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Abstract: A powerful tool for the analysis of nonrandomized observational studies has been the potential
outcomes model. Utilization of this framework allows analysts to estimate average treatment effects. This
article considers the situation in which high-dimensional covariates are present and revisits the standard as-
sumptions made in causal inference. We show that by employing a flexible Gaussian process framework, the
assumption of strict overlap leads to very restrictive assumptions about the distribution of covariates, results
for which can be characterized using classical results from Gaussian random measures as well as reproduc-
ing kernel Hilbert space theory. In addition, we propose a strategy for data-adaptive causal effect estimation
that does not rely on the strict overlap assumption. These findings reveal under a focused framework the
stringency that accompanies the use of the treatment positivity assumption in high-dimensional settings.

Keywords: Average causal effect, Covariate balance, Functional data, Machine learning, Positivity

1 Introduction

The availability of high-dimensional covariates in administrative databases and electronic health records
has led to increasing scientific focus on attempting to evaluate and develop methods for causal inference
with these data structures. There has been a concomitant focus in the statistics and econometrics literature
towards the use of machine learning-based methods for performing causal inference with high-dimensional
data (e. g., [1, 2, 3, 4, 5]).

In light of this work, it is worth revisiting the standard assumptions necessary for performing causal in-
ference in the potential outcomes framework of Rubin [6] andHolland [7]. A key assumption that is needed for
proper definition of a causal estimand is the unconfoundedness assumption, which states that the treatment
is independent of the potential outcomes conditional on confounders. Part of the interest in observational
studies with high-dimensional covariates is the belief that sufficiently rich sets of covariates will render the
unconfoundedness assumption more plausible.

Another assumption, which is the focus of the current paper, is the treatment positivity assumption,
which states that the probability of treatment given covariates is strictly between zero andone for values of the
covariate vectors. This is related to the notion of covariate/confounder overlap between the treatment groups.
This is taken virtually as a given in most causal analyses, but the emergence of clinical decision support sys-
tems, deterministic treatment rules and high-dimensional covariates raises the possibility of this assumption
being violated. A simple example of such a violation occurring is a situation in which treatment assignment
is made deterministically in a medical setting based on the patient presenting with certain risk factors and
comorbidities. In such a case, the treatment positivity assumption would be violated. More generally, Robins
and Ritov [8] have shown that for estimators of the average causal effect to potentially be semiparametrically
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efficient, the treatment positivity assumption has to be strengthened to the propensity score being uniformly
bounded away from zero and one.

Methods for performing causal inference with violations of treatment positivity have been limited in the
literature. Crump et al. [9] characterized its effects in a setting with limited numbers of covariates and devel-
oped a simple rule to exclude subjects based on the propensity score. The remaining subjects would be those
for whom there is sufficient covariate overlap by which one could make valid causal inference. Traskin and
Small [23] use classification and regression trees (CART) to model group labels derived from the Crump et al.
[9] definition of a study population with sufficient overlap to identify factors by which one can define a study
population forwhichone canmake causal inferences about. A recent proposal fromGhosh [10] suggests defin-
ing study populations based on the margin from machine learning algorithms. Another practical approach
is to delete observations with extreme propensities close to zero or one, which is known as propensity score
trimming. Note that these approaches all estimate a causal parameter that is effectively data-dependent; see
Ghosh [10] for further discussion.

In recentwork,D’Amour et al. [11] studied thenotionof strict overlap in thehigh-dimensional case andde-
scribed a concept termed strict covariate overlap. This represents one way of extending the treatment positiv-
ity assumption into the high-dimensional setting. For this situation, they showed that their covariate overlap
assumption implied a bound on the discrepancy between the joint distributions of confounders among the
treatment and control groups. The assumption thus places an immediate bound on the difference in joint
distributions between treatment and control population. In order to avoid such a restrictive assumption,
D’Amour et al. [11] suggested that one could make sparsity assumptions of several types. First, one could as-
sume sparsity at the level of the propensity score. Second, one could assume the existence of a latent variable
that renders treatment independent of the potential outcomes, much as in the standard unconfoundedness
assumption. Finally, one could assume the existence of a low-dimensional subspace such that confounders
are independent of the potential outcomes conditional on subspace.

Central to the notion of strict overlap is that of bounded likelihood ratio, results for which have been
developed by Rukhin [12, 13] and exploited by D’Amour et al. [11]. In the current paper, we study the overlap
phenomenonusingGaussian processes,which is related to but different fromwhatwas done inD’Amour et al.
[11]. In particular, wewill use the theory of randomprobabilitymeasures, and in particular, randomGaussian
measures [14, 15] to characterize implications of overlap. The line of research we use enjoys a long history
in statistical theory, dating back to the results on random measures based on Wiener processes developed
by Cameron and Martin [16, 17]. We show that by assuming a Gaussian process framework, the bounded
likelihood ratio result presented in D’Amour et al. [11] leads to an asymptotic implication of overlap that can
be characterized by equivalence and orthogonality of Gaussian measures. These results have been applied
to a variety of problems in statistics, including spatial statistics [18] and more recently, classification with
functional data [19, 20] The applications of these results to the causal inference setting are new.

