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Abstract: While standard meta-analysis pools the results from randomized trials that compare two treatments,
network meta-analysis aggregates the results of randomized trials comparing a wider variety of treatment op-
tions. However, it is unclear whether the aggregation of effect estimates across heterogeneous populations will
be consistent for a meaningful parameter when not all treatments are evaluated on each population. Drawing
from counterfactual theory and the causal inference framework, we define the population of interest in a net-
work meta-analysis and define the target parameter under a series of nonparametric structural assumptions.
This allows us to determine the requirements for identifiability of this parameter, enabling a description of the
conditions under which network meta-analysis is appropriate and when it might mislead decision making.
We then adapt several modeling strategies from the causal inference literature to obtain consistent estimation
of the intervention-specific mean outcome and model-independent contrasts between treatments. Finally, we
perform a reanalysis of a systematic review to compare the efficacy of antibiotics on suspected or confirmed
methicillin-resistant Staphylococcus aureus in hospitalized patients.
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1 Introduction

While individual studies are rarely used to inform scientific or medical decision making [1], multiple sources of
evidence may be aggregated in order to offer more generalizable and precise comparisons between treatments
[2–5]. Meta-analysis, which is the statistical synthesis of multiple study results, is often considered the highest
form of quantitative evidence due to its ability to combine all relevant information in the scientific literature.
However, because of such issues as effect heterogeneity across study populations and methodology that does
not necessarily account for all sources of bias, the status of meta-analysis as the “gold standard” of medical
knowledge has been questioned [6].

Standard meta-analysis compares two treatments of interest (or, for instance, an active treatment and
placebo). When many treatments for a common condition are tested and made available over time, the medical
literature may then contain multiple randomized controlled trials (RCTs) with various treatment comparisons
on potentially different populations. Without additional guidance, clinicians and patients are left to informally
synthesize information in the available studies in order to determine an optimal treatment decision. A network
meta-analysis statistically aggregates the results from the relevant RCTs in order to obtain an estimate of the
contrast between each pair of treatments. In particular, this type of analysis can produce estimates of contrasts
even when no RCT directly compared the two treatments of interest directly.

Each RCT in the network may be performed on populations that differ in terms of their baseline charac-
teristics. These population-specific variables may affect the average response to treatment so that in order to
combine inference involving the means, it might be beneficial to control for such variables [7]. Furthermore, it
has been noted that if these characteristics not only differentially affect response to treatment, but also the ini-
tial study design choice of which treatments to compare, then these variables may confound the overall effect
estimate [6, 8]. As an example, Jansen et al. [8],suggest that the baseline severity of patients recruited into a
study can be related to the type of treatments investigated in the study and also affect the average outcome at
the end of the study. As we demonstrate in this paper, such “study-level confounding” must be adjusted for in
order to obtain consistent estimation of average treatment effects.

Mireille E Schnitzer is the corresponding author.
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In this paper, we consider the setting where individual patient data are not available so that the observed
data is limited to average covariate and outcome values in addition to study-level information (which we refer
to as “aggregate” or study-level data). We begin by describing past parametric approaches to network meta-
analysis where the parameter of interest is dependent on the model specification and where the absence of
effect heterogeneity is often required a priori. Using the counterfactual framework, we propose a novel defini-
tion of a marginal and model-independent causal parameter of interest in network meta-analysis and delineate
the assumptions required to estimate this parameter in the presence of measured study-level confounders. We
are then able to clarify conditions under which a network meta-analysis is appropriate and when it might mis-
lead decision making regardless of estimation method used. We describe several marginal estimation methods
adapted from the single study causal inference setting, including a doubly robust and semiparametric locally
efficient Targeted Maximum Likelihood Estimator, and then compare these methods in a simulation study. Fi-
nally, we perform a reanalysis of the systematic review by Bally et al. [9],to compare the efficacy of antibiotics
on suspected or confirmed methicillin-resistant Staphylococcus aureus (MRSA) in hospitalized patients.

2 The observed data

Each RCT is assumed to randomly sample subjects from a wider population, called a superpopulation. Within
the RCT, randomization assigns subjects to two or more groups, each one receiving a treatment. These groups
are often referred to as treatment arms. Due to randomization and random sampling, each group is a represen-
tative sample from the superpopulation. Therefore, each arm can be thought of as a distinct study on the same
superpopulation. The superpopulations targeted by the RCTs may differ in terms of their characteristics due
to, for example, each trial’s physical and temporal location, the individual inclusion and exclusion criteria, and
the recruitment sample size targets. Therefore, if effect heterogeneity exists (i. e. if the relative treatment effects
at the subject level depend on baseline covariate values), one would not expect the average relative treatment
effects to necessarily be equal across superpopulations.

More formally, the superpopulation is the conceptual group of essentially infinite size from which the study
sample is selected [10]. A measure of some outcome (Y) is taken on each subject in the RCT arm. In this article,
we will generally consider the example where the sample mean and standard deviation of Y are the summary
statistics computed in each RCT.

Let Aij be the intervention received by subjects in arm j of a particular RCT indexed by i. For this arm,
we observe an estimated mean outcome ̄Yij and standard deviation Sij. Let Oi = (Wi, ni, {Nij, Aij, ̄Yij, Sij}; j =
1, ..., ni), i = 1, ..., N where Wi is study baseline information and ni is the number of arms in the study. For the
j−th arm of RCT i, let Nij be the number of subjects and N be the total number of RCTs in the sample.

Because we are interested in summarizing effects across multiple superpopulations, we are arguably at-
tempting to estimate effects in a metapopulation that contains the individual superpopulations from each study.
For the purpose of this paper, we define the metapopulation as the union of possible study superpopulations
and define our parameters of interest with respect to this metapopulation. In particular, we assume that the
individual Oi vectors are independently drawn from the metapopulation and identically distributed.

3 Past approaches to network meta-analysis

Standard approaches in network meta-analysis where only aggregate data are observed place a hierarchical
model on either the study-specific contrasts (e. g. the difference in means, ̄Yi1− ̄Yi2) or the arm-specific outcomes
( ̄Yij) and specify a within-study correlation structure [3, 5, 11, 12]. As the absence of effect heterogeneity is often
required, a priori [13] and post-hoc [14] investigation of this assumption is routinely recommended. The reader
is referred to published guidance [15, 16] and to an example of how heterogeneity was accounted for in an
economic analysis [17]. There has been recent heated debate about the appropriateness of arm-based estimation
methods [11, 18].

The effect targeted in a hierarchical model depends on the contrast-type chosen and the parametrization of
the model, and may or may not correspond to a marginal effect as we define further on. For binary outcomes,
due to the non-collapsibility of the logistic regression model [19] in particular, adjustment for covariates in such
a model changes the true value of the “effect” parameter being estimated. This type of modeling strategy may
therefore be biased for the estimation of a marginal effect. Even in linear models, the inclusion of treatment
interactions with covariates can also bias the value of the coefficient of treatment relative to the marginal effect.
Zhang et al. [12],and Zhang et al. [20],take a missing data perspective and model the arm-specific outcomes
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using a Bayesian hierarchical model to estimate marginal parameters. While neither approach has yet been ex-
tended to incorporate covariates, the former paper assumes that treatments are applied to studies at-random
while the latter allows for estimation in a not-at-random context by explicitly specifying the unobservable se-
lection mechanism.

While adjustment for covariates is rare in practice, Jansen et al. [8],introduced the notion of adapting Pearl’s
causal directed acyclic graphs (DAGs) to this setting [21] in order to assist in covariate selection. As a general
rule, Jansen et al. [8],advocate for the adjustment of all modifiers of the relative treatment effects across com-
parisons. They also discourage adjustment for covariates that are not effect modifiers due to the fact that they
may induce bias in the meta-analysis.

