment group
predicted mean is

ω⊤1 β̂1 = ω
⊤
1 (X
⊤
1 X1)
−1X⊤1 y1

2 Since Xw is random and depends onW, conditioning on Xw having full column rank is necessary, even though this condition
may not be fulfilled for all realizations of the treatment vector. For example, if Xw contains a column for the fraction of neighbors
treated, then it is possible though highly unlikely for all units to be assigned to treatment, in which case this column is collinear
with the intercept and Xw is not full rank. We shall, for the most part, ignore this technicality and assume that the features are
chosen so that the event that X⊤wXw is singular doesn’t happen very often, and is in fact negligible asymptotically. Understanding
combinations of network structures and interference mechanisms that give rise to singular Xw is of interest to practitioners but
outside the scope of our study here.
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and the control group predicted mean is

ω⊤0 β̂0 = ω
⊤
0 (X
⊤
0 X0)
−1X⊤0 y0.

Therefore τ̂ is linear in the observed response vector y. That is, τ = a⊤0 y0 + a
⊤
1 y1 where the weight vectors

a0 ∈ ℝN0 and a1 ∈ ℝN1 are given by

a⊤0 = ω
⊤
0 (X
⊤
0 X0)
−1X⊤0 (14)

a⊤1 = ω
⊤
1 (X
⊤
1 X1)
−1X⊤1 . (15)

These weights allow us to compare the reweighting strategy with that of other linear estimators, such as the
Hájek estimator, which is a particular weighted mean of y. More details are provided in Section 5.1, with an
example given in Section 5.3.

3.3 Inference

Nowwe provide variance expressions under the assumption that the errors are exogenous, independent, and
homoscedastic, as in Assumption 3.

Theorem 1. Suppose Model 3 and Assumptions 1, 2, and 3 hold. Then

Var(τ̂) = σ2(‖ω0‖
2
Γ0 + ‖ω1‖

2
Γ1 ), (16)

where ‖v‖2M = v⊤Mv, and Γw = E[(X⊤wXw)
−1], and ωw is the mean of the counterfactual feature distribution

(including an intercept) for w = 0, 1.

3.3.1 Variance estimation

In order to estimate the variance (16), wemust estimate the quantities Γ0 = E[(X⊤0 X0)
−1] and Γ1 = E[(X⊤1 X1)

−1],
which are the expected inverse sample covariance matrices. Of course, (X⊤0 X0)

−1 and (X⊤1 X1)
−1 are observed

andunbiased estimators. However, unlike standard baseline characteristics collected in thewild,we envision
that the Xi are constructed from the graph G and the treatment vectorW, and so we can take advantage of the
fact that the distribution of Xi is completely known to the researcher. It is thus possible to compute Γ0 and
Γ1 up to arbitrary precision by repeated Monte Carlo sampling from the randomization distribution ofW. For
clarity, this estimation procedure is illustrated in Algorithm 1.

Finally, we can estimate σ2 in the usual way, with the residual mean squared error

σ̂2 = 1
n

n
∑
i=1
(Yi −Wi(β̂

⊤
1 Xi) − (1 −Wi)(β̂

⊤
0Xi))

2
.

Equipped with σ̂2 and Monte Carlo estimates Γ̂w, we can use the variance estimate

V̂ar(τ̂) = σ̂2 (‖ω0‖
2
Γ̂0
+ ‖ω1‖

2
Γ̂1
) . (17)

3.4 Asymptotic results

Proposition 1 and Theorem 1 characterize the finite n expectation and variance of the treatment effect estima-
tor under Model 4. Establishing an asymptotic result is more nuanced, as because of the dependence among
units implied by interference, the quantities E[(X⊤0 X0)

−1] and E[(X⊤1 X1)
−1]may not be O(n−1) in which case τ̂

would not converge at a√n rate. This is a problemwith dealing with interference in general, making compar-
isons to the semiparametric efficiency bound [69], a standard benchmark in the SUTVA case, difficult in this
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Algorithm 1 Estimating Γ0 and Γ1 by Monte Carlo
for b = 1:B do
Sample treatmentWb ∈W and compute corresponding features Xb,i and sample sizes Nb,0 and Nb,1
Calculate sample covariances

(X̃⊤0 X̃0)b ←
1

Nb,0

n
∑
i=1
(1 −Wb,i)Xb,iX

⊤
b,i

(X̃⊤1 X̃1)b ←
1

Nb,1

n
∑
i=1

Wb,iXb,iX
⊤
b,i

end for
return Moment estimates

Γ̂w ← Ê[(X̃⊤w X̃w)
−1] =

1
B

B
∑
b=1
(X̃⊤w X̃w)

−1
b

for w = 0, 1.

setting. However we can state a √n central limit theorem in the event that the sample mean and covariance
do scale and converge appropriately. To do so, we implicitly assume existence of a sequence of populations
indexed by their size n, and that the parameters associated with each population setup, such as β0, β1, π,
and σ2, converge to appropriate limits. Such an asymptotic regime is the standard for results of this sort [cf.
42, 43, 44, 60, 61, 70, 71]. We suppress the index on n to avoid notational clutter.

So that we can compare to previous works, it is helpful to reparametrize the linear regression setup so
that the intercept and slope coefficients are written separately. That is, let Xi and ωw be redefined to exclude
the intercept, and let βw = (αw , ηw) so that the mean functions are written μ(w)(x) = αw + η⊤wx, where αw is the
intercept parameter and ηw is the vector of slope coefficients. Then the GATE is

τ = (α1 + ω
⊤
1 η1) − (α0 + ω

⊤
0η0).

Denote the within-group sample averages by

ȳ1 =
1
N1

n
∑
i=1

WiYi, ȳ0 =
1
N0

n
∑
i=1
(1 −Wi)Yi

and

X̄0 =
1
N1

n
∑
i=1

WiXi, X̄0 =
1
N0

n
∑
i=1
(1 −Wi)Xi.

Since the intercept is determined by α̂w = ȳw − X̄⊤w η̂w, the estimator τ̂, equation (13), is written as

τ̂ = (α̂1 + ω
⊤
1 η̂1) − (α̂0 + ω

⊤
0 η̂0).

= ȳ1 − ȳ0 + (ω1 − X̄1)
⊤η̂1 − (ω0 − X̄0)

⊤η̂0. (18)

Now, τ̂ is seen to be an adjustment of the difference-in-means estimator ȳ1 − ȳ0. The adjustment depends
on both the estimated strength of interference, η̂w, and the discrepancy between the means of the observed
distribution and the reference or target distribution, X̄w − ωw. This linear shift is a motif in the regression
adjustment literature, and is reminiscent of, e. g., equation (16) of Aronow and Middleton [72].

