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In the Supplementary Material, we present the results for additional simulation studies complementary

to the simulation studies in §7 of the main text, which include: first, the comparison between different

sufficient dimension reduction methods, including ordinary least square, principal Hessian directions, the

ensemble moment-based estimator, and the sparse ensemble moment-based estimator, in estimating the

central causal effect subspace; second, the illustration of the effectiveness of the proposed approaches

when applied to the same models but with p = 20. To avoid confusions, all the tables and figures in this

supplementary file are labeled with “S”.



S1 Simulation study 1

In this section, we evaluate the ensemble moment-based estimator and its sparse

modification in estimating the central causal effect subspace. To study the ef-

fectiveness of the ensemble strategy, we also include the individual estimators,

i.e. ordinary least square and principal Hessian directions, in the comparison.

Following the main text, we use Models 1 – 4 with n = 600 and p = 10, and

simulate 200 samples independently for each model. The deviation between two

linear spaces is again measured by D(·, ·). The results are summarized in Table

1.

From Table 1, for Models 1 and 2, ordinary least square is effective in recov-

ering the central causal effect subspace and principal Hessian directions is noisy,

whereas their performances switch for Model 3. Both estimators fail in Model

4. This matches with the monotonicity of the regression causal effect in these

models. Clearly, the ensemble moment-based estimator captures the strength of

both ordinary least square and principal Hessian directions, so that it performs

similarly to the better of the latter two in Models 1 – 3, and recovers the entire

central causal effect subspace in Model 4. Referring to the covariates’ distribu-

tions in these models, the consistency of the ensemble moment-based estimator

also illustrates its robustness to the violation of the linearity condition and the

constant variance condition.



S1. SIMULATION STUDY 1

Model OLS PHD ENS ENSB

1
12.6 93.6 18.7 0

(7.9) (7.6) (18.6) (0)

2
20.5 97.6 23.3 11

(6.1) (0.8) (6.9) (10.5)

3
90.2 39.4 39.4 9.1

(11) (12.3) (12.5) (12.5)

4
100 93.7 26.2 0

(0) (8.8) (6) (0)

Table 1: Accuracy of estimating SE(∆Y |X) when p = 10. The number in the top (bottom) of

each cell is the average (standard deviation) of the deviation between the central causal effect

subspace and its estimate over 200 replicates, multiplied by 100. “OLS” stands for ordinary

least square, “pHd” for principal Hessian directions, “ENS” for the ensemble moment-based

estimator, and “S-ENS” for the sparse ensemble moment-based estimator.

Since the cardinality of the active set is relatively small in all the models, the

sparse ensemble moment-based estimator differs from its ordinary counterpart

and consistently outperforms the latter. In particular, in a simple case like Model

1, it exactly recovers the central causal effect subspace in all the simulation

samples. As mentioned in §5 of the main text, this phenomenon differs from

the commonly seen cases in variable selection but is reasonable in the sufficient



dimension reduction scenario, as the estimation accuracy is measured on the

level of the central mean subspace.

S2 Simulation study 2

In this section, we study the performance of the proposed approaches when p =

20, using the same models and the same existing methods for reference as in

§7 of the main text. We let n = 600 as in the main text when assessing the

estimation accuracy for the central causal effect subspace, the regression causal

effect, and variable selection. We raise n to 1000 when testing the heterogeneity

of the regression causal effect, as we found that no tests in §7.3 of the main

text performed well when n = 600 and p = 20, which is reasonable since the

consistency of inference results usually require larger sample sizes.

Table 2 reports the estimation accuracy of the four aforementioned sufficient

dimension reduction methods. As before, the ensemble moment-based estimator

outperforms both ordinary least square and principal Hessian directions, and is

further improved if we employ sparse sufficient dimension reduction.