4 The counterfactual approach

Let Ya be the potential (or counterfactual) outcome of a random subject drawn from the metapopulation had
that subject received treatment A = a. In an RCT, each study arm produces an estimate of the superpopulation-
specific mean of the outcome Ya under the treatment assigned. Let the true mean of the potential outcome
under treatment a for the superpopulation targeted in study i be denoted Ma

i ∶= E(Ya|Pi) where Pi repre-
sents the superpopulation targeted in study i. Let Σa

i ∶= √Var(Ya|Pi) be the standard deviation of the po-
tential outcomes in Pi under treatment a. Now suppose that each superpopulation is independently drawn
from a metapopulation, 𝒫 = ⋃i∈P

Pi, the union of all possible study superpopulations indexed by the set SP.
A marginal target parameter in a meta-analysis is Ma ∶= E(Ya) = E(Ma

i ), which represents the mean out-
come under treatment a on the metapopulation. The standard deviation of the overall outcome distribution is
Σa ∶= √Var(Ya) = √E{Var(Ya|Pi)} + Var{E(Ya|Pi)} = √E(Σa

i
2) + Var(Ma

i ), representing the within and between
study heterogeneity in the outcome under treatment. Due to treatment arm randomization and random sam-
pling, ̄Yij is an unbiased estimate of MAij

i , the mean potential outcome under the observed treatment, and Sij is
a consistent estimate of ΣAij

i , the potential standard deviation under the observed treatment.
For two treatments, A = a and b, with corresponding means Ma and Mb, we can define a causal effect as

the contrast between the mean outcome when the entire metapopulation is treated according to one treatment
versus another. For instance, for binary outcomes we may define the causal risk difference as Ma − Mb and the
causal risk ratio as Ma/Mb.

The patient sample in any given study arm may not be representative of the metapopulation, for which
the effect of interest is defined. In addition, because treatment was not randomly allocated across different
RCTs, the collection of mean outcomes observed under a given treatment a may not be representative of the
metapopulation under treatment a. At the design stage, the decision of which treatments to include as arms
within an RCT may be influenced by the characteristics of the superpopulation on which the study is taking
place. For instance, consider the example of planning a study for a superpopulation with higher disease severity
from Jansen et al. [8]. Studies including patients with severe disease are more likely to include an arm with an
aggressive treatment. If this occurs, the mean outcome under the aggressive treatment may be different than
in a less severe superpopulation. In this situation, we would say that the treatment-mean outcome relationship
is confounded at the study level by severity.

4.1 A causal directed acyclic graph (DAG) for network meta-analysis

Similar to Alonso et al. [22], we assume that heterogeneity in the different superpopulations targeted in the
individual RCTs implies that each RCT estimates a different causal effect. Like Zhang et al. [12], we take an
“arm-based” approach to the problem. Like Jansen et al. [8], we draw a causal DAG in order to conceptualize
the relationship between treatment, study results, and population-specific characteristics. We arbitrarily choose
to intervene on the arm labeled j in each study. We write Ni = {Nij, j = 1, ..., ni}, the vector of sample sizes across
arms. We will also define Ai = {Aij, j = 1, ..., ni}, the vector of treatment assignments evaluated in study i, and
Ai\j to mean the treatment vector excluding some arm j.

Many of the assumptions presented in detail in Section 4.3 are drawn explicitly using the study-level DAGs
in Figure 1(a). The nodes of the DAG represent variables measured at the level of the RCT and the arrows
between them represent the effect of the parent on the child node. For example, the absence of an arrow from
Ai\j to ̄Yij, Sij represents a component of the “no interference” assumption that the treatment in one arm will not
affect the outcome in another. The arrow from Nij to ̄Yij, Sij is present because the sample size within a study
arm will affect the distribution of the outcome summary statistics.
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Figure 1: (a) The study-level DAG reflecting the unconfoundedness and time-ordering assumptions made in Section 4.3
and Section 4.2 without assuming independence between the sample mean and standard deviation within a study arm.
(b) The simplified DAG that arises from assuming the independence between the sample mean and standard deviation.
Here, W1i, W2i and W3i are baseline covariates, Aij and Ai\j are the treatments assigned to arms j and the non-j arm(s),
respectively, Nij is the sample size of arm j, ̄Yij is the mean outcome and Sij is the estimated standard error of the outcome
of arm j.

The sample size node Nij is determined by the sample size calculation made in the study design phase
and also by the success of recruitment. This calculation is inherently conditional on the superpopulation being
evaluated, as superpopulation characteristics are taken into account when hypothesizing an effect size and
standard error. This calculation is also conditional on the treatments being compared.

Causal DAGs can be used as a tool to identify which variables must be controlled for in the meta-analysis
in order to estimate the treatment-specific metapopulation mean outcome. Depending on some underlying
statistical assumptions that we will investigate in detail in the following sections, these DAGs may simplify to
Figure 1(b). This happens because we can ignore the mediation path through Nij in order to estimate the total
effect of the treatment on outcome. Under these conditions, assuming independence between the variables in
Wi, the analysis must adjust for all common causes of treatment selection and study outcome distribution.

Note that the recommendations based on this DAG differ from those of Jansen et al. [8], who say that the
analysis must adjust exclusively for effect modifiers. The assumptions that we list in Section 4.3 are explicitly



DE GRUYTER Schnitzer et al.

required in the steps we take in Section 4.2 in order to obtain identifiability of the meta-analysis parameter of
interest.

4.2 The G-formula and nonparametric identifiability

Suppose we observe the aggregate data Oi, i = 1, ..., N, independently drawn and identically distributed. Using
the nonparametric structural equation modeling (NPSEM) of Pearl [21], the metapopulation mean outcome,
Ma, can be shown to be identifiable (that is, known with infinite data) under the several conditions outlined
and discussed in Section 4.3.

4.2.1 The observed data generation

At the study design stage for RCT i, the superpopulation Pi is randomly drawn from the metapopulation P. The
selection of Pi determines the population-level covariates Wi. The number of study arms ni and the treatments
compared in the study, the multivariate Ai = {Aij, j = 1, ..., ni}, are drawn conditional on Wi. The sample size
calculation is carried out based on the choice of treatment comparison and on the sub-population characteristics
(i. e. based on the expected effect and precision in that sub-population). This calculation is approximate and the
resulting sample size also depends on the success of recruitment. Therefore, the sample sizes for the treatment
arms, Ni, are not deterministic, but are drawn conditional on Ai, ni and Wi.

The second stage operates at the individual level once subjects are recruited and randomly assigned treat-
ment. Suppose each subject k in arm j of study i has continuous outcome Yijk, k = 1, ..., Nij (under treatment
Aij). Each Yijk is independently drawn from a distribution with mean MAij

i and standard deviation ΣAij
i . The

empirical mean outcome in arm j of study i is therefore ̄Yij = 1/Nij ∑k Yijk. The standard deviation is estimated
as S2

ij = 1/(Nij − 1) ∑k (Yijk − ̄Yij)2. In addition, subject recruitment yields summary characteristics of the su-
perpopulation, which we assume to include complete information about the covariates Wi that were known at
study conception and contributed to the treatment choice. We assume in the following that we do not observe
the subject-level data.

Let ωij represent the set of estimated summary statistics of the outcome variable from study i arm j. For
instance, we might have that ωij = { ̄Yij, Sij}. Correspondingly, let ωa

ij be the set of estimates of the counterfactual
summary statistics that would arise had arm j been assigned treatment a.

