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Abstract: Constraint-based causal discovery (CCD) algorithms require fast and accurate conditional indepen-
dence (CI) testing. The Kernel Conditional Independence Test (KCIT) is currently one of the most popular CI
tests in the non-parametric setting, but many investigators cannot use KCIT with large datasets because the
test scales at least quadratically with sample size. We therefore devise two relaxations called the Randomized
Conditional Independence Test (RCIT) and the Randomized conditional Correlation Test (RCoT) which both
approximate KCIT by utilizing random Fourier features. In practice, both of the proposed tests scale linearly
with sample size and return accurate p-values much faster than KCIT in the large sample size context. CCD
algorithms run with RCIT or RCoT also return graphs at least as accurate as the same algorithms run with
KCIT but with large reductions in run time.
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1 The problem

Constraint-based causal discovery (CCD) algorithms such as Peter-Clark (PC) and Fast Causal Inference (FCI)
infer causal relations from observational data by combining the results of many conditional independence
(CI) tests [1]. In practice, a CCD algorithm can easily request p-values from thousands of CI tests even with a
sparse underlying graph. Developing fast and accurate CI tests is therefore critical for maximizing the usabil-
ity of CCD algorithms across a wide variety of datasets.

Investigators have developed many fast parametric methods for testing CI. For example, we can use par-
tial correlation to test for CI under the assumption of Gaussian variables [2, 3]. We can also consider testing
for unconditional independence X 1 Y|Z = z for each constant value z when Z is discrete and P(Z = z) > 0.
The chi-squared test for instance utilizes this strategy when both X and Y are also discrete [4]. Another
permutation-based test generalizes the same strategy even when X and Y are not necessarily discrete [5].

Testing for Cl in the non-parametric setting generally demands a more sophisticated approach. One strat-
egy involves discretizing continuous conditioning variables Z as Z in some optimal fashion and assessing
unconditional independence VZ =z [6, 7]. Discretization however suffers severely from the curse of dimen-
sionality because consistency arguments demand smaller bins with increasing sample size, but the number
of cells in the associated contingency table increases exponentially with the conditioning set size. A second
method involves measuring the distance between estimates of the conditional densities f(X|Y, Z) and f(X|Z),
or their associated characteristic functions, by observing that f(X|Y,Z) = f(X|Z) when X 1L Y|Z [8, 9]. How-
ever, the power of these tests also deteriorates quickly with increases in the dimensionality of Z.

Article note: R implementation at github.com/ericstrobl/RCIT. We recommend that users install Microsoft R Open for fast matrix
computations.
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Several investigators have since proposed reproducing kernel-based CI tests in order to tame the curse of
dimensionality. Indeed, kernel-based methods in general are known for their strong empirical performance
in the high dimensional setting. The Kernel Conditional Independence Test (KCIT) for example assesses CI by
capitalizing on a characterization of CI in reproducing kernel Hilbert spaces (RKHSs; [10]). Intuitively, KCIT
works by testing for vanishing regression residuals among functions in RKHSs. Another kernel-based CI test
called the Permutation Conditional Independence Test (PCIT) reduces CI testing to two-sample kernel-based
testing via a carefully chosen permutation found at the solution of a convex optimization problem [11].

The aforementioned kernel-based CI tests unfortunately suffer from an important drawback: both tests
scale at least quadratically with sample size and therefore take too long to return a p-value in the large sample
size setting. In particular, KCIT’s bottleneck lies in the eigendecomposition as well as the inversion of large
kernel matrices [10], and PCIT must solve a linear program that scales cubicly with sample size in order to
obtain its required permutation [11]. As a general rule, it is difficult to develop exact kernel-based methods
which scale sub-quadratically with sample size, since the computation of kernel matrices themselves scales
at least quadratically.

Many investigators have nonetheless utilized random Fourier features in order to quickly approximate
kernel methods in linear time with respect to the number of Fourier features. For example, Lopez-Paz and
colleagues developed an unconditional independence test using statistics obtained from canonical corre-
lation analysis with random Fourier features [12]. Zhang and colleagues have also utilized random Fourier
features for unconditional independence testing but took a different approach by approximating the kernel
cross-covariance operator [13]. The authors further analyzed block and Nystrom-based kernel approxima-
tions to the unconditional independence testing problem. The authors ultimately concluded that the ran-
dom Fourier feature and the Nystrom-based approaches both outperformed the block-based approach on
average. Others have analyzed the use of random Fourier features for predictive modeling (e. g., [14, 15]) or
dimensionality reduction [16]. In practice, investigators have observed that methods which utilize random
Fourier features often scale linearly with sample size and achieve comparable accuracy to exact kernel meth-
ods [12, 13, 14, 15, 16].

In this paper, we also use random Fourier features to design two fast tests called the Randomized Condi-
tional Independence Test (RCIT) and the Randomized conditional Correlation Test (RCoT) which approximate
the solution of KCIT. Simulations show that RCIT, RCoT and KCIT have comparable accuracy, but both RCIT
and RCoT scale linearly with sample size in practice. As a result, RCIT and RCoT return p-values several or-
ders of magnitude faster than KCIT in the large sample size context. Moreover, experiments demonstrate that
the causal structures returned by CCD algorithms using either RCIT, RCoT or KCIT have nearly identical accu-
racy.

2 High-level summary

We now provide a high-level summary for investigators who simply wish to perform CCD with RCIT or RCoT.
We want to test whether we have X 1L Y|Z in a fast and accurate manner without resorting to parametric
assumptions. Previously, Zhang and colleagues introduced a non-parametric CI test called KCIT which can
test whether we have X 1L Y|Z in an accurate but not fast manner by analyzing the partial cross-covariance
(operator) using the kernel method [10]. Kernels however are expensive to compute because they scale at least
quadratically with sample size. Another line of work has fortunately shown that we can approximate kernels
by averaging over a variety of non-linear transformations called random Fourier features (e. g., [14, 15, 17]).
We therefore propose to approximate KCIT by utilizing random Fourier features, specifically by analyzing the
partial cross-covariance matrix of {X, Z} and Y (RCIT) or X and Y (RCoT) after subjecting the variable sets to
the non-linear transformations and then non-linearly regressing out the effect of Z. Simulations show that
RCIT and RCoT return p-values in a much shorter time frame while also matching or outperforming KCIT in
approximating the null distribution. RCoT in particular also returns the most accurate p-values when the
conditioning set size Z is large (> 4).
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3 Preliminaries on kernels

We will deal with kernels in this paper, so we briefly review the corresponding theory; see [18] for a more ex-
tensive discussion of similar concepts. Capital letters X, Y, Z denote sets of random variables with codomains
X, Y, Z, respectively. Let 1 5 correspond to a Hilbert space of functions mapping X to R. We say that # y is
more specifically a reproducing kernel Hilbert space, if the Dirac delta operator §, : H, — R (which maps
f € Hy tof(x) € R) is a bounded linear functional [19]. We can associate H , with a unique positive defi-
nite kernel kyy : X x X — R in which the feature map ¢(x) : X — H , satisfies the reproducing property
{, (],’)(X))HX = f(x), Vf € Hy, Vx € X by the Moore-Aronszajn Theorem. We will require that # ,- be sepa-
rable (i. e., it must have a complete orthonormal system) throughout this paper [18]. Hein and Bousquet [20]
showed that any continuous kernel on a separable space X (e.g., R?) induces a separable RKHS. We will
likewise consider other kernels such as k;, on the separable space ).
We have the following norm defined on linear operators between RKHSs:

Definition. [21] Denote by X : 1y +— H., a linear operator. Then, provided that the sum converges, the Hilbert
Schmidt (HS) norm of X is defined as:
1Z0Es = > (i Zv))3.,» (1)
ij
where u; and v; are orthonormal bases of H, and H ., respectively.