Next, we show that for a specific Gaussian process model, a phase transition phenomenon exists with
respect to the overlap assumption that can be characterized in terms of the component eigenvalues and eigen-
functions. Thiswill entail the use of and summarizing results fromDelaigle andHall [19] andBerrendero et al.
[20]. The practical implication of these results are manifold:
1. For causal inference with high-dimensional covariates, the Gaussian process framework reveals that as-

suming treatment positivity is equivalent to assuming equivalence of the probability laws of the con-
founders given treatment groups;

2. If equivalence does not hold, then one has that the probability laws of the confounders given treatment
groups are orthogonal measures, which represents a complete violation of overlap;

3. We show how one can develop a causal effect estimation strategy that is less reliant on the covariate
overlap assumption. It extends the work of Ghosh [10] for estimating data-adaptive causal estimands
based on the margin.

The structure of this paper is as follows. In Section 2, we review the potential outcomes model, previous
work on covariate overlap as well as provide a review on Gaussian processes. The latter will prove useful in
the framework that we describe in Section 3. In Section 4, some practical implications for causal modelling
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approaches are provided, along with an extension of the strategy from Ghosh [10] to incorporate covariance
structures. Some discussion concludes the paper in the last section.

2 Background

2.1 Preliminaries and causal inference assumptions

In this paper, we will employ the potential outcomes framework of Rubin [6], Holland [7], which has been
widely used in causal modelling. Throughout, we denote the set {1, . . . , n} by [n]. We start by assuming an
underlying probability space (Ω, Σ,ℙ), and random variables Z : (Ω, Σ,ℙ) → (Z , ΣZ ), Y : (Ω, Σ,ℙ) → (Y , ΣY),
and T : (Ω, Σ,ℙ)→ (B, ΣB), where B := {0, 1}, and Z, Y are the confounder and response spaces, respectively.
The derived distribution of Z is defined as PZ := ℙ ∘ Z−1. We define PY and PT analogously. Y denotes the
response of interest and Z is a p-dimensional vector of confounders. T is a binary indicator of treatment
exposure, where T = 1 if treated and T = 0 if control. We denote their joint distribution by P, and assume the
observed data, represented as {(Yi, Zi,Ti)}i∈[n], is drawn from P. Note that, in this section, we will assume the
confounders are simply a finite-dimensional vector.

Let {Yi(0),Yi(1)} be the potential outcomes for subject i, i ∈ [n], whereYi(0) refers to the potential outcome
under control and Yi(1) to that under treatment. We further assume our observation Yi has the form Yi :=
Yi(Ti) = Yi(1)Ti + Yi(0)(1 − Ti), which is commonly referred to as the consistency assumption in the causal
inference literature.

In an observational study, the vector of covariates Z could be related to both the outcome and the treat-
ment assignment. Since both T and the potential outcomes {Y(0),Y(1)} are affected by Z, T ⊥ {Y(0),Y(1)}will
not hold. To enable causal inference in this scenario, we make the following further assumptions.
1. Strongly Ignorable Treatment Assumption (SITA): {Y(1),Y(0)} is independent of T given Z.
2. Stable Unit Treatment Value Assumption (SUTVA): The potential outcomes for subject i is statistically

independent of the potential outcomes for all subjects j ̸= i, for i, j ∈ [n].
3. Treatment Positivity Assumption (TP): PT|Z(T = 1|Z) > 0 for all values of Z.

Taking these assumptions in order, SITA means that by conditioning on Z, the observed outcomes can be
treated as if they come from a randomized complete block design. Rosenbaum and Rubin [21] show that if
SITA holds, then the treatment is independent of the potential outcomes given the propensity score, defined
as

e(Z) := PT|Z(T = 1|Z).

Robins and Ritov [8] uses the terminology ‘no unmeasured confounders’ in lieu of SITA. The TP assumption
was described in the Introduction and will be considered further in the next section.

In passing, we mention that the typical parameter of focus in causal analyses is the average causal effect
(ACE), defined as

ACE := E(Y(1) − Y(0)), (1)

where the expectation is taken with respect to the joint distribution of Yi(0) and Yi(1). The use of propensity
score modelling [21] in conjunction with outcome regression modelling leads to a variety of approaches to
average causal effect modelling, a comprehensive overview on the topic being Imbens and Rubin [22].

