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Abstract: Causal inference with observational data frequently requires researchers to estimate treatment
effects conditional on a set of observed covariates, hoping that they remove or at least reduce the confounding
bias. Using a simple linear (regression) setting with two confounders — one observed (X), the other unobserved
(U) — we demonstrate that conditioning on the observed confounder X does not necessarily imply that the
confounding bias decreases, even if X is highly correlated with U. That is, adjusting for X may increase instead
of reduce the omitted variable bias (OVB). Two phenomena can cause an increasing OVB: (i) bias amplifica-
tion and (ii) cancellation of offsetting biases. Bias amplification occurs because conditioning on X amplifies
any remaining bias due to the omitted confounder U. Cancellation of offsetting biases is an issue whenever X
and U induce biases in opposite directions such that they perfectly or partially offset each other, in which case
adjusting for X inadvertently cancels the bias-offsetting effect. In this article we discuss the conditions under
which adjusting for X increases OVB, and demonstrate that conditioning on X increases the imbalance in U,
which turns U into an even stronger confounder. We also show that conditioning on an unreliably measured
confounder can remove more bias than the corresponding reliable measure. Practical implications for causal
inference will be discussed.
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Introduction

Causal inference with observational studies frequently requires researchers to estimate treatment effects
conditional on a set of observed baseline covariates in order to remove confounding bias. Covariate-
adjusted effect estimates can be obtained by controlling for the observed covariates in a regression analysis,
or by matching cases on the observed covariates or the corresponding propensity score. It is well known
that the confounding bias can be removed if all the confounding covariates that simultaneously determine
treatment selection and the outcome are observed. This condition is frequently referred to as the conditional
independence assumption, selection on observables, strong ignorability assumption, unconfoundedness, or
the backdoor or adjustment criterion [1-4]. If one fails to reliably measure all the confounding covariates,
the causal effect is not identified and the covariate-adjusted treatment effect will usually remain biased.
In the linear regression context, the bias due an omitted variable is formalized in the omitted variable bias
(OVB) formula [2, 5-7].!

Though OVB is well known and has been discussed for decades, the mechanics of OVB are not yet fully
understood which regularly leads to misguided advice regarding the reduction of confounding bias in
practice. Applied and methodological articles and textbooks regularly suggest that including more variables
in a regression model will more likely establish the conditional independence assumption and thus reduce
or at least not increase confounding bias (e.g., [8-10], see [7], for a brief discussion of this ill-advised

1 In economics and statistics, the OVB formula typically assesses the bias in a regression coefficient when one compares a “short
regression” to a “long regression”, where the short regression differs from the long regression in omitting a variable [2]. In this article,
the OVB formulas always assess the bias with respect to the true data-generating model (i.e., the long regression is considered as the
true model). Thus, we express the bias in terms of structural parameters rather than regression or correlation coefficients.
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rationale for including more rather than less covariates). Similarly, there is a strong belief that adjusting for
an observed variable that is correlated with unobserved confounders necessarily removes a part of the bias
induced by the unobserved confounders and, thus, further reduces bias. Particularly the matching literature
suggests that matching on variables that are correlated with unobserved confounders reduces the imbalance
in and the bias due to unobserved confounders (e. g., [11-13]). We will show that even a high correlation
neither guarantees a decrease in imbalance in the unobserved confounders nor a decreasing bias. We will
also show that measurement error in covariates (unreliability) does not imply that less bias is removed.

Recently, researchers started looking at the mechanics of OVB in more detail. In particular, they have
been investigating what happens if one conditions on covariates that have the potential to induce or
amplify bias. Such covariates are collider variables that induce their own bias in addition to any OVB
[14-16], or instrumental variables (IVs) that amplify any bias left after conditioning on a set of observed
covariates [17, 18]. Another class of bias-amplifying covariates are near-IVs that strongly determine treat-
ment selection but affect the outcome only weakly (the weak instead of absent association with the outcome
turns them into a near-IV). Pearl [17, 19], see also [20, 21], formally showed that adjusting for a near-IV
removes the near-IV’s own confounding bias but also amplifies any bias left due to omitted confounders.
Also simulation studies have been used to demonstrate that the inclusion of additional variables can
actually increase OVB [7, 21, 22].

In this article we give a thorough formal characterization of the mechanics that lead to OVB. In
particular, we discuss conditions under which adjusting for a confounder actually increases instead of
reduces OVB. We use a linear setting with only two continuous confounders, X and U, that confound the
relationship between a continuous treatment Z and a continuous outcome variable Y. This allows us to keep
the complexity of the OVB formulas low, and thus to better understand the OVB mechanics.

In the following we first review and explain the phenomenon of bias amplification when one conditions
on an IV in the presence of an omitted variable. Then we focus on the case of two uncorrelated confounders
(one observed, the other unobserved), followed by the more general case with two correlated confounders.
Slowly increasing the complexity of the confounding structure — from the IV case to two correlated
confounders — allows us to clearly disentangle the effects of bias amplification, cancellation of offsetting
biases, correlated confounders, and unreliable covariate measurement. We conclude with a discussion of
practical implications. The appendices contain (a) an explanation of bias amplification in the context of
matching or stratifying on an IV (Appendix A), (b) OVB formulas for a dichotomous treatment variable
(Appendix B), and (c) proofs of results discussed in this article (Appendix C).

Amplification of bias and imbalance: the instrumental variable case

Several publications [17-20] demonstrated that conditioning on an instrumental variable (IV) amplifies any
remaining bias due to an omitted variable.? The causal graph in Figure 1 represents a simple data
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Figure 1: Causal graph with an instrumental variable (/V). Z is the
T treatment, Y the outcome, and U an unobserved confounder
Y (represented by the vacant node).

2 Though the IV could be used in a standard IV analysis (two-stage least squares), in this article we are interested in what
happens if we condition on an IV in a standard regression analysis.
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generating model (DGM) for the outcome Y and treatment Z with one confounder U and an instrumental
variable IV (which is a variable that has no effect on the outcome Y except for the indirect effect via
treatment Z). The corresponding linear structural causal model (SCM) is given by

IV =¢py,

U=¢ey,

Z= (11le+ (XUU+£Z,
Y=1Z+p,U +¢y,

where ay, B, and 7 are standardized parameters and ¢y, €y, €7, and ey are mutually independent error
terms (representing unknown factors or measurement error) with variances that ensure that

Var(IV)=Var(U)=Var(Z)=Var(Y)=1.

Conducting a linear regression analysis that neither conditions on U nor on IV, Y= y+1Z, results in a biased
regression estimator 7 for the treatment effect with E(7) =7 + ayf;;. Thus, the initial OVB, that is, the bias
before conditioning on IV, is given by OVB(7|{}) = E(T) -7 =aypBy. The empty set in OVB(7 |{}) indicates
that we did not adjust for any covariates. Note that the initial OVB, ayf;;, represents the confounding bias
due to the unblocked (open) backdoor path Z ¢« U > Y.

Bias amplification

Omitting U but including IV in the regression model, ¥ = y+1Z +ayvIV, also results in bias [17]:

ovB(t| 1v) = 22Pu )
1-ay,
However, conditioning on IV amplifies any bias left due to an unblocked backdoor path because 0<1- a3, <1.
Thus, the absolute OVB after adjusting for IV is always greater than the absolute initial OVB: % > |aUBU ‘ If
v

we were to condition on U in addition to IV (in case U would be observed), no OVB would be left because U
blocks the backdoor path Z < U - Y. Thus, if all confounders (or at least a set of variables that blocks all
backdoor paths) are reliably measured, conditioning on an IV does not result in any OVB because there is no
bias left to be amplified (provided the functional form of the regression is correctly specified). However,
adjusting for the IV still reduces the efficiency of the treatment effect estimate [21, 23].

