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Abstract:
In this article, we carefully examine two important implementation issues when estimating propensity scores
using generalized boosted models (GBM), a promising machine learning technique. First, we examine which
of the following methods for tuning GBM lead to better covariate balance and inferences about causal effects:
pursuing covariate balance between the treatment groups or tuning the propensity score model on the basis of
a model fit criterion. Second, we examine how well GBM can handle irrelevant covariates that are included in
the estimation model. We find that chasing balance rather than model fit when estimating propensity scores
yielded better covariate balance and more accurate treatment effect estimates. Additionally, we find that adding
irrelevant covariates to GBM increased imbalance and bias in the treatment effects. The findings from this paper
have useful implications for other work focused on improving methods for estimating propensity scores.
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1 Introduction

The use of the propensity score (i. e., the probability of being assigned to treatment given a set pre-treatment
predictors) to balance treatment groups has rapidly gained popularity in many fields where observational stud-
ies are the norm [1, 2]. In turn, the popularity of propensity scores has given rise to great methodological interest
on how best to estimate them. Methods considered have included parametric methods such as logistic regres-
sion with or without explicit controls for covariate balance, machine learning methods such as generalized
boosted models (GBM), random forests (RF), Bayesian adaptive regression trees (BART), super learning, high
dimensional propensity score (hd-PS) methodology, and entropy balancing [4–11].

In particular, the use of machine learning methods, like GBM or RF, have been growing in their popular-
ity for propensity score estimation, especially in applications that use propensity scores for weighting. The
popularity of such methods is due in part to their flexibly – they require no a priori assumptions about the
true underlying form of the model and they automatically conduct variable selection among covariates identi-
fied by analysts (McCaffrey, Ridgeway, and Morral, 2004a). In addition, multiple studies showed such methods
could outperform logistic regression for estimating propensity scores. They produce better covariate balance
between treatment groups [12] and treatment effect estimators with smaller mean squared error [MSE; 12] when
the propensity score model is not necessarily correctly specified.

Machine learning methods are also typically a core component of the super learner propensity score es-
timator. The super learner (SL), which uses a convex combination of propensity score algorithms from a user
specified library is guaranteed by the oracle property to perform at least as well as the best candidate included in
the library of algorithms and achieve the performance of the correct model if it is included in the library [14–16].
Because machine learning does not require parametric assumptions about the propensity scores, methods like
GBM and RF are highly valued in the SL libraries and simulation studies have shown that SL with RF in the
library of algorithms can yield more accurate treatment effect estimates than alternatives ([3]).

The challenge to machine learning methods is that complexity of the model is controlled by a tuning param-
eter that must be chosen from the data to ensure a good fit. For GBM and RF, this tuning parameter controls
both the selection of variables for the model and the complexity of the functional form of the selected vari-
ables. One common approach is to set the tuning parameter so that the resulting GBM and associated weights
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minimize covariate imbalance between treatment groups. Alternatively, the standard method for selecting the
tuning parameter for application of GBM other than propensity score estimation has been to select the model
which yields the “best fit” or smallest out-of-sample prediction error estimated using cross-validation or a hold-
out training sample. Currently, there is a lack of evidence on which of these two methods yields more accurate
treatment effect estimates.

One of the most appealing features of machine learning for propensity score estimation is the ability of the
algorithms to work with large numbers of predictors relative to parametric models so that the analyst does not
need to pre-select variables related to treatment before attempting to fit a model. However, studies on paramet-
ric methods have shown that including covariates that are unrelated to the treatment variable when estimating
propensity scores can lead to weights with greater variability and poorer balance for covariates correlated with
the treatment indicator [18, 19]. This, in turn, increases the bias and decreases the efficiency of the treatment
effect estimate. In addition, controlling for such variables can exacerbate hidden bias due to omitted variables
[20]. Because machine learning methods like GBM can down weight uninformative covariates, it is unclear how
the lessons of parametric modeling will apply. Nonetheless, trade-offs have to exist, particularly in regards to
efficiency of the treatment effect estimates, sample size, and the number of included covariates. Here as well,
there is a lack of guidance for analysts using machine learning to estimate propensity scores.