We denote the probability distribution of X as Py and that of Y as Py. We may then define the mean
elements E[¢p(X)] = uy € " and E[(Y)] = uy € H,, with respect to the probability distributions; here, ¢
denotes the feature map from &’ to # y, and ) likewise denotes the feature map from ) to #,,. We also define
the quantity || FX"%—LX by applying the expectation twice:

||Hx||%.¢x = IEXX'[<¢(X))¢(XI)>HX] = ]Exx’ [k)((X>X,)]) (2)

where X' is an independent copy of X which follows the same distribution. The mean elements uy and uy
exist so long as their respective norms in # y or H,, are bounded; this is true so long as the kernels k, and
ky, are also bounded so that Exx [k (X,X")] < co and Eyy:[ky, (Y, Y")] < oo [18].

The cross-covariance operator associated with the joint probability distribution Pyy over (X, Y) is a linear
operator Zyy : Hy, + Hy defined as follows:

(> nyg>HX = ]Exy[f(X)g(Y)] - ]Ex[f(X)]lEy[g(Y)]) 3

forall f € 7y and g € H,,. Gretton etal. [18] showed that the HS-norm of the cross covariance operator,
||2Xy||12qs, can be written in terms of kernels as follows:

||ny||i15 = Exyryy [kx (X,X’)ky(Y> Y, (4)

provided thatX 11 Y, and k as well as ky, are centered (i. e., Exy: [k (X, X)] = 0 and Eyy [k, (Y, Y')] = 0). We
can therefore consider the following empirical estimate of the ||ZXY||§{S using ni.i. d. samples x, y as follows,
if we assume that X 1L Y [10, 18]:

Ty = iz ZZ [Kx1;(Kyl; = %tr[KXKY]’ (5)

i=1j=1

where Txy LA ||ZXY||§,S [18]; the dependent case can be found in Lemma 1 of the same paper for the interested
reader. The notations Ky and Ky correspond to centralized kernel matrices such that:

Ky = HKyH, (6)
and likewise for Ky. Here,H =1 - %IIT, I denotes an n x n identity matrix, and 1 denotes a vector of ones. The
notation Ky denotes a kernel matrix such as the RBF kernel where [KX]U. = exp( M) with x;, x; € x. The
transformation in Equation 6 ensures that % Yin Xk [Kx1;j = O similar to the centered kernels k and ky, in
Equation 4.
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4 Characterizations of conditional independence

We denote the probability distribution of X as Py and the joint probability distribution of (X, Z) as Py,. Let Lf(
denote the space of square integrable functions of X, and Lf(z that of (X, Z). Here, L§ ={s(X) | IEX(|S|2) < 00}
and likewise for Lf(z. Next consider a dataset of ni. i. d. samples drawn according to Pyy.

We use the notation X 1L Y|Z when X and Y are conditionally independent given Z. Perhaps the simplest
characterization of Cl reads as follows: X 1 Y|Z ifand only if Pxy|; = Py, PPy ;. Equivalently, we have Py,y, =
Py)z and Pyxz = Py)z.

4.1 Characterization by RKHSs

A second characterization of CI is given in terms of the cross-covariance operator Zyy on RKHSs [22]. Recall
the cross-covariance operator from #,, to # », in Equation 3. We may then define the partial cross-covariance
operator of (X, Y) given Z by:

-1
Exy.z = Zxy — Zxz2772zy» )

where we use the right inverse instead of the inverse, if Z,, is not invertible (see Corollary 3 in Fukumizu
etal. [22]). Notice the similarity of the partial cross-covariance operator to the linear partial cross-covariance
matrix (as well as the conditional cross-covariance matrix in the Gaussian case).! We can interpret the above
equation as the partial covariance between {f(X),Vf € H} and {g(Y),Vg € Hy} given {h(Z),Vh € Hz} (i.e.,
the partial covariance of X and Y given Z after passing these three variable sets through the functions in the
RKHSs Hy, Hy and Hy).

A kernel ky is characteristic if Ex_p [f(X)] = Ex.q, [f(X)], Vf € H implies Py = Qyx, where Py and
Qy are two probability distributions of X [23]; alternatively, a kernel is characteristic if equality in the mean
elements under the two distributions pp = jg, implies equality of the distributions. Two examples of char-
acteristic kernels include the Gaussian kernel and the Laplacian kernel. Now if we use characteristic kernels
in (7), then the partial cross-covariance operator is related to the CI relation via the following conclusion:

Proposition 1. [22, 23] Let X = (X,Z) and ky = kxykz. Also let 1 ;; represent the RKHS corresponding to k 5.
Assume E[ky (X, X)] < oo and E[ky,(Y,Y)] < 00.2 Further assume that k vky s a characteristic kernel on (X x
Y) x Z, and that H z + R (the direct sum of the two RKHSs) is dense in L%. Then

Ziy,=0 &= X1 Y|Z (8)

Here, £3y , = O means that (f, 2y, ,8)4 , = Oforallf € H and allg € H,,. Recall further that Xy, , =
0 & |Zg4y,l7s = 0 because [Zgy ;75 = ¥, ZXYZV)’)iLX’ where u; and v; are orthonormal bases of #
and ., respectively, by Definition 1.

4.2 Characterization by L? spaces

We also consider a different characterization of CI which is intuitively more appealing because it allows to
use to directly view CI as the uncorrelatedness of functions in certain spaces rather than a norm of the partial
cross-covariance operator. In particular, consider the following constrained L? spaces:

Fyz 2 {f € Ly, | E(f1Z) = O},

1 Recall that the partial cross-covariance of X and Y given Z is defined as E[(X — E(X|Z))(Y — E(Y|Z))]; in other words, it is
equivalent to the cross-covariance of X and Y given Z. In contrast, the conditional cross-covariance of X and Y given Z is defined
as E[(X — E(X|2))(Y — E(Y|Z))|Z] (notice the extra conditioning).

2 This assumption ensures that % ¢ Ly and Hy C 2.
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Frz 2 (8 € Liz | E@IZ) = 0}, ©)
Fyz 2 (0 | W =KW (Y)-EWHZ),0 €L3}.

Here, we write E(f|Z = z) as shorthand for E(f(-,z)) when f € L%,, and likewise for § € L},. Notice that we
can construct the three spaces listed above using nonlinear regression. For instance, for any f € Lf(z in Fxz,
we have:

f&) =fX) - E(f12)

i} (10)
=fX)-h*(2),

where h*(Z) ¢ Lé is the regression function of f(X) on Z.
We then have the following result:

Proposition 2. [24] The following conditions are equivalent:
1. XuY|Z,

E(fg) = 0, Vf € Fyz and Vg € Fyy,

E(fg) = 0, Vf € Fyz and Vg € L},

E(fR') = 0, Vf € Fyy and VA’ € Fy 4,

E(fg') = 0, Vf € Fyz and Vg’ € L}.

voa W

The second condition means that any “residual” function of (X, Z) given Z is uncorrelated with that of
(Y,Z) given Z. The equivalence also represents a generalization of the case when (X, Y, Z) is jointly Gaussian;
here, X 11 Y|Z if and only if any residual function of X given Z is uncorrelated with that of Y given Z; i. e., the
linear partial correlation coefficient pyy ., is zero.

We also encourage the reader to observe the close relationship between Proposition 1 and claim 4 of
Proposition 2. Notice that claim 4 of Proposition 2 implies that we have Zy, , = 0 in Proposition 1. Moreover,
Proposition 1 only considers functions in RKHSs, while claim 4 of Proposition 2 considers functions in L
spaces. We find Proposition 1 more useful than claim 4 of Proposition 2 because the RKHS of a characteristic
kernel might be much smaller than the corresponding L? space.

5 Kernel conditional independence test

We now consider the following hypotheses:

Hy:X 1Y|Z,

(11)
H : X1 Y|Z

We may equivalently rewrite the above null and alternative more explicitly using Proposition 1 as follows,
provided that the kernels are chosen such that the premises of that proposition are satisfied (e. g., when the
kernels are Gaussian or Laplacian [22]):

Hy : 124y ;)55 = O,

) (12)
Hy | Zgy.z s > 0.