Imbalance in the unobserved confounder U

Bias amplification occurs because conditioning on the IV increases the imbalance in the unobserved
confounder U. For our linear framework, we define imbalance as the difference in the expected value
of U for subpopulations with Z=z and Z=z+1 (if Z would be dichotomous the imbalance would measure
the mean difference between the two groups). That is, without conditioning on the IV or any other covariate
the imbalance in U is obtained by regressing U on Z: Imbalance(U |{})=E(U|Z=z+1)-E(U|Z=z)=ay.
After conditioning on IV, we get Imbalance(U |IV)=E(U|Z=z+1,IV)-E(U|Z=z,IV)= 1?% (Proof 1 in
Appendix C). The comparison of the two imbalance formulas reveals that conditioning on the IV amplifies
Us imbalance by the factor 1/(1-aj,). Thus, we can write the OVB as the product of the amplified

3 A backdoor path is a non-causal path that connects Z and Y. Identification and estimation of causal effects via covariate
adjustment requires that all causal paths from Z to Y remain unblocked (open) while all backdoor paths need to be blocked. A
path is said to be blocked either if one conditions on a non-collider on the path, or if the path contains a collider which has not
been conditioned on [1].
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imbalance in U and U’s direct effect on the outcome: OVB(7 |IV) = 11";’% x . This formula highlights that
conditioning on IV turns U into a relatively stronger confounder.

The increased imbalance in U can be explained as follows (similar explanations can be found in [21],
and [24]): Since Z=ayIV +ayU +¢&; is a function of IV, U, and the error term &z, conditioning on the
IV removes IV’s effect on Z such that the remaining variation in Z is determined by U and the error term
alone. With only two sources of variation left (U and €z), U now explains a larger portion of variance in Z.
Hence, the association between U and Z for a given IV =v is necessarily greater than before conditioning
on IV. The increased association between U and Z implies an increase in U’s absolute imbalance:
|Imbalance(U |IV)| =

auy
1-aZ,
within the context of matching or stratifying treatment and control cases on an IV.

> |Imbalance(U | {})| = |ay|. Appendix A contains a more intuitive explanation

OVB and imbalance due to conditioning on an uncorrelated
confounder

Bias-amplification occurs not only when one conditions on an IV but also when one conditions on a
confounder. For an unobserved confounder U and an uncorrelated confounder X that both induce bias in
the same direction (i.e., either positive or negative selection bias), prior studies have shown that
conditioning on a confounder, where X is a near-IV that is highly predictive of treatment Z but only
weakly predictive of the outcome, has two effects: it removes X’s own confounding bias and amplifies any
remaining bias due the omitted confounder [17, 19, 21]. The bias-amplifying effect may actually dominate
the bias-reducing effect such that conditioning on a confounder X may increase instead of reduce OVB in
the treatment effect. In order to fully characterize the mechanics of OVB, we discuss the more general
case where X and U (a) are (un)correlated, (b) induce biases in different directions, and (c) where X is
unreliably measured. We first discuss the case of uncorrelated confounders and then the case where X
and U are correlated.

The left graph in Figure 2 shows the DGM with two uncorrelated confounders, an observed confounder
X and an unobserved confounder U. The corresponding linear SCM is given by

X =gy,

U=¢y,
Z=axX+ayU+¢&yz,
Y=1Z+pxX+p,U+¢y,

@)

Z g Y

Figure 2: Causal graphs with two uncorrelated confounders X and U, with X reliably measured in the left graph, and X measured
with error in the right graph.
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with the same constraints as before such that the parameters represent standardized coefficients. For this
linear SCM, the initial OVB due to omitted confounders X and U is OVB(7|{})=axBx +ayBy, which
represents the biases induced by the two open backdoor paths Z < X - Yand Z < U - Y. It is important
to note that the two bias terms add up if both terms are either positive or negative, but partially or fully
offset each other if one term is positive and the other negative.

Reliably measured confounder X
Adjusting for a reliably measured confounder X results in a biased regression estimator with

OVB(7 | X) = ayfBy x 3

A comparison of this bias formula (Proof 3 in Appendix C) with the initial OVB indicates that conditioning
on X has two effects: First, a bias-reducing effect because X blocks the backdoor path Z < X - Y and thus
eliminates its own confounding bias (axfy). Second, a bias-increasing effect because the bias due to the
unblocked backdoor path Z ¢ U > Y (ayfy) is amplified by the factor 1/(1-a%).

If the bias-increasing effect dominates the bias-reducing effect then conditioning on X leads to an
increase in the absolute OVB, that is, the OVB after conditioning on the confounder X is greater than

auPy
1-a3

without conditioning on X: > |aXﬁX +ayfy \ The discussion of the conditions under which the absolute

OVB actually increases requires a distinction between the case where X and U induce bias in the same
direction (no offsetting biases) and where they induce bias in different directions such that their respective
confounding biases partially or fully offset each other.

Biases in the Same Direction. If both confounders induce bias in the same direction,
sgn(axpPy) =sgn(ayPy), then conditioning on X results in an increasing OVB only if the bias-amplifying
effect dominates the bias-reducing effect, which is the case if

ayPy N

1-05 ,
axPx .

3
5

(4)

Conditioning on X very likely increases the absolute OVB in two situations. First, if the bias induced by U
(ayBy) is much larger than the bias induced by X (axfx), implying that the bias ratio on the left-hand side in
(4) is large. And second, if X strongly determines Z (|ax| close to 1) such that the right-hand side in (4) is
close to zero. Thus, adjusting for a confounder with |ax| close to 1 and By close to zero (i. e., a near-1V) very
likely increases the absolute bias.

In the upper left plot of Figure 3 the two dark grey areas show combinations of ax values and bias ratios

avBy

axPx
separating the dark and light grey areas represents the 100% bias contour line where conditioning on X neither
reduces nor increases OVB (i. e., 100% of the initial OVB is left). The darker shade of the two dark grey areas
indicates the region where conditioning on X leads to a bias that is at least twice as large as the initial bias. Thus,
the contour line that separates the two dark grey areas represents the 200% bias contour line. Similarly, the very
light grey area indicates that less than 50% of the initial bias is remaining. The contour line separating the two
light grey areas represents the 50% bias contour line. For example, conditioning on a confounder with ax =.1

for which the absolute OVB increases. The two light grey areas indicate areas of decreasing OVB. The line

avBy
axPy

the unobserved confounder U is at least 101 times greater than the bias induced by X. However, if X is strongly

results in an increasing OVB only if the bias ratio is greater than 1'1—212 =101, that is, if the bias induced by

4 See Proof 4 in Appendix C. For positive coefficients, Pearl [17], derived an alternative expression for an increasing bias:

% < % However, he did not consider the more general case where the two confounders partially offset each other’s
X

confounding bias.
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Figure 3: Increasing and decreasing OVB due to conditioning on an uncorrelated confounder X. The two dark grey areas indicate
an increasing OVB, with 100%-200% (lighter shade) and 200% or more (darker shade) remaining bias. The two light grey areas
indicate a decreasing OVB, with 50%-100% (darker shade) and 50% or less (lighter shade) remaining bias.

related to treatment, ax = .9, conditioning on X results in an increasing OVB if the bias induced by U is at least
one fourth (1_’9—‘;’2 =.23) of X’s bias. In this case, bias amplification dominates bias reduction: though conditioning
on X removes its own bias axfy which amounts to 81% (= 1/(1 + .23)) of the total confounding bias,” the
amplification of the remaining 19% (= .23/(1 + .23)) due to omitting U (ayf3;) is strong enough to offset the bias-
reducing effect because the bias amplification factor is 1/(1 — .9%) = 5.26.

Offsetting Biases. For sgn(axfy) #sgn(ayfy), the confounding biases induced by X and U partially or
aUBU‘). If U induces less bias than

even completely offset each other such that ‘aX,BX + aUﬁU‘ < max(|axfxl,
X,

aUﬁU| <|axBy|, adjusting for the observed confounder X increases rather than reduces OVB only if

5 Since .23 is the ratio of biases induced by U and X we get ayfy=.23xaxfy and a total confounding bias of

axBy + ayPy = axBy + .23 x axPy = axBy (1+.23). Thus, the portion of bias induced by X amounts to #ﬁj‘m = 5
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ayPBy
axPx

1-a2
2
2-ay

(Proof 4 in Appendix C). 5)

But if U induces more bias than X, |ayBy|>|axBx|, then conditioning on X always increases OVB because
the remaining bias due to the unblocked backdoor path Z < U - Y is necessarily greater than the initial
bias: |ayBy| > |axBy + avPy|.