We now state a central limit theorem for τ̂.
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Theorem 2. Assume the setup of Theorem 1. Assume further that the sample moments converge in probability:

X̄ = 1
n

n
∑
i=1

Xi
p
→ μX ,

S = 1
n

n
∑
i=1
(Xi − X̄)

⊤(Xi − X̄)
p
→ ΣX ,

where ΣX is positive definite, and that all fourth moments are bounded. Then√n(τ̂ − τ)⇒ N(0,V), where

V = σ2( 1
π(1 − π)

+
‖ω0 − μX‖2Σ−1X

1 − π
+
‖ω1 − μX‖2Σ−1X

π
) . (19)

The terms in expression (19) are unpacked versions of the terms in expression (16), and can be stated in
this way since the feature moments converge at the appropriate rate.

3.5 Relationship with standard regression adjustments

The practitioner may also wish to perform standard regression adjustments to adjust for static, contextual
node-level variables such as age, gender, and other demographic variables. This fits easily into the framework
ofModel 4, as any such static variableXi can be viewed as simply a constant function of the indirect treatment
vectorW−i. Then the adjustment is not used to remove bias but simply to reduce variance by balancing the
featuredistributions. In this case the counterfactual (global exposure) distribution is the sameas theobserved
distribution, and in particular, ω0 = μX and ω1 = μX . Hence we see that Theorem 2 reduces to the standard
asymptotic result for regression adjustments using OLS.

Corollary 1. Assume the setup of Theorem 2. Suppose Xi is independent ofW−i. Then ω0 = μX and ω1 = μX and

√n(τ̂ − τ)⇒ N (0, σ2

π(1 − π)
) ,

This variance in Corollary 1 is the same asymptotic variance as in the standard regression adjustment
setup [cf. 47, Theorem 2]. In practice, if some components of Xi are static covariates and some are interfer-
ence variables, then the resulting variance will be decomposed into the components stated in Theorem 2 and
Corollary 1. Conditioning on both baseline covariates and interference features may in fact be necessary to
ensure that Assumption 3(a) holds. For example if Xi is the number of treated neighbors it may be believed
that the potential outcomes depend on node degree (in the graph G) as well.

4 Nonparametric adjustments

In this section we relax the linear model, Model 3:

Model 4 (Non-linear response surface). Let Yi follow

Yi = Wiμ
(1)(Xi) + (1 −Wi)μ

(0)(Xi) + εi,

with conditional mean response surfaces

μ(0)(x) = E[Y (0)i |X = x], μ(1)(x) = E[Y (1)i |X = x].

We make no parametric assumptions on the form of μ(0)(x) and μ(1)(x).
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Wemaintain Assumption 3, namely that SUTVA holds conditionally on X1, . . . ,Xn.
In the SUTVA setting, adjustment with OLS works best when the adjustment variables are highly cor-

related with the potential outcomes; that is, the precision improvement largely depends on the prediction
accuracy. This fact suggests that predicted outcomes obtained from an arbitrary machine learningmodel can
be used for adjustment, an idea formalized byWager et al. [47], Wu and Gagnon-Bartsch [48]. Based on ideas
from Aronow and Middleton [72], these papers propose using the estimator

1
n

n
∑
i=1
(μ̂(1)−i (Xi) − μ̂

(0)
−i (Xi)) +

1
N1

n
∑
i=1

Wi (Yi − μ̂
(1)
−i (Xi)) −

1
N0

n
∑
i=1
(1 −Wi) (Yi − μ̂

(0)
−i (Xi)) , (20)

where μ̂(0)−i and μ̂(1)−i are predictions of the potential outcomes obtained without using the i-th observation.
This doubly-robust style approach is called cross-estimation by Wager et al. [47] and the leave-one-out poten-
tial outcomes (LOOP) estimator by Wu and Gagnon-Bartsch [48] who focus on imputing the outcomes using
a version of leave-one-out cross validation. This estimator is also reminiscent of the double machine learn-
ing (DML) cross-fitting estimators developed for the observational study setting [50], which consists of the
following two-stage procedure: (a) train predictive machine learning models ê(⋅) of Xi onWi (the propensity
model) and m̂(⋅) of Xi on Yi (the response model), and then (b) use the out-of-sample residualsWi − ê(Xi) and
Yi − m̂(Xi) in a final stage regression. The difference in the experimental setting is that the propensity scores
are known and so no propensity model is needed. Wu and Gagnon-Bartsch [48] study the behavior of (20) in
the finite population setting where the only randomization comes from the treatment assignment, and Wa-
ger et al. [47] provide asymptotic results for estimating the population average treatment effect. As long as the
predicted value μ̂(w)−i does not use the i-th observation, estimator (20) allows us to obtain asymptotically un-
biased adjustments and valid inference using machine learning algorithms such as random forests or neural
networks. In practice, such predictions are obtained by a cross validation-style procedure in which the data
are split into K folds, and the predictions for each fold k are obtained using a model fitted on data from the
other K − 1 folds. (Cross validation on graphs is in general difficult [73, 74], but our procedure is unrelated to
that problem because the features are constructed from the entire graph and fixed beforehand.)

In this section we apply insights from the above works to the interference setting. Under Model 4, the
global average treatment effect has the form

τ = 1
n

n
∑
i=1
[μ(1)(X(1)i ) − μ

(0)(X(0)i )] .

To develop an estimator of τ, consider the form of the OLS estimator given by equation (18), which can be
rewritten as

τ̂ = ȳ1 − ȳ0 + (ω1 − X̄1)
⊤η̂1 − (ω0 − X̄0)

⊤η̂0
= ω⊤1 η̂1 − ω

⊤
0 η̂0 + (ȳ1 − X̄

⊤
1 η̂1) − (ȳ0 − X̄

⊤
0 η̂0)

=
1
n

n
∑
i=1
((X(1)i )

⊤η̂1 − (X
(0)
i )
⊤η̂0) +

1
N1

n
∑
i=1

Wi (Yi − X
⊤
i η̂1) −

1
N0

n
∑
i=1
(1 −Wi) (Yi − X

⊤
i η̂0) . (21)

Now, by analog, we define the estimator for the nonparametric setting as

τ̂ = 1
n

n
∑
i=1
(μ̂(1)−i (X

(1)
i ) − μ̂

(0)
−i (X
(0)
i )) +

1
N1

n
∑
i=1

Wi (Yi − μ̂
(1)
−i (Xi)) −

1
N0

n
∑
i=1
(1 −Wi) (Yi − μ̂

(0)
−i (Xi)) . (22)

One sees that equations (21) and (22) agree whenever μ̂(w)(x) = α̂w +x⊤η̂w. Furthermore, equation (22) is equal
to its SUTVA version, equation (20), whenever X(0)i = X

(1)
i = Xi.

Because the units can be arbitrarily connected, the cross-fitting component partitions are not immedi-
ately guaranteed to be exactly independent, and so any theoretical guarantees must assume some form of
approximate independence of the out-of-sample predictions. In this work we leave such theoretical results
open for future work; our primary contribution is the proposal of estimator (22) and a bootstrap variance
estimation method that respects the empirical structure of interference.
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4.1 Bootstrap variance estimation

Here we discuss a method for placing error bars on the estimate τ̂ defined in equation (22). We propose using
a bootstrap estimator to estimate the sampling variance. Under exogeneity (Assumption 3), the features and
residuals contribute orthogonally to the total variance, and so the model and residuals can be resampled
separately.