The above hypothesis implies that we can test for conditional independence by testing for uncorrelatedness
between functions in reproducing kernel Hilbert spaces.

Zhang etal. [10] exploited the equivalence between 11 and 12 in the Kernel Conditional Independence
Test (KCIT), which we now describe. Consider the functional spaces f € H 8 € Hy,and h € Hz. We can
compute the corresponding centered kernel matrices K}-{, Ky and K, from ni.i.d. samples x,y and z as in 6.
We can then use these matrices to perform kernel ridge regression in order to estimate the function h* € H
in 10 as follows: h*(z) = K;(K; + AT )"If (%), where A denotes the ridge regularization parameter and f € H P
Consequently, we can estimate the residual function f as f(¥) = f(¥) — h*(2) = Rzf(X) where:
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RZ = I_KZ(EZ +M)71

T (13)
=AMK; +AI)~.

1/2

Next consider the eigenvalue decomposition Ky = VyAyVy. Let ¢y = Vilg™ Then the empirical kernel

map of Hy,, is given by ¢y = R,y because Ky, = ¢y b} We may similarly write Ky, = ¢y¢py. We can thus
write the centralized kernel matrices corresponding to f and g as follows:

R)“qz = RZRXRZ»

_ _ (14)
I<Y|Z = Rzl<sz.

We can use the above two centered kernel matrices to compute an empirical estimate of the HS norm of
the partial cross covariance operator similar to how we computed the quantity 7y in Equation 5:

1 —_ =
7}}'-2 = Ftr(K)qZI(le) (15)

Note that 7,., denotes an empirical estimate of ||ZXY-Z||§15- KCIT uses the statistic Sy = n7yy., in order to
determine whether or not to reject Hy; we multiply the empirical estimate of the HS norm by n in order to
ensure convergence to a non-degenerate distribution.

6 Proposed test statistic & its asymptotic distribution

Observe that computing Sy requires the inversion of large kernel matrices which scales strictly greater than
quadratically with sample size; the exact complexity depends on the algorithm used to compute the matrix
inverse (e. g., 0(n>*’) if we use the Coppersmith-Winograd algorithm [25]). CCD algorithms run with KCIT
therefore take too long to complete. In this report, we will propose an inexpensive hypothesis test that almost
always rejects or fails to reject the null whenever conditional dependence or independence holds, respec-
tively, and even outperforms 12 as illustrated in our experimental results in Section 7. We will use a strategy
that has already been successfully adopted in the context of unconditional dependence testing in doing so
[12, 13].

We will in particular also take advantage of the characterization of CI presented in Proposition 1. Recall
that the Frobenius norm corresponds to the Hilbert-Schmidt norm in Euclidean space. We therefore consider
the following hypotheses as approximations to those in 12 and 11:

Hy : ICjp/II7 = 0,

2 16)
H: ”CAB-Z”F >0,

whereCjp , = ]E[(Ai—]E(AIZ ))(B;-E(B|Z ))T] corresponds to the ordinary partial cross covariance matrix, where
[E(A|Z) and E(B|Z) may be non-linear functions of Z. We also have A = f'(X) 2 {f/(X), ..., f,,(X)} with f/ (X) €
Gy Vj. Similarly, B = h'(Y) 2 {h{(Y),..., h;(Y)} with Iy (Y) € Gy, Vk. The terms Gy and Gy denote two spaces
of functions, which we set to be the support of the process v2cos(W! -+ B), W ~ Py, B ~ Uniform([0, 2r]). In
other words, we select m functions from G and g functions from Gy. We select these specific spaces because
we can use them to approximate continuous shift-invariant kernels. A kernel k is said to be shift-invariant if
and only if, for any a € RP, we have k(x — a,y — a) = k(x,y), Y(x,y) € R x RP; examples of shift-invariant
kernels include the Gaussian kernel frequently used in KCIT or the Laplacian kernel. The following result
allows us to perform the approximation using the proposed spaces:

Proposition 3. [14] For a continuous shift-invariant kernel k(x,y) on RP, we have:
kouy) = [ &6 dF, = EG0S )] (17)
RP

where Fy; represents the CDF of Py, and {(x) = \/icos(WTx + B) with W ~ Py, and B ~ Uniform([0, 2rt]).
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The precise form of Py, depends on the type of shift-invariant kernel one would like to approximate (see
Figure 1 of Rahimi and Recht [14] for a list). Since investigators most frequently implement KCIT using the
Gaussian kernel k,(x,y) = exp(-|lx — y||2 /o) with hyperparameter o, we choose to approximate the Gaussian
kernel by setting P}, to a centered Gaussian with standard deviation /o/2.

We will use the squared Frobenius norm of the empirical partial cross-covariance matrix as the statistic
for RCIT:

S = nlCyg 7 (18)

where Cjp , = ﬁ Y1 [(A; - E(A|Z))(B; - E(B|Z))"]. Recall however that E(A|Z) and E(B|Z) may be non-linear
functions of Z and therefore difficult to estimate. We would instead like to approximate [E(A|Z) and [E(B|Z)
with linear functions. We therefore let C = g(2) = {g,(2),...,84(2)} with g;(Z) € G5, VI, where we also set G,
to be the support of the process \/icos(WT +B), W ~ Py, B ~ Uniform([0, 2r]). We will approximate C; ,
with Cjipc = Cip — Cic(Ecc + yI)'Cep similar to 7, where y denotes a small ridge parameter; recall that this
is equivalent to computing the cross-covariance matrix across the residuals of A and B given C using linear
ridge regression. We can justify this procedure because the particular choice of C allows us to approximate
both E(A|Z) and E(B|Z) with linear functions of C as described below.

Letf; = f].’ - IE(fj’|Z). Then E(f|Z) = 0, sof; € Fyz. Moreover, by —E(h;|Z) € Fy.;. Note that we can estimate
IE(fj’ |Z) with the linear ridge regression solution ﬁ]T 2(Z) under mild conditions because we can guarantee the
following:

Proposition 4. (Section 3.1 of Sutherland and Schneider [15]) Consider performing kernel ridge regression of
fj’ on Z. Assume that (1) ¥, f]’l = 0 and (2) the empirical kernel matrix of Z, k;, only has finite entries (i. e.,
lkzlloo < 00). Further assume that the range of Z, Z ¢ ]Rdz, is compact. We then have:

o e C, _ A2
PIEG1Z) - 4g(Z)| 2 €] < Fe (19)

where I'E(fj’ |Z) denotes the estimate of IE(fj’ |Z) by kernel ridge regression, and c, and c; are both constants that
do not depend on n or d.

The exponential rate with respect to d in the above proposition suggests we can approximate the output
of kernel ridge regression with a small number of random Fourier features, a hypothesis which we verify
empirically in Section 7. Moreover, we can estimate 1E(h,’<|Z ) with i g(Z), because we can similarly guarantee
that P[I]E(h,QIZ ) - U 8(2)| = €] — 0 for any fixed £ > 0 at an exponential rate with respect to d.

We can therefore consider the following spaces for S which are similar to the L? spaces used in claim 4
of Proposition 2:

Gy 2{f 1 f; =] ~B(12).f] € G},

=3 ! ! ! (20)
Gyz 2 {h| hy = hy — E(h |2), by € Gy }.

We then approximate CI with S in the following sense:

1. WealwayshaveX U Y|Z = E(fh) =0, Vf € Gy and Vh € Gy.5.

2. The reverse direction may hold for a larger subset of all possible joint distributions as the values of m
and g increase; this is because at least one entry of C;5 » will likely be greater than zero for any given
distribution as the values of m, g increase.