2.2 Review of previous work regarding treatment positivity and covariate overlap

We focus on the treatment positivity assumption and describe previous work in this area. Crump et al. [9]
noted the possibility that treatment positivity could be violated and instead defined a subpopulation causal
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effect using the propensity score. Let I(C) denote the indicator function for the event C. Define the region
A := {Z : c ≤ e(Z) ≤ 1 − c} for some c > 0. Note we suppress the explicit dependence of A on c. Crump et al.
[9] define the subpopulation average causal effect as

ACEA :=
∑ni=1 I({e(Zi) ∈ A}) (Yi(1) − Yi(0))
∑ni=1 I({e(Zi) ∈ A})

.

Note the dependence of ACEA on the region of the propensity scores that is in A. In practice, A must be
estimated from the data, and this is done by estimating the propensity score to obtain ê(Zi), i = 1, . . . , n. By
plugging in ê(Zi) instead of e(Zi) in the definitions of A and ACEA, we obtain Â and ÂCEA, respectively. We
finally employ ÂCEÂ as our final estimator. Based on the variability of the estimated subpopulation average
causal effect, Crump et al. [9] proposed an optimization criterion for determining an optimal cutoff value in
the definition of A and demonstrated under some mild assumptions that an optimal c∗ exists. The optimal
value depends only on the marginal distribution of the propensity scores.

Traskin and Small [23] developed a meta-approach for characterizing treatment positivity using classifi-
cation and regression trees [24]. In general, a tree classifier works as follows: beginning with a training data
set {(Zi,Ti)}i∈[n], drawn from the joint distribution of Z and T, a tree classifier repeatedly splits nodes based
on one of the covariates in Z, until it stops splitting by some stopping criteria (for example, the terminal node
only contains training data from one class). Each terminal node is then assigned a class label by the majority
of subjects that falls in that terminal node. Once a testing data point with a covariate vector Z is introduced,
the data point is run from the top of the tree until it reaches one of the terminal nodes. The prediction then
will be made by the class label of that terminal node. Compared to parametric algorithms, tree-based algo-
rithms have several advantages. There is no need to assume any parametric model for a tree; the algorithm
for its constructions only requires a criterion for splitting a node and a criterion for when to stop splitting
[24]. Traskin and Small [23] propose a modelling approach in which one develops a class label for subject i
depending on whether or not ê(Zi) ∈ Â, i ∈ [n]. Define Y∗i := I(ê(Zi) ∈ Â), i ∈ [n]. Traskin and Small [23] then
propose fitting a tree model for Y∗i on Zi to determine the covariates that explain being in the overlap set of
Crump et al. [9]. We term this a ‘meta-approach’ because the modeling is being based on a response variable
that is derived using the estimated propensity score.

On the theoretical front, Khan and Tamer [25] demonstrated that if the TP assumption is violated, then
irregularities regarding identification and inference about causal effects can occur. This has echoes in the
work of Robins and Ritov [8], who show that to have regular semiparametric estimators for average causal
effects in the high-dimensional case, the model classes for the propensity score and outcome models have
to be well-behaved. Thus, violations in standard overlap assumptions lead to irregularities in estimation and
inference. This was noted in Luo et al. [26], who found that by assuming a weaker covariate overlap assump-
tion, one could derive an estimator that exhibited super-efficiency (i.e, having an information bound that
is smaller than the classical semiparametric information bound for regular estimators). This phenomenon
also occurs in the collaborative targeted maximum likelihood estimator of van der Laan and Gruber [1]. The
problemwith superefficient estimators, as noted by D’Amour et al. [11], is that for model directions where the
relaxed assumptions do not hold, the estimators can have unbounded loss functions.

D’Amour et al. [11] consider the problem of covariate overlap in one high-dimensional setting. Define the
conditional probabilities Pℓ(Z) := PZ|T(Z|T = ℓ), ℓ ∈ B, and denote their Radon-Nikodym derivatives with
respect to PZ as fℓ := dPℓ/dPZ. Let α = PT(T = 1) and note PZ = αP1 + (1−α)P0. They note that the strict overlap
assumption:

η ≤ e(Z) ≤ 1 − η almost everywhere PZ (2)

for some η ∈ (0,0.5), is equivalent to the following bounded likelihood ratio assumption: for PZ-almost all
z ∈ Z:

η
1 − η
≤

α
1 − α

LR(z) ≤ 1 − η
η

(3)
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where LR(z) := f1(z)/f0(z) is the likelihood ratio of the treatment to the control populations. For the sake of
completeness,we provide a straightforward proof in the appendix, since nonewas given in the original paper.
We note assumption (3) is a bounded likelihood ratio assumption. This allows D’Amour et al. [11] to exploit
results from information theory [12, 13] to show that (3) imposes limits on the rate of growth of discriminatory
information between the joint distributions of confounders in the treatment and control populations. Inter-
estingly, these bounds are independent of p, the number of confounders. From an intuitive point of view, this
makes sense, for when the number of covariates increase, one would expect that the probability of random
classifiers to perfectly separate the data between the treatment and control populations would increase. This
proves problematic for the causal inference problem, as it leads to a violation of the TP assumption.