Instead of using the fixed, observed X1, . . .Xn as in a standard residual bootstrap, we propose capturing
the entire variance induced by the feature distribution by sampling a new Xi from its population distribution
for each bootstrap replicate. That is, for each of B bootstrap repetitions, we sample a new treatment vector
Wb and compute bootstrapped features Xb

i = xi(W
b
−i). Themeans are then computed using the fitted function

as μ̂(0)−i (X
b
i ) and μ̂

(1)
−i (X

b
i ). Provided that the adjustments are consistent in the sup norm sense, that is, that

sup
x
|μ̂(0)(x) − μ(0)(x)|

p
→ 0, sup

x
|μ̂(1)(x) − μ(1)(x)|

p
→ 0,

then μ̂(0)(⋅), μ̂(1)(⋅) serve as appropriate stand-ins for μ(0)(⋅), μ(1)(⋅) in large samples.
For the residual portion, we take the initial fitting functions μ̂(0)−i (⋅) and μ̂

(1)
−i (⋅) and compute the residuals

ε̂i = Yi −Wiμ̂
(1)
−i (Xi) − (1 −Wi)μ̂

(0)
−i (Xi).

Under an assumption of independent errors, it is appropriate to compute bootstrap residuals εb1 , . . . , ε
b
n by

sampling with replacement from the observed residuals ε̂1, . . . , ε̂n. We can then construct an artificial boot-
strap response

Yb
i = W

b
i μ̂
(1)
−i (X

b
i ) + (1 −W

b
i )μ̂
(0)
−i (X

b
i ) + ε

b
i .

We then compute τ̂b using data (Yb
i ,X

b
i ,W

b
i ), and then take the bootstrap distribution {τ̂

b}Bb=1 as an approxi-
mation to the true distribution of τ̂. To construct a 1 − α confidence interval, one can calculate the endpoints
using approximate Gaussian quantiles,

τ̂ ± zα/2√Var(τ̂b).

Alternatively, one may use the α/2 and 1 − α/2 quantiles of the empirical bootstrap distribution (a percentile
bootstrap), which is preferable if the distribution of τ̂ is skewed.

We wish to emphasize that the main insight here is that exogeneity allows the feature and residual vari-
ances to be handled separately, and that the feature variance can be computed from the design, however
complicated the structure of Xi itself may be. The bootstrap residuals εbi as described above rely on indepen-
dent errors, but in fact the practitioner is free to utilize the entirety of the rich bootstrap literature stemming
fromEfron [75] in the event that this independence assumption is violated. For example, onemayuse versions
of the block bootstrap [76] to try and protect against correlated errors. One can use more complicated boot-
strap methods to be more faithful to the empirical distribution, such as incorporating higher-order features
of the distribution via bias-corrected and accelerated (BCa) intervals [77], or handling heteroscedasticity via
the wild bootstrap [78].

5 Simulations

This section is devoted to running a number of simulation experiments. Our goals in these simulations are
to (a) verify that our adjustment estimators and variance estimates are behaving as intended, (b) compare
the performance of our proposed estimators to that of existing inverse propensity weighted estimators based
on exposure models, and (c) empirically explore the behavior of our estimators in regimes of mild model
misspecification.
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5.1 Simulation setup and review of exposure modeling

For the network Gwe use a subset of empirical social networks from the facebook100 dataset, an assortment
of complete online friendship networks for one hundred colleges and universities collected from a single-day
snapshot of Facebook in September 2005. A detailed analysis of the social structure of these networks was
given in Traud et al. [38, 39]. We use an empirical network rather than an instance of a random graph model
in order to replicate as closely as possible the structural characteristics observed in real-world networks. We
use the largest connected components of the Caltech and Stanford networks. Some summary statistics for the
networks are given in Table 1.

Table 1: Summary statistics for the facebook100 networks.

network Caltech Stanford

number of nodes 762 11586
number of edges 16651 568309
diameter 6 9
average pairwise distance 2.33 2.82

In all simulation regimes we compare our regression estimators to two other estimators, which we de-
scribe now. As a baseline we use the SUTVA difference-in-means estimator

τ̂DM =
1
N1

n
∑
i=1

WiYi −
1
N0

n
∑
i=1
(1 −Wi)Yi.

5.1.1 Exposure modeling IPW estimators

We also compare to an inverse propensity weighted estimator derived from a local neighborhood exposure
model. We now briefly describe the exposure model-based estimators framed in the language of constant
treatment response assumptions [22]. For Yi(w) = μi(w) + εi, this approach partitions the space of treatments
W into classes of treatments that map to the same mean response μi(⋅) for unit i. The partition function is
assumed known, and is called an exposure function. The no-interference portion of SUTVA can be specified
as an exposure model, since no-interference is equivalent to the requirement that μi(w1) = μi(w2) for any two
treatment vectors w1,w2 ∈ W in which the i-th components of w1 and w2 agree. Manski [22] refers to this
formulation as individualistic treatment response (ITR).

The exposure model most commonly used for local interference is the neighborhood treatment response
(NTR) assumption, which given a graph G, posits that μi(w1) = μi(w2) wheneverw1 andw2 agree in all com-
ponents j such that j ∈ Ni ∪ {i}. In other words, NTR assumes that Yi depends on unit i’s own treatment and
possibly any other unit in its neighborhood Ni, but that it does not respond to changes in the treatments of
any units outside of its immediate neighborhood. For the purposes of estimating the global treatment effect,
one may use fractional q-NTR, where given a threshold parameter q ∈ (0.5, 1], q-NTR assumes that a unit is
effectively in global treatment if at least a fraction q of its neighbors are assigned to treatment, and similarly
for global control. NTR is thus a graph analog of partial interference for groups and q-NTR is a correspond-
ing version of stratified interference. The threshold q is a tuning parameter; larger values of q result in less
bias due to interference, but greater variance because there are fewer units available for estimation. Eckles
et al. [30] provide some theoretical results for characterizing the amount of bias reduction. There is not much
guidance for selecting q to manage this bias-variance tradeoff; Eckles et al. [30] uses q = 0.75.
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Aronow and Samii [21] study the behavior of inverse propensity weighted (IPW) estimators based on a
well-specified exposure model. Toward this end, let

E(1)i = 1{
1
di
∑
j∈Ni

Wj ≥ q}

E(0)i = 1{
1
di
∑
j∈Ni

Wj ≤ 1 − q}

be the events that unit i is q-NTR exposed to global treatment and q-NTR exposed to global control, respec-
tively. Let their expectations be denoted by

π(1)i = E(E
(1)
i ), π(0)i = E(E

(0)
i ),

which represent the propensity scores for unit i being exposed to the global potential outcome conditions.
Then the inverse propensity weighted estimators under consideration are defined as

τ̂HT =
1
n

n
∑
i=1
[
E(1)i Yi
π(1)i
−
E(0)i Yi
π(0)i
]

τ̂Hájek = (
n
∑
i=1

E(1)i
π(1)i
)
−1 n
∑
i=1

E(1)i Yi
π(1)i
− (

n
∑
i=1

E(0)i
π(0)i
)
−1 n
∑
i=1

E(0)i Yi
π(0)i

(23)

The estimator τ̂HT is the Horvitz-Thompson estimator [79], and τ̂Hájek is the Hájek estimator [80]; these
names stem from the survey sampling literature and are commonly used in the interference literature. In the
importance sampling and off-policy evaluation literatures, analogs of τ̂HT and τ̂Hájek are known as unnor-
malized and self-normalized importance sampling estimators, respectively. In the finite potential outcomes
framework TheHorvitz-Thompson estimator is unbiased under the experimental design distribution, but suf-
fers from excessive variance when the probabilities of global exposure are small, as is usually the case. The
Hájek estimator, which forces the weights to sum to one and is thus interpretable as a difference of weighted
within-groupmeans, incurs a small amount of finite sample bias but is asymptotically unbiased, and is nearly
always preferable to τ̂HT. For our simulations we will therefore avoid using τ̂HT.