Assuming no interference between arms and that the distribution of ωij in one arm of a study is conditionally
independent of the outcomes in the others and also independent of the total number of arms, the NPSEM that
we assume can then be written as

Wi = fW(εW)
ni = fn(Wi, εn)
Ai = fA(ni, Wi, εA)
Ni = fN(Ai, ni, Wi, εN), forj = 1, ..., ni

ωij = fω(Nij, Aij, Wi, εω), forj = 1, ..., ni

The probability density function f (Oi) arising from the NPSEM without intervention can be decomposed as

f (Oi) = QW(Wi)Qn(ni|Wi)gA(Ai|ni, Wi)×

QN(Ni|Ai, ni, Wi)
ni

∏
j=1

Qω(ωij|Nij, Aij, Wi)

where QW(Wi) corresponds to the density function for Wi, Qn(ni|Wi) corresponds to the density function for
ni conditional on Wi, and gA(Ai|ni, Wi) corresponds to the conditional density function for Ai. Within each
RCT, QN(Ni|Aij, Ai\j, ni, Wi) corresponds to the conditional density function forNi and Qω(ωij|Nij, Aij, Wi) is the
conditional (joint) density for the measured summary statistic(s) in arm j.
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4.2.2 The counterfactual distribution

Define an intervention as the assignment of treatment strategy a to an arbitrary arm in each study. In other
words, for all i we set Aij = a for a single arbitrary arm j. The remaining non-j arms receive potential treatments
Aa

i\j. The joint density for the counterfactual data Oa
i = (Wi, ni, Aa

i\j, {ωa
ij∗, Na

ij∗; j∗ = 1, ..., ni}) can be obtained
through the G-formula [23]. This joint density function can be written as

f (Oa
i ) = QW(Wi)Qn(ni|Wi)gA\j(Aa

i\j|ni, Wi)QN(Na
i |Aa

i\j, ni, Wi)Qω(ωa
ij|Na

ij, Wi)×

∏
j∗≠j

Qω(ωa
ij∗ |Na

ij∗, Aa
ij∗, Wi)QN(Na

ij∗ |Aa
i\j, ni, Wi)

where gA\j(Aa
i\j|ni, Wi) is defined as the conditional (joint) density of the treatments assigned to non-j arms.

4.2.3 Identifiability for conditionally independent ̄Y and S

Suppose we have that ωij = { ̄Yij, Sij}, meaning that each study reported the sample means and sample stan-
dard deviations of a continuous outcome. We then make the key structural assumption that ̄Ya

ij ⊥⊥Sa
ij|Na

ij, Wi
where Na

ij is the counterfactual sample size in study i arm j. Let Ya
ijk represent an individual recruited into

study i arm j in the counterfactual scenario. The independence assumption arises naturally from the distribu-
tional assumption that Ya

ijk ∼ N(Ma
i , (Σa

i )2) because ̄Ya
ij and Sa

ij are the sample mean and standard deviation
in superpopulation Pi when a is the treatment assigned. Asymptotically, we have that ̄Ya

ij and Sa
ij are indepen-

dent normal variables when the subject-level outcomes are drawn from a distribution with zero skew, such
that E{(Ya

ijk)
3} = 0 [24], p. 46]. We show in Appendix A.1 that under this assumption f (Oa

i ) can be decom-
posed in such a way that the mean outcome, E( ̄Ya

ij) = Ma, can be written independently of the non-j arms,
resulting in the simple equality Ma = ∫W E( ̄Ya

ij|Na
ij, Wi)QW(Wi)dW. Under the unconfoundedness assumption

̄Ya
ij ⊥⊥Aij = a|Na

ij, Wi, and under the consistency assumption (see next section) we may write the G-formula [23]
Ma = ∫Wi

E( ̄Yij|Wi, Aij = a)QW(Wi)dWi. Therefore, this quantity is identifiable from the data.
Identifiability without assuming this structural independence is possible, and we describe the additional

causal assumptions required for this setting in Appendix A.2.

4.2.4 Identifiability for binary outcomes

If the original study outcomes are binary (such that Yijk = {0, 1}), the study means ̄Yij are the proportions of
subjects with the indicated outcome. Therefore, Na

ij
̄Ya
ij has a binomial distribution with true probability of out-

come Ma
i = E(Ya|Pi). Then, Σa

i = √Var(Ya|Pi) = √Ma
i (1 − Ma

i ). Similarly, the study arm estimate of the standard

deviation is Sa
ij = √ ̄Ya

ij(1 − ̄Ya
ij). In this case, the likelihood will not include a component for Sij so no indepen-

dence assumption is necessary. The resulting G-formula is still Ma = ∫Wi
E( ̄Yij|Nij, Wi, Aij = a)QW(Wi)dWi and

will rely on the same unconfoundedness assumption that ̄Ya
ij ⊥⊥Aij = a|Nij, Wi.

4.3 Assumptions

For convenience, here we list the assumptions needed for the identification of Ma, corresponding with the
NPSEM in Section 4.2.1 and the DAGs in Figure 1. We also comment on the meaning and plausibility of these
assumptions in the hypothetical situation where each individual RCT has full compliance. Under full compli-
ance, each RCT arm produces a consistent estimate of the mean outcome in the superpopulation under full
adherence to the assigned treatment.

No interference. The use of the above counterfactual notation presupposes that the treatment assigned to one
study does not affect the counterfactual outcome of another study [25]. A secondary level of interference within
an individual study involves the treatment in one study arm affecting the outcomes in another study arm. This
means that the estimates ̄Ya

ij and Sa
ij do not depend on the treatment received by another arm of the same RCT.

The assumption of no interference will generally not hold for certain studies of infectious disease. For example,
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an effective vaccine in one arm may impact the outcome of an unvaccinated subject in the control arm, because
the unvaccinated subject will be less likely to be exposed to the disease through herd immunity.

Unconfoundedness. (Weak) unconfoundedness [26] is required for the identification of Ma. In this con-
text, unconfoundedness is the assumption that the counterfactual sample means under a treatment a are in-
dependent of the true treatment received conditional on measured covariates. Specifically, this means that

̄Ya
ij ⊥⊥Aij = a|Na

ij, Wi. In the example DAG of Figure 1(a), this corresponds to measuring all the components
of node W2i. The validity of this assumption is entirely dependent on the subject-matter, how RCTs in the field
are designed, and on the information reported in the RCTs.

Consistency. The consistency assumption in this context states that the counterfactual mean of a study arm
under a given treatment is the same as the observed result. With notation, this is equivalent to stating that ̄Ya

ij =
̄Yij when Aij = a. Having different definitions of treatment across studies may violate this assumption if all are

categorized under the same treatment type and this variation has an impact on the outcome [27]. For example,
there may be different drug dosages and lengths of follow-up across studies. Disregarding these differences will
violate consistency if the various treatment-types have differential effects on the patient outcomes. With some
additional unconfoundedness requirements, one might surmount this obstacle using the approach described in
VanderWeele and Hernán [28]. [Note that this definition of consistency corresponds with the causal assumption
and is distinct from the network meta-analysis meaning of the term in e. g. [14].]

Positivity. Finally, we need to evaluate both theoretical and practical positivity. Theoretical positivity is the
assumption that, conditional only on variables required for unconfoundedness, all studies had a positive probability
of being assigned each treatment under investigation. Practical positivity is the condition that for every level
of the characteristics Wi, there is an estimated positive probability of receiving treatment.

It is important to note that treatment comparisons are based on the same P and that the target parameter
Ma = E(Ma

i ) relies on the definition of this metapopulation. If positivity does not hold on some subpopu-
lations it would be necessary to exclude all studies (and corresponding superpopulations) that contain such
subpopulations.