2.3 Review of Gaussian processes

We now consider the case where Z is a Gaussian process instead of a finite-dimensional Gaussian variable.
Y and T remain as in the previous section but now Z : (Ω, Σ,ℙ) → (Z(T ), ΣZ ) where Z(T ) is a suitable
function space on T . To simplify things we can assume these functions are real-valued. It will be more useful
to understand Z in the following way: write Z(ω, ⋅) for the elements of Z(T ), and define the maps πt(Z) :=
Z(⋅, t) ∀t ∈ T . Then, Zt := πt ∘ Z are functions from Ω to ℝ. Indeed, each of these functions is a random
variable if and only if Z is also a random variable. Indeed Z is fully determined by {Zt}t∈T and, furthermore,
its distribution is fully determined by the finite dimensional joint distributions {Zti }i∈n for all collections {ti}i∈n
and all n. When such distributions are all Gaussian, Z is a Gaussian process. If Zt is square-integrable for all
t ∈ T , we call Z a second-order process, throughout the paper we assume Z is second-order. Comprehensive
reviews of Gaussian processes can be found in Neveu [14] and Jansson [15].

2.3.1 Associated Hilbert space

For simplicity, we assume here that E(Zt) = 0 for all t ∈ T , although this assumption will be relaxed later in
the paper. Gaussian Processes can be characterized by their covariance function, given by

k(s, t) = Cov{Zs, Zt}, (s, t) ∈ T × T .

For a second-order Gaussian Process, the covariance function k will be a symmetric and positive definite
function on T × T . Well known results from functional analysis ensure each function k of such type is in
one-to-one correspondence to a Hilbert spaceHk with the following reproducing property:

⟨ f , k(⋅, t) ⟩Hk
= f (t), ∀f ∈ Ht .

In lieu of the reproducing property, We call Hk the reproducing kernel Hilbert space (RKHS) of k, and k the
reproducing kernel ofHk . For details see Berlinet and Thomas-Agnan [27], Aronszajn [28].

2.3.2 Equivalence of distributions

Definition. Twomeasures μ0 and μ1 defined on a probability space (X,X ) are said to bemutually singular (or
orthogonal), denoted by μ0 ⊥ μ1, if there exists a setA ∈ X such that μ0(A) = 0 and μ1(X\A) = 0. μ0 and μ1 are
said to be mutually equivalent (or equivalent), denoted by μ0 ∼ μ1, if for all A ∈ X , μ0(A) = 0⇔ μ1(A) = 0.

It is well-known from probability theory that two Gaussianmeasures defined on the samemeasure space
will either be orthogonal or equivalent [29, 30]. Assume μ to be a measure that dominates both μ0 and μ1
(e. g., μ = μ0 +μ1). Define dμ0/dμ and dμ1/dμ to be the Radon-Nikodym derivatives associated with μ0 and μ1,
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respectively. Furthermore, define

B := ∫√dμ1
dμ

dμ0
dμ

dμ

and

J := ∫(dμ0
dμ
−
dμ1
dμ
) log(dμ0/dμ

dμ1/dμ
) dμ.

Note that B is the Bhattacharya coefficient between two probability measures and J is the relative entropy.
Several authors have developed characterization results for orthogonality and equivalence of Gaussian mea-
sures in terms of B and J [29, 31, 32]. We summarize them here using Theorem 1 from Shepp [32].

Theorem 1 (Theorem 1 of Shepp [32]).
(a) μ0 ⊥ μ1 if and only if B = 0 or J =∞.
(b) μ0 ∼ μ1 if and only if B > 0 or J <∞.

If {μ(n)0 } and {μ
(n)
1 } are sequences of Gaussian measures with corresponding Bhattacharya and relative

entropy sequences {Bn} and {Jn} converging to B and J, then Theorem 1 suggests there are two asymptotic
scenarios for Gaussianmeasures as n approaches infinity. They are either asymptotically orthogonal (part (a))
or equivalent (part (b)).

While the Gaussian process assumption may seem restrictive at first glance, we note that they in fact
represent a very flexible class of probability models to fit to data. They have been widely used in Haran [33]
for spatial statistics, Kennedy and O’Hagan [34] for designs of computer experiments and by Williams and
Rasmussen [35] for machine learning.