One of themain insights in the exposuremodeling framework developed byAronowand Samii [21] is that
even if the initial treatment assignment probabilityπ is constant across units, the global treatment propensity
scores need not be; indeed, π(1)i and π(0)i depend on the network structure and choice of exposure model.
Therefore inverse propensityweighting is needed to produce unbiased (or consistent) estimators for contrasts
between exposures even in a Bernoulli randomized design.

Given a design and a (simple enough) exposure model, the propensities can be calculated exactly. If
the treatments are assigned according to independent Bernoulli coin flips, the exact exposure probabilities
are expressed straightforwardly using the binomial distribution function. That is, for treatment probability
π = P(Wi = 1) and degree di, the probability of unit i being q-NTR exposed to global treatment is

π(1)i = π(1 − Fdi ,π(⌊diq⌋)), (24)

where

Fn,p(k) =
k
∑
j=0
(
n
j
)pj(1 − p)n−j

is the distribution function of a Binomial(n, p) random variable. Similarly, the probability that unit i is q-NTR
exposed to global control is

π(0)i = (1 − π)Fdi ,π(⌊di(1 − q)⌋). (25)
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In a cluster randomized design, exposure probabilities for fractional neighborhood exposure can be com-
puted using a dynamic program [31].

A further comment on the propensity scores π(1)i and π(0)i is necessary. Importantly, these propensity
scores are exact only to the extent to which the exposure model is correct. Thus, when the exposure model
is unknown, these propensities scores should be viewed as estimated propensities, in which case even small
estimation errors in the propensities can lead to large estimation errors in their inverses. It is therefore the
case that τ̂HT and τ̂Hájek can suffer from the same high-variance problems as IPW estimators based on a fitted
propensity model used in observational studies, even if the exposure model is only mildly misspecified.

In our simulations we use the Hájek estimator, τ̂Hájek, defined by equation (23) and the q-NTR exposure
probabilities (24) and (25). We fix q = 0.75, which is the same threshold used in Eckles et al. [30]. For the other
values of q that we tried, performance was roughly on par with or worse than q = 0.75.

5.2 Variance estimates in a linear model

We first run a basic simulation in which we compute estimates, variances and variance estimates in an ordi-
nary linear model. We consider two features,

X1,i =
1
di
∑
j∈Ni

Wj,

the proportion of treated neighbors, and

X2,i = ∑
j∈Ni

Wj,

the number of treated neighbors. It is conceivable that Yi may depend on both of these features. Let the data-
generating process for Yi be as in Model 3; that is, the mean function for Yi is linear in Xi = (X1,i,X2,i), given
parameters αw ∈ ℝ and βw = (βw,1, βw,2) ∈ ℝ2 for w = 0, 1. We simulate εi ∼ N(0, σ2).

Let d̄ = n−1∑ni=1 di be the average degree of G. Then the true global treatment effect is

α1 − α0 + β1,1 + d̄β1,2.

We fix α1 = 1 and α0 = 0, so that the direct effect is 1. We fix the noise variance at σ2 = 1. We vary the
“proportion” coordinate of β0 in {0,0.1}, the “number” coordinate of β0 in {0,0.01}, the “proportion” coordi-
nate of β1 in {0,0.2}, and the “number” coordinate of β1 in {0,0.05}, giving 16 total parameter configurations.
SUTVA holds when β0 = β1 = 0.

We use equation (17) to estimate the variance of the adjusted estimator, using 200 bootstrap samples
from the feature distribution to calculate the inverse covariance matrices. We also compute the difference-in-
means (DM) estimator for comparisonpurposes, forwhichweuse the standardNeymanconservative variance
estimate

S20
N0
+
S21
N1
,

where S20 and S
2
1 are the within-group sample variances. We compute confidence intervals based on Gaussian

quantiles for a 90% nominal coverage rate.
We then run 1000 simulated experiments, sampling a new treatment vectorW and computing the two

estimators each time. The results are shown in Table 2. The bias of the DM estimator increases with greater
departures from SUTVA, and confidence intervals for that estimator are only theoretically valid under SUTVA
(the first row in Table 2). Otherwise, the confidence intervals are anticonservative, both due to bias of the DM
estimator anddue to invalidity of theNeymanvariance estimate,which assumes fixedpotential outcomes. On
the other hand, the adjustment estimator is unbiased andhas valid coverage for all parameter configurations.
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Table 2: Results of the basic simulation setup from Section 5.2, showing bias, true standard error, ratio of estimated standard
error to true standard error, and coverage rate of 90% nominal Gaussian confidence interval. Coverage rates which fall within
a 99% one-sided interval of the nominal coverage rate (that is, coverage rates above 0.9 − 2.326√0.9 × 0.1/1000 ≈ 0.878) are
bolded.

Parameters Bias SE SE Ratio Coverage rate
β0 β1 τ DM adj DM adj DM adj DM adj

(0, 0) (0, 0) 1 0.007 −0.013 0.074 1.149 0.982 1.031 0.891 0.913
(0, 0.01) (0, 0) 1 −0.006 −0.028 0.072 1.189 1.004 0.996 0.899 0.901
(0.1, 0) (0, 0) 1 −0.053 0.027 0.072 1.151 1.004 1.029 0.808 0.919

(0.1, 0.01) (0, 0) 1 −0.052 0.017 0.074 1.155 0.973 1.025 0.801 0.906
(0, 0) (0, 0.05) 1.05 −0.025 0.005 0.073 1.211 0.990 0.976 0.866 0.882

(0, 0.01) (0, 0.05) 1.05 −0.026 0.005 0.070 1.173 1.036 1.010 0.894 0.909
(0.1, 0) (0, 0.05) 1.05 −0.075 0.058 0.075 1.232 0.960 0.961 0.707 0.884

(0.1, 0.01) (0, 0.05) 1.05 −0.078 −0.019 0.073 1.151 0.996 1.031 0.699 0.912
(0, 0) (0.2, 0) 1.2 −0.097 0.058 0.073 1.168 0.993 1.014 0.615 0.910