Note the second point refers to the population Cj - as opposed to its finite sample estimate. In this paper, we
only deal with the classical low dimensional scenario where m, g are fixed and the sample size n — co. This
is reasonable because nearly all CB algorithms only test for CI when X and Y each contain a single variable.
We find that the second point held in all of the cases we tested in Section 7 with only m,q = 5, since we
were always able to reject the null Hy : ||C AB-C"Iz? = 0 by generating enough samples with m,q = 5 when
XYz
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6.1 Null distribution

We now consider the asymptotic distribution of S under the null. Let IT refer to a positive definite covariance
matrix of the vectorization of (A — E(4|C))(B - E(B|C))T. We may denote an arbitrary entry in IT as follows:

i p B,

y . ; (1)
= E[(4; - E(4;10)(B; - E(BjI0)(4) — E(A]C))(B; - E(B|IC))].

We have the following result:

Theorem 1. Considerni.i.d. samples from Pyy,. Let {z,, ..., z;} denotei.i. d. standard Gaussian variables (thus
{Zf, . ,zf} denotes i.i.d Xf variables) and A the eigenvalues of T1. We then have the following asymptotic distri-
bution under the null in 16:

L
~ d
nlCigcly = > Az, 22)
i=1

where L refers to the number of elements in Cjp,

Proof. We may first write:

nlCip.cl7
=1+ t1(CipcCipc) -
=nx V(éAB.C)TV(éAB-C)’

= [VvCipo)] [VAV(Cip)],

where v(C, ip.c) stands for the vectorization of C, ip.c- BY CLT of the sample covariance matrix (see Lemma 1in

& d
the Appendix A) combined with the continuous mapping theorem and the null, we know that vVnv(C; ) —
N (0,10). Here, we write an arbitrary entry IT; BB, under the null as follows:

i p B,
= Cov[(4; - E(4;|C))(B; - E(B}|C)),
(A — E(A4|C)(B; - E(By|C))] (24)
= E[(4; - E(4;(C))(B; - E(B}|C))*
(Ay — E(4]0))(B; - E(B/|0))].

- d
Now consider the eigendecomposition of IT written as IT = EAET. Then, we have ET[\/HV(CAB.C)] -
N (0, A) by the continuous mapping theorem. Note that:

[ Vﬁv(éAB.c)] ! [ Vﬁv(éAB.c)]

= (ET[VavCipo)]) (BT [VAv(Cip)]) 25)
L

4 ZAiziz.
i=1 O

We conclude that the null distribution of the test statistic is a positively weighted sum ofi. i. d. )(12 random
variables.

Note that multiple methods exist for estimating the conditional expectations in S and II in the above
theorem. In this report, we will obtain consistent estimates of the conditional expectations by using kernel
ridge regressions with the RBF kernel; here, consistency holds so long as the conditional expectations are
continuous because the RBF kernel is dense in the space of continuous functions mapping Z to R [26]. We
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therefore have C;p - LA Ciip.c» Where Cip o = ﬁ Y% [(A; - B(A|C))(B; - E(BIC))"], by the continuous map-
ping theorem and weak law of large numbers assuming continuity of the conditional expectations. We can
similarly approximate any arbitrary entry in IT because we may write the following:

% ;(Ai, - E(410))(B;, - E(B)IC))+

(Ay, - EA440)(By, - E(BIC)) (26)
2, EB[(4; - EGA{10)(B; - E(BIC))
(g - EGALI0)(B, - E(BYIO))].

Kernel ridge regressions however scale (strictly greater than) quadratically with sample size due to the
inversion of the kernel matrix, so they may not be practical in the large sample size regime. Fortunately,
we will not need to perform the kernel ridge regressions directly, because we can approximate the output of
kernel ridge regression to within an arbitrary degree of accuracy for any fixed sample size n using linear ridge
regression with enough random Fourier features as highlighted previously in Proposition 4. In particular,
Proposition 4 implies that #7g(Z) = E(A|C) 2 E(A|C) at rate exponential in d for any fixed n. We can also
conclude that £, - 55 ip.c a8 d — oo for any fixed n. We can finally approximate the kernel ridge regression
estimate of IT because we may write the following for an arbitrary entry in ITas d — oo:

% ;(A,.), - B(A;|C))(B;, — E(B;|C))*

Ay, - E(AC) (B, - EB)IC
L (A, ~ E(A41C)(By, - E(BYIC) o
p . o e .

= = ) Ay~ BAIC)(By, - E(BIO)

r=1
Ay, - E(A4IC)(By, - E(B[C)).
We conclude that, for a dataset of fixed sample size n, we can substitute the conditional expectation estimates
of kernel ridge regression with those of linear regression with random Fourier features when estimating S as
well as II for applying Theorem 1.

Unfortunately though, a closed form CDF of a positively weighted sum of chi-squared random variables
does not exist in general for applying Theorem 1. We can approximate the CDF by Imhof’s method which
inverts the characteristic function numerically [27]. We should consider Imhof’s method as exact, since it
provides error bounds and can be used to compute the distribution at a fixed point to within a desired preci-
sion [28, 29]. However, Imhof’s method is too computationally intensive for our purposes. We can nonetheless
utilize several fast methods which approximate the null by moment matching.

6.2 Approximating the null distribution by moment matching

We write the cumulants of a positively weighted sum of i. i. d. )(12 random variables as follows:

L
¢, =2"'r-1) YA, (28)
i=1

where A = {A;,...,A;} denotes the weights. We may for example derive the first three cumulants:
m1:ZAi, m2=22Ai2, YTI3=8Z/\13. (29)
We then recover the moments from the cumulants as follows:

r-1 r—1
m,:c,+i=21<i_1>c,-m,,i, r=23,... (30)
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Now the Satterthwaite-Welch method [30, 31, 32] represents perhaps the simplest and earliest moment
matching method. The method matches the first two moments of the sum with a gamma distribution I'(g, 0).
Zhang and colleagues adopted a similar strategy in their paper introducing KCIT [10]. Here, we have:

1 -~
g=5c/cy B=cycr 31)

We however find the above gamma approximation rather crude. We therefore also consider applying more
modern methods to estimating the distribution of a sum of positively weighted chi-squares. Improved meth-
ods such as the Hall-Buckley-Eagleson [33, 34] and the Wood F [35] methods match the first three moments of
the sum to other distributions in a similar fashion. On the other hand, the Lindsay-Pilla-Basak method [36]
matches the first 2L moments to a mixture distribution.

We will focus on the Lindsay-Pilla-Basak method in this paper, since Bodenham & Adams have already
determined that the Lindsay-Pilla-Basak method performs the best through extensive experimentation [37,
38]. We therefore choose to use the method as the default method for RCIT. Briefly, the method approximates
the CDF under the null F,  using a finite mixture of L Gamma CDFs Frg g:

L

Fy, = ) TiFrge) (32
i=1

where 7 > 0, ZiL=1 m; = 1, and we seek to determine the 2L + 1 parameters g, 6,,...,0;, and my, ..., ;. The
Lindsay-Pilla-Basak method computes these parameters by a specific sequence of steps that makes use of
results concerning moment matrices (see Appendix II in Uspensky [39]). The sequence is complicated and
beyond the scope of this paper, but we refer the reader to [36] for details.

6.3 Testing for conditional un-correlatedness

Strictly speaking, we must consider the extended variable set X to test for conditional independence accord-
ing to Proposition 1. However, we have two observations: (1) we can substitute a test for non-linear conditional
uncorrelatedness with tests for conditional independence in almost all cases encountered in practice because
most conditionally dependent variables are correlated after some functional transformations, and (2) using
the extended variable set X makes estimating the null distribution more difficult compared to using the unex-
tended variable set X. The first observation coincides with the observations of others who have noticed that
Fisher’s z-test performs well (but not perfectly) in ruling out conditional independencies with non-Gaussian
data. We can also justify the first observation with the following result using the cross-covariance opera-
tor Xyy.z:

Proposition 5. [22, 23] Assume E[ky (X, X)] < oo and E[ky)(Y,Y)] < co. Further assume that kyky, is a char-
acteristic kernel on X x ), and that H z + R (the direct sum of the two RKHSs) is dense in L%. Then

Zxy.z =0 & Ez[Pyyz] = Ez[PyzPyz]. (33)
In other words, we have:

ZXY~Z =0 = ]PXY = JPX|ZPY|Z dlpz, (34)

Yxyz =0 &= Ez[Py;Pyz] = Ez[Pyy ;] &= X L Y|Z.