3 Proposed framework

3.1 Overlap assumptions and Gaussian processes

As before, we represent the random measures for Z|T = 1 and Z|T = 0 by P1 and P0, respectively. We now
reconsider the assumptions of causal inference for Z a Gaussian process. The functional version of uncon-
foundedness can be given by

T ⊥ {Y(1),Y(0)}|FZ ,

where FZ := σ(Zt : t ∈ T ) denotes the smallest σ-algebra for which every Zt is measurable.
The assumption of SUTVA remains the same as described in Section 2. Finally, the treatment positivity

assumption can be written as

0 < P(T = 1|Z) < 1 almost everywhere PZ.

Analogously to (3) we define strict functional overlap to be

η
1 − η
<

α
1 − α

dP1/dP(z)
dP0/dP(z)

<
1 − η
η
, (4)

for almost-all z ∈ Z(T ) and for η ∈ (0, .5). This is analogous to the bounded likelihood ratio assumption of
D’Amour et al. [11].

Define {P(n)0 } and {P
(n)
1 } to be the restrictions of P0 and P1, respectively, to the smallest σ-algebra for which

{Z1, . . . , Zn} is measurable. Let the means be denoted as {m(n)0 } and {m
(n)
1 }. We have the following result:

Theorem 2. Assumption (4) implies that P0 ∼ P1.
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Proof. Using integration, one can show that

B(P(n)0 ,P
(n)
1 ) =

1
4
Ln +

1
8
D2
n,

where

Ln = 2 log |Λn| − log |Λ0n| − log |Λ1n|,

with Λjn denoting the covariance operator in n-dimensional space for group j (j = 0, 1) and Λn = (Λ0n +Λ1n)/2.
The term D2

n := (m
(n)
1 −m

(n)
0 )
�
Λ−1n (m

(n)
1 −m

(n)
0 ) represents the Mahalanobis distance in n-dimensional space.

By Theorem 3.2 of Rao and Varadarajan [31], we have that

B(P0,P1) = limn→∞
B(P(n)0 ,P

(n)
1 )

= lim
n→∞

1
4
Ln +

1
8
D2
n.

As noted in Rao and Varadarajan [31], Ln/4 represents the Hellinger distance between two zero-mean multi-
variate normal distributions, one with covariance Λ0n, the other with covariance Λ1n. Similarly, D2

n/8 is the
Hellinger distance between two n − dimensionalmultivariate normal distributions with meansm(n)0 andm(n)1
and common covariance Λn. Now, note that Ln and Dn are both greater than equal to zero for all n and are
increasing with n The assumption (4), which is a bounded likelihood ratio assumption implies that Ln and
D2
n are uniformly bounded away from zero and infinity for all n. Thus, their limits will also be greater than

zero so that B(P0,P1) > 0. We can thus use Theorem 1(b) to conclude equivalence. This concludes the proof
of Theorem 2.

Remark. Note that Theorems 1 and 2 apply to the situation where we assume that the joint distributions of
confounders are exactly assumed to be Gaussian processes. Thus, they represent exact results in a statistical
sense. However, in practice we could consider an alternate assumption like

η∗

1 − η∗
<

α∗

1 − α∗
dP(n)1 /dP

(n)(z)
dP(n)0 /dP(n)(z)

<
1 − η∗

η∗
, (5)

for all n, almost-all z ∈ Z(T ) and for η ∈ (0, .5). In (5), the superscript n refers to the size of the dataset, so we
are now in a situation where as n approaches infinity, we get to a Gaussian process in the limit. In this case,
we can modify the proof of Theorem 2 to show the following:

Corollary 1. Assume that (5) holds. Let {P(n)0 } and {P
(n)
1 } denote sequences of measures that converge weakly to

P0 and P1, respectively. Then as n→∞, P0 ∼ P1.

Examples for weak convergence of data-dependent probability measures converging to Gaussian pro-
cesses can be found in Billingsley [36].

3.2 Reinterpretation using RKHS theory and phase transition

Weshowed in Section 2.2 howaGaussian stochastic process can beused to define anRKHS. In this section,we
will assume that P0 and P1 represent the probability laws of Gaussian processes with mean functionsm0 and
m1, respectively, and shared covariance function k. We further assumem0 = 0 andm1, and k are continuous
in their respective domains. If T is compact, then k is a Mercer kernel and it admits an expansion of the form

k(s, t) =
∞

∑
j=1

cjψj(s)ψj(t), (6)
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where for j = 1, 2, . . ., {cj} and {ψj} denote the eigenvalues and eigenfunctions of the integral operator associ-
ated to k. For details on such operators, refer to Steinwart et al. [37]. Based on the decomposition (6), we can
decompose the signalm1 as

m1(t) =
∞

∑
j=1

ajψj(t).