It is furthermore important to note that the positivity assumption is not the same as requiring that all stud-
ies could have realistically been assigned each treatment. In particular, certain treatments may not have been
available when some older trials were carried out. If year of study is not required to unconfound the analysis,
then the unconditional probability may still be non-zero.

5 Estimation of the treatment-specific metapopulation mean outcome

5.1 G-Computation

G-Computation procedures based on the G-formula in Section 4.2 can be used to estimate the target parameter.
Here we define a simple procedure resulting from the data requirement that the sample mean and standard
deviation are independent within a study arm. This procedure allows for simple frequentist estimation of the
mean effect of treatment.

This procedure requires estimates for the conditional expectation E( ̄Yij|Wi, Nij, Aij = a) for a given value of
treatment. First we must note that while the conditional mean of ̄Yij is independent of Nij, its distribution is not.
In particular, we have that

Var( ̄Yij|Wi, Nij, Aij) =
1

Nij
Var(Yijk|Wi, Nij, Aij) =

1
Nij

(ΣAij
i )2.

Because S2
ij is a consistent estimate of the superpopulation-level variance under treatment Aij, we are able to

estimate this variance.
A model for the regression on ̄Yij may be fit by pooling over all arms regardless of treatment assignment. In

order to obtain the Best Linear Unbiased Estimator, we can weight by Nij/S2
ij. Using this model fit, we predict

̂̄Y
a
i = Ê( ̄Yij|Wi, Aij = a), i. e. the predicted mean under treatment a for each study. The G-Computation estimate

is then ̂Ma
GCOMP = 1/N ∑N

i=1
̂̄Y
a
i .

The standard error for the G-Computation estimate is usually computed through nonparametric bootstrap
methods [29]. Bootstrap resampling must be done by resampling studies, rather than arms, similar to what is
done in a study with clustering [30].
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5.2 Inverse probability of treatment weighting

Likelihood methods, such as G-Computation, require correct parametric specification of the outcome model,
which may be difficult to specify. An alternative approach is to utilize propensity score methods, which require
the estimation of a model for the treatment received by the arm. For a given treatment type a, let ga(Wi) be an
estimate of the probability P(a ∈ Ai|Wi), called the generalized propensity score [26].

Despite the small sample size in standard network meta-analysis, one might attempt inverse probability
of treatment weighting (IPTW) for the estimation of the marginal parameter. Let ̄Ya

i represent the observed
outcome of the arm of study i that received treatment a (or N/A if no arm of study i received treatment a). An
IPTW estimator for multiple treatments [26] can be represented as

̂Ma
IPTW = 1/N

N
∑
i=1

𝕀(a ∈ Ai) ̄Ya
i

ga(Wi)
.

Intuitively, this estimator takes a mean of ̄Yij with only the arms treated according to Aij = a. It then adjusts this
estimate to remove the confounding bias caused by the baseline variables.

The consistency of this estimator can be shown as follows.

̂Ma
IPTW

P⟶ E ⎡⎢
⎣

̄Ya
i 𝕀(a ∈ Ai)

P(a ∈ Ai|Wi)
⎤⎥
⎦

= E { ̄Ya
i E [

𝕀(a ∈ Ai)
P(a ∈ Ai|Wi)

∣ ̄Ya
i , Wi]} = E ( ̄Ya

i ) = Ma.

5.3 Targeted minimum loss-based estimation

Targeted Minimum Loss-based Estimation (TMLE) [31, 32] is a framework for the construction of semi-
parametric estimators generally applied to the estimation of causal quantities. The TMLE procedure is carried
out by first fitting a model for the expected value of the arm-based means, E( ̄Yij|Wi, Aij = a) which, under
the causal assumptions, can equivalently be written as the expectation of the potential outcome had the study
evaluated treatment a, E( ̄Ya

i |Wi, a ∈ Ai). As in the G-Computation procedure, this model can be estimated by
weighing each observation by Nij/S2

ij. For each arm in the study, we use this model to obtain ̂̄Y
a
i , predictions of the

sample mean of each trial i under treatment a. These predictions are then updated by fitting a no-intercept logis-
tic regression using study arms that evaluated treatment a. This logistic regression is fit with outcome ̄Yij, offset
logit( ̂̄Y

a
i ), and single covariate g−1

a (Wi), corresponding with the inverse probability weights. Denote the estimate
of the coefficient from this regression as ̂ε. The updated predictions are then logit( ̂̄Y

a,∗
i ) = logit( ̂̄Y

a
i ) + ̂ε/ga(Wi),

which is calculated for each study. The final targeted estimate for Ma is ̂Ma
TMLE = 1/N ∑N

i=1
̂̄Y
a,∗
i . Note that in

order to perform the update step, the means and outcome must be transformed to (0,1) and then subsequently
transformed back to the original scale [33]. This can be done using real or empirical bounds.

This TMLE is consistent under correct specification of the propensity score model or the model for the
expected value of the mean outcome (the property of double robustness). If both of these models are correct, then
TMLE is asymptotically efficient in the class of regular, asymptotically linear estimators in the semiparametric
model space [32]. More details and a proof of consistency are included in Appendix A.3.

6 Simulation study

In this section we demonstrate that we can obtain consistent estimation of the target parameter Ma = E(Ya)
under the NPSEM using the proposed estimators. We also compare the efficiency of each approach.

While the proposed estimators do not restrict the number of study arms, we fix all simulated studies to have
exactly two treatment arms for simplicity. We are interested in estimating the mean outcome of the metapop-
ulation under treatment for each of four treatments of interest. For each study i = 1, ..., N, we generate the
population average characteristic, Wi from a Poisson distribution with mean 2. The probabilities of receiving
a given treatment are calculated conditional on the value of Wi. Two treatment options Ai are then sampled
without replacement using the calculated probabilities. Treatments 2 and 4 are generated to be less likely to be
chosen with larger Wi. The sample size Ni (which we allowed to be common to both arms in the study) is drawn
from a Poisson distribution with mean linear in Wi and Ai. For each subject within each arm, we draw a baseline
covariate Xijk from a Gaussian distribution with mean Wi and constant variance. We set β = (0.8, 0.2, 1, −0.05) to



DE GRUYTER Schnitzer et al.

be the treatment-specific coefficients. Outcome values Yijk are drawn from a Gaussian: Yijk ∼ N(Xijk +β[Aij], 1).
A summary of the data-generation is presented in Table 1.

Table 1: Simulation study: data generation.

Variable Study design: for each i = 1, ..., N

Number of arms ni = 2
Study-level covariate Wi ∼ Poisson(μ = 2)

Ai = (Ai1, Ai2) sampled without replacement with probabilities
p1 = logit−1(0.4Wi)

Treatments p2 = logit−1(−0.4Wi)
p3 = logit−1(0.8Wi)

p4 = logit−1(−0.8Wi)
Sample size Ni ∼ Poisson(μ = 5000exp(−0.4W − sum(γ[Aij])))

(study recruitment) where γ = (−1.5, 1, −1, 1)
Within-study: for each j = 1, 2, k = 1, ..., Ni

Subject-level covariate Xijk ∼ N(μ = Wi, σ2 = 4)
Subject-level outcome Yijk ∼ N(μ = Xijk + β[Aij], σ2 = 1)

where β = (0.8, 0.2, 1, −0.5)
Observed data: for each i = 1, ..., N, j = 1, 2

Wi, Ai, and ̄Yij where
Study-level information ̄Yij = 1/Ni ∑Ni

k=1 Yijk

The sample statistics from each study arm are calculated by taking the mean and standard deviation of
Yijk within each arm. The true treatment-specific superpopulation means are M1 = 2.80, M2 = 2.20, M3 =
3.00, M4 = 1.95. We are interested in estimating a subset of the contrasts between the treatments, specifically
marginal mean differences M2 −M1 = −0.60, M3 −M1 = 0.20, and M4 −M1 = −0.85. Note that random effects
were not generated in this simple simulation study.