(0, 0.01) (0.2, 0) 1.2 −0.104 0.007 0.073 1.142 0.999 1.039 0.577 0.916
(0.1, 0) (0.2, 0) 1.2 −0.151 0.002 0.073 1.197 0.991 0.988 0.334 0.892

(0.1, 0.01) (0.2, 0) 1.2 −0.152 0.044 0.072 1.208 1.014 0.981 0.315 0.894
(0, 0) (0.2, 0.05) 1.25 −0.125 −0.054 0.072 1.154 1.003 1.025 0.476 0.908

(0, 0.01) (0.2, 0.05) 1.25 −0.130 −0.014 0.070 1.149 1.029 1.031 0.446 0.920
(0.1, 0) (0.2, 0.05) 1.25 −0.174 0.016 0.074 1.206 0.983 0.982 0.232 0.894

(0.1, 0.01) (0.2, 0.05) 1.25 −0.182 −0.014 0.074 1.172 0.985 1.012 0.194 0.903

5.3 Estimator weights

Both the OLS adjustment estimator and the Hájek estimator are linear reweighting estimators. The OLS
weights are given by equations (14) and (15), and the Hájek weights are implied by the definition of the Hájek
estimator in equation (23). Both depend on only the network structure, treatment assignment, and exposure
model or choice of features, but not on the realized outcome variable. The weights for a single Bernoulli(0.5)
draw of the treatment vector W for the Caltech graph are displayed in Figure 3, assuming that the Hájek
estimator is to be constructed under the q-NTR exposure condition for q = 0.75, and the OLS estimator uses
the fraction of treated neighbors as the only adjustment variable. We see that the Hájek estimator trusts a
few select observations to be representative of the global exposure conditions. A graph cluster randomized
designwould increase the number of units used in theHájek estimator. TheOLS estimator, on the other hand,
gives all units non-zero weight. Some units that are in the treatment group but are surrounded by control
individuals are treated as diagnostic for the control mean and vice versa, which is a reasonable thing to do if
the linear model is true.

5.4 Dynamic linear-in-means

Here we replicate portions of the simulation experiments conducted by Eckles et al. [30]. That paper uses a
discrete-time dynamic model, which can be viewed as a noisy best-response model [81], in which individu-
als observe and respond to the behaviors of their peers, using that information to guide their actions in the
following time period. Given responses Yi,t−1 for time period t − 1, let

Zi,t−1 =
1
di
∑
j∈Ni

Yi,t−1,

a time-varying version of Zi defined in equation (5), which represents the average behavior of unit i’s neigh-
bors at time t − 1. Then we model

Yi,t = α + βWi + γZi,t−1 + εi,t . (26)
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Figure 3: Estimator weights for the case where the only feature is the proportion of treated neighbors. (left) The Hájek estimator
selects a few individuals from treatment and control and takes a weighted average of those individuals with weights deter-
mined by exposure probabilities. Vertical dotted lines are the thresholds used for selecting observations. (right) The regression
estimator takes a more democratic approach, giving all units non-zero weight.

The noise is taken to be εi,t ∼ N(0, σ2), which is independent and homoscedastic across time and individuals.
Eckles et al. [30] add an additional thresholding step that transforms equation (26) into a probit model and
Y into a binary outcome variable, but here we study the non-thresholded case which is closer to the original
linear-in-means model specified by [51]. Starting from initial values Yi,0 = 0, the process is run up to a maxi-
mum time T and then the final outcomes are taken to be Yi = Yi,T . The choice of T, along with the strength of
the spillover effect γ, governs the amount of interference. If T is larger than the diameter of the graph, then
the interference pattern is fully dense, and no exposure model holds.

We construct two different adjustment variables. First, let

X1,i =
1
di
∑
j∈Ni

Wj,

the proportion of treated neighbors. Now let

N (2)i = {k ∈ [n] \ {i} : there exists j such that AijAjk = 1}

be the two-step neighborhood of unit i. Then define

X2,i =
1
|N (2)i |

∑
k∈N (2)i

AijAjkWk ,

the proportion of individuals belonging toN (2)i who are treated. (Note that unit i itself does not belong to its
own two-step neighborhood.)

We use a small-world network [82], which is the random graph model used in the simulations by Eckles
et al. [30], with n = 1000 vertices, initial neighborhood size 10, and rewiring probability 0.1. We also run our
simulation on the empirical Caltech network.

As in Eckles et al. [30], we compute the “true” global treatment effects by Monte Carlo simulation. For
every parameter configuration we sample 5000 instances of the response vector under global exposure to
treatment W = 1, and 5000 instances of the response vector under global exposure to control W = 0, and
then average the resulting difference in responsemeans. For the responsemodel, we fix the intercept at α = 0
and the direct effect at β = 1. We vary the spillover effect γ ∈ {0,0.25,0.5,0.75, 1} and the maximum number of
time steps T ∈ {2, 4}. Larger values of γ and T indicate more interference. We also use two different levels for
the noise standard deviation, σ ∈ {1, 3}.
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Figure 4: Results for linear-in-means simulation. dm is the difference-in-means estimator, hajek is the Hájek estimator, adj1 is
adjustment based on a one-step neighborhood, and adj2 is adjustment based on a two-step neighborhood.

We consider two versions of the linear adjustment estimator defined in equation (13), one that adjusts
for X1,i only, and one that adjusts for both X1,i and X2,i. The first model adjusts for one-step neighborhood
information, whereas the second model adjusts for both one- and two-step neighborhood information. We
compare to the difference-in-means estimator and the Hájek estimator with q = 0.75 fractional NTR exposure.

We emphasize that the all of the estimators that we consider are misspecified under the data generating
process that we use in this simulation. For T ≥ 2, local neighborhood exposure fails, so the propensity scores
used in the Hájek estimator do not align with the true propensity scores. Our adjustment estimators are also
misspecified for T ≥ 2; not only is the linear model misspecified, but the residuals are neither independent
nor exogenous, violating Assumption 3.

The results are displayed in Figure 4. We see that the two OLS adjustment estimators are uniformly bet-
ter at bias reduction than the Hájek estimator. The two-step adjustment is nearly unbiased even though it is
misspecified, even in the presence of strong spillover effects. This is because interference is dissipating expo-
nentially, so that units don’t really respond to the behavior of individuals that are distance 3 or 4 away. The
two-step adjustment has higher variance than the one-step adjustment because it involves fitting amore com-
plex model. Furthermore, estimators appear to have more trouble handling the real-world network structure
of the Caltech network, compared to the artificial small-world network.

The difference-in-means estimator outperforms the adjustment estimators in regimes of weak interfer-
ence, which is expected since difference-in-means is the best that can be done under correct specification
of SUTVA. In terms of RMSE the Hájek estimator sometimes outperforms the two-step adjustment estimator
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Figure 5: Coverage rates for 90% nominal interval.

because of large variance. However, if the main goal is robustness to interference, then unconfounded esti-
mation coupled with valid confidence intervals is likely the priority over optimizing an error metric such as
RMSE. In this case, since the Hájek estimator neither achieve sufficient bias reduction nor provide correct
coverage, it has no real advantage over the adjustment estimators.