Recently, Delaigle and Hall [19] and Berrendero et al. [20] have studied and developed this as a model
for classification with functional data. These authors referred to the problem as one of ‘near-perfect’ classifi-
cation of functional data. Of relevance is a quote by Delaigle and Hall [19]: ‘these (functional classification)
problems have unusual, and fascinating properties that set them apart from their finite-dimensional coun-
terparts. In particular, we show that in many quite standard settings, the performance of simple (linear) clas-
sifiers constructed from training samples becomes perfect as the sizes of the samples diverge....That property
never holds for finite-dimensional data, except in pathological cases.’

Delaigle and Hall [19] and Berrendero et al. [20] developed technical characterizations of the ‘near-
perfect’ classification phenomenon. In the context of our discussion, the work of Berrendero et al. [20] is
perhaps the most relevant. We have the following theorem.

Theorem 3.
(a) If (4) holds, then∑∞j=1 c

−1
j a2j <∞.

(b) If∑∞j=1 c
−1
j a2j =∞, then (4) cannot hold.

Proof. We first begin with the proof of Theorem 3a. By Theorem 2, if (4) holds, then P1 ∼ P0. By Theorem 5a
of Berrendero et al. [20], this is identical to

∞

∑
j=1

c−1j a2j <∞.

For the proof of Theorem 3b, by Theorem 4b of Berrendero et al. [20], ∑∞j=1 c
−1
j a2j = ∞ is identical to P1 ⊥

P0. Note that for probability measures P1 ⊥ P0 implies P0 and P1 are not mutually equivalent. Hence, by
contraposition of Theorem 2, Assumption (4) cannot hold.

Theorem 3 captures a certain type of phase transition in the functional covariate overlap behavior based
on the properties of the operator associated to k. In particular, the squared eigenvalues of the mean signal
divided by the eigenvalues for the kernel operator, characterize strict functional overlap. If strict functional
overlap holds, the summation converges (Theorem 3a), while divergence of the series (Theorem 3b) implies
strict functional overlap not holding. The results of Theorem 3 are usable in situationswherewe can derive an
explicit Mercer expansion for k in the form of (6). If the {ψn} represent a countably infinite set of orthonormal
basis functions, then {an} (n ≥ 0) corresponds to the spectrum of k, and if k in (6) is symmetric and positive
definite, then an ≥ 0 for all n. We now give some examples on the application of Theorem 3.

Example. Suppose we set k to be the Gaussian kernel in one dimension:

k(x, y) = exp{−(x − y)2/2σ2},

where x and y are scalars, σ2 represents a scale parameter. In Steinwart et al. [37], the authors show how to
represent the Gaussian kernel in the form (6), with

cn = √
2σ2n
n
, ψn(x) = x

n exp(−σ2x2).

By Theorem 3a, if (4) holds, then

∞

∑
j=1

c−1j a2j <∞.
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In addition, if
∞

∑
j=1

c−1j a2j =∞,

then (4) cannot hold. Noting that the summation will converge if c−1j a2j = j
−(1+ϵ) for some ϵ > 0, some algebra

yields that this is equivalent to

aj = σ
−j/2j−1/2(1/2+ϵ)

for j ≥ 0. Recalling the definition of aj, this places an immediate constraint on the mean functionm1(t).

4 Practical implications for causal inference
While the results presented so far have been of a relatively theoretical nature, one practical implication of
the results in Section 3 is that by assuming a particular Gaussian process with functionally structured covari-
ates, there is a strong tension and interplay between (a) maintaining a treatment positivity assumption and
(b) having the ability to compute causal effect estimators that are semiparametrically regular in the sense of
Robins and Ritov [8]. One common practice for causal effect estimation is the following strategy:
1. Fit a propensity score model for treatment given covariates;
2. Evaluate covariate balance between the treatment groups, taking into account the propensity scores. If

balance does not hold, modify step 1.
3. Estimate the causal effect of interest incorporating the propensity score.

If a propensity score model can perfectly predict treatment, then we are in a situation where there the treat-
ment positivity assumption is violated. Thus, for causal modelling to proceed, one would need stronger as-
sumptions to hold. For example, targeted learning approaches also fit a model for the potential outcomes,
and if that model is correctly specified, then this would overcome the issue of violation of treatment positiv-
ity.More fundamentally, the violations in overlap necessitate the use of data-adaptive causal effect estimation
approaches, which we describe in the next section.

