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Abstract: Recent approaches in causal inference have proposed estimating average causal effects that are local
to some subpopulation, often for reasons of efficiency. These inferential targets are sometimes data-adaptive, in
that they are dependent on the empirical distribution of the data. In this short note, we show that if researchers
are willing to adapt the inferential target on the basis of efficiency, then extraordinary gains in precision can
potentially be obtained. Specifically, when causal effects are heterogeneous, any asymptotically normal and
root-n consistent estimator of the population average causal effect is superefficient for a data-adaptive local
average causal effect.
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1 Introduction

When causal effects are heterogeneous, then inferences depend on the population for which causal effects
are estimated. Although population average causal effects have traditionally been the inferential targets, re-
cent results have focused on estimating average causal effects that are local to some subpopulation for rea-
sons of efficiency. These approaches include trimming observations based on the distribution of the propensity
score [1], using regression adjustment to estimate reweighted causal effects [2—4], or implementing calipers for
propensity-score matching [5, 6]. In some cases, the target parameter is dependent on the empirical distribution
of the data, including cases where the researcher is explicitly conducting inference on, e.g., the average treat-
ment effect among the treated conditional on the observed covariate distribution [7], or other causal sample
functionals [8, 9], without revision to the estimator being used.

These approaches privilege efficiency in estimation over targeting population average causal effects, and
often allow for the target to be defined on the basis of the observed data. We provide an example of how these
approaches, taken to their extreme, can provide extraordinary gains in statistical certainty. We consider the case
of a data-adaptive target parameter [10] that is allowed to vary with the data depending on which subpopulation’s
local average causal effect is best estimated. When treatment effects are heterogeneous, adaptively changing
the target parameter on the basis of efficiency yields an unusual result: if the population average causal effect
can be consistently estimated with a root-n consistent and asymptotically normal estimator 6, then the same
estimator 0 is always superefficient (i.e., faster than root-n consistent) for a data-adaptive local average causal
effect. Furthermore, with an additional regularity condition on mean square convergence, we show that the
mean square error of f for a data-adaptive local average causal effect is of o(n~1).

2 Results

Consider a full data probability distribution G with an associated causal effect distribution v with finite expec-
tation Eg[ 7], where E;[.] denotes the expectation over the distribution G. Further denote the support of the
distribution of 7 as Supp[7]. We impose a regularity condition on 7 establishing non-degeneracy of 7.

Assumption 1: (Effect heterogeneity). min (sup (Suppc[r]) —Eg[t],EglT] —inf (Suppd'c])) =c>0.

Assumption 1 is equivalent to assuming that causal effects are not constant across observations in the dis-
tribution G; i.e., causal effects are heterogeneous.

We do not observe the full data probability distribution G, but we observe an empirical distribution F,,.
Suppose that, using F,,, we have a root-n consistent and asymptotically normal estimator of the average causal
effect Eg[ 7], 0.

Peter M. Aronow is the corresponding author.



= Aronow DEGRUYTER

Definition 1: An estimator 0 is root-n consistent and asymptotically normal for 6y if vn 6— 0y) = N(0,02) + op(l),
for some 0 < 02 < oo,

We now define the target parameter, 6 .
Definition 2: Let the target parameter

] (10 —Eg[rll<c
BFn: Egltl+c¢ :AG—EG[T]>C,
Eglrl—c :0—-Eg[t] < —c
where, as in Assumption 1, c = min (sup (Suppglt]) — Egl*], Egl[7] — inf (Supp[t])).

The target parameter adapts naturally to the closest value in an interval surrounding E ;[ v], where the width
of the interval is defined by the support of 7. We formalize how each 6 is a local average treatment effect.

Proposition 1: There exists a nonnegative weighting associated with each empirical distribution F,,, wg , such that across

Eglwg, 7]
all Pn, GFn = Eolwr 1"

A proof of Proposition 1 follows directly from the fact that a weighted mean can obtain any value in the
interval defined by the infimum and supremum of its distribution’s support. Proposition 1 asserts that across
all realizations, the target parameter 6 corresponds to an average causal effect for at least one subpopulation.
(There in fact may be infinitely many subpopulations to which 6 corresponds.) The composition of the subpop-
ulation(s) associated with each 0 is not directly knowable by the researcher and may vary across realizations
of the data.

However, mirroring results on other data-adaptive parameters under random sampling, including the sam-
ple average causal effect, the target parameter 0y will converge to the average causal effect Eg[7] at root-n
rate. Proposition 2 proves that the data-adaptive local average causal effect is asymptotically equivalent to the
average causal effect, and establishes its rate of convergence.

Proposition 2: Suppose that 0 is a root-n consistent and asymptotically normal estimator of Eg[t]. Then yn(bg, —
Eglt]) = O,(1).