This paper addresses the following two research questions in order to provide analysts guidance on apply-
ing machine learners to propensity score estimation: 1) When utilizing machine learning methods to estimate
propensity scores, which of the following criteria for tuning the model lead to more accurate estimates of the
true treatment effect: pursuing covariate balance between the treatment groups or tuning the propensity score
model on the basis of a model fit criterion? 2) How well can GBM handle the inclusion of irrelevant covariates (i.
e., covariates unrelated to treatment, here referred to as “distractors”) in estimation of propensity score weights
and subsequent treatment effect estimates?

We use a case study on GBM to answer these questions. We focus on GBM because its use in propensity score
estimation is well-established, having been in the literature for over a decade [12, 13, 21], and it popularity is
continuing to grow.1 Thus, guidance on the stand-alone use of GBM is likely to be valued by a growing number
of analysts. Moreover, we expect the lessons learned from a study of GBM to be applicable to other methods,
such as RF, since both methods combine multiple regression trees and perform similarly in simulations ([13].
Lessons from the case study should also be relevant to methods like the SL or doubly robust (DR) estimation
which combine GBM with either other propensity score estimation methods (SL) or models for the outcome
(DR), since GBM must be tuned whether used in combination or stand-alone. Focusing on tuning GBM for
stand-alone applications avoids complexity due to the function of other propensity score estimation methods
in SL or the choice of the conditional mean model for the outcomes in DR and so provides clarity on how model
tuning impacts covariate balance and the accuracy of treatment effect estimates.

2 Estimating propensity score weights using GBM

2.1 Brief review of propensity scores and propensity score weights

By definition, the propensity score is the probability of being assigned to treatment given a set of pretreatment
covariates, i. e. 𝑝(𝑥) = 𝑃(𝑍 = 1|𝑥) where Z is a binary indicator of treatment and 𝑥 is a vector of observed
covariates. Under the assumption of strong ignorability (e. g., that there are no unobserved confounders ex-
cluded from the propensity score model and 0(𝑥) < 1), the propensity score is all that is required to control for
pretreatment differences between two treatment groups or a treatment and a control group. One can use the
estimated propensity score, ̂𝑝(𝑥), to estimate a number of causal treatment effect estimands that might be of
interest in a study. The two causal estimands that are most popular in the literature are the average treatment
effect on the population (ATE) and the average treatment effect on the treated [ATT; 21]. To obtain consistent
estimates of these effects, propensity score weights can be utilized. For ATE, those weights equal 1/ ̂𝑝(𝑥), for in-
dividuals in the treatment group, and 1/(1− ̂𝑝(𝑥)) for individuals in the comparison group, where ̂𝑝(𝑥) equals
the estimated propensity score for an individual with covariates x. For ATT, the weights for treated individuals
are set equal to one and individuals in the comparison group have weights equal to ̂𝑝(𝑥)/(1 − ̂𝑝(𝑥)).

2.2 Propensity score estimation using GBM

GBM predicts a binary treatment indicator by fitting a piecewise constant model, constructed as combination
of simple regression trees [23, 25, 26]. To develop the propensity score model, GBM uses an iterative, “forward
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stagewise additive algorithm.” Such an algorithm starts by fitting a simple regression tree to the data to predict
treatment from the covariates. Then, at each additional step of the algorithm, a new simple regression tree
is added to the model from the previous iterations without changing any of the previous regression tree fits.
The new tree is chosen to provide the best fit to the residuals of the model from the previous iteration. This
chosen tree also provides the greatest increase to the log likelihood for the data. When combining trees, the
predictions from each tree are shrunken by a scalar less than one to improve the smoothness of the resulting
piecewise constant model and the overall fit.