Notice that Zyy., = 0 is almost equivalent to CI, in the sense that Zyy., = O just misses those rather con-
trived distributions where Pyy = [Pyy; dP; = [ Px;Py; dP; when X 4 Y|Z. In other words, if Pxy #
f Py 7Py dP; when X i1 Y|Z, then we have Xyy; = 0 & Zjy,, = 0 (under the corresponding additional
assumptions of Propositions 1 and 5).
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Table 1: Example of a situation where f Pyy); dPz = j Pyx,zPyz dPPz when X 1 Y|Z using binary variables.

Py1z-0 Pyz-1 Pyjz-0 Py)z-1
X=0 0.5 0.3 Y=0 0.3 0.4
X=1 0.5 0.7 Y=1 0.7 0.6
(€)] (b)
Pyy|z-0 Pyy)z-1 Pyy
X=0,Y=0 0.2 0.1075 X=0,Y=0 0.126
X=0,Y=1 0.3 0.1925 X=0,Y=1 0.214
X=1Y=0 0.1 0.2925 X=1Y=0 0.254
X=1Y=1 0.4 0.4075 =1,Y=1 0.406
(© (d)

Let us now consider an example of a situation where j Pxyz dP; # j PPy z dP; when X 1 Y|Z. Take
three binary variables X, Y, Z € {0,1}. Let P,_, = 0.2 and PP,_; = 0.8. Also consider the four probability tables
in Table 1. Here, we have chosen the probabilities in the tables carefully by satisfying the following equation:

J Pxyz dP; = J PxzPyz dP,

= Pz_o(Pxiz=0Py|z=0) + Pz=1(Pxz=1Py|z=1) (35)

= Pz_oPxyiz-0 + Pz21Pxy|z21-

Of course, the equality holds when we have conditional independence Pyy|; = Py zPy;. We are however
interested in the case when conditional dependence holds. We therefore instantiated the values of Tables 1a
and 1b as well as the second column in Table 1c (Pyyz_o) such that Pyy;_o # Px|z_oPy|z-o. We then solved
for Pxy ;- using Equation 35 in order to complete Table 1c. This ultimately yielded Table 1d.

Notice that we obtain a unique value for Pyy,_; by solving Equation 35. Hence, Pxy,_; has Lebesgue
measure zero on the interval [0,1], once we have defined all of the other variables in the equation. Thus,
Sxy.z = O is not always equivalent to X 1L Y|Z, but satisfying the condition [ Pyy; dP; = [Py ,Py; dP;
when X )1 Y|Z requires a very particular setup which is probably rarely encountered in practice.

The aforementioned argument motivates us to also consider a different empirical estimate of the squared
Hilbert-Schmidt norm of the partial cross covariance operator:

1 - -
SI’( = n7;‘y,z = Etr(I<Xlzl<le), (36)

where we have replaced X with X. We can approximate the null distribution of S by utilizing the strategies
presented in Sections 3.3 and 3.4 of Zhang et al. [10]. Here, we utilize the hypotheses:

Hy: ||ZXY-Z||12LIS =0,

) 37)
Hi : |Zxy.zls > O.
We similarly consider a corresponding finite dimensional partial cross-covariance matrix:
S' = nlCap.cllf (38)

where we have replaced A with A. The above statistic is a generalization of linear partial correlation, because
we consider uncorrelatedness of the residuals of non-linear functional transformations after performing non-
linear regression. The asymptotic distribution for S in Theorem 1 also holds for S’, when we replace A with A.
Here, we use the hypotheses:

Hy : [ICapcl = 0,

X (39)
Hl H "CAB~C"F > O



12 — E.V.Strobl et al., Approximate Kernel-Based Cl Tests for Fast Non-Parametric Causal Discovery DE GRUYTER

In practice, the test which uses S’, which we now call the Randomized conditional Correlation Test
(RCoT), usually rivals or outperforms RCIT and KCIT, because (1) nearly all conditionally dependent vari-
ables encountered in practice are also conditionally correlated after at least one functional transformation,
and (2) we can easily calibrate the null distribution of the test using S’ even when Z has large cardinality. We
will therefore find this test useful for replacing RCIT when we have large conditioning set sizes (> 4).

6.4 Time complexity

We now show that RCIT and RCoT have linear time complexity with respect to the sample size n. Let d denote
the number of random Fourier features in C.

Proposition 6. If we have n > d, then RCIT and RCoT have time complexity O(d*n).

Proof. Wlog, we will prove the claim for RCIT (the proof for RCoT will follow analogously). Note that it suffices
to show that all sub-procedures of RCIT have time complexity O(d’n) or o(d’n).

The first step of RCIT computes the random Fourier features on the support of the process v2cos(W' -+ B),
W ~ Py, B ~ Uniform([0, 277]). Let ay denote the number of dimensions in X, and likewise for ay and a;. Let
m, q and d denote the number of random Fourier features in A, B and C, respectively. Note that computing
the samples of A requires O((ay + az)mn) time because W is a (ay + a;) x m matrix. As a result, computing
the samples of A requires O(n) time with m, a, and ay fixed. Similarly, computing the samples of B requires
O(n) time with ay, g fixed and that of C requires O(dn) time with only a, fixed.

The second step of RCIT estimates E(A|C) and E(B|C) using linear ridge regressions. Recall that linear
ridge regression scales O(d’n) in time, where d corresponds to the number of features (assuming n > d). Now
RCIT requires m + g linear ridge regressions in order to compute E(A|C) and E(B|C). We therefore conclude
that estimating E(A|C) and E(B|C) can be done in O(d*n) time with m and q fixed.

Next, computing the covariance EABC requires O(mqn) time. Finally, the time complexity of all of the
methods used to approximate the null distribution do not depend on d or nonce given & jip.c> we thus conclude
that all of the null distribution approximation methods have time complexity O(1) when m and q are fixed.

We have shown that all sub-procedures of RCIT scale O(d?n) or o(d*n). We therefore conclude that RCIT
has time complexity O(d*n). O

The above proposition implies that RCIT and RCoT have time complexity O(n) because d is set to a fixed
number regardfless of sample size. Recall that d is fixed because we have an exponential convergence rate
with respect to d as highlighted previously in Proposition 4; in other words, a fixed d is reasonable so long as n
does not become extremely large. In practice, we have found that settingm = 5, g = 5and p = 25 works well for
a variety of sample sizes and dimensions of Z as highlighted in the next section. The statement holds so long
as we choose a very small regularization constant A (e. g., 1IE-10); note that this is different from the standard
prediction regime, where we must carefully tune A to prevent overfitting. We can utilize a small regularization
constant in the proposed CI test setting because the entries of C, ip.c are never seen during training time.

7 Experiments

We carried out experiments to compare the empirical performance of the following tests:
— RCIT: uses S with the Lindsay-Pilla-Basak approximation,

- RCoT: uses S’ with the Lindsay-Pilla-Basak approximation,

—  KCIT: uses Sk with a simulated null by bootstrap.

—  KCoT: uses Sy with a simulated null by bootstrap.

We estimated the conditional expectations for S and S’ using linear ridge regressions with random Fourier
features. We also compared RCIT and RCoT against permutation tests and list the results in the Appendix A.
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We present the results of KCoT in Appendix A.3 as well. Note that KCIT with the gamma approximation per-
forms slightly faster than KCIT with bootstrap,® but the bootstrap results in a significantly better calibrated
null distribution. We focus on large sample size (> 500) scenarios because we can just apply KCIT with boot-
strap otherwise. We ran all experiments using the R programming language (Microsoft R Open) on a laptop
with 2.60 GHz of CPU and 16 GB of RAM.