The upper right plot in Figure 3 shows areas of increasing and decreasing absolute OVB when biases
(partially) offset each other. For |ax| — 0, OVB increases as long as the bias induced by U is at least half of X’s

bias: limO:Z% = % For ax =.5, OVB increases if the bias ratio exceeds ;:gi =.43. If ayx is close to 1, say .95,
O(X—> X .
then OVB increases as long as the bias induced by U is at least about one tenth of X’s bias (% =.09).

To summarize, for offsetting biases, the absolute OVB increases in two situations: First, if the con-
founding biases induced by X and U neatly offset each other (axfy = - ayBy). In fact, independent of the
value of ay, OVB always increases if the bias induced by the unobserved confounder U is at least half of X’s
bias (|auBy|> |axBx|/2). And second, if X strongly determines Z such that |ax| is close to 1, then the absolute
OVB increases even when |axBx|> > |ayBy|. The increase in the absolute OVB is mostly a result of the
cancellation of the bias-offsetting effect, but the amplification of the remaining bias adds to the increase.
Also note that the sign of the initial and adjusted OVB may differ. For instance, the initial OVB might be
positive, but adjusting for X might turn the positive OVB into a negative OVB.

Unreliably measured confounder X

The OVB formula in (3) only holds for a reliably measured uncorrelated confounder X. The right graph in
Figure 2 shows the case with a fallibly measured X. The node of X now turns into a vacant node (open
circle) indicating that X is not directly observed. Instead, we only have an unreliable measure X* which is
given by X* =X + e, where e is an independent error with mean zero and variance 0§.6 Since Var(X) =1, the
reliability of X* is given by y=1/(1+02). Measurement error in X* has no influence on the initial OVB,
OVB(7 |{}) = axBx + auBy, but affects OVB after adjusting for the fallible X* (Proof 3 in Appendix C):

OVB(7 | X*) = {ayBy + axBx(1-y)} 6)

In comparison to the OVB for a reliably measured confounder X in (3), measurement error has two effects:
First, the bias left due to (partially) unblocked backdoor paths now consists of two components, ayf; and
axPx(1-y). Besides the open backdoor path Z < U - Y (due to omitting U), adjusting for X* no longer fully
blocks the backdoor path Z < X - Y such that(1- y)% of X’s bias is left. That is, X* removes the bias induced
by X only to the degree of its reliability (y). The less reliable the measurement, the more of X’s bias will
remain. Second, measurement error attenuates the bias amplification factor since 1/(1-a%y) is always less
than 1/(1-a}) because O<y<1. A completely unreliable measure X* with y — O neither removes nor
amplifies any bias such that the initial OVB remains: }13% OVB(T | X*) = axfx + ayBy (also see [25]). On the

other extreme, with a perfectly reliable measure X (y=1), the OVB formula in (6) reduces to the OVB formula
in (3).

Biases in the Same Direction. The second and third row of plots in Figure 3 show the areas of increasing
OVB (the two dark grey areas) and decreasing OVB (the two light grey areas) for an unreliably measured

6 The zero mean assumption is not required here but it is standard for discussions of random measurement error. Non-zero
expectations of the measurement error result in an invalid measure that affects the regression intercept but not the treatment
effect. Other systematic measurement errors like floor- or ceiling effects result in unreliable but also invalid measures of the
underlying construct and thus in a failure to remove all the bias.
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confounder X (y=.75 in the second row and y=.5 in the third row). In the left columns of plots for
sgn(axfy) =sgn(ayfy), the 100% bias contour lines are the same as for the reliably measured confounder
(upper left plot), but the 200% and 50% bias contour lines change. Unreliability in X does not change the
100 % contour line because measurement error always results in an attenuation of OVB toward the initial
OVB [26] (see Proof 5 in Appendix C which also contains a more detailed discussion). Since the 100%
contour line represents situations where conditioning on X does not alter the initial OVB (i. e., bias
reduction is exactly offset by bias amplification), measurement error has no effect. But if adjusting for
the reliable X increases OVB then measurement error attenuates the increase as shown by the retreating
200% contour line (as one moves from the plot in the first row to the plots in the second and third row). If
conditioning on the reliable X reduces OVB then measurement error attenuates bias reduction as indicated
by the retreating 50% contour line.

Offsetting Biases. For offsetting biases (sgn(axfy) # sgn(ayfy), shown in the right column of Figure 3),
all bias contour lines depend on the extent of measurement error. In comparison to the reliably measured
confounder (upper right plot), more measurement error in X* results in an expansion of the light grey areas
of diminishing OVB, that is, measurement error makes an increasing OVB less likely because the cancella-
tion of the offsetting biases is attenuated. Though unreliability decreases the chances of an increasing OVB,
it does not imply that the fallible X* necessarily removes more bias than the corresponding reliable
measure. A comparison of the 50% bias contour lines (or the very light grey area) across the three plots
reveals that the fallibly X* can remove less OVB than the reliably X.

Imbalance in confounders U and X

For both reliably and unreliably measured confounders X, bias amplification operates via increasing the
imbalance in U and X. For an unreliably measured confounder X*, the initial imbalance in U (ay) and

remaining imbalance in X (ax(1-y)) are inflated by the factor 1/(1-a%y): Imbalance(U | X*) = lf‘gzy and
X

Imbalance(X|X*) = w (Proof 1 in Appendix C). The imbalance formula for U indicates that adjusting for
1-a5y

X* always increases the absolute imbalance in U because the amplification factor 1/(1-a%y) is less than
one (but note that measurement error attenuates bias amplification and thus the decrease in U’s absolute
imbalance). Regarding the imbalance in X, conditioning on X* cannot fully balance X because the unreli-
able X* fails to completely remove the association between Z and X. However, the unreliable measure X*
will be balanced, Imbalance(X*|X*)=0. Thus, balance in a fallible covariate X* does not imply that the
underlying data-generating confounder X will be balanced. Particularly if |ax|>>0 or y<.75, then the
absolute imbalance in X after adjusting for X* may still be large but it will never exceed the absolute initial
imbalance, |Imbalance(X|{})|=|ax| (Proof 2 in Appendix C). This result does not generalize to the more
general case with multiple observed confounders. If one conditions not only on a single unreliable
confounder but on multiple, possibly uncorrelated confounders simultaneously, the resulting imbalance
in the latent X might exceed the initial imbalance. This is so because the remaining imbalance in X after
conditioning on X*, Imbalance(X|X*), is further amplified by any other confounder we condition on (just
like the imbalance in U).

OVB and imbalance due to conditioning on a correlated confounder

The mechanics of OVB become slightly more complex when confounders are correlated. Intuitively, one
might think that the correlation between an observed (X) and unobserved confounder (U) always helps in
reducing OVB when conditioning on X. But this is not necessarily true because the correlation also triggers
the bias-amplifying potential of the hidden confounder or might result in a cancellation of offsetting biases
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(e. g., if both X and U induce positive bias on their own, a negative correlation would partially offset their
biases). These bias-increasing effects can actually dominate the bias-reducing effects. Since bias amplifica-
tion, cancellation of offsetting biases, and measurement error operate as before, we only highlight the
changes due to the correlation of confounders.

The left graph in Figure 4 shows the DGM with correlated confounders X and U. The linear SCM is the same
as for the uncorrelated case in Eq. (1), except that X and U are correlated with Cor(X, U) =p. The correlation
between X and U might be due to a common cause C (X ¢ C - U), a causal effect of X on U (X - U), or a causal
effect of U on X (U - X). The initial OVB is then given by OVB(7 | {}) = axByx + auBy + axpBy + aupByx, which
reflects the biases due to all four backdoor paths between Z and Y in Figure 4: Z< X > Y, Z< U> Y, Z ¢
X<->U>Y,andZ< U<-->X>Y.