The number of iterations that are performed by the algorithm or the number of trees in the model determines
the model’s complexity. The users select the “final” model of the treatment indicator (and correspondingly, the
propensity scores and propensity score weights needed for an analysis) by selecting a particular number of
iterations considered “optimal.” With each additional iteration, a GBM becomes more complex, fitting more
features of the data. With too few iterations, a GBM does not capture important features of the data. With
too many iterations, it over-fits the data [27]. Hence, when choosing the number of iterations to yield the final
model, the user must pick a value that balances between under and over-fitting the data.

2.3 Methods for selecting the optimal iteration of GBM

We evaluated three different ways to select the final GBM and its corresponding propensity score weights.
Best Model Fit. With GBM, there are a number of options for choosing the iteration that yields the best model

fit to the data, including an “out-of-bag” estimate,2 use of a validation dataset, or cross-validation [25]. We
utilized cross-validation in this study, selecting the iteration of the GBM algorithm that minimized the ten-fold
cross-validation prediction error to produce the propensity scores. We calculated prediction error as the inverse
of the log-likelihood. For an observation with treatment status, Zi and covariates xi the log-likelihood for GBM
model with the tuning parameter set to 𝜂, 𝑔(𝑥; 𝜂), is 𝑙(𝑍u�, 𝑥u�; 𝜂) = 𝑇u�𝑔(𝑥u�; 𝜂) − 𝑙𝑜𝑔(1 − 𝑒𝑥𝑝[𝑔(𝑥; 𝜂)]). The tuning
parameter is the number of iterations used in the GBM model, so for 𝜂 = 1, … , 10000, we used cross-validation
to calculate the out-of-sample likelihood for 𝑔(𝑥; 𝜂) and then selected the value of 𝜂 that minimized the inverse
of the likelihood.

Optimal Balance with respect to ATT. As an alternative to model fit, analysts can select the iteration that max-
imizes the balance or minimizes the imbalance between weighted covariate distributions from the two groups.
Balance may depend on whether the resulting propensity scores are used to generate ATE or ATT weights.
Hence, we explored tuning GBM to maximize the balance using ATT or ATE weighting. In practice, there are
various metrics commonly used to assess covariate balance. Here, we focused on two: the absolute standardized
mean difference (ASMD) and the Kolmogorov-Smirnov statistic (KS). These take on slightly different forms for
ATT and ATE weighting. When interest lies in estimating ATT, the ASMD for each covariate equals the abso-
lute value of the difference between the unweighted mean for treatment group and the weighted mean for the
control group divided by the unweighted standard deviation of the treated group. More specifically, for ATT,
for covariate 𝑘 = 1, … , 𝐾,

ASMDu� = ∣ ̄𝑥u�1 − ̄𝑥u�0∣ /𝑆u�1 (1)

where ̄𝑥u�u� is the unweighted or weighted mean of the covariate for treatment (𝑍 = 1) or control (𝑍 = 0) and 𝑆u�1
is the standard deviation of the covariate for the treated sample. The KS statistic depends on the unweighted
empirical distribution function for the treatment group and the weighted empirical distribution function for the
control group and provides a way to compare the overall distributions of each covariate between the treatment
and control groups (not just the means as with the ASMD [28]. The KS statistic for each covariate is

KSu� = sup
u�u�

∣EDF1u�(𝑥u�) − EDF0u�(𝑥u�)∣ (2)

where the empirical distribution function (EDF) is

EDFu�u�(𝑥u�) =
u�

∑
u�=1

𝑤u�𝐼(𝑧u� = 𝑍)𝐼(𝑥u�,u� ≤ 𝑥u�)/
u�

∑
u�=1

𝑤u�𝐼(𝑧u� = 𝑍) (3)