Figure 5 displays the coverage rates obtain fromvariance estimates using equation (17) under thedynamic
treatment response setup. The coverage is not always correct due to misspecification, especially for adj1.
We see that coverage rates for adj2 are often conservative even though it too is misspecified. We note that
standard variance estimators for the difference-in-means estimator and those derived in [21] for the Hájek
estimator also would fail here because they rely on correct specification of SUTVA and an exposure model,
respectively. In short, we are plagued with the same difficulties that beset attempting to do valid inference in
observational studies when we do not know whether unconfoundedness holds.

5.5 Average + aggregate peer effects
In this example we consider a responsemodel in which individuals respond partially to the average behavior
of their peers and partially to the aggregate behavior of their peers. Let

Xfrac
i =

1
di
∑
j∈Ni

Wj

be the fraction of treated neighbors and

Xnum
i = ∑

j∈Ni

Wj

be the number of treated neighbors. Xfrac
i captures a notion of fractional neighborhood exposure and Xnum

i
captures a notion of absolute neighborhood exposure. It seems reasonable that both of these features may
contribute interference. In order to use an exposure model estimator one would need to focus on either frac-
tional exposure or absolute exposure, or otherwise define a more complicated exposure model, but our ad-
justments easily handle both features.

We consider the following response function:

Yi = −5 + 2(2 + Ei)Wi + 0.03X
frac
i +

1
1 + 0.001e−0.03(Xnum

i −300)
+

10
3 + e−8(Xfrac

i −0.4)
+ εi,

where Ei ∼ N(0, 2) introduces heterogeneity into the direct effect and εi ∼ N(0, 1) is homoscedastic noise.
This function captures a possible way inwhich individuals could respond nonlinearly to their peer exposures
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Figure 6: One draw of the features and response for the nonlinear setup. The left panel shows the relationship between the two
features, and the right two panels show the relationship of the response with each covariate. The horizontal axis for “number of
treated neighbors” (Xnumi ) is on a logarithmic scale. A local linear regression, for exploratory purposes, is plotted in blue.

throughXfrac
i andXnum

i . Figure 6plots a single drawof this response on individuals from the Stanfordnetwork.
The continuous response exhibits a logistic dependence on both features. We see that individuals with less
than half of their neighbors exposed to the treatment condition experience a steadily increasing peer effect as
the proportion of treated neighbors increases. For individuals withmore than half of their neighbors exposed
to the treatment condition, the effect is nearly constant across values of Xfrac

i , capturing the idea that after
a certain threshold observing additional peer exposures doesn’t add much. For Xnum

i , we see that a small
number of treated neighbors essentially contributes no interference, but once a large number of neighbors
are exposed to treatment this has a measurable impact on the response. We also see that there is a noticeable
bump around Xfrac

i = 0.5; this is because individuals with peers nearly equally assigned to the two groups
are more likely to have high degree. The model extends the idea of neighborhood exposure to capture the
intuition that having a high proportion of treated neighbors is evidence for being subject to interference, but
such evidence is stronger when the individual in question has many friends and not just one or two friends.
The true treatment effect is τ = 6.336, which was computed using 2000 Monte Carlo draws each of global
treatment and global control.

In our experience larger populations seem to be needed for fitting the more complex, nonlinear func-
tions, so we work with the Stanford network which has 11586 nodes. We predict the response surfaces using
a generalized additive model (GAM) [83], which is easy and fast to fit in R, but other methods such as local
regression or random forests could of course be used instead.We split the dataset intoK = 2 folds, andwithin
each fold, train a GAM separately in the treatment and control groups for a total of 4 fitted models. The mod-
els are then used to obtain predicted responses on the held-out fold. Standard errors were computed via the
bootstrap as described in Section 4.1, using 50 bootstrap replications.

We compare to the difference-in-means estimator, the Hájek estimator using a threshold of q = 0.75 on
theXfrac

i variable, and the OLS adjustment. The results are displayed in Table 3. The DMestimator exhibits the
most bias, as it does not adjust for any sort of interference. The Hájek estimator removes some bias, but be-
cause it is based on a fractional exposure model it is unable to respond to the effect of having a high treated
degree. Both the OLS and GAM estimators remove about 95% of the bias. The GAM adjustment does only
slightly better than OLS; for this setup what matters most is adjusting for both axes of the interference statis-
tic, and the added flexibility provided by the GAM does not seem to be crucial. We note also that average
bootstrapped standard error is 1.076 times greater than the true standard error, suggesting that confidence
intervals built on this standard error will have the approximately correct length.
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Table 3: Nonlinear simulation results. The bias column displays the absolute and relative bias from the truth τ = 6.336. The
SE column displays the true standard error over 200 simulation replications, and for the adjustment estimators we display in
parentheses the ratio of the estimated standard error to the true standard error.

estimator estimate absolute bias (%) SE (ratio)

DM −0.002 6.339 (100%) 0.077 (—)
Hájek 2.653 3.683 (58.1%) 1.601 (—)
OLS 6.683 0.347 (5.5%) 0.252 (0.942)
GAM 6.655 0.319 (5.0%) 0.246 (1.076)

6 Application to a farmer’s insurance experiment
In this section we apply our methods to a field experiment conducted on individuals in 185 villages in rural
China [27]. The purpose of the study was to quantify the network (spillover) effects of certain information
sessions for a farmer’s weather insurance product on the eventual adoption of that product. Though they
do not frame their approach explicitly in the language of exposure models as in [21], the estimands that are
implied by the regression coefficients in the models that they use in that paper can be thought of as contrasts
between exposures in an appropriately-defined exposuremodel. The authors did not consider estimating the
global treatment effect; our proposed methods essentially allow us to perform an off-policy analysis of that
estimand.

In the original field experiment, the researchers consider four treatment groups obtained by assigning
villagers to either a simple or intensive information session in one of two rounds that were held three days
apart. Here, for simplicity, we ignore the temporal distinction between the two rounds and consider a villager
to be treated if they were exposed to either of the two intensive sessions.3 The outcome variable is a binary
indicator for whether the villager decided to purchase weather insurance.

We drop all villagers that were missing information about the treatment or the response, as well as vil-
lages lacking network information. Though the study was conducted in separate villages (for the purpose of
administering the insurance information sessions), we combine all of the villagers into one large graphG. The
network has 4,382 nodes and 17,069 edges. Because some social connections exist across villages, the villages
do not partition exactly into separate connected components; our graphG has 36 connected components. The
summary statistics for the processed dataset are given in Table 4.

Table 4: Summary statistics for the [27] dataset.

number of nodes 4832
number of edges 17069
number (%) treated 2406 (49.8%)
average takeup (mean response) 44.6%

Now let Ni and N (2)i be the one- and two-step neighborhoods for unit i, as we have denoted previously.
We construct four variables from the graph: the fraction of units in Ni who are treated (frac1), the fraction
of units inN (2)i who are treated (frac2), the number of units inNi who are treated (num1), and the number of
units inN (2)i who are treated (num2). Figure 7 displays the scatterplot matrix for these four variables as well as
the response. As might be expected, these four variables are positively correlated with each other, and each
is (weakly) positively correlated with the response variable. This correlation with the response suggests that
these variables may be useful for adjustment.