We tested the three methods described in the text (G-Computation, IPTW and TMLE) for N = 15 and 50
simulated studies. We used logistic regression models conditional on the covariate for the generalized propen-
sity score for IPTW and TMLE. We ran two scenarios: incorrect and correct outcome model specification. For
the correct scenario, linear regression models for the outcome adjusting for treatment type and covariate were
used in G-Computation and TMLE. For the incorrect scenario, the outcome was scaled to (0, 1) and logistic
regression models were used. We also display results for an unadjusted estimator that merely takes the mean
difference in treatment-specific outcomes when available. Variance and confidence intervals were estimated us-
ing the nonparametric cluster bootstrap [30] where study is considered the cluster (and arms are the individual
observations). In Table 2, we present statistics describing the quality of the estimation of all contrasts with treat-
ment 1. These statistics are the percent finite sample bias (“% Bias”), the standard deviation of the estimates
over the simulated data (“SE-MC”), the bootstrap-estimated standard error (“SE-BS”), and the percentage of
the 95% confidence intervals that capture the true effect size (“% Cov”). Bootstrap resamples that did not allow
for an estimate of the contrast (i. e. if either of the treatments did not appear in the resampled data set) were
discarded, potentially biasing this standard error estimate.

The unadjusted estimator was greatly biased for the first and third contrasts, indicating that those two con-
trasts were highly confounded by the simulated study-level covariate. The correctly specified G-Computation
estimator had the lowest bias throughout, the smallest standard errors, and near optimal confidence interval
coverage. This is to be expected as G-Computation is a function of maximum likelihood parameter estimates
with correct parametric specification of the necessary component of the likelihood (namely, the conditional
mean of the outcome). However, with an incorrectly specified outcome model, the estimator was biased which
caused the coverage to suffer for the third contrast.

IPTW was the most biased estimator and also had the largest variance. The bias largely dissipated when
the sample size was increased to N = 50 studies. IPTW had good coverage except for the third treatment
contrast where treatment 4 was rare. The slower convergence of IPTW in the contrast involving treatment 4
can be explained by a higher variance of the estimated weights for that treatment compared to the others.
The performance of IPTW has previously been seen to suffer when data support for certain exposure levels is
sparse (i. e. under near practical positivity violations) [33]. Truncation of the propensity score at 5% and 10%
respectively (that is, replacing the bottom p% of the propensity score with the pth percentile) [34] increases the
bias for the first and third contrasts while reducing the variance, with no effect on the coverage (results not
shown).

TMLE with correct outcome model specification had bias comparable to G-Computation but slightly higher
for N = 15. For N = 50, the standard error of TMLE was comparable to that of G-Computation but for N = 15
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it was up to 80 times larger. Regardless, correctly specified TMLE had good coverage throughout. Notably, the
bootstrap standard error estimates were comparable to the Monte-Carlo standard error for N = 50 but diverged
for IPTW and TMLE when N = 15. Certain implementations of TMLE are more sensitive to near practical
positivity violations [33, 35, 36], hence the need for the robust version that involves the logistic regression for
the update of the predictions [as described in [33],and for our specific setting in Section 5.3]. When the outcome
model was misspecified, TMLE also accrued bias for the first and third contrasts, with magnitude comparable to
the misspecified G-Computation. This bias decreased with more studies due to the double robustness of TMLE
(making this estimator consistent even when the outcome model is misspecified). Coverage only suffered for
the third contrast which was the most biased.

Table 2: Simulation: quality of treatment contrast estimation with a Gaussian outcome (two-arm studies, 1,000 simulated
datasets).

% Bias SE-MC SE-BS(% Cov)
N 15 50 15 50 15 50

Correctly specified models
M2 − M1 = −0.6

G-Comp 0 0 0.04 0.02 0.04(91) 0.02(94)
IPTW 40 9 0.57 0.46 0.61(89) 0.41(92)
TMLE 4 0 0.27 0.03 0.44(96) 0.05(92)

M3 − M1 = 0.20
G-Comp 1 0 0.04 0.02 0.04(91) 0.02(95)
IPTW –2 0 0.10 0.04 0.25(99) 0.05(97)
TMLE –1 –1 0.17 0.04 0.29(96) 0.04(93)

M4 − M1 = −0.85
G-Comp 0 0 0.04 0.02 0.04(89) 0.02(93)
IPTW 81 3 0.76 0.74 0.62(63) 0.80(68)
TMLE –9 0 0.81 0.11 0.74(94) 0.21(95)

Misspecified outcome model
M2 − M1 =
−0.6

No
adjustment

101 103 0.65 0.35 0.61(75) 0.34(52)

G-Comp 2 12 0.20 0.13 0.24(98) 0.11(94)
TMLE –8 –2 0.33 0.09 0.46(97) 0.11(96)

M3 − M1 =
0.20

No
adjustment

5 –7 0.37 0.20 0.38(92) 0.20(93)

G-Comp –1 7 0.20 0.12 0.18(99) 0.11(95)
TMLE 0 0 0.15 0.05 0.28(99) 0.05(96)

M4 − M1 =
−0.85

No
adjustment

126 125 0.69 0.38 0.61(51) 0.36(18)

G-Comp 36 33 0.53 0.29 0.48(88) 0.24(80)
TMLE 44 –24 0.86 0.38 0.75(87) 0.36(75)

7 Application: Antibiotic use on methicillin-resistant Staphylococcus aureus infection

We illustrate this causal inference approach and the adapted estimation methods in network meta-analysis with
an example from infectious disease research. An increase in MRSA has spurred investigation of comparative
efficacy of different antibiotic treatment options. While the antibiotic vancomycin has been the standard treat-
ment for decades, treatment failures have been noted in patients with serious infections [37]. Interest therefore
lies in whether alternative antibiotics are as effective as the standard. Bally et al. [9] performed a systematic
review and Bayesian network meta-analyses of RCTs of parenteral antibiotics used for treating hospitalized
adults with complicated skin and soft-tissue infections (cSSTIs) and hospital-acquired or ventilator-associated
pneumonia.

We consider the target population of interest to be the population of clinical trial participants with suspected
or confirmed MRSA cSSTIs or pneumonia, with corresponding studies published until May 2012. The site of
infection and confirmation of MRSA represent important differences in the entrance criteria of the various
studies. 24 studies were found. Patients were randomized based on suspicion of MRSA in all but three studies
for which the protocol specified confirmation of presence of MRSA at baseline. 14 studies enrolled subjects with
cSSTIs, 7 studies enrolled subjects with hospital-acquired or ventilator-associated pneumonia, and 3 studies
allowed for either indication. The original network meta-analysis of Bally et al. [9],analyzed each infection site in
separate analyses and therefore obtained stratified estimates. Based on the theory we developed, we can account
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for the potentially different treatment effects in each subpopulation by controlling for subpopulation type as
a covariate in the analysis. By doing so, we ask a higher-level yet still clinically interesting question: “Are the
alternative therapies as effective as the standard antibiotic for the treatment of suspected or confirmed MRSA?”
Because infection site, MRSA confirmation, and study year can potentially affect the choice of investigated
therapies and the outcomes, these three covariates (labeled Wi) should be adjusted for in order to minimize
confounding bias.