for 𝑍 = 0 or 1, where 𝐼(𝑧u� = 𝑍) equals 1 if this is true and 0 otherwise and similarly for 𝐼(𝑥u�,u� ≤ 𝑥u�), 𝑥u�,u� denotes
the value of 𝑥u� for the i-th individual, and 𝑤u� denotes the propensity score weight (1 for all individuals in the
treatment group and ̂𝑝(𝑥u�)/(1 − ̂𝑝(𝑥u�)) for individuals in the control group).
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Tuning GBM requires having a single summary statistic rather than the ASMD or KS for each covariate.
Thus, in the simulation study, we used both the mean and the maximum of either ASMD or KS across the K
covariates to give four possible overall balance metrics to be used in selecting the optimal iteration of GBM.
For each combination of a balance metric and summary statistics (referred to as stopping rules: mean ASMD
or mean ES for effect size difference, max ASMD or max ES, mean KS, and max KS), we selected the iteration
of GBM that minimizes the overall summary statistic in question and use the estimated propensity scores from
this optimal iteration in our analysis.

Optimal Balance with respect to ATE. Here, we again examined the same four stopping rules described
above to select the iteration of the GBM algorithm that yielded optimal balance with respect to ATE. When
interest lies in estimating ATE, the ASMD for each covariate, now equals the absolute value of the difference
between the weighted mean for treatment group and the weighted mean for the control group divided by the
unweighted standard deviation of the pooled sample. The KS formula remains the same as for ATT, though the
weights used are now ATE weights, 𝑤u� = 1/ ̂𝑝(𝑥u�) for individuals in the treatment group and 1/(1 − ̂𝑝(𝑥u�)) for
individuals in the control group. As with ATT, for each of the four stopping rules, we selected as optimal the
iteration of GBM that minimized the overall summary statistic in question and used the estimated propensity
scores from this optimal iteration in our analysis.

We implemented all methods in R. We utilized the gbm() command when selecting the optimal iteration
via best model fit and the twang package when using either ATT or ATE balance [29, 30].

3 Simulation experiments

We conducted two simulation experiments using different data generation models. For each, the data gener-
ation model was derived from data in a case study involving adolescent substance abusers. Both case studies
were part of the Adolescent Outcomes Project [AOP; 30]. In brief, the AOP was an evaluation of the effects of a
particular residential treatment program (the Phoenix Academy program) on teenage probationers’ drug use
and a wide range of other developmental difficulties. The AOP used the Global Appraisal of Individual Needs
[GAIN; 31] to assess background variables and outcomes of participating clients. The GAIN is a comprehensive
bio-psychosocial standardized assessment tool used for treatment planning and outcome monitoring [33]. The
AOP administered the GAIN at baseline and at several follow-ups visits over the course of 7 years.

Figure 1 provides more detail on the structure of our simulation studies. In our simulation study, we had
two different case studies each used to define the data generating model for the “true” propensity score and
the relationship between the pretreatment confounders and the outcome for one of the simulation studies. The
two case studies represent two very different types of selection models. In the first case study, the selection bias
is only moderate resulting in a healthy amount of overlap between youth in the treatment and comparison con-
ditions. In the second case study, the treated group is a highly selected subsample of the population, meaning
it is considerably more difficult to make the treated youth look like the overall population than it is to make the
comparison group look like the treated group (e. g., balance on ATT weights is easier to obtain than balance
on ATE weights). We used the AOP data from these case studies to develop nonparametric, nonlinear selection
models and then used these selection models in the data generating models of our simulation study.

Figure 1: Overarching structure for the simulation study.

Case Study 1: Phoenix Academy (PA) youth versus non-PA youth. The AOP was not a randomized study
and youth in the PA program were systematically different than youth in the non-PA program. In particular,
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youth in the PA program tended to have greater substance use and more problems related to substance use
than the other youth in the study.

Case Study 2: Abstainers versus drug users. As might be expected, youth who abstained from drugs dur-
ing one-year post intake in the AOP were significantly different from youth who used drugs during the same
period. Nonetheless, it is of interest to understand whether abstaining during the first year post-intake matters
in the long-run. A study by Griffin et al. [34] found that youth in the AOP who abstained during the first year
post-intake had significantly better long-term economic and educational outcomes than youth who used drugs
during that year, even after controlling for key differences between youth who abstain and those who did not.