4.1 Data-adaptive causal effect estimation

A recent innovation for attempting to relax some of the overlap assumptions is themargin-based approach of
Ghosh [10]. The intuitive idea of that work is to first identify the margin and then conditional on the margin,
develop causal effect estimation and inference procedures. This is related to, but different from, the finding
in D’Amour et al. [11] that a set of observations where propensity score model misclassifications occur (i. e.,
the predicted treatment assignment is not concordant with the observed treatment assignment) represent a
set of individuals which might be concordant with the treatment positivity assumption.

We consider the binary treatment scenario and recode treatment as −1 and 1 and use support vector ma-
chines (SVM; [38]) to fit a propensity score model for treatment. The objective of SVM is to find a hyperplane,
in an appropriate high-dimensional space, that maximizes the margin between the populations defined by
T = 1 andT = −1. One approach tomappingdata into a high-dimensional space is throughuse of the so-called
‘kernel trick’, which corresponds to using RKHS to define support vector machines. Using a loss function
framework, we can characterize the optimization problem as finding to f to minimize

n
∑
i=1
|1 − Tif (Zi)|+ + λ‖f ‖

2
K ,

where |a|+ = max(a,0), λ > 0 denotes a smoothing parameter and ‖f ‖K denotes the norm of a function f in an
RKHS with associated kernel K. At a high level, the approach being proposed here amounts to the following:



10 | D. Ghosh and E. Cruz Cortés, Gaussian processes and causal inference

1. Fit a support vector machine with kernel K to the data (Ti,Zi), i = 1, . . . , n;
2. Determine the observations that are in the margin; denote these asM;
3. Estimate the causal effect of interest using (Yi,Ti,Zi), i ∈M;

Extending the arguments of Theorem 1 inGhosh [10], themargin for nonlinear support vectormachines based
on a kernelK can be viewed as satisfying a functional version of relaxed covariate overlap. The relaxed covari-
ate overlap notion is detailedmore clearly in Ghosh [10] and as the name suggests, is meant to be a relaxation
of the standard covariate overlap assumption in causal inference.

4.2 Numerical example

As an example, we consider the SUPPORT study from Connors et al. [39], a version of which was previously
analyzed in Ghosh et al. [40]. The causal effect of interest is the effect of right heart catherization (RHC) on
30-day survival (dead/alive at 30 days). The dataset contains information on 5735 patients, 2184 of whom re-
ceived RHC. Note that the covariates are a mixture of continuous as well as discrete variables, so the assump-
tion of a Gaussian process for the data may not be terribly realistic. Determining the robustness of results to
this assumption is an important topic for future work.

We employed the implementation of support vector machines as available in the R e1071 package based
on the Gaussian kernel:

K(x, y) = exp(−‖x − y‖2/2σ2),

where x and y are p-dimensional vectors, and σ > 0 is a scale parameter. Out of the original 5735 subjects,
3663 are selected to be in the margin, and based on these subjects, the average causal effect is estimated to
be 0.049 with an associated standard error of 0.016, which yields a highly significant effect. Thus, the use of
RHC is associated with decreased probability of 30-day survival, or conversely, increased risk of death within
30 days. Because of the sensitivity of K to the choice of σ2, we performed sensitivity analyses in which we
varied σ2 and reran the analysis. In all instances, we found a positive average causal effect. This aligns with
the findings in Connors et al. [39].

We also used themethodology of Traskin and Small [23] to better understand how themargin population
was selected. The plot of the tree is given in Figure 1. Based on Figure 1, we find that all the subjects treated

Figure 1: Tree plot from modelling being in the margin as a function of the covariates in the SUPPORT study. The tree was pruned
using a cost-complexity parameter of 0.1.
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with right-heart catheterization are included in themargin. In addition, patients with higher APACHE scores,
which correlate with higher mortality, are much more likely to be included in the margin.

5 Discussion

In this article, we have studied the covariate overlap assumption using Gaussian processes. The results here
complement those in D’Amour et al. [11]. The way in which high-dimensional covariates are considered is dif-
ferent from that paper. There, they consider the situation of p, the number of confounders, approaching in-
finity. By contrast, here, we use a Gaussian randommeasure to represent a theoretically infinite-dimensional
confounder. An implication of the analysis here is that the treatment positivity assumption is not as innocu-
ous as it seems, which is similar to the conclusion reached by D’Amour et al. [11]. As noted by a reviewer,
while assuming exact Gaussian process models for the confounders given treatment groups is restrictive in
that it leads to a strict dichotomy of overlap versus not, we also described how one could view these results in
an asymptotic sense at the end of Section 3.1. Making the Gaussian process assumption allows one to math-
ematically characterize the interplay of the mean function with the covariance of the noise with respect to
overlap as provided in Theorem 3.