3 According to Cai et al. [27] the treatment groups in the study are stratified by household size and farm size, but it is not clear
from the data if and how exactly this was done, so for simplicity we analyze the experiment as if it were an unstratified, Bernoulli
randomized experiment.
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Figure 7: Scatterplot matrix for the variables used in the Cai et al. [27] analysis.

Table 5: Estimates and standard errors for estimating the global treatment effect of intensive session on insurance adoption.

estimator estimate standard error

DM 0.0774 —
Hájek 1 (q = 0.75) 0.1630 —
Hájek 2 (q = 0.75) 0.1672 —
Linear 0.1218 0.0561
Logistic (5-fold) 0.1197 0.0559

We compute the OLS adjusted estimator as well as an adjustment estimator that used predictions
from a logistic regression with K = 5 folds. We construct standard errors using the variance estimator
given by equation (17) in the OLS case, and the parametric bootstrap variance estimator described in
Section 4.1 with 200 bootstrap replications for the logistic regression case. We compare to the difference-
in-means estimator and Hájek estimators based on thresholding on the frac1 and frac2 variables with
q = 0.75.

The estimates are displayed in Table 5. Considering the strong positive spillover effects discovered by Cai
et al. [27], the difference-in-means estimate of 0.0774 is likely to be an underestimate of the true global treat-
ment effect. The Hájek estimators produce estimates of 0.1630 (one-step fractional NTR) and 0.1672 (two-step
fractional NTR). Though we do not know the truth, it may make us nervous that these estimates are more
than twice the magnitude of the difference-in-means estimator, which if true would suggest that magnitude
of the spillover effect is larger than the magnitude of the direct effect. The true treatment effect likely falls in
between the estimates produced by difference-in-means and Hájek (though we have no way of knowing for
sure). The OLS (0.1218) and logistic regression estimates (0.1197) are similar to each other and both within
this range; an advantage they have over the Hájek estimators is that they incorporate information about the
raw number of treated neighbors. The standard error estimates of 0.0561 (linear regression adjustment) and
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0.0559 (logistic regression adjustment) are quite wide, suggesting some caution when interpreting this re-
sult.

Note that we have omitted computation of standard error estimates for the difference-in-means and Há-
jek estimators for several reasons. SUTVA and the neighborhood exposure conditions both likely fail to hold,
so it is unclear howwe should interpret such standard errors. Secondly, the conservative variance estimators
proposed for the Hájek estimator [cf. Sections 5, 7.2, 21] are themselves inverse propensity estimators relying
on small propensities, and consequently we found them to be quite unstable. For example, the variance es-
timate was often much greater than 1, which is the maximum possible variance of a [−1, 1]-valued random
variable. Of course, we also do not know if the exogeneity assumptions hold or if other variables should be
included. In the regression analyses conducted by Cai et al. [27], they also consider some other social network
measures including indicator variables for varyingnumbers of friends anddifferentiation between strong and
weak ties; a more sophisticated analysis here could include these features as well.

7 Discussion

Wepropose regression adjustments for interference in randomized experiments,which opens theworld of the
rich regression adjustment literature to the interference setting. We show in simulation experiments that the
adjustments can do well, and we show how to do inference under exogeneity/unconfoundedness assump-
tions. Our reanalysis of the Cai et al. [27] study shows that our approach can produce sensible estimates of
the global treatment effect on real data.

There is much work to do to ensure that this approach can be reliably used in practical settings. First, we
would like to extend themethods to handlemore complicated designs. In reality a combination of design-side
methods (graph clustering) and analysis-side methods (adjustment) could be the most effective approach.
It would also be useful to have a thorough understanding of the combinations of network structures and
experimental designs that correspond to the mathematical assumptions (exogeneity, full-rank design) listed
in this paper.

Secondly, it is necessary to formalize the placement of the methods discussed here within the agnostic
perspective to treatment effect estimation. This would clarify the exogeneity/unconfoundedness requirement
and better elucidate how interference causes a randomized experiment to behave in some ways like an ob-
servational study. However, such assumptions are not new, and also needed to employ both standard esti-
mators for observational studies in the SUTVA setting and exposure modeling estimators in the interference
setting.

This issue simply highlights the need for better methods that can detect interference; there are several
budding possibilities here. First, several works have proposed ways of doing sensitivity analysis for interfer-
ence. VanderWeele et al. [84] extend Robins et al. [85]-style sensitivity analysis to cover some of the interfer-
ence estimators studied in Hudgens and Halloran [8], and Egami [86] propose using an auxiliary network to
perform sensitivity analysis on estimates obtained using the primary network. But clearly more work in this
area is needed. Second, hypothesis tests for network or spillover effects of the type developed in [13, 87, 88],
could be informative if applied to the residuals of a fitted interference model. Finally, one can always use
more robust standard error constructions such as Eicker-Huber-White [66, 67, 68] standard errors for het-
eroscedasticity or cluster bootstrap methods for dependence, though if the network structure is such that
graph cluster randomization is unlikely to work well, then clustered bootstrap probably won’t work well
either. It is also possible that work based on dependency central limit theorems like the ones considered
in Chin [61] could be used to develop more robust variance calculations. Broadly, any of the above meth-
ods ideas can be applied to the residuals of an interference model. If the bulk of interference can be cap-
tured in the mean function, then it is perhaps easier to deal with the remaining interference in the residu-
als.
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Appendix A. Proofs for Section 3

A.1 Proof of Proposition 1

Proof. Let εw be theNw vector ofw-group residuals. As yw = Xwβw +εw, forw = 0, 1, conditionally on Xw being
full rank we have

E[β̂w] = E[(X
⊤
wXw)
−1X⊤wyw] = E[(X

⊤
wXw)
−1X⊤w (Xwβw + εw)] = βw + E[(X

⊤
wXw)
−1X⊤wεw].

Assumption 3(a) ensures that the second term is zero, and thus β̂w is unbiased for βw.
Unbiasedness of τ̂ then follows by linearity of expectation.

A.2 Proof of Theorem 1

Proof. We first calculate the variance of β̂w. By the law of total variance, we have

Var(β̂w) = Var[(X
⊤
wXw)
−1X⊤wyw]

= Var[(X⊤wXw)
−1X⊤wεw]

= E[(X⊤wXw)
−1X⊤w Var(εw|Xw)Xw(X

⊤
wXw)
−1] + Var[(X⊤wXw)

−1X⊤wE(εw|Xw)].

The second term is equal to zero by Assumption 3(a), and so by Assumption 3(b) and (c),

Var(β̂w) = σ
2E[(X⊤wXw)

−1].

The coefficient estimates of the two groups are uncorrelated because the residuals are uncorrelated. That
is,

Cov(β̂0, β̂1) = E[Cov(β̂0, β̂1|X)] + Cov(E[β̂0|X],E[β̂1|X])

= E[Cov((X⊤0 X0)
−1X⊤0 ε0, (X

⊤
1 X1)
−1X⊤1 ε1)] + 0

= 0.