3.1 True propensity score models

In order to have a simulation study that reflects characteristics of the AOP study, we used the AOP data to
simulate non-parametric propensity scores similar to the ones observed in that study following the overarch-
ing structure shown in Figure 1. For each case study considered, we first generated the “true” model for the
propensity score (i. e., the probability of being in the treatment group) by assuming that a nonparametric esti-
mate of the model for the treatment indicator in a given case study (PA versus non-PA or abstainers versus drug
users) represents the true underlying model. This “true” model was obtained by fitting a GBM to the binary
indicator for treatment in each of our two case studies that conditions on either:

Model A which included only the four most influential pretreatment characteristics in the given case study
of interest. For PA vs non-PA, the four covariates included in model A were self-reported need for treatment
(sum of 5 items), sum of number of problems paying attention, controlling their behavior or breaking rules, an
indicator for needing treatment for marijuana use, and substance frequency scale (SFS). For abstainers versus
drug users, the four covariate were SFS, the social risk scale (SRS), the internal mental distress scale (IMDS)
and number of days in the past 90 the youth was drunk or high for most of the day.

Model B which included 47 pretreatment covariates for the PA versus non-PA study and or 90 for abstainers
versus drug users study. Variables were frequently used in analyses involving GAIN data and covered five
domains: demographics (e. g., gender, race, current living situation), substance use (e. g., past month substance
use frequency, past month and past year substance use problems, recognition of substance use as a problem,
number of times received treatment in the past, primary substance under treatment, and tobacco dependence),
mental health (e. g., emotional problems, problem orientation, internal mental distress, behavior complexity),
criminal justice involvement (e. g., illegal activities, total arrests, crime violence, drug crimes, experiences in
controlled environments, and institutionalization), and sexual risk [35–37].

After determining the “true” model for the propensity score, we took the following steps to generate data:

1. Selected an overall sample size of 𝑁 = 1000 .

2. Generated a vector of the 47 or 90 pretreatment covariates for each individual (denoted 𝑥u� for 𝑖 = 1… 𝑁)
assuming the covariates have a multivariate normal distribution whose means, variances, and covariance
are based on the observed data from the AOP study.

3. Computed the true propensity score function at the covariate value for each individual, defined as 𝑝(𝑥u�), us-
ing generated 𝑥i and Model A or B, depending on the situation being examined. The “true” propensity score
model, 𝑝(𝑥i), was obtained from fitting a GBM to the observed AOP data and using the optimal iteration
based on model fit.

4. Generated treatment indicators, 𝑍u�, assuming a Bernoulli distribution where the 𝑃(𝑍u� = 1|𝑥u� = 𝑝(𝑥u�) (i. e.,
the true propensity score for the 𝑖-th individual)

5. Generated the outcome 𝑌u� assuming the following relationship

𝑌u� = 𝑔(𝑝u� − ̄𝑝) + 𝛽 × 𝑍u� × (𝑝u� − ̄𝑝) + 𝜀u� (4)

where ̄𝑝 is the mean of propensity scores across the data set, 𝑍u� is the treatment indicator generated in
step (4), and εi is assumed to be independently distributed with mean 0. For abstainers versus drug users,
the primary outcome of interest is total income in the past 90 days at the 87-month follow-up. In these
simulations, we assumed 𝜀i was normally distributed with standard deviation set equal to 1,500 in order
to ensure we generated values for income that excluded outlying (unrealistic) negative values. For the PA
versus non-PA study, the primary outcome was the change in substance use from baseline to follow-up
and we generated εi using a piece-wise constant transformation to the errors in order to have non-normally
distributed errors in one of our simulations. In each case, to obtain the intercept function 𝑔(𝑝u� − ̄𝑝), we used
a GBM to model the observed outcome as a function of the observed propensity scores from Step 3 using
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the AOP data. This resulted in a data generating model for the outcomes which was a nonlinear function
of 𝑝u� − ̄𝑝.