Figure 4: Causal graphs with two correlated confounders X and U, with X reliably measured in the left graph and X measured
with error in the right graph.

Reliably measured confounder X

Adjusting for the reliably measured confounder X but omitting U results in
1 7

OVB(Z | X) =aufy(1-p") x = s

@)
The OVB formula indicates that conditioning on a correlated confounder X has three effects. First, it
eliminates its own confounding bias (axfy) but also the entire confounding bias induced by X’s correlation
with U (axpfBy + aupBy). That is, conditioning on X blocks all backdoor paths going through X (i.e., Z < X >
V,Z<X<--->U->Y,and Z < U <---> X > Y). Second, because of X and U’s correlation, X partially blocks
the backdoor path Z < U - Y to the extent of the squared correlation p?, thus the bias due to the
unobserved U reduces to ayfBy(1-p?). And third, the correlation also affects the bias amplification factor
1/(1- (ax + ayp)?) because conditioning on X triggers U’s bias-amplifying potential to the extent of their
correlation as reflected by the additional term ayp in the denominator.

Depending on the sign of ayp, the correlation can strengthen, weaken, or even neutralize the bias
amplification factor. If sgn(ayp) = sgn(ax) then the correlation boosts bias amplification in comparison to
the uncorrelated case because |ax + ayp| > |ax|. The stronger the correlation and the larger ay, the stronger
the bias-amplifying effect. If sgn(ayp) #sgn(ax), the correlation can strengthen (if |ax + ayp| > |ax|), weaken
(if |ax + ayp| <|ax|) or completely cancel bias amplification (if ax = — ayp). Thus, even with highly correlated
confounders X and U, there is no guarantee that conditioning on a correlated X reduces OVB (examples are
briefly discussed at the end of the following subsection).

7 See Proof 3 in Appendix C. A similar formula has been provided by Pearl [19]. While he derived the formula based on a
directed causal relationship between the observed and unobserved confounder, we only assume correlated confounders.
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Unreliably measured confounder X

The right graph in Figure 4 shows the same causal diagram as before but with the fallible covariate X*. In

this case, one can show (Proof 3 in Appendix C) that conditioning on X* results in an OVB of
1

1-(ay + aUp)zy'

All four terms of the initial bias appear in the OVB formula, but the biases induced by the four backdoor

paths are not fully effective. First, the correlation of the unreliable X* with the unobserved confounder U,
Cor(X*,U)=p= P\/7s reduces the bias induced by U to the extent of the squared correlation p?, leaving a

OVB(| X*) = {auBy(1-p*) + (axBy + axpPy + aupBy) (1~ 7)} x ®)

bias of ayBy(1-p?). Second, the unreliable X* blocks the three backdoor paths via X only to the extent of its
reliability (y) and thus leaves a bias of (axfy + axpfy + aupfx)(1-7y). Finally, the remaining bias due to the
four partially unblocked backdoor paths is amplified but the bias amplification factor is attenuated by the
reliability y.

Due to the increased complexity of the OVB formulas, an easily interpretable inequality as for the
uncorrelated confounder case is not derivable. Thus, we illustrate the effect of correlated confounders
with two examples. The first row of plots in Figure 5 shows for two different parameter settings the
areas of increasing (dark grey) and decreasing OVB (light grey) as a function of the correlation p
(abscissa) and the unobserved confounder’s coefficient ay (ordinate). For both plots we set 8y =, =.1,
but ax =.3 in the left plot and ax =.9 in the right plot (making X a near-IV in the latter case). In each
plot, quadrant I (with p>0 and ay =0) represents the situation where all biases induced by X and U go
into the same direction because all five data-generating parameters are positive. Quadrants II, III, and
IV show the results for partial or completely offsetting biases (because the signs of the parameters
differ).

Consider quadrant I of the top right plot in Figure 3, where the confounder X strongly affects Z (ax =.9):
OVB can exceed the initial bias even if one conditions on a confounder X that is almost perfectly correlated
with U. In general, it is hard to derive a generalizable pattern from the two example plots. Without knowing
the sign and magnitude of the five parameters it is impossible to predict whether conditioning on a
correlated X or X* reduces or increases OVB even if X is highly correlated with U. The second and third
row in Figure 3 shows the effect of measurement error, which is the same as for the uncorrelated case (i. e.,
attenuation to the initial bias; Proof 5 in Appendix C).

Imbalance in confounders U and X

As for the case of uncorrelated confounders, the bias-amplifying effect of conditioning on a reliably or
unreliably measured confounder X can be explained by the amplified imbalance in U and X. The absolute
initial imbalance in U, [Imbalance(U | {})|= |au + axp|, might increase or decrease once one conditions on
X*, even when U is correlated with X*. Adjusting for the correlated X* changes the initial imbalance in U to

ay(1-p?) +axp(1-y), which then is amplified by the factor 1/(1- (ay +ayp)’y) such that we obtain
ay(1-p) +axp(l-y)
1-(ay +a,p)’y

adjusting for X*), the absolute imbalance in U after adjusting for X* might be smaller or larger (Proof 2
in Appendix C). Despite the correlation, conditioning on X* can increase the imbalance in U because the
term ayp may strengthen the bias amplification factor.

Correspondingly, conditioning on X* first reduces the absolute initial imbalance in X from
|Imbalance(X|{})|=|ax +ayp| to |(ax+ayp)(1-y)|, which again is amplified such that

|Imbalance(U | X*)| = . Compared to the absolute value of the initial imbalance (before

(ax +ayp)(1 —2)’)

* =
[Imbalance(X|X*)| = | = oy +a )y

. Multiplying U’s imbalance by f; and X’s imbalance by Sy, and then
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Figure 5: Increasing and decreasing OVB due to conditioning on a correlated confounder X. The two dark grey areas indicate an
increasing OVB, with 100%-200% (lighter shade) and 200% or more (darker shade) remaining bias. The two light grey areas
indicate a decreasing OVB, whith 50%-100% (darker shade) and 50% or less (lighter shade) remaining bias. The white areas
indicate parameter combinations that are impossible for standardized path coefficients.

adding the two terms results in the OVB formula (8). As for the uncorrelated confounder case, the absolute
imbalance in X after adjusting for X* will always be smaller than before the adjustment,
[Imbalance(X|X*)| < |Imbalance(X|{})| (Proof 2 in Appendix C). Again, this only holds for the case with a
single observed confounder X. Conditioning on multiple confounders, including X*, can actually increase
the imbalance in X (but as for the imbalance in U, whether the imbalance in X decreases or increases
depends on the correlation among the observed confounders).

With a perfectly reliably measured X (y=1), X will be fully balanced but U remains imbalanced with
|Imbalance(U | X*)| = L’JZ))Z. Note that neither the imbalance in U nor in X (given it is unreliably

1-(ay +ayp). .
measured) can be tested empirically since both are unobserved.

Discussion

The investigation of the OVB mechanics revealed that conditioning on a confounder provokes two opposing
effects, a bias-removing effect and a bias-increasing effect. If the bias-increasing effect dominates the bias-
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removing effect, then OVB increases. The increase in OVB can be caused by the amplification of any bias
left due to unblocked backdoor paths, the cancellation of offsetting biases, or by both together. The overall
extent of bias amplification is driven by two factors: (i) the bias left due to unblocked backdoor paths and
(ii) the size of the multiplicative bias amplification factor. Both factors depend on the strength of the
correlation between the observed and unobserved confounder and the degree of measurement error in the
observed confounder. Though the correlation helps in partially removing the bias induced by the unob-
served confounder, it also picks up the bias-amplifying potential of the unobserved confounder, and thus
can further boost bias amplification. Therefore, even a high correlation between the observed and unob-
served confounder does not guarantee that OVB will decrease. Though measurement error attenuates the
bias amplification factor it also attenuates the confounder’s potential to remove bias such that measure-
ment error may have a positive or negative effect on OVB. Bias amplification is not an issue if conditioning
on a set of confounders removes all the bias (i. e., no bias is left to be amplified) or if the amplification
factor is one (i. e., axy = —ayp). Table 1 and Table 2 summarize the formulas and results for uncorrelated and
correlated confounders, respectively. Appendix B shows that the very same OVB mechanics operate with
dichotomous instead of continous treatment variables (though the formulas a slightly different).