7.1 Hyperparameters

We used the same hyperparameters for RCIT and RCoT. Namely, we used the median Euclidean distance
heuristic across the first 500 samples of X, X, Y and Z for choosing the oy, 0, 0y, and 0, hyperparameters for
the Gaussian kernels k;(x,y) = exp(-|lx — y||2/0), respectively4 [16, 40]. We also fixed the number of Fourier
features for X, X and Y to 5 and the number of Fourier features for Z to 25. We standardized all original and
Fourier variables to mean zero unit variance in order to help ensure numerically stable computations. Finally,
we set y to 1E-10 in order to keep bias minimal. These parameters are reasonable because we designed both
RCIT and RCoT for the purposes of causal discovery, where the variable set Z is small with a sparse underlying
causal graph. We can therefore utilize a relatively small number of random Fourier features as compared to
the sample size n. Authors who wish to apply RCIT or RCoT in the high dimensional scenario should consider
utilizing more Fourier features for Z and choosing the lambda values carefully (e. g., through cross-validation
or information criteria).

With KCIT, we set ¢ to the squared median Euclidean distance between (X, Y) using the first 500 samples
times double the conditioning set size; the hyperparameters as described in the original paper, the hyperpa-
rameters in the author-provided MATLAB implementation and the hyperparameters of RCIT/RCoT all gave
worse performance.

7.2 Typel error

We analyzed the Type I error rates of the three CI tests as a function of sample size and conditioning set size.
We evaluated the algorithms using the Kolmogorov-Smirnov (KS) test statistic. Recall that the KS test uses the
following statistic:

K = sup [F(x) - F0)| = [Fx - Fylloo» (40)
xeR

where Fy denotes the empirical CDF, and Fy some comparison CDF. If the sample comes from Py, then K
converges to 0 almost surely as n — oo by the Glivenko-Cantelli theorem.

Now a good CI test controls the Type I error rate at any a value, when we have a uniform sampling dis-
tribution of the p-values over [0, 1]. Therefore, a good CI test should have a small KS statistic value, when we
set Fy to the uniform distribution over [0, 1].

To compute the KS statistic values, we generated data from 1000 post non-linear models [10, 11]. We can
describe each post non-linear model as follows: X = g;(Z + &), Y = g,(Z + &,), where Z, g, &, have jointly
independent standard Gaussian distributions, and g;, g, denote smooth functions. We always chose g;, g,
uniformly from the following set of functions: {(-), ()%, ()3, tanh(), exp(—| - [l,)}. Thus, we have X 1 Y|Z in any
case. Notice also that this situation is more general than the additive noise models proposed in Ramsey [41],
where we have X = g,(Z) + €&, Y = 8,(Z) +¢&,. The post non-linear models allow us to simulate heteroskedastic
noise which is commonly encountered in real scenarios but not captured with additive noise models.

3 KCIT with the gamma approximation specifically completes 66.78 ms faster on average with an SEM of 4.29 ms (or 1.013 times
faster with an SEM of 0.067 times) at 2000 samples over 500 of our experiments.

4 We also tried setting 0, to the median distance divided by 1.5, 2 or 3. However, these values gave progressively worse perfor-
mance on average.
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7.2.1 Sample size

We first assess the Type I error rate as a function of sample size. We used sample sizes of 500, 1000, 2000,
5000, ten thousand, one hundred thousand and one million. A good CI test should control the Type I error
rate across all a values at any sample size. Figure 1a summarizes the KS statistic values for the three different
CI tests. Observe that all tests have similar KS statistic values across different sample sizes. We conclude that
all three tests perform comparably in controlling the Type I error rate with a single conditioning variable at
different sample sizes.

The run time results however tell a markedly different story. Both RCIT and RCoT output a p-value much
more quickly than KCIT at different sample sizes (Figure 1b). Moreover, KCIT ran out of memory at 5000 sam-
ples while RCIT and RCoT handled one million samples in a little over 6 seconds. RCIT and RCoT also com-
pleted more than two orders of magnitude faster than KCIT on average at a sample size of 2000 (Figure 1c).
We conclude that RCIT and RCoT are more scalable than KCIT. Moreover, the experimental results agree with
standard matrix complexity theory; RCIT and RCoT scale linearly with sample size (see Proposition 6), while
KCIT scales strictly greater than quadratically with sample size.

7.2.2 Conditioning set size

CCD algorithms request p-values from CI tests using large conditioning set sizes. In fact, algorithms which do
not assume causal sufficiency, such as FCI, often demand very large conditioning set sizes (> 5). We should
however also realize that CCD algorithms search for minimal conditioning sets in order to establish ancestral
relations. This means that we must focus on testing for cases where X ). Y|Z, but we have either X 1. Y|ZUA
or X Y|ZUA, where |A| =1.

We therefore evaluated the Type I error rates of the CI tests as a function of conditioning set size by fixing
the sample size at 1000 and then adding 1 to 10 standard Gaussian variables into the conditioning set so that
X= gl(% Z]I'(:1 Zi+€),Y = gz(% Z]’le Zj+€,), k = {1,...,10} in 1000 models. Note that this situation corresponds
to 1 to 10 common causes.

Figure 1d summarizes the KS statistic values in the aforementioned scenario. We see that the KS statistic
values for RCoT remain the smallest for nearly all conditioning set sizes, followed by RCIT and then KCIT.
This implies that RCoT best approximates the null distribution out of the three CI tests. We also provide the
histograms of the p-values across the 1000 post non-linear models at a conditioning set size of 10 for KCIT,
RCIT, and RCoT in Figures 1e-1g. Notice that the histograms become progressively more similar to a uniform
distribution. We conclude that RCoT controls its Type I error rate the best even with large conditioning set
sizes while KCIT controls its rate the worst.

Now the run times of all three tests only increased very slightly with the conditioning set size (Figure 1h).
However, both RCIT and RCoT still completed 40.91 times faster than KCIT on average (95 % confidence inter-
val: +0.44). These results agree with standard matrix complexity theory, as we expect all tests to scale linearly
with dimensionality.

7.3 Power

We next evaluated test power (i. e., 1-(Type Il error rate)) by computing the area under the power curve (AUPC).
The AUPC corresponds to the area under the empirical CDF of the p-values returned by a CI test when the null
does not hold. A CI test has higher power when its AUPC is closer to one. For example, observe that if a CI test
always returns a p-value of 0 in the perfect case, then its AUPC corresponds to 1.

We examined the AUPC by adding the same small error &, ~ A/(0,1/16) to both X and Y in 1000 post
non-linear models as follows: X = g;(g, + £1), Y = 8,(¢}, + &), Z ~ N(0,1). Here, we do not allow the CI tests
to condition on ¢, so we always have X |1 Y|Z; this situation therefore corresponds to a hidden common
cause.
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Figure 1: Experimental results of RCIT, RCoT and KCIT when conditional independence holds. (a) All tests have comparable KS
statistic values as a function of sample size. (b) However, both RCIT and RCoT complete much faster than KCIT. (c) The relative
difference in speed between RCIT vs. KCIT and RCoT vs. KCIT grows with increasing sample size. (d) RCoT maintains the lowest
KS statistic value with increases in dimensionality. (e-g) Histograms with a conditioning set size of 10 show that KCIT, RCIT and
RCoT obtain progressively more uniform null distributions. (h) Run times of all three tests scale linearly with dimensionality of

the conditioning set.

7.3.1 Sample size

We first examine power as a function of sample size. We again tested sample sizes of 500, 1000, 2000, 5000,
ten thousand, one hundred thousand, and one million. We have summarized the results in Figure 2a. Both
RCIT and RCoT have comparable AUPC values to KCIT with sample sizes of 500, 1000 and 2000. At larger sam-
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ple sizes, KCIT again did not scale due to insufficient memory, but the AUPC of both RCIT and RCoT continued
to increase at similar values. We conclude that all three tests have similar power.

The run time results mimic those of Section 7.2.1; RCIT and RCoT completed orders of magnitude faster
than KCIT (Figures 2b and 2c).

7.3.2 Conditioning set size

We next examined power as a function of conditioning set size. To do this, we fixed the sample size at 1000
and set Z = (Zy,...,Z;) with Z ~ N(0,I;), k = {1,...,10} in the 1000 post non-linear models. We therefore
examined how well the CI tests reject the null under an increasing conditioning set size with uninformative
variables. A good CI test should either (1) maintain its power or, more realistically, (2) suffer a graceful decline
in power with an increasing conditioning set size because none of the variables in the conditioning set are
informative for rendering conditional independence by design.

We have summarized the results in Figure 2d. Notice that all tests have comparable AUPC values with
small conditioning set sizes (between 1and 3), but the AUPC value of KCIT gradually increases with increasing
conditioning set sizes; the AUPC value should not increase under the current setup with a well-calibrated null
because the extra variables are uninformative. To determine the cause of the unexpected increase in power,
we permuted the values of X in each run in order to assess the calibration of the null distribution. Figure 2f
summarizes the results, where we can see that only KCIT’s KS statistic grows with an increasing conditioning
set size. We can therefore claim that the increasing AUPC value of KCIT holds because of a badly calibrated
null distribution with larger conditioning set sizes. We conclude that both RCIT and RCoT maintain steady
power under an increasing conditioning set size while KCIT does not.

The run times in Figures 2e and 2g again mimic those in Section 7.2.2 with RCIT and RCoT completing in
a much shorter time frame than KCIT.

7.4 Causal structure discovery

We next examine the accuracy of graphical structures as recovered by PC [1], FCI [42] and RFCI [43] when run
using RCIT, RCoT or KCIT.

We used the following procedure in Colombo et al. [43] to generate 250 different Gaussian DAGs with an
expected neighborhood size E(N) = 2 and v = 20 vertices. First, we generated a random adjacency matrix
A with independent realizations of Bernoulli(IE(N)/(v — 1)) random variables in the lower triangle of the ma-
trix and zeroes in the remaining entries. Next, we replaced the ones in .4 by independent realizations of a
Uniform([-1,-0.1] U [0.1,1]) random variable. We interpret a nonzero entry .A; as an edge from X; to X; with
coefficient A; in the following linear model:

Xl = 81,
v-1 (41)
Xi = Z AirX, + &;.

r=1

fori=2,...,vwhereg;,..., ¢, are mutually independent standard Gaussian random variables. The variables
{Xi,...,X,} = X then have a multivariate Gaussian distribution with mean 0 and covariance matrix X = (I, -
A)’l(IV - A)‘T, where I, is the v x v identity matrix. To introduce non-linearities, we passed each variable in
X through a non-linear function g again chosen uniformly from the set {(-), ()2, ()3, tanh(), exp(-| - ,)}-

For FCI and RFCI, we introduced latent and selection variables using the following procedure. For each
DAG, we first randomly selected a set of 03 latent common causes L. From the set X \ L, we then selected a set
of 03 colliders as selection variables S. For each selection variable in S, we subsequently eliminated the bot-
tom g percentile of samples, where we drew g according to independent realizations of a Uniform([0.1, 0.5])
random variable. We finally eliminated all of the latent variables from the dataset.
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Figure 2: Experimental results with RCIT, RCoT and KCIT as a function of sample size and conditioning set size when conditional
dependence holds. (a) All tests have comparable AUPC values as a function of sample size with a conditioning set size of one.
(b—c) Both RCIT and RCoT again complete much faster than KCIT. (d) KCIT’s AUPC value unexpectedly increases with the dimen-
sionality of the conditioning set. Associated run times for (d) in (e). (f) The cause of KCIT’s AUPC increase lies in a badly cali-
brated null distribution; here we see that only KCIT’s KS statistic value increases under the null. Associated run times for (f)

in (g).

We ultimately created 250 different 500 sample datasets for PC, FCI and RFCI. We then ran the sample
versions of PC, FCI and RFCI using RCIT, RCoT, KCIT and Fisher’s z-test (FZT) at a = 0.05. We also obtained
the oracle graphs by running the oracle versions of PC, FCI and RFCI using the ground truth.

We have summarized the results as structural Hamming distances (SHDs) from the oracle graphs in Fig-
ure 3a. PC run with RCIT and PC run with RCoT both outperformed PC run with KCIT by a large margin accord-
ing to paired t-tests (PC RCIT vs. KCIT, t = -14.76, p < 2.2E-16; PC RCoT vs. KCIT, t = -12.87, p < 2.2E-16). We
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Figure 3: Results of CCD algorithms as evaluated by mean (a) SHD and (b) run times. The CCD algorithms run with KCIT perform
comparably (or even slightly worse) to those run with RCIT and RCoT in (a). Run times in (b) show that the CCD algorithms run
with RCIT and RCoT complete at least 13 times faster on average than those with KCIT. Error bars denote 95 % confidence inter-
vals of the mean.

found similar results with FCI and RFCI, although by only a small margin; 3 of the 4 comparisons fell below
the Bonferonni corrected threshold of 0.05/6 and the other comparison fell below the uncorrected threshold
of 0.05 (FCI RCIT vs. KCIT, t = —2.00, p = 0.047; FCI RCoT vs. KCIT t = —2.96, p = 0.0034; RFCI RCIT vs. KCIT,
t = -3.56, p = 4.5E-4; RFCI RCoT vs. KCIT, t = —-2.80, p = 0.0055). All algorithms with any of the kernel-based
tests outperformed the same algorithms with FZT by a large margin (p < 7E-14 in all cases). Finally, the run
time results in Figure 3b show that the CCD algorithms run with RCIT and RCoT complete at least 13 times
faster on average than those run with KCIT. We conclude that both RCIT and RCoT help CCD algorithms at
least match the performance of the same algorithms run with KCIT, but RCIT and RCoT do so within a much
shorter time frame than KCIT.

7.5 Real data

We finally ran PC, FCI and RFCI using RCIT, RCoT, KCIT and FZT at @« = 0.05 on a publicly available longitudinal
dataset from the Cognition and Aging USA (CogUSA) study [44], where scientists measured the cognition of
men and women above 50 years of age. The dataset contains 815 samples, 18 variables and two waves (thus
18/2 = 9 variables in each wave) separated by two years after some data cleaning.” Note that we do not have
access to a gold standard solution set in this case. However, we can utilize the time information in the dataset
to detect false positive ancestral relations directed backwards in time.

We ran the CCD algorithms on 30 bootstrapped datasets. Results are summarized in Figure 4. Compar-
isons with PC did not reach the Bonferonni level among the kernel-based tests, although PC run with either
RCIT or RCoT yielded fewer false positive ancestral relations on average than PC run with KCIT near an un-
corrected level of 0.05 (PC RCIT vs. KCIT, t = -2.76, p = 9.85E-3; PC RCoT vs. KCIT, t = -1.99, p = 0.056).
However, FCI and RFCI run with either RCIT or RCoT performed better than those run with KCIT at a Bon-
ferroni corrected level of 0.05/6 (FCI RCIT vs. KCIT, t = —-29.57, p < 2.2E-16; FCI RCoT vs. KCIT, t = -17.41,
p < 2.2E-16; RFCIRCIT vs. KCIT, t = —-6.50, p = 4.13E-7; RFCI RCoT vs. KCIT, t = -7.39, p = 3.85E-8). The CCD
algorithms run with FZT also gave inconsistent results; PC run with FZT performed the best on average, but
FCI and RFCI run with FZT also performed second from the worst. Here, we should trust the outputs of FCI
and RFCI more strongly than those of PC, since both FCI and RFCI allow latent common causes and selection
bias which often exist in real data. Next, CCD algorithms run with RCIT performed comparably to those run
with RCoT (PC RCIT vs. RCoT, t = -1.05, p = 0.301; FCI RCIT vs. RCoT, t = —-1.54, p = 0.134; RFCI RCIT vs.
RCoT, t = —-0.89, p = 0.380). We finally report that the CCD algorithms run with RCIT and RCoT complete at

5 We specifically removed redundant variables with deterministic relations, variables with more than 1000 missing values, and
then samples with missing values in any of the remaining variables.
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Figure 4: Results of CCD algorithms as evaluated on real longitudinal data. Part (a) displays mean counts of the number of an-
cestral relations directed backwards time. We do not display 95 % confidence intervals when we computed a standard error of
zero. Part (b) summarizes the mean run times.

least 40 times faster on average than those run with KCIT (Figure 4b). We conclude that CCD algorithms run
with either RCIT or RCoT perform at least as well as those run with KCIT on this real dataset but with large
reductions run time.

8 Conclusion

We developed two statistical tests called RCIT and RCoT for fast non-parametric CI testing. Both RCIT and
RCoT approximate KCIT by sampling Fourier features. Moreover, the proposed tests return p-values orders of
magnitude faster than KCIT in the large sample size setting. RCoT in particular also has a better calibrated
null distribution than KCIT especially with larger conditioning set sizes. In causal graph discovery, RCIT and
RCoT help CCD algorithms recover graphical structures at least as accurately as KCIT but, most importantly,
also allow the algorithms to complete in a much shorter time frame. We believe that the speedups provided
by RCIT and RCoT will make non-parametric causal discovery more accessible to scientists who wish to apply
CCD algorithms to their datasets.

Note that RCIT and RCoT may estimate the null distribution more accurately than KCIT for multiple rea-
sons. First, RCIT and RCoT both assess for non-vanishing covariances across a smaller set of functions than
KCIT. This in turn allows the two tests to more easily estimate the null distribution than KCIT because KCIT
must deal with all of the functions in the associated RKHS. Second, both RCIT and RCoT utilize more ad-
vanced methods of estimating of the null distribution than KCIT. RCIT and RCoT more specifically utilize the
Lindsay-Pilla-Basak method as explained in Section 6.2 as opposed to matching the first two moments of a
gamma distribution. Third, RCoT in particular utilizes the variable set X rather than X which allows for lower
dimensional inferences as explained in Section 6.3. RCIT and RCoT thus take advantage of new technolo-
gies and additional structure inherent within real data in order to achieve better control of the Type I error
rate.
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Appendix A

A.1 CLT for sample covariance

We will prove the central limit theorem (CLT) for the sample covariance matrix. We first have the following
sample covariance matrices with known and unknown expectation vector, respectively:

1 n
= Z [X; - EX)][X; - EX)],
1‘ ) (42)
C= ﬂ; (X, - EX)[X; - Bx))"
Now observe that we may write:

n-1C
= ¥ [X; - E(X) - (B(X) - EX)][X; - EX) - EX) - EX)]”

i=1
= Y & - ECO))X; - EX)T + n(EX) - EQ))EX) - EX)' (43)

i=1

- 2E(X) - E(X)) Y (X; - BX)"
i=1
= nC - n(E(X) - EX))(E(X) - E(X))"
It follows that:
VA -c)
n-1-

= \/ﬁ(mc - C)
= VR(=2=C — — (B0 - EG))(EX) - BT -C)
- ;’V_l ;’W(EX) ~EXO)EX) - EX)T - Ve (44)
_ MR, mvn g ~(ECO — ECO)(EX) - EX)" - n-1me

n-1 n- n-1
- Moy - ﬂ@m EOO)EX) - B + Ve

We are now ready to state the result:

Lemmal. Let X;,...,X, refer to a sequence of i.i. d. random k-vectors. Denote the expectation vector and co-
variance matrix of X, as u, and C;, respectively. Assume that C; = Cov|[v,((X; - )X, —u;))] is positive definite,
where v, (M) denotes the vectorization of the upper triangular portion of a real symmetric matrix M. Then, we
have:

VA(C) — vy (€) S N(0,Cy). (45)

Proof. Consider the quantity aT[\/_(vu((?) vu(€))] = va(av,(C) - aTv,(C,)) where a € RK,*D/2\ {0}, Note
that a’v,[(X; - u)X; — u)T)s ..., a'v [(X, - )X, — py)7] is a sequence of i.i.d. random variables with
expectation a’v,(C;) and variance a’C,a. Moreover observe that C; < co because C; is positive definite. We
can therefore apply the univariate central limit theorem to conclude that:

V(@ vy (@) - a'v, () S N(0,a"Ca), (46)
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where ¢; = 2 Y% (X; - y)(X; — w)". We would however like to claim that:
~ d <
Vn(a"v,(C) - a’v,(c)) > N(0,a" C,a). (47)
In order to prove this, we use 44 and set:
vn(a'v,(C) - a'v,(c,) = a"A, + a'B,, (48)
where we have:

Ay =~ VAW (C) - (@),
n-1

(49)
B, - n—“_ﬁlvu(co - T, [(BOO - ) BCO - ).
We already know from 46 that:
VaaTv, () - v, () & N(0.a"C a). (50)

Therefore, so does a’ A, by Slutsky’s lemma, when we view the sequence of constants % as a sequence of
random variables. For aTB,,, we know that:

Vi@ EX) - a"py) > N0, a"¢ya), 1)

by viewing a’X,, ..., a’ X, as a sequence of random variables, noting that E (XleT ) < 0o because C; is positive

definite and then applying the univariate central limit theorem. We thus have aTBn 2 0. we may then invoke
Slutsky’s lemma again for aTAn + aTBn and claim that:

V@, (©) - a"v, () & N(0,a"C,a). (52)

We conclude the lemma by invoking the Cramer-Wold device. O

A.2 Kernel conditional correlation test (KCoT) results

We compared KCoT against RCIT, RCoT and KCIT. We report the results in Figure 5. All tests perform compa-
rably as a function of sample size (Figures 5a and 5c). However, KCoT performs better than KCIT and under-
performs RCoT and RCIT as a function of conditioning set size. In particular, RCIT and RCoT obtain smaller
KS-statistic values as a function of the conditioning set size (Figure 5b). KCIT and KCoT also obtain larger
AUPC values with an increasing conditioning set size because they fail to maintain a uniform distribution
under the null (Figure 5d; we again permuted the values of X for Figure 5e). We therefore conclude that RCoT
and RCIT control their Type I error rates better than KCIT and KCoT even with large conditioning set sizes
while maintaining power.

A.3 Comparisons against permutation

We also compared RCIT and RCoT against permutation CI tests. Here, we estimated the null distribution of S
and S’ with permutations and call the resultant CI tests S-Perm and S’-Perm, respectively. The permutation
tests specifically involve permuting the residuals of the random Fourier features of Y one thousand times in
order to estimate the null distribution. We have summarized the Type I error rate results in Figure 6 and the
AUPC results in Figure 7. We ran the sample size experiments up to only ten thousand samples due to the
long run times of S-Perm and S’-Perm. We found that RCIT and RCoT perform similarly to the permutation
tests but with significantly reduced average run time.
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Figure 5: Results comparing against KCoT. Sub-figures (a) and (b) correspond to the KS-statistic values as a function of sample
size and dimensions, respectively. Notice that RCIT and RCoT have progressively smaller KS-statistic values than both KCIT and
KCoT with increasing dimensions. Next, sub-figures (c) and (d) correspond to the AUPC values also as a function of sample size
and dimensions, respectively. KCIT and KCoT claim the largest AUPC values because both tests fail to control the Type | error
rate well, as summarized by the large KS-statistic values in sub-figure (e) obtained after permuting the values of X.
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Figure 6: Results of the same KS statistic experiments as in Section 7.2 except comparing RCIT and RCoT against S-Perm and
S’-Perm. Subfigures (a) and (b) again vary as a function of sample size, while subfigures (c) and (d) vary as a function of condi-
tioning set size. RCIT and RCoT are faster than the permutation tests but yield comparable average KS statistic values.
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Figure 7: Results of the same AUPC experiments as in Section 7.3 except comparing RCIT and RCoT against S-Perm and S’-Perm.
Subfigures (a) and (b) again vary as a function of sample size, while subfigures (c) and (d) vary as a function of conditioning set
size. RCIT and RCoT are much faster than the permutation tests but yield comparable accuracy.
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