6. Performed ATT and ATE analysis using the simulated data. When the true model for the propensity scores
is Model A, we utilized two different approaches to estimate the propensity score: (i) estimation using only
the 4 covariates used to define Model A (called the “no distractors” cases) and (ii) estimation using the all
the available covariates for the case (47 or 90), even though only a subset actually contributed to the true
propensity scores (called the “distractors” case since 43 and 86 of these covariates, respectively, are not
predictive of the treatment indicator). When the true model for the propensity scores is Model B, we used
all 47 or 90 covariates to estimate the propensity scores (called the “all important” case since all measures
are predictive of both the propensity score and the outcome).

In all simulations, we set the true ATE equal to 0 and we set the true ATT (denoted by 𝛽 in eq. (4)) equal to
0.25 times the observed standard deviation of the outcome in the original dataset that was used to generate the
simulations (3,045 for abstainers and 38 for PA versus non-PA youth), representing a moderate effect size for
the average difference between the treatment and control conditions when interest lies in ATT. Although the
marginal distribution of the simulated covariates was multivariate normal, the conditional distributions given
𝑍 = 0 or 𝑍 = 1 were not and prior to weighting these distributions were not balanced.

3.2 Metrics for comparing the di昀�ferent implementations

We utilized a number of different metrics to evaluate the performance of the methods. We simulated 1000
datasets for each scenario being compared.

Metrics measuring balance. In order to assess the ability of each method to balance the pretreatment covari-
ates of interest, we computed the ASMD for pretreatment covariates in the true propensity score model (4 for
Model A and 47 or 90 for Model B) using weights that come from the three methods for choosing the optimal
number of iterations in the GBM model (Model Fit, Chasing ATT Balance, Chasing ATE Balance). For all cases,
we first computed the maximum ASMDs for each of the four most influential covariates (those used in Model
A) for each Monte Carlo iteration and then produce box plots which show the distribution of the maximum
ASMDs as our primary metric of balance.

Metrics measuring performance of treatment effect estimation. In order to quantify the impact of the meth-
ods on the estimated treatment effects of interest, we computed the bias of the treatment effect, standard de-
viation of the estimated treatment effects, and the root mean squared error (RMSE) for both types of treat-
ment effect estimates (ATE and ATT). To illustrate, let 𝐴𝑇𝐸u�,u�u�u�ℎu�u� equal the estimated ATE using one of our
three optimization methods (model fit, chasing balance on ATE, or chasing balance on ATT) for simulated
dataset 𝑏 = 1, … , 1000, and let 𝐴𝑇𝐸u�u�u�ℎu�u� equal the average of the 𝐴𝑇𝐸u�,u�u�u�ℎu�u�. The estimate of the bias equals
𝐴𝑇𝐸u�u�u�ℎu�u� − 𝐴𝑇𝐸u�u�u�u� where 𝐴𝑇𝐸u�u�u�u� denotes the true ATE. We estimate the standard deviation as the square
root of the variance which is defined as

1000

∑
u�=1

(u�u�u�u�,u�u�u�ℎu�u�−u�u�u�u�u�u�ℎu�u�)
2
/1000 (5)

and the estimated MSE equals

1000

∑
u�=1

(𝐴𝑇𝐸u�,u�u�u�ℎu�u� − 𝐴𝑇𝐸u�u�u�u�)
2/1000 (6)

We report standardized results in which we divided the bias, standard deviation, and RMSE of the estimated
treatment effect by the standard deviation of the corresponding outcome variable. We estimated the standard
deviation of the outcomes using a simulated sample of outcomes under the control condition. We standardized
to the measures to put the results from both case studies on a common standard deviation scale and to provide
perspective on the magnitude of the bias, standard deviation, and RMSE. Similar formulas are used for the
other estimators for when interest lies in ATT.