Though we restricted our discussion of OVB to the case with a single observed and unobserved
confounder, the principles of the OVB mechanics also apply to the multiple confounder case where X
and U represent sets of observed and unobserved confounders. However, the OVB formulas would be by far
more complex because the correlation structure within and between the two sets of confounders also needs
to be considered (for an OVB formula in matrix notation, see [27]). Moreover, cancellation of offsetting

Table 1: Uncorrelated confounders X and U: Omitted variable bias (OVB) and imbalance before and after adjusting for X*.

Initial OVB and Imbalance OVB and Imbalance after adjusting for X*
O.mitted variable OVB(T|{})=axPBy +auBy OVB(# | X*) = “UBu’f“Xﬁzx(l‘V)
bias 1-azy
Imbalance in U Imbalance(U|{})=ay Imbalance(U | X*) = I agz
—axy
1_
Imbalance in X Imbalance(X|{}) = ax Imbalance(X|X*) = a{(( aZY)
- oxy
Effect of conditioning on X* when ...
biases are in the same direction biases offset each other
Absolute omitted Increase in OVB is most likely if If the bias induced by the unobserved confounder U
variable bias (@) the bias induced by the unobserved confounder exceeds half of the bias induced by X, OVB always
U is much larger than the bias induced by increases (this case also includes almost perfectly
confounder X or offsetting biases). If the bias induced by the
(b) confounder X strongly affects Z. unobserved confounder U is less than half of the
bias induced by X, OVB most likely increases if X
strongly affects Z (provided X is reliably measured).
Absolute imbalance Imbalance in U always increases. Imbalance in U always increases.
Imbalance in X always decreases. Imbalance in X always decreases.
Effect of Attenuates any increase in OVB and attenuates any If the bias induced by the unobserved confounder U
measurement error  decrease in OVB. exceeds half of the bias induced by X, measurement

error attenuates any increase in OVB. If the bias
induced by the unobserved confounder U is less
than half of the bias induced by X, measurement
error attenuates any increase in OVB (and might
even turn an increase into a decrease) but may
attenuate or strengthen any decrease in OVB.
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Table 2: Correlated confounders X and U: Omitted variable bias (OVB) and imbalance before and after adjusting for X*.

Initial OVB and Imbalance OVB and Imbalance after adjusting for X*

. . . ~2
Omitted variable bias OVB(t| {}) = axBy + aufy + xpBy + aupBy  OVB(Z |X) = ayBy(1-p )+iax([2(+o:p[;g+aupﬁx)(1—y)
—ax+taup)y

ay(1-p%) +axp(1-y)
1- (o + O‘UP)ZY

(ax +aup)(1-y)
1-(oy + O‘UP)ZV

Imbalance in U

Imbalance(U | {})=ay +axp Imbalance(U |X") =

Imbalance in X Imbalance(X|{}) = ax + ayp Imbalance(X|X") =

Effect of conditioning on X* when ...

biases are in same the direction biases offset each other
Absolute omitted Increase in OVB is most likely if Whether OVB increases strongly depends. on the signs
variable bias (@) the bias induced by the unobserved  and magnitudes of all five parameters. If the biases
confounder U is much larger than the bias induced by X and U strongly offset each other, an increase
induced by confounder X and the in OVB almost surely results — unless the correlation

correlation between X and U is low, or between X and U is close to 1.
(b) confounder X strongly affects Z -a

high correlation between X and U strongly

boosts bias amplification.

Absolute imbalance Imbalance in U may increase or decrease. Imbalance in U may increase or decrease.

Imbalance in X always decreases. Imbalance in X always decreases.
Effect of measurement  Attenuates any increase in OVB and Attenuates any increase in OVB (and might even turn an
error attenuates any decrease in OVB. increase into a decrease) but may attenuate or strengthen

any decrease in OVB.

biases and bias amplification are not restricted to the linear case, they also occur in nonlinear settings [17];
but it is much harder to derive closed OVB formulas that are informative about the OVB mechanics.

We also showed that bias amplification operates via increasing the imbalance in unobserved confoun-
ders. That is, conditioning on an observed confounder can significantly increase the unobserved confoun-
ders’ imbalance and, thus, turn them into even stronger confounders. If the observed and unobserved
confounders are uncorrelated, the imbalance in the unobserved confounders always increases. Thus,
balancing a large set of observed covariates via matching or regression adjustment does not imply that
the imbalance in unobserved confounders decreases.

In the presence of omitted or unobserved variables, is it possible to select a subset of observed
covariates that minimizes OVB? Or, is it at least possible to make sure that the selected covariates do not
increase OVB? With almost perfect knowledge about the data-generating selection and outcome models
one could actually select the set of covariates that minimizes OVB. But such knowledge is rarely
available. Without reliable knowledge about the true DGM it seems impossible to know whether con-
ditioning on a set of covariates minimizes or even reduces the confounding bias. While empirical
covariate selection strategies, that rely on observed relations between the covariates and the treatment
or outcome, can be very successful when all confounding covariates are reliably measured, it is not clear
how good or bad these strategies perform in the presence of unobserved or unreliably measured
confounders. However, partial knowledge might occasionally allow an informed assessment of whether
adjusting for a set of covariates brings us at least closer to a causal effect estimate (for instance, we might
know that only positive selection took place and that the observed covariates cover the most important
confounders but no near-1Vs).

The OVB mechanics discussed in this article have far-reaching implications for practice. Given unob-
served confounders, neither conditioning on all or a large set of observed pre-treatment covariates
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(as publicized in [28], or [9]), nor conditioning on a small set of covariates that has been selected on subject-
matter or empirical grounds [21] can guarantee that OVB will decrease. For matching designs like propensity
score matching this means that achieving balance on all observed pre-treatment covariates neither implies
that the confounding bias has been minimized or even reduced nor that the imbalance in unobserved
covariates, including the latent constructs of fallible measures, diminished. The same holds for all methods
dealing with bias due to nonresponse or attrition — conditioning on a large set of covariates does not imply
that nonresponse or attrition bias in the statistic of interest is successfully addressed [22]; Or for two-stage
least-squares analyses (2SLS) of conditional IV designs, conditioning on a set of observed covariates does
not guarantee that the bias due to a potential violation of the exclusion restriction is minimized. Whenever
covariate adjustments are made in the hope to reduce different types of confounding bias, a thoughtless or
automated selection of covariates may increase instead of reduce the bias.

Since we used a very simple data-generating model to explain the mechanics of OVB, one needs to be
careful in deriving practical guidelines about when to condition on an observed covariate and when not.
The decision about adjusting for a given covariate strongly depends on the presumed real-world data-
generating model. For instance, if there would be only a single confounder X but which has been unreliably
measured, then conditioning on X* would always reduce selection bias. But when there is one or multiple
unobserved confounders, then it is already less clear whether conditioning on X* actually reduces OVB. In
practice, the situation is usually even more complex because a confounding path might be blocked in more
than one way. For instance, if we observed an intermediate covariate W on U’s confounding path, Z < W <
U - Y, then conditioning on W would not result in any OVB despite the omission of confounder U (provided
there are no other unobserved confounders). But if one conditions neither on U nor on W the OVB
mechanics are in place again.