The outcome of interest is clinical test of cure for all subjects who received at least one dose of treatment
(a standard measure in infectious disease research). Four papers evaluated the outcome only on a subset of
patients selected post-randomization; as this does not conform to our definition of the RCT-specific parameter
of interest, we considered these outcomes missing. For our analysis, we chose to compare vancomycin with
the two most prevalent alternatives: telavancin and linezolid. In total, 47 study arms evaluated one of these
three treatments and 36 had an observed outcome. Of the remaining treatments, tigecycline, daptomycin, and
ceftaroline were each evaluated in three study arms, and a regime of quinupristin/dalfopristin was evaluated
in one arm. All of this information is available in the data extraction Table 3.

Table 3: Data extraction table for the network meta-analysis of antibiotic use on methicillin-resistant Staphylococcus aureus
infection.

Publication Events Ni Ai StudyID Year Infection Confirmed
MRSA
at baseline

Katz et al.,
2008

42 48 vancomycin 1 2007 cSSTI 0

36 48 daptomycin 1 2007 cSSTI 0
Arbeit et
al., 2004

162 266 vancomycin 2 2001 cSSTI 0

165 264 daptomycin 2 2001 cSSTI 0
235 292 vancomycin 3 2000 cSSTI 0
217 270 daptomycin 3 2000 cSSTI 0

Breedt et
al., 2005

216 250 vancomycin 4 2003 cSSTI 0

212 253 tigecycline 4 2003 cSSTI 0
Sacchi-
danand et
al., 2005

196 255 vancomycin 5 2003 cSSTI 0

203 268 tigecycline 5 2003 cSSTI 0
Stryjewski
et al., 2008

307 429 vancomycin 6 2006 cSSTI 0

309 426 telavancin 6 2006 cSSTI 0
360 489 vancomycin 7 2006 cSSTI 0
348 472 telavancin 7 2006 cSSTI 0

Stryjewski
et al., 2006

81 95 vancomycin 8 2004 cSSTI 0

82 100 telavancin 8 2004 cSSTI 0
Corey et al.,
2010

297 347 vancomycin 9 2007 cSSTI 0

304 351 ceftaroline 9 2007 cSSTI 0
Wilcox et
al., 2010

289 338 vancomycin 10 2007 cSSTI 0

291 342 ceftaroline 10 2007 cSSTI 0
Talbot et al.,
2007

26 32 vancomycin 11 2005 cSSTI 0

59 67 ceftaroline 11 2005 cSSTI 0
Weigelt et
al., 2005

402 573 vancomycin 12 2003 cSSTI 0

439 583 linezolid 12 2003 cSSTI 0
Stevens et
al., 2002

54 87 vancomycin 13 1999 cSSTI 0

64 99 linezolid 13 1999 cSSTI 0
16 32 vancomycin 14 1999 pneumonia 0
20 39 linezolid 14 1999 pneumonia 0

Wunderin-
ket al.,
2003

128 302 vancomycin 15 2000 pneumonia 0
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135 321 linezolid 15 2000 pneumonia 0
Rubenstein
et al., 2001

73 192 vancomycin 16 1999 pneumonia 0

85 203 linezolid 16 1999 pneumonia 0
Rubenstein
et al., 2011

221 374 vancomycin 17 2007 pneumonia 0

214 372 telavancin 17 2007 pneumonia 0
228 380 vancomycin 18 2007 pneumonia 0
227 377 telavancin 18 2007 pneumonia 0

Fagon et al.,
2000

67 148 vancomycin 19 1996 pneumonia 0

65 150 quin-
upristin/
dalfopristin

19 1996 Pneumo nia 0

Lin et al.,
2008

NA 33 linezolid 20 2005 cSSTI 0

NA 29 vancomycin 20 2005 cSSTI 0
NA 38 linezolid 21 2005 pneumonia 0
NA 40 vancomycin 21 2005 pneumonia 0

Kohno et
al., 2007

NA 51 linezolid 22 2004 cSSTI 0

NA 26 vancomycin 22 2004 cSSTI 0
NA 31 linezolid 23 2004 pneumonia 0
NA 17 vancomycin 23 2004 pneumonia 0

Florescu et
al., 2008

NA 70 tigecycline 24 2005 cSSTI 0

NA 23 vancomycin 24 2005 cSSTI 0
Itani et al.,
2010

223 276 linezolid 25 2007 cSSTI 1

196 266 vancomycin 25 2007 cSSTI 1
Wunderink
et al., 2008

NA 30 linezolid 26 2005 pneumonia 1

NA 20 vancomycin 26 2005 pneumonia 1
Wunderink
et al., 2012

102 186 linezolid 27 2010 pneumonia 1

92 205 vancomycin 27 2010 pneumonia 1

We ran four methods to obtain estimates of the counterfactual relative risk of both contrasts with the com-
parator vancomycin. The methods are 1) a ratio of the unadjusted mean outcomes using all available arms
(called “No Adjust”), 2) a random effects regression for the arm-specific study outcomes using a log-link and
a study-specific intercept (“RE Arm”), 3) G-Computation where a random effects logistic regression weighted
by the inverse standard errors is used to predict the conditional mean outcomes, and 4) TMLE with a weighted
logistic random effects model for the outcome and LASSO-penalized logistic regressions (to handle the sparse
data) for the propensity score and a missing data model using the R library glmnet Friedman et al. [38] The
missing outcomes required that the TMLE algorithm include fitting a model to estimate the probability of a
missing outcome in each study; the TMLE update step was therefore modified to use a product of the propen-
sity score and the probability of observing the outcome in place of ga(Wi). To estimate the standard errors and
confidence intervals, the built-in functions in the library lme4 were used for the random effects model, and the
clustered nonparametric bootstrap (1,000 times 54 resamples of 27 studies with replacement) was used for the
other methods.

The results of the network meta-analysis are presented graphically in Figure 2 (and numerically in the Ap-
pendix Figure 4). We also included the results of the studies that contrasted the two treatments directly. For
the comparison of telavancin versus vancomycin, all estimators include the null in the confidence interval. The
random effect regression and G-Computation produce estimates of the relative risk close to one, indicating
near equivalence of treatments while the point estimate of TMLE was further from the null (in the direction
of the superiority of vancomycin). Notably, the confidence interval for the TMLE in the first contrast is much
wider than the others. The unadjusted method produced a point estimate in the direction of the superiority
of telavancin, demonstrating that the correction for study-level confounding impacted the analysis. For the
comparison of linezolid versus vancomycin, the random effects regression, G-Computation and TMLE agree
on the superiority of linezolid. The original study by Bally et al. [9],also found some suggestion of a superior
effect of linezolid compared to vancomycin but for both subpopulations the confidence intervals were large and
spanned the null.
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Figure 2: Risk ratio estimates and confidence intervals for clinical success at test of cure for all studies with direct compar-
isons and all network meta-analysis methods for the contrasts between a) telavancin and vancomycin and b) linezolid and
vancomycin. Risk ratio values below one indicate superiority of vancomycin.

We can also easily obtain estimates of the contrast between telavancin and linezolid. The G-Computation and
TMLE produce risk ratios for clinical success of 0.94 (95% confidence interval = 0.92,0.94) and 0.85 (0.71,1.12),
respectively, with G-Computation concluding the superiority of linezolid. As no RCT directly contrasted these
two antibiotics, this demonstrates another general advantage of network meta-analysis, which is the ability to
formally compare treatments using only indirect evidence of their relative performance.