These measures describe the accuracy of the estimated treatment effects; however, accurate inferences are
also important. Current practice when estimating the standard errors of the estimated treatment effects is to use
sandwich standard errors that treat the weights as known (i. e., the standard errors from the survey package in
R, PROC SURVEYMEAN is SAS or with aweights in Stata). The accuracy of this approximation to the standard
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error could be sensitive to the distribution of the weights and the choice for tuning the GBM. Hence, we also
assess the accuracy of the sandwich standard errors and inferences about the treatment effect. We report the
ratio of the Monte Carlo mean of the estimated standard error to the standard deviation across Monte Carlo
samples of the estimated treatment effects. We also report the coverage rate equal to the proportion of simulated
samples for which the point estimate +/− twice the estimated standard error includes the true value of the
treatment effect. For ATE, since the true treatment effect is zero, one minus the coverage rate equals the Type I
error rate.

4 Results

4.1 Impact on balance

Figure 2, Figure 3, and Figure 4 show box plots for the maximum ASMD for the four pretreatment covariates
in propensity score Model A for the “no distractors”, “distractors”, and “all important” scenarios, respectively.
For each scenario, we present results for both of our two different data generating models (PA and abstainers),
and for each of the two possible estimands of interest ATT and ATE. For the chasing balance methods, results
are shown for the stopping rule which yielded the smallest RMSE for that method (see Appendix Table 5 and
Table 6 for the RMSEs for all stopping rules by method and scenario).

Figure 2: Maximum mean ASMD for Model A data generation and four covariates used in propensity score estimation
(no distractors case) for (a) the PA and (b) the abstainers data generation case studies.

Figure 3: Maximum mean ASMD for Model A data generation but with all covariates used in propensity score estimation
(distractors case) for (a) the PA and (b) the abstainers data generation case studies.

Figure 4: Maximum mean ASMD for Model B data generation and Model B propensity score estimation (All important
case) for 4 most influential covariates for (a) the PA and (b) the abstainers data generation case studies.
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Figure 2(a) and (b) present results for the two simulated case study settings, Case 1: PA vs. non-PA in 2a
and Case 2: abstainers vs. users in 2b, for the “no distractors” scenario in which only 4 pretreatment variables
matter and they are the only variables used in the propensity score estimation. Chasing balance on ATT or ATE
performs well in terms of balance with maximum ASMDs generally well below 0.20, regardless of whether
the estimated treatment effect is ATE or ATT. In all cases, using model fit to tune the GBM performs notably
worse than either of the chasing balance approaches with a nearly 25 % chance that the maximum ASMD would
exceed 0.30 when estimating ATE for Case 2 (Figure 2(b)). Additionally, in both case studies chasing balance on
ATT tends to slightly outperform chasing balance on ATE when interest lies in estimating ATTs and chasing
balance on ATE achieves substantially better balance than chasing balance on ATT for Case 2 when interest lies
in ATE (See Figure 2(b)).

Figure 3 presents the results for the distractor scenario in which extraneous variables were used to estimate
the propensity scores for the same four pretreatment covariates as shown in Figure 2. Comparing the results
from Figure 3 to those of Figure 2 shows that including distractors in the propensity score estimation results
in larger values for the maximum ASMDs than modeling without them, regardless of the method used to tune
the GBM model. The relative performances of the alternative methods for selecting the optimal GBM generally
follow the patterns in Figure 2. In Case 1 (Figure 3(a)), chasing ATE balance or chasing ATT balance leads to
similarly good balance, regardless of the estimand of interest. Model fit yields significantly worse balance in
all cases expect in Case 2 (Figure 3(b)) when interest lies in ATT, in which case it performs about equally well
as chasing balance. Moreover, for Case 2 when interest lies in ATE both model fit and chasing balance on ATT
yield much worse balance in comparison to the method which chases ATE balance.

Figure 4(a