Sometimes it is also possible to circumvent unobserved confounding by using designs that exploit other
observed covariates. For instance, if the observed set of covariates contains an instrumental variable then
we could use an instrumental variable design to identify the complier average treatment effect. Or, if data
contain a pretest measure of the outcome then a gain score or difference-in-differences design can deal with
unobserved time-invariant confounding [29]. However, the assumptions underlying these designs might be
less credible than the conditional independence assumption such that covariate adjustments via regression
or matching methods might be preferable. But given the uncertainty about the magnitude of OVB left after
adjusting for a set of covariates, it is important to conduct sensitivity analyses that assess the estimated
treatment effect’s sensitivity to unobserved confounders [30-32]. Or, with partial knowledge about the data-
generating process, one can pursue a partial identification strategy and compute bounds on the treatment
effect [33]. In any case, lacking strong subject-matter theory, researchers should abstain from making strong
causal claims from a single observational study. Causal claims are much more credible when built on
multiple independent replications with different study designs.

Funding: This research was partially supported by the Institute of Education Sciences, U.S. Department of
Education, through Grant R305D120005.
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Appendix A: Bias amplification when matching or stratifying
on an IV

Bias amplification can also be intuitively explained within the context of matching or stratifying treat-
ment and control cases on the IV (i. e., with a dichotomous treatment Z). Consider the case of exact full
matching on IV, that is, all treatment and control cases with IV=v are matched together (this is
equivalent to exact stratification because the set of matched cases forms a unique stratum with IV=v).
For simplicity, we first assume that the dichotomous treatment Z is a deterministic function of IV and U:
Z=f(IV,U) =1y .u>q, where Z=1 if the sum IV + U exceeds a threshold c, otherwise Z =0 (indicating the
control condition). Now assume that we match on the observed IV in the hope to remove potential
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confounding bias. Then, for a given stratum with IV =v, the treatment status Z=f(U [IV =v) =1ysc_y) is
now exclusively determined by U: Cases with U>c—-v received the treatment and cases with Usc-v
received the control condition. Thus, all treatment cases with IV =v must have strictly larger values in U
than the control cases, that is, the treatment and control cases distribution of U no longer overlap. But
without matching on IV, the distributions of U would have overlapped, enabling exact matches on U.
Thus, matching on the IV increases the treatment and control group’s heterogeneity in U which is
reflected by the increased imbalance.

The same argument holds for a treatment function with an independent error term (i. e., unobserved
factors determining Z): Z=f(IV,U,€) =1y, u+e>q. Matching on IV then restricts the pool of potential
matches with regard to U — if one were to match on the unobserved U. Due to the error term, we still
could find exact matches on U but, nonetheless, the difference in the treatment and control cases
distribution of U is larger than before matching on IV. Note that the imbalance in U does not necessarily
have to increase within each stratum, but it will necessarily increase on average across strata.

Appendix B: Bias amplification and cancellation of offsetting
biases for a dichotomous treatment

All the bias formulas we discussed so far referred to regression estimators for a continuous treatment
variable. Since treatment variables are frequently dichotomous, we briefly characterize the bias for a
dichotomous treatment indicator Z* (this section follows the formalization used by [14]). Figure 6 shows
the DGM with two correlated confounders, one measured with error and the other one unobserved. The
corresponding SCM we used for the following derivations is given by

X=¢&x

X*=X+e

UZSU

Z=oxX+ayU+¢;

Z*=1if Zzcand Z*=0 if Z<c
Y=12*+B3 X + ByU + ey

In order to derive corresponding OVB formulas, we assume that X and U are distributed according to a
bivariate normal distribution with zero expectation, unit variances, and a correlation p. Consequently, also
Z is normally distributed with zero expectation. We further assume that the treatment effect is zero which
considerably simplifies the derivation of the OVB formulas. As before, coefficients of ax, ay, By, and B

Figure 6: Causal graph for two correlated confounders X and U. The vacant
nodes for X, Z and U indicate that they are unobserved. Z* is dichotomous.

represent standardized coefficients, and the normally distributed error terms ¢, and ey were chosen such
that Var(Z) =1 and Var(Y) =1. The dichotomous treatment Z* is obtained from the continuous Z and the
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cutoff c. The cutoff value c refers to the quantiles of a standard normal distribution ¢(c) because
Z~N(0,1). The unreliable measure X* is given by X* =X + e with e~ N(0, 62).
. . * e of £ _ ?()
Under these assumptions the standardlze*d effect of X on Z* is given by ay =ax O and the
standardized effect of U on Z* is given by aU=aU$ where ¢(c) and ®(c) denote the standard
C -C
normal probability density and cumulative distribution function, respectively (the Proof is given at the end

of the section). Then, the regression estimator’s initial bias before any conditioning (i. e., ¥ = Y+ TZ%) is
OVB(T2:|{}) = (ayBy + a;, By + aypPy + ) L 9
(T2« [{}) = (axBx + ayBy + axpBy + aypPx) B(O)D(—0) )
After conditioning on X*, we obtain
OVB(7z:|X*) = {“;ﬁu(l _,52) + (a;(ﬂx + a;(PBU + aZJPBX)(l -y}
1 . 1 (10)
1- (a +pa,)’y O(c)D(-c)

X

Both OVB formulas are identical to the OVB formulas for a continuous treatment variable, except for the
constant 1/,/®(c)®(-c)=1/+/Var(Z*) which ensures that OVB refers to the change in Z* from 0 to 1
(without the constant the OVB formula would refer to a change in Z* by one standard deviation, just as in

the continuous case). Thus, we have the same OVB mechanics and conditions under which conditioning on
X* increases OVB as for the continuous treatment case. However, since ay<ayx and aj<ay the bias-
amplifying effects will always be weaker for a dichotomous treatment than for a corresponding continuous
treatment (because the dichotomized version of the continuous treatment will always be less strongly
correlated with the continuous confounders). But this does not imply that bias amplification and an
increasing OVB is less of an issue with a dichotomous treatment. Just assume that the dichotomous Z* is
directly affected by dichotomous confounders X and U (i.e., with respect to Figure 6, X and U are
dichotomous and there is no continuous Z on the causal pathway from the dichotomous confounders to
Z*; instead X and U directly affect Z*: X > Z* and U > Z*). In this case, the dichotomous confounders can
affect Z* at least as strongly as continuous confounders can affect a continuous Z (ay and aj; are no longer
attenuated and the correlation between the confounder and the treatment can theoretically be one as in the
continuous treatment and confounder case).

Proof. OVB with a Dichotomous Treatment

Using the data generating model in Figure 6 with a treatment effect of zero (r =0), we derive the OVB
formula for the treatment effect from the regression of Y on Z* and X*. We assume that X and U are bivariate
normally distributed with zero means, unit variances, and a correlation p. This implies that also Z is
normally distributed. The unstandardized OLS estimator for the treatment effect can be written in terms of

observed correlations as bz« = W x ﬁ(zr To obtain the three correlation coefficients, we use the
Z*X*

corresponding covariances:

Cov(Y,Z*) = p(c)(axBx + auPy + paxBy + pavPy)
Cov(Y,X*)=Cov(X+e,Y)=Cov(X,Y)=Cov(X, BxX +B,U+eY) =By +pBy,
Cov(Z*,X*)=Cov(Z*,X +e) =Cov(Z*,X) = (c)(ax +pay),

where ¢(x) denotes the standard normal density function. While Cov(Y,X*) directly follows from the
structural equations, Cov(Y,Z*) and Cov(Z*, X*) need some further explanations which we exemplify for
Cov(Y,Z*).