If we are to interpret the summary statistics as estimates of the relative causal effects of antibiotic choice on
successful treatment, the causal assumptions in Section 4.3 need to be satisfied. Each of the studies evaluated the
clinical efficacy of the treatments, which is defined on patients who had received at least one dose of the study
drug. Because randomized treatment was first-line therapy (administered intravenously in-hospital) and the
success of treatment was determined clinically, each trial estimated the relative effect under full adherence. No
interference: No interference is credible in this case because all subjects were already suspected or confirmed to
have MRSA upon entry to the study. Therefore, the choice of treatment in the other arm wouldn’t have an effect
on existing infections nor the success of treatment. Unconfoundedness: The unconfoundedness assumption relies
on whether year, infection type, and whether MRSA was confirmed were sufficient to control for confounding
at the study-level. This assumption could be violated if prognostic demographic variables were involved in the
study design stage. However, prognostic markers such as diabetes and peripheral vascular disease (for cSSTI)
and mechanical ventilation, APACHE II score, clinical markers of severity, and presence of organ dysfunction
[for pneumonia) are unlikely to determine the choice of initial therapy [39], Niederman [40]. Consistency: The
dosage regimens varied somewhat across studies but were all considered to be at therapeutic levels. However,
the length of time to the evaluation time point for each treatment type varied within and between studies
(e. g. 7–14 days for telavancin versus 12–28 days for linezolid]. If this corresponds to meaningfully different
treatment durations (and/or periods of time lapsed before evaluation), this would indicate different definitions
of interventions across studies, and thus a violation of the consistency assumption. Positivity: All subjects in the
study were indicated to receive any of the treatments evaluated.

8 Summary

In this paper, we nonparametrically define the parameter of interest in a network meta-analysis with direct and
indirect comparisons using the counterfactual framework often employed in causal inference. This definition
of the parameter of interest is model-independent and is interpretable on what we define as a metapopulation,
the union of all superpopulations. Such an approach allows for a straight-forward description of what is being
estimated, which is accessible even without an understanding of the estimation methods being used. In partic-
ular, we can interpret the marginal effects defined in this paper as the relative mean outcome had all subjects
in the metapopulation been assigned to each treatment versus another. If a specific population is of interest
and not represented by the metapopulation, with some conditions it may also be possible to more generally
transport effect estimation, as described by Bareinboim and Pearl [41].

We have presented a set of conditions under which identifiability of the parameter of interest is possible.
Identifiability allows for a clear description of when the parameter of interest can and cannot be estimated.
For instance, the non-interference requirement casts doubt on the synthesis of studies that allow for treatment
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switching, crossover, or group contamination. The assumptions that we made allowed for the simplification of
the relevant components of the observed data likelihood so that arm-based inference is possible.

One might alternatively specify the RCT-estimated contrast as the “outcome of interest” (rather than use the
arm-specific outcome as we did). However, under this alternative, the propensity score would then be defined
as the probability of a trial directly contrasting a given treatment pair. For standard network meta-analysis
sample sizes, this would most often produce practical positivity problems, indicating the need for extrapolation
using the outcome model (and thereby creating estimators that are very sensitive to model misspecification).
In particular, two treatments that had never been directly compared would have no data support in this model.

If all treatments are selected completely at random into studies (or if only two treatments have ever been
available to compare) then a standard unadjusted analysis using those arms assigned the desired treatments
would be consistent. If we weaken this assumption and replace it with conditional exchangeability, then the
estimators introduced in this paper are appropriate in that they allow for the adjustment of study-level covari-
ates.

Our methods also allow for a wider inclusion criteria of studies in a systematic review. It is often the case that
systematic reviews will exclude studies because they do not evaluate the exact desired clinical endpoint. Using
our proposed methods, we can avoid selection bias due to studies excluded only for this reason. To do so, we
would artificially censor the outcomes of studies that do not estimate the desired outcome-type of interest. The
censored outcomes of these studies might then be considered “missing at random” conditional on the study
baseline information which should still be included in the analysis (both in the propensity score model and the
missing data model).

For the analysis of continuous individual-level outcomes, we assumed independence between the sample
mean and standard deviation within each study arm. While we chose to present our identifiability argument
under this assumption, it is not ultimately necessary. However, it is not straight-forward to propose a valid
Monte Carlo or Bayesian estimation approach to the setting with dependent sample means and standard de-
viations. In some cases, it may be possible to transform the individual-level data to remove the skew, but this
relies on access to each study’s raw data, in which case an individual patient data analysis would be preferable.

In the simulation study, we show that certain estimators adopted from the causal inference literature can
produce valid estimates of effect contrasts under the identifiability conditions described. In particular, G-
Computation and TMLE might lend themselves well to network meta-analysis, which is characterized by small
sample sizes and low prevalence for certain treatments. IPTW was seen to be sensitive to rare treatment as-
signment and G-Computation and TMLE were seen to be somewhat sensitive to model misspecification. Some
general benefits of using TMLE are that it is double robust and can incorporate nonparametric (or machine
learning) estimation of the propensity score and outcome model which can help avoid bias from model mis-
specification vander Laan and Rose [32]. More methods development and investigations are needed to address
extremely rare treatments and how (or whether) TMLE can be adapted to be robust in this setting.

The application we presented compared the results of random effects regression, G-Computation, and
TMLE in a network meta-analysis of the relative efficacy of treatment options for MRSA infection. The ran-
dom effects regression and G-Computation produced small confidence intervals relative to the direct contrasts
of the individual RCTs though TMLE only did for one comparison investigated. In contrast to the analysis in the
original article that used unadjusted contrast-based hierarchical Bayesian modeling on the separate subpopu-
lations of infection types, our analyses concluded that there is evidence to support the superiority of linezolid
over vancomycin. We also noted the poor stability of IPTW in this example and generally do not recommend
this estimator when the data support for certain treatment levels is sparse. Finally, using this data example,
we demonstrated how the causal assumptions should be listed and critiqued in order to stimulate discussion
about the appropriateness of causal interpretations in specific contexts.

The framework we present formally assumes that we are restricting our analyses to studies evaluating a
common parameter-type. If there was only partial-adherence in the RCTs, our framework does not allow for
the mixing of intent-to-treat parameter estimates with adherence-adjusted parameter estimates. [Estimation of
the adherence-adjusted parameters in RCTs is described in [42]. The same restriction applies to the results of
observational studies if the parameter type estimated in the observational study is not the same as in the clin-
ical trials. Specifically, treatment adherence and outcome need to be defined identically across studies, and all
studies whose endpoints are included must estimate the same mean treatment-specific counterfactual outcome.
Although it is common practice to include different parameter types in a meta-analysis, our formalization of the
target parameter reveals that a causal interpretation of the resulting effect estimate may be quite challenging.

In addition to the issues we describe, there are many other concerns about aggregating study results in
various settings. For instance, one might question the independence between RCTs happening close in time, or
the systematic review inclusion criteria. We believe our framework provides additional structure to the ongo-
ing discussion about the validity of network meta-analysis and will help stimulate solutions to the remaining
challenges.
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A Appendix

A.1 Proof of identifiability under structural independence

The joint counterfactual distribution can be decomposed as f (Oa
i ) = f1(Oa

i )f2(Oa
i ) where f1(Oa

i ) =
QW(Wi)Q ̄Y( ̄Ya

ij|Na
ij, Wi) and

f2(Oa
i ) = Qn(ni|Wi)gA\j(Aa

i\j|ni, Wi)QN(Na
ij|Aa

i\j, ni, Wi)QS(Sa
ij|Na

ij, Wi)×

∏
j∗≠j

Q ̄Y,S( ̄Ya
ij∗, Sa

ij∗ |Na
ij∗, Aa

ij∗, Wi)QN(Na
ij∗ |Aa

i\j, ni, Wi).