Another take-home message is that in high dimensions, there is an inherent tension between covari-
ate overlap and regular asymptotics for causal effect estimators. Virtually all proposals that are available for
causal effect estimation assume a strict covariate overlap assumption or equivalently, the propensity score
being bounded away from zero and one uniformly in the confounders. Letting n denote the sample size and
p the dimension of the confounders, this could be in a ‘large n, small p’ case (e. g., [41]) or in a ‘large p,
small n’ setup (e. g., [4]). The Gaussian process framework leads to themost extreme situation in a sense: one
either has full covariate overlap (i. e., equivalence) or completely disjoint covariate overlap (i. e., orthogonal-
ity). For the former situation, regular asymptotics for causal effect estimators holds trivially. Under the latter
situation of orthogonality, this effectively renders impossible the possibility of average causal effect estima-
tors achieving n1/2 convergence [8]. In their words, relaxing the assumption of strict covariate overlap in the
high-dimensional case allows for ‘pathological’ distributions to be considered as part of themodel class, and
these distributions have the possibility of leading to causal effect estimators with irregular behavior (e. g.,
superefficiency). The estimators in Luo et al. [26] and van der Laan and Gruber [1] fall into this class.

This article synthesized several results on Gaussian measures that have been in the literature over the
last 70 years. One of the main limitations of this article is that the types of covariates that are treated here as
being functional are indexed by a one-dimensional set (e. g., time). An example of biomedical data that could
be treated as functional in nature are longitudinal data in electronic medical records, but many covariates in
practice might not fit this structure. Understanding the robustness of the results presented in this paper to
violations of the Gaussian process assumption are beyond the scope of the current manuscript and a topic
for future research.

The paper addresses the issue of equivalence versus orthogonality with Gaussianmeasures for causal in-
ferenceproblems. Inpractice, it is difficult to verify if the strict overlap criteria in this article actually hold. This
suggests that approaches that can accommodate violations in strict overlap should be considered. Petersen
et al. [42] discussed possible violations of the treatment positivity assumption along with potential causes
and tools to evaluate their effects in terms of biases of causal effect estimates. Suggestions there include re-
stricting the space of treatments, redefining the causal estimand, and using alternative projection functions.
We have proposed redefining the estimand in Section 4.1. Furthering work in these areas will be necessary
in order to advance the use of these analytic approaches for causal effect estimation with high-dimensional
confounders. It would also be of interest to see if any of these results could be extended to non-Gaussian
processes.

The recent use of deep learning techniques for learning representations in causal inference has also been
proposed by Johansson et al. [43]. Extension of the results in Section 3 to the deep learning case would also
be of major interest. Dunlop et al. [44] have studied ‘deep’ Gaussian processes, which consist of a recursive
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definition for the Gaussian process based on a Markov chain. It would be of interest to extend equivalence
results to that setting as well.

Funding: This research is supported by a pilot grant from the Data Science to Patient Value (D2V) initiative
from the University of Colorado.

Appendix

Proof of Equation (3)

We will prove the right hand side inequality only, as the left hand side inequality is proven analogously. The
strict overlap assumption is: PT|Z(T = 1|Z) ≤ η almost everywhere PZ. Hence, by Bayes rule:

PZ|T(Z|T = 1)PT(T = 1)
PZ(Z)

≤ η,

or, using the notation around equation (3):

αP1(Z)
αP1(Z) + (1 − α)P0(Z)

≤ η â⇒

αP1(Z) ≤ η(αP1(Z) + (1 − α)P0(Z)) â⇒
αP1(Z)
(1 − α)P0(Z)

≤ η( αP1(Z)
(1 − α)P0(Z)

+ 1) â⇒

αP1(Z)
(1 − α)P0(Z)

(1 − η) ≤ η â⇒

αP1(Z)
(1 − α)P0(Z)

≤
η

1 − η
.

Notice that if a statement holds almost-everywhere PZ then it also holds almost-everywhere P0 and P1 since
these are absolutely continuous with respect to PZ.

Now, let b := 1−α
α

η
1−η . If P1(Z) ≤ bP0(Z), almost everywhere PZ, then f1(z) ≤ bf0(z) for PZ-almost all

z ∈ Z. Otherwise, assuming a set B with positive probability for which f1 > bf0, integrating over B yields
P1(Z ∈ B) > bP0(Z ∈ B), a contradiction.

Conversely, if f1(z) ≤ bf0(z) for PZ-almost all z ∈ Z, we just need to integrate to obtain P1(Z) ≤ bP0(Z)
almost everywhere PZ. Hence, P1 ≤ bP0 almost everywhere ⇐⇒ f1 ≤ bf0 almost everywhere.
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