Assuming a constant treatment effect of zero, the treatment effect’s regression estimator from the regres-
sion of Y on Z* can be written as the expected difference in the outcome Y for Z*=1 and Z* =0, that is,
E(Y|Z*=1)-E(Y|Z*=0). Since the OLS estimator is given by Cov(Y,Z*)/Var(Z*), we obtain Cov(Y,Z*)=
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Var(Z*){E(Y|Z*=1)-E(Y|Z*=0)}. Then, using Var(Z*)=®(c)®(-c¢) and E(Y|Z*=1)-E(Y|Z*=0)=

E(Y|Z=c)-E(Y|Z<c)= q)(rgggc_)c) from Lemma 1 and Lemma 2 (see below), and rzy=Cov(axX +ayU +

eZ,BxX +ByU +eY) = axBy + aufy + paxPy + pauPy, we get Cov(Y, Z*) = ¢(c)(axfx + auPy + paxBy + pavPy).
The covariances and Lemma 1 are then used to obtain expressions for the correlations:

ryz« = Cov(Y, Z*) /SD(Z*) = ¢(c)(axBy + auBy + paxPy + pauPyx)/ v/ P(c)®( - c)
ryx+ = Cov(Y, X*)/SD(X*) = (Bx + pBy)/7>
rzex+ = Cov(Z*, X*) /{SD(Z*)SD(X*)} = ¢(c)(ax + pay)/y/ P(c)P(-c)

Plugging the correlations into the formula for the treatment effect’s regression estimator results in

L S IXR) = p(c){auBy(1-p%) + (axBx +paxBy +pauBy) 1-y) }
bz = OVB(Tz-|X*) D(O)®(- ) - p(c) (ax +pay)’y
tions are based on a treatment effect of zero. The initial bias in the treatment effect of Z* on Y can be
obtained by regressing Y onto Z*, that is,

which is equivalent to the OVB since the deriva-

OVB(7z+|{}) =Cov(Z*,Y)/Var(Z*)
= p(c)(axBx + avBy + paxPy +pauPx)/P(c)P(-c).
The two OVBs can be rewritten as

OVB(i2:1(}) = G+ By + yphy + o) x oo and
OVB(z7+IX*) = @By (1-") + (axBy + axpBy + ypBy)(1-7))
1 1

- (@ rpay)y /OB 0

where ay =ax—2%_ is the standardized effect of X on Z* and aj, =ay is the standardized

$()
D(c)D(-c) V@()P(-c)

effect of U on Z*. a} is the product of the effect of X on Z (ay) and the standardized effect of Z on Z*

__#© ) The latter is obtained from the regression of Z* on Z together with Lemmas 1 and 2, that is
( @(C@(%)) g g , ,

Cov(Z,Z*) y SD(Z) _Cov(Z,Z¥) 5 SD(Z*)

Var(Z) SD(z*)  Var(Z*) SD(Z)
= {E(Z|Z*=1)-E(Z|Z*=0)} xSD(Z*)

P(c) _ -9(c)
={CD(—C) - (0 }x D(c)D(-c¢)

%0
DD ¢)

The first equality follows from inverting the regression, that is, regressing Z on Z* (using the fact the
standardized coefficients of the original and inverted regression are equivalent), the second equality
rewrites the effect of Z* on Z in terms of conditional expectations and uses SD(Z) =1, and the third equality
directly follows from Lemma 1 and 2.

Lemma 1. Assume Z is distributed according to a standard normal distribution and a binary variable Z* is
determined from Z using a cutoff ¢ such that Z=1 if Z>c and Z =0 otherwise. Then the new random variable
Z* follows a Bernoulli distribution with Pr(Z*=1)=p. Since p= Pr(Z*=1)= Pr(Zz2c)=1-®(c) =D(-c), we
get Var(Z*)=p(1-p) =d(c)d(-c).
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Lemma 2. [14]. Assume X and Y follow a bivariate normal distribution with zero means, unit variances, and
correlation coefficient p. Under these assumptions we have E(Y|X<c)=pE(X|X<c). Since E(X|X<c)=
i XP(X)dx = i [, dep(x) = 'q;lzg), we obtain E(Y|X<c)=p Zp‘?ﬁf) Similarly, we obtain E(Y|X=>c)=

p ;p(?(:cj) =p®¢(’(f)c) since E(Y|X2c¢)=E(Y|X< -c¢).

Appendix C: Proofs

Proof 1 Imbalance in confounders U and X

For the linear structural model formulated in Eq. (2) and represented by the right causal diagram in
Figure 4, we prove for the general case with a correlated and unreliably measured confounder X* the
imbalance formula

~2

Imbalance(U | X*) = Ex-{E(U | Z=2+1,X*) - E(U | Z =z, x¥)} = 21=P) ¥ axp(17y),
1-(ay +ayp)y
where X, U, Z, and Y are unit-variance variables and X* is a fallible measure of X with reliability
y=1/(1+0%) (i.e., X*=X+e with e~N(0,02)). The correlation between X and U is given by
cor(X,U)=p<1, and the corresponding correlation with X* is cor(X*,U) =p,/y=p. Due to the linearity of
the structural model, the difference in expectations of the above imbalance formula is given by the partial
regression coefficient for Z of the regression of U on Z and X*: b, = W, where ryp is the correlation
coefficient between A and B (note that the difference in expectations represents the change due to a one-
unit increase in Z). Then, using correlations

ruz =Cov(U,Z) = Cov(U, axX + ayU + &z) = axp + ay
rux==Cov(U, X*)/SD(X*) = Cov(U, X +e),/y=p\/y, and
rzxx = Cov(Z, X*) /SD(X*) = Cov(axX + ayU + £z, X + €)/y = (ax + ayp) /¥

we obtain

1
1-(ay + aUp)Zy‘
In setting p=0 or y=1 all other imbalance formulas presented in this article can be directly derived.

Analogously, the imbalance formula for X is given by the partial regression coefficient for Z from the
regression of X on Z and X*. Using

ruz — Yux*Tzx*

Imbalance(U | X*) = -
—Zx>

={ay(1-p°) +axp(1-y)}

rxz =Cov(X,Z) =Cov(X,axX + ayU + &z) = ax + ayp and
rxxs = Cov(X, X*)/SD(X*) = Cov(X,X +e)\/y=/y

we get

- * * 1-
Imbalance(X|X*) = X2z _ (ax +ayp)( 2)’) .
1=17% 1-(ay +ayp)’y

Proof 2 Imbalance inequalities

We prove the following three results: (i) Conditioning on a fallible X* does not fully balance the latent X,
and the imbalance can never exceed the initial imbalance (i.e., without conditioning on X or X*):
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|Imbalance(X|X*)| < |Imbalance(X|{})|. (ii) If X and U are uncorrelated, conditioning on a fallible X*
increases the imbalance in U: |Imbalance(U | X*)|> |Imbalance(U | {})|. (iii) For correlated X and U, con-
ditioning on a fallible X* may increase or decrease the imbalance in U.

(@x +agp)(1-y)
1- (o +ayp)’y
a(l-y)
1-a%y

(i) We show that |Imbalance(X|X*)|<|Imbalance(X|{})|, that is, <|ax +ayp|. For ease of

notation, we use a =ay +pay such that the inequality simplifies to <|a| which is identical to

writing flfai’)y la| < |a| since 0<y<1and a®<1 (because the path coefficients refer to variables with unit

variances). Because of the constraints on y and a we know that 1(1:(}’; <1, proving our result. Note that

conditioning on X* does not reduce the imbalance in X if a=ay + pay =0 (another setting would be

a=ay +pay =1 but this is not possible due to the parameter constraints).
(i) For uncorrelated X and U we show that [Imbalance(U | X*)| > [Imbalance(U | {})|, that is,

1- a2 |¢Xu|

Using 0<y<1 and ax’<1, we get 1‘_"‘;}'{ 5 >|av|. And knowing that 1- azy<1 verifies the inequality.
(iii) For correlated X and U conditioning on X* can increase or decrease the imbalance in U, that is,

[Imbalance(U | X*)| > |Imbalance(U | {})| or [Imbalance(U | X*)| < |Imbalance(U | {})|. Using two differ-

ent restrictions on ay, we show that the difference in absolute imbalances, |[Imbalance(U |{})|-

-p)+ axp<1 7)

[Imbalance(U | X*)| =, + ayp| - |*{=0 b

, can be negative or positive. Using ay = — axp with

laxp| >0 as first restriction results in a negative difference. Since |[Imbalance(U|{})|=0 and

[Imbalance(U | X*)| = l(a(Tp‘aXpho we obtain |Imbalance(U |{})| - |Imbalance(U | X*)|<O0.

Using ay = L@{” with |axp|>0 as second restriction results in a positive difference. Since

[Imbalance(U | {})| = Vl ” ~laxp[>0 and  |Imbalance(U|X*)[=0 we get |Imbalance(U|{})|-
[Imbalance(U | X*)| > 0.

Proof 3 Bias in the linear regression estimator 7

Using the same linear setting as in Proof 1, we show that, after conditioning on X*, the bias in the linear
regression estimator 7 is given by

1
1-(ay + “UP)2Y .

The estimator 7 for the effect of treatment Z is obtained from regressing Y onto Z and X*: 7= "2y,
ZX*
Plugging the population correlations

OVB(t | X*) = {auBy(1-p*) + (axBy + axpBy +aupPy) (1-y)} x

ryz=Cov(Y,Z)=Cov(BxX + ByU +1Z + ey, axX + ayU + £z)
=T+axfy +auPy + axfyp + auPxp,
ryx= = Cov(Y, X*)/SD(X*) = Cov(ByX + ByU +T1Z + ey, X +e)\/y
= (Bx + 1ax + Byp + T0up) /7,
rzx« = Cov(Z, X*) /SD(X*) = Cov(axX + ayU + £z, X +€)/y = (ax + ayp)/y

into the above OVB formula we get 7-7="4"4"2 — 7. In setting p=0 or y=1 all other bias formulas
contained in this article directly follow from this general formula.
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Proof 4 Inequalities for increasing bias when conditioning on an uncorrelated and
reliably measured confounder X

For uncorrelated confounders X and U (with standardized coefficients), we prove the inequalities

|lXUﬁU|
@ o By |

(axf) =sgn(afy), (i) o] > L5 if sqn(axpy) = sgn(auy) and laxfy > [auBy |,

(iii) “ a"g”‘l >1- é if sgn(axfBy) # sgn(aypPy) and |axPy| < ‘aUBU]. Given the biases before and after condition-

ing on X, OVB(7 |{}) =axfx + aufy and OVB(7 | X) = “”/3” adjusting for X increases the absolute bias if

aZ’

a
: Uﬁg > |axBy + auPy| (C1)
First, if sgn(aXﬁX) =sgn(ayfy), (C1) is equivalent to ffi‘é >|axBx| + |auBy|- In dividing both sides by |ayBy|
Jay| |avBy| | 1-G
Jaufs| +1 and, finally, R 2
Second, 1f sgn(aXﬁX) #sgn(ayPy) and |aX/3X\ > |awByl, f‘fﬁ‘}{( > |axBx| - [avpy|-
Dividing both sides by |ayBy oo | -1, and thus ‘laul;”" > “X
U
Third, if sgn(axpBy)#sgn(ayBy) and |aX,BX\ < fﬁi‘}{( > |aUﬁU} - |axBy|.
Then, dividing both sides by }aUBU| we obtai JoBy| by |

" lah | and finally 7" >1- é For |axBy| <|aupy|

this inequality is always true because the left-hand side is always greater than one while the right-hand side
is always less than one. That is, for sgn(axfy) = sgn(ayfy) and |axfx| < }aUBU ,
increases rather than reduces the bias.

Proof 5 Inequalities among absolute biases

It is important to note that measurement error in X* always attenuates OVB towards the initial bias [26],
that is,

OVB(%|X) < OVB(% | X*) < OVB(%|{}) if OVB(#|X)<OVB(%|{}) and
OVB(# | X) > OVB(# | X*) > OVB(%| {}) if OVB(%|X) > OVB(%|{}).

Since the initial OVB and the OVB after adjusting for X can be of opposite signs, the two inequalities do not
imply that measurement error necessarily increases the absolute OVB. Thus, the corresponding inequalities
with absolute OVBs,

|OVB(%| X)| <|OVB(% | X*)| <|OVB(% | {})| if |OVB(#|X)|<|OVB(%|{})| and
|OVB(7| X)|>|OVB(z | X*)| > |OVB(7 | {})| if |OVB(T|X)|>|OVB(T|{})|

do not hold in general. They only hold if X and U induce bias in the same direction, that is, all four terms in
the initial bias formula have the same sign. To show the impact of measurement error on the bias, we prove
the following four inequalities:

@ |OVB(#|X)| <|OVB(#| X*)|<|OVB(#| {})| holds
|OVB(7 | X)|

T ovaiE ()]

<1 and sgn(OVB(7|{})) =sgn(OVB(1 | X)),
() |OVB(t|{})|<|OVB(1|X*)|<|OVB(T|X)| holds

[OVB(1 | X)|

T lovaGE| ()]

>1 and sgn(OVB(7|{})) =sgn(OVB(7 | X)),
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(i)  |OVB(#|X*)|<|OVB(#|X)| <|OVB(%|{})| holds
|OVB(7 | X)|

k< ovB| 1)

<1 and sgn(OVB(7 | {})) #sgn(OVB(7| X)),

(iv) |OVB(#|X*)|<|OVB(#|{})|<|OVB(# | X)| holds

. |OVB(T | X)] . .
if 1<« —————— <k and sgn(OVB(t #sgn(OVB(1|X)),
OVBE )] (OVB(¥ |{})) # sgn(OVB(t | X))
S L *
where k= 1= (ax +pa )} and y is the reliability of X*.

For ease of notation we use a=ax+pay, u=(1-p?ayfy, and ini=0VB(7|{})=axBx
+ayPy +paxPy +pauPy. Then, we can write the absolute OVB differences as

u ini ..
By =|0OVB(7 | X*)| - |OVB(7| {})| = 2o 1_aergzaz'—|mz|,
. u ini
=|OVB(¥| X*)| - |OVB(z == s R '_‘l—azl'

We first prove that a®<1. Due to the constraints of our parameters (unit variance of variables) we have
@+ +2payay; <1. Adding (1-p?)ad to both sides we get 1- (ay +pay)’>(1-p?)ad. Since ~1<p<1 we
obtain the true inequality (ax + an)2 <1. Consequently, 1-a®+02>0 in both By and By.

Now consider the situation where sgn(OVB(7 | {})) =sgn(OVB(7 | X)) holds (inequalities (i) and (ii)). The
equality of signs directly implies sgn(u) =sgn(ini) such that

.. -0? |u] ..
B0= m(hd— (1—a2)|lnl|) and BX— m(l az —|lnl|>.
. . OVB(#|X)| OVB(#| X
Then, inequality (i) holds if “OVB(“ Bl <1 because By<0 and By=0. Inequality (i) holds if W >1

because By >0 and By <O0.

Now consider the situation where sgn(OVB(7 | {})) #sgn(OVB(7 | X)) and |[u|> |ini|o? (inequality (iii)).
The two absolute OVB differences are given by

1 2 .. - 02 |u| . s
B():m(lu‘—(l—a +202)|ln1|) and BX =m(l_a2 +‘lnl| .
Then, inequality (iii) holds if % <1 and ”gg,/g TT “{X}” o0 (al _+ypa 2! because By <0 and Bx <0. Note that
—ax U

By <0 holds because |u| - (1-a?+20?)|ini| < |u| - (1 - a?)|ini| < 0.
Finally consider the situation where sgn(OVB(7 | {})) #sgn(OVB(7 | X)) and |u| < |ini|o? (inequality (iv)).
The two absolute OVB differences are given by

-1 . o? w2y
Bo=———— (Ju|+ (1-@?)|ini]) and By = ———— ( |ini| - -2 ).
0 1—a2+(72(|| ( lind]) X 1—a2+02(| | 1-a2 o2

|OVB(#| X)| |OVB(7 | X)| 1-y
Inequality (iv) holds if OVBET ] >1 and OVBEI )] < T (ar v pa because By <0 and By <0. Note that
\u\ 2|uI

By <0 hold because [ini| - < |ini| - '“‘2 <O0.