Let A be the set of possible treatments. The target of our analysis is the study arm counterfactual outcome under
treatment a, or E( ̄Ya

ij) = Ma. This mean can be written as

∫
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∞
∑
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E( ̄Ya

ij|Na
ij, Wi)f2(Oa

i )QW(Wi)dSa
ijd ̄Ya

ij∗dSa
ij∗dWi

where the integral for Wi can be a multiple integral, taken over the domain of potentially multivariate Wi. Now
we note that for identically distributed and conditionally independent draws Yijk

E( ̄Ya
ij|Na

ij, Wi) = E(
1

Na
ij

Na
ij

∑
k=1

Ya
ijk|N

a
ij, Wi) = E(Ya

ijk|Wi)

because we assume that the study size has no effect on the individual-level outcome. It follows that E( ̄Ya
ij|Na

ij, Wi)
is conditionally independent of Na

ij. The expression for Ma then simplifies to ∫Wi
E( ̄Ya

ij|Na
ij, Wi)QW(Wi)dWi. In

order for the conditional expectation to be estimable from the observed data, we require the unconfoundedness
assumption ̄Ya

ij ⊥⊥Aij = a|Na
ij, Wi. With respect to the example DAG in Figure 1(a), this corresponds to having

measured all components of W2i. If this assumption holds in addition to the consistency of treatment for ̄Yij,
we may write Ma = ∫W E( ̄Yij|Wi, Aij = a)QW(Wi)dW to establish identifiability.

A.2 Identifiability without assuming structural independence

It may not be plausible to assume conditional independence between ̄Ya
ij and Sa

ij. In this case, the relevant part
of the distribution of the observed data counterfactuals is
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f3(Oa
i ) = QW(Wi)Qn(ni|Wi)gA\j(Aa

i\j|ni, Wi)QN(Na
ij|Aa

i\j, ni, Wi)Q ̄Y,S( ̄Ya
ij, Sa

ij|Na
ij, Wi).

The target parameter can be estimated as a multiple integral over each ̄Ya
ij and each density component in f3(Oa

i ).
Identifiability in this case requires a list of unconfoundedness assumptions: Aa

i\j ⊥⊥Aij = a|ni, Wi, Na
ij|Aij =

a|Aa
i\j, ni, Wi, and ̄Ya

ij, Sa
ij ⊥⊥Aij = a|Na

ij, Wi. Assuming the DAG in Figure 1(a) in the main manuscript, this requires
having measured all components of W1i, W2i, and W3i. It also requires the consistency assumption for Ai\j, Nij,

̄Yij and Sij. Under these assumptions, we can rewrite the relevant density component as

f3(Oa
i ) = QW(Wi)Qn(ni|Wi)gA\j(Ai\j|Aij = a, ni, Wi)QN(Nij|Aij = a, Ai\j, ni, Wi)×

Q ̄Y,S( ̄Yij, Sij|Aij = a, Nij, Wi).

Since each component of this density is estimable from the data, we have identifiability of the target parameter
in this case as well.

A.3 E昀�ficiency and Consistency of TMLE

The local semiparametric efficiency and estimation consistency of the TMLE we describe can be derived very
similarly to the standard observational data setting (with a single categorical exposure variable) for the estima-
tion of the average treatment effect [32]. To give more insight into how this extends to the network meta-analysis
case, we present some additional details and a proof of double robustness.

The efficient influence function for parameter of interest Ma with only aggregate observed data is

D∗
ij(O) = { ̄Yij − E( ̄Ya

i |Wi, a ∈ Ai)}
𝕀(a ∈ Ai)

ga(Wi)
+ E( ̄Ya

i |Wi, a ∈ Ai) − Ma.

Note that the TMLE update step produces values of ̂̄Y
a,∗
ij that solve the empirical efficient influence function

equation:

N
∑
i=1

ni

∑
j=1

( ̄Yij − ̂̄Y
a,∗
ij )

𝕀(a ∈ Ai)
ga(Wi)

+ ( ̂̄Y
a,∗
ij − ̂Ma

TMLE) = 0

so that it follows that the TMLE is a locally efficient estimator [43, 44]. Specifically, the logistic regression update
step with single covariate Xi = 𝕀(a ∈ Ai)/ga(Wi) solves the score equation ∑N

i=1 ∑ni
j=1 Xi( ̄Yij − ̂̄Y

a,∗
ij ) = 0 and in

the last TMLE step we set ̂Ma
TMLE = ∑N

i=1 ∑ni
j=1

̂̄Y
a,∗
ij .

First suppose that for increasing values of ∑N
i=1 𝕀(a ∈ Ai), the generalized propensity score ga(Wi) converges

to some ̃ga(Wi) ≠ P(a ∈ Ai|Wi) but that ̂̄Y
a,∗
ij converges to the true values E( ̄Yij|Wi, a ∈ Ai). We then have that

E [{ ̄Yij − E( ̄Ya
i |Wi, a ∈ Ai)} ×

𝕀(a ∈ Ai)
̃ga(Wi)

+ E( ̄Ya
i |Wi, a ∈ Ai) − Ma]

= E [E { ̄Yij − E( ̄Ya
i |Wi, a ∈ Ai)|Wi, a ∈ Ai} ×

𝕀(a ∈ Ai)
̃ga(Wi)

+ E( ̄Ya
i |Wi, a ∈ Ai) − Ma]

= E [0 ×
𝕀(a ∈ Ai)

̃ga(Wi)
] + 0 = 0

Now suppose that ga(Wi) converges to the true values P(a ∈ Ai|Wi) but that ̂̄Y
a,∗
ij converges to some function

̃Qa(Wi) ≠ E(|Yij|Wi, a ∈ Ai). We then have that
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E [{ ̄Yij − Q̃a(Wi)} ×
𝕀(a ∈ Ai)

P(a ∈ Ai|Wi)
+ ̃Qa(Wi) − Ma]

= E [{ ̄Yij − ̃Qa(Wi)} × E {
𝕀(a ∈ Ai)

P(a ∈ Ai|Wi)
} + ̃Qa(Wi) − Ma]

= E [{ ̄Yij − ̃Qa(Wi)} × 1 + ̃Qa(Wi) − Ma]

= E [ ̄Yij − Ma] = 0

Therefore, if either of the models for E( ̄Ya
i |Wi, a ∈ Ai) or P(a ∈ Ai|Wi) are consistent, then the TMLE for Ma is

also consistent as the efficient influence function equation is consistent for Ma.

A.4 Data extraction information and numerical results for the example of antibiotic
use on methicillin-resistant Staphylococcus aureus infection

Table 3 presents the full study list from the systematic review of Bally et al. [9] and the data that we used in the
analysis in Section 7. Table 4 presents the numerical results that we obtained from our analyses, corresponding
with Figure 2. The full reference list is below.

Table 4: Risk ratio estimates, standard errors and 95% confidence intervals for relative effects of antibiotics telavancin
(TEL), linezolid (LIN), and mainstay therapy vancomycin (VAN)

TEL vs VAN LIN vs VAN TEL vs LIN
Method Est SE 95% CI EST SE 95% CI

No
Adjust

1.04 0.028 (0.99,1.10) 0.92 0.027 (0.87,0.97) 1.13 0.045 (1.05,1.22)

RE
Arm

1.00 0.010 (0.98,1.02) 1.08 0.012 (1.05,1.10) 0.92 0.014 (0.89,0.95)

G-
Comp
(RE)

1.00 0.003 (1.00,1.00) 1.06 0.006 (1.06,1.09) 0.94 0.005 (0.92,0.94)

TMLE
(RE)

0.89 0.106 (0.75,1.19) 1.05 0.012 (1.03,1.07) 0.85 0.102 (0.71,1.12)
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