A proof of Proposition 2 follows by noting that vii(d — Eg[7]) = O,(1) and that across every realization,
10, —El7]l < 10— Eglrll.

We now turn to our primary result, proving the superefficiency of 0 in estimating O .

Proposition 3: Suppose that Assumption 1 holds and that 0 is a root-n consistent and asymptotically normal estimator
of Eglv]. Then vn(6 — Or,) = 0,(1).

Proof: Decompose  into § = N(Eg[t],0%/n) and u = op(n‘l/z), so that 6 = 6 + u. Since (6 — OF,) is 0,(a,)
for any positive sequence (a,), the rate of convergence of  is at worst governed by the bound ensured by u’s

160, | > 6) < Pr (é — O # 0) =

an
2®(—cvn/0), where ®(.) denotes the standard Normal CDF. Since lim,,_, ., 2®(—cv7/0) =0, (6 — O ) is 0p ().
Thus § — O, = 0,(a,) + op(n_l/z) = op(n_l/z), yielding the result.

op(n_l/ 2y convergence. To prove the claim, note that for any positive ¢, Pr (

In short, Proposition 3 demonstrates that the probability that 8 falls inside the support of the effect distribu-
tion converges to one quickly; conditional on this event, then estimation error is zero (as the target parameter
takes on the value as the estimator with probability one). To illustrate this result, we can consider a case where
an interval defined by the support of the effect distribution encompasses the sampling distribution of the esti-
mator.

Corollary 1: Suppose that c > max (sup (Supp [9]) —Eg[7],Egl*] — inf (Supp [9])). Then Pr(6 = O) =1.

A proof of Corollary 1 follows by noting that Pr(|§ — E5[7]| < ¢) = 0, and applying Definition 2. In other
words, if the support of the estimator being used lies entirely within the interval [Eg[t] — ¢, Eg[7] + c], then
estimation error is always zero. This condition necessarily holds if Suppg [t] = R, then the value that any
estimator 0 takes must coincide with a local average causal effect. But note that Corollary 1 would not hold if
Suppg [*] = R* and Pr(d < 0) > 0.

Our results can be generalized to stronger claims straightforwardly. When a regularity condition is imposed
on the rate of convergence of 0 to normality, a stronger result can be obtained about the rate of mean square
convergence.
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Proposition 4: Suppose that Assumption 1 holds and 0 obeys Vii(—Eg[7]) = N(0,02) + ¢, where E[e2] = o(n~1/?).
Then E[(0 — 0 )*] = o(n™1).

Proof: We will show that the mean square error of (6 — Or,) converges to zero sufficiently quickly, implying that
the rate of convergence of 0 is at worst governed by the mean square error bound ensured by ¢’s convergence
rate. To obtain the rate of convergence of the mean square error of 6, we integrate over its squared deviation
from the target parameter. Within ¢ of E5[ 7], the squared deviation is zero, thus we need only integrate over
the squared deviation over the tails of the normal distribution. To ease calculations, we obtain an upper bound
by integrating over the squared deviation from E[ ], rather than from 6y :

x2n

EG[(Q _ GF”)Z] <2 J“X’xzﬂe_ﬁ
¢ a\/ﬂ

Since E[(6 — 9Fn)2] =o(n~') and n=V2E[€?] = o(n~1), the Cauchy-Schwarz inequality ensures that E[(§ —
O )21 = o(n™) +o(n™!) = o(n71).

3 Discussion

Our results highlight the additional certainty obtained by data-adaptively choosing the population for which
average causal effects are measured on the basis of efficiency. It is well known that efficiency gains may be
obtained through data-adaptive inference. But the extent to which the researcher can benefit from such practice
has been understated. Under treatment effect heterogeneity — a precondition for locality to be a concern — all
root-n consistent and asymptotically normal estimators of the average treatment effect are superefficient for a
local average treatment effect.

There is of course a cost to this superefficiency: the target parameter is likely not of intrinsic interest. This
issue is not unique to our setting, and other methods that change the inferential target based on efficiency
concerns may be subject to this critique. As Crump etal. ([1], p. 188) notes, “external validity may be lost by
changing the focus to average treatment effects for a subset of the original sample.” This is exacerbated in
our setting by the researcher’s lack of knowledge about the characteristics of the subpopulation under study.
Our result represents an extreme case of privileging efficiency over targeting population average causal effects.
However, our results provide insight into a potential pathology of data-adaptivity purely on efficiency concerns:
the gains in statistical certainty may be essentially unbounded without further restrictions. We hope that future
work in the domain of efficiency theory for data-adaptive parameters will consider classes of restrictions that
would exclude the case considered here.
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