Therefore,

Var(τ̂) = Var((ω1)
⊤β̂1 − (ω0)

⊤β̂0)

= σ2 ((ω0)
⊤E[(X⊤0 X0)

−1]ω0 + (ω1)
⊤E[(X⊤1 X1)

−1]ω1) ,

which produces the variance expression in equation (16).

A.3 Proof of Theorem 2

This lemma establishes some basic convergence results.

Lemma 1. Let X̄w and Sw denote the within-group sample means and covariances. Under Assumptions 1, 2, and
the assumptions in the statement of Theorem 2, the following statements hold for w = 0, 1.
(a) X̄w

p
→ μX .

(b) Sw
p
→ ΣX .

(c) η̂w
p
→ ηw.

(d) √nπ(X̄1 − μX)⇒ N(0, ΣX) and√n(1 − π)(X̄0 − μX)⇒ N(0, ΣX).
(e) √nπ(η̂1 − η1)⇒ N(0, σ2Σ−1X ) and√n(1 − π)(η̂0 − η0)⇒ N(0, σ2Σ−1X ).
(f) √n(ε̄1 − ε̄0)⇒ N (0, σ2

π(1−π)).
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Proof. (a) Because of Bernoulli random sampling it holds that

lim
n→∞

E[X̄1] = lim
n→∞

E[ 1
N1

n
∑
i=1

WiXi] = μX .

By conditioning on X we have

Var(X̄1) = E[Var(X̄1|X)] + Var[E(X̄1|X)].

For the first term, we have

E[Var(X̄1|X)] = E[Var(
1
nπ

n
∑
i=1

WiXi + rn)] ,

where

Var( 1
nπ

n
∑
i=1

WiXi) =
1 − π
n2π

n
∑
i=1

X2
i = Op(n

−1)

and

rn = (
1
N1
−

1
np
)

n
∑
i=1

WiXi = Op(n
−1)

since N1/n→ π in probability. For the second term, we have

Var[E(X̄1|X)] = Var(X̄)→ 0

since X̄ − μX = op(1). Therefore, we conclude Var(X̄1) → 0, and so consistency follows from Chebychev’s
inequality.
The result similarly holds for X̄0.

(b) This result is established in a similar manner to part (a), using the fact that

1
n

n
∑
i=1
(Xi − X̄)

⊤(Xi − X̄)
p
→ ΣX ,

and the fact that fourth moments are bounded.
(c) The convergence of η̂w to ηw follows conditionally on X from standard OLS theory. Then, letting

Sw =
1
n
(Xw − X̄w)

⊤(Xw − X̄w)

denote the sample covariance matrix, we find

Var(η̂) = Var[E[η̂w|X]] + E[Var[η̂w|X]]

= Var[ηw] +
σ2

n
E[S−1w ]→ 0.

Convergence in probability follows from Chebychev’s inequality.
(d) This result follows from Bernoulli sampling and the convergence of the finite populationmeans, X̄

p
→ μX .

(e) As in the proof of part (c), we write

η̂w =
1
n
S−1w (Xw − X̄w)

⊤(yw − ȳw).



A. Chin, Regression Adjustments for Estimating the Global Treatment Effect | 33

Since yw = Xwηw + εw, we can write

√n(η̂w − ηw) = √n [
1
n
S−1w (Xw − X̄w)

⊤(yw − ȳw) − ηw]

=
1
√n

S−1w (Xw − X̄w)
⊤(εw − ε̄w)

=
1
√n

Σ−1X (Xw − X̄w)
⊤(εw − ε̄w) + R,

where the remainder is

R = 1
√n
(S−1w − Σ

−1
X )(Xw − X̄w)

⊤(εw − ε̄w)

Since S−1w − Σ
−1
X = op(1) is implied by Sw

p
→ ΣX , and √n(Xw − X̄w)⊤ = Op(1) and √n(εw − ε̄w) = Op(1), the

remainder satisfies R = op(1).
Then√n(η̂w − ηw) is asymptotically Gaussian with mean zero and variance

lim
n→∞

Var( 1
√n

Σ−1X (Xw − X̄w)
⊤(εw − ε̄w)) = σ

2Σ−1X lim
n→∞

Var(Xw)Σ
−1
X .

Using the result of part (d), this variance equals σ2
π Σ
−1
X ΣXΣ−1X =

σ2
π Σ
−1
X when w = 1 and σ2

1−π Σ
−1
X when w = 0.

(f) From Assumption 3, ε̄1 is independent of ε̄0 with variances σ2/(nπ) and σ2/(n(1−π)), respectively. A stan-
dard central limit theorem shows that√n(ε̄1 − ε̄0) is asymptotically Gaussian with mean 0 and variance

σ2

π
+

σ2

1 − π
=

σ2

π(1 − π)
.

We now prove the main theorem.

Proof. We characterize the treatment effect estimator as

τ̂ − τ = ȳ1 − ȳ0 + (ω1 − X̄1)
⊤η̂1 − (ω0 − X̄0)

⊤η̂0 − (α1 − α0) − (ω
⊤
1 η1 − ω

⊤
0η0)

= ε̄1 − ε̄0 + (ω1 − X̄1)
⊤(η̂1 − η1) − (ω0 − X̄0)

⊤(η̂0 − η0),

which implies that

√n(τ̂ − τ) = √n(ε̄1 − ε̄0) +√n(ω1 − X̄1)
⊤(η̂1 − η1) −√n(ω0 − X̄0)

⊤(η̂0 − η0).

Now,

√n(ωw − X̄w)
⊤(η̂w − ηw) = √n(ωw − μw)

⊤(η̂w − ηw) +√n(μw − X̄w)
⊤(η̂w − ηw),

for w = 0, 1, where the second term is op(1) since X̄w
p
→ μX and η̂w

p
→ ηw following from parts (a) and (c) of

Lemma 1. Therefore,

√n(τ̂ − τ) = √n(ε̄1 − ε̄0) +√n(ω1 − μX)
⊤(η̂1 − η1) −√n(ω0 − μX)

⊤(η̂0 − η0) + op(1).

The three terms are uncorrelated, with

√n(ε̄1 − ε̄0)⇒ N (0, σ2

π(1 − π)
)

√n(ω1 − μX)
⊤(η̂1 − η1)⇒ N (0, σ

2

π
‖ω1 − μ‖

2
Σ−1X
)

√n(ω0 − μX)
⊤(η̂0 − η0)⇒ N (0, σ

2

1 − π
‖ω0 − μ‖

2
Σ−1X
) ,

established in parts (e) and (f) of Lemma 1. Combining the terms produces the variance expression in equa-
tion (19), and completes the proof.
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A.4 Proof of Corollary 1

Proof. If Xi is independent ofW−i, then

ω0 =
1
n

n
∑
i=1

E[Xi|W−i = 0] =
1
n

n
∑
i=1

E[Xi],

and so is equal to μX in the limit (with the understanding thatω0 is actually a sequence associated with each
finite population). The same holds true forω1. Then the result follows immediately from equation (19), as the
second and third terms are equal to zero.
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