Using the sample median intergraded absolute error defined in (17) of the

main text, Table 3 records the performance of the proposed estimator of the

regression causal effect. Although the accuracy slightly dropped compared with

the cases when p = 10 (see Table 1 in the main text), the similar overall pattern



S2. SIMULATION STUDY 2

Model OLS PHD ENS ENSB

1
17.3 95.9 47 3.5

(3.3) (4.6) (21.7) (18.4)

2
31 98.7 53.9 29.9

(6) (1.8) (26.4) (30.9)

3
93.3 56.5 56.7 16

(8) (12.3) (12.6) (25.6)

4
100 95.8 36.4 7

(0) (4) (9) (7.1)

Table 2: Accuracy of estimating SE(∆Y |X) when p = 20. The numbers in each cell are calculated

in the same way as those in Table 1. All the abbreviations also follow those in Table 1.

can be observed. That is, except for the oracle estimator, the proposed estimator

outperforms the others in all the models, especially when the individual outcome

regressions are complex.

Table 4 records the performance of the proposed sparse ensemble moment-

based estimator in variable selection. Again, it is consistent for all the models,

and slightly outperforms the virtual twins method (Foster et al., 2011) in Model

3.

We next evaluate the effectiveness of the proposed chi-squared test for the

homogeneity of the regression causal effect. As mentioned in the beginning of



Model Oracle S-ENS LZG GCL GCQ RF GEL GEQ WML WMQ

1
5.6 8.8 14.5 13.5 17.9 26.6 13.8 19 13.8 18.9

(4) (7.6) (2.3) (2.3) (2.3) (3.3) (2.3) (2.3) (2.2) (2.3)

2
8.8 19.6 19.5 53 19.3 57.6 22.7 23.1 22.9 23

(5) (8.1) (2.3) (7.1) (2.1) (4.5) (3.3) (3) (3.3) (3)

3
13.1 21.2 32.7 74.9 27.2 32.2 73.5 29.2 73 28.8

(5.2) (5.4) (9.9) (7.3) (3.4) (2.5) (7.3) (3.8) (7.3) (3.8)

4
19.3 20.3 60.9 122.5 85.6 109.2 123 86.4 123.1 86.3

(3.4) (7) (3.9) (4.8) (6.6) (13.7) (5) (6.6) (5) (6.5)

Table 3: Accuracy of estimating the regression causal effect when p = 20. The numbers in each

cell are calculated in the same way as those in Table 1 of the main text. All the abbreviations

also follow those in Table 1 of the main text.

the section, we now let n = 1000. The results are recorded in Table 5.

From Table 5, we again observe that the proposed test outperforms those

proposed by Crump et al. (2008) in both the sensitivity and specificity. The

same conclusion is suggested by Figure 1, which illustrates the distributions of

the p-values when the robust and the ordinary chi-squared tests in Crump et al.

(2008), and the proposed chi-squared test, are applied to each model.



REFERENCES

Model

S-ENS VT dLasso PHWD

TPR FPR TPR FPR TPR FPR TPR FPR

1 0.965 0.004 1.000 0.003 1.000 0.312 1.000 0.299

2 0.988 0.062 1.000 0.000 1.000 0.317 1.000 0.333

3 1.000 0.059 1.000 0.134 0.445 0.142 1.000 0.321

4 0.998 0.001 1.000 0.002 0.642 0.202 1.000 0.271

Table 4: Accuracy of variable selection methods when p = 20. The number in each cell is

calculated in the same way as those in Table 2 of the main text. All the abbreviations also follow

those in Table 2 of the main text.

1 3 4 5 6 7

SDR χ2 93 89 100 99 100 100

r-Normal 100 69.5 100 84 10.5 1

r-χ2 100 66 100 87 13 1

Normal 100 91.5 100 85 2.5 0

χ2 100 90 100 89 2.5 0

Table 5: Percentage of correct decision by each test when p = 20. All the abbreviations also

follow those in Table 3 of the main text.
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Figure 1: Distribution of p-values when p = 20. The box-plots of the p-values are drawn in the

same way as those in Figure 1 of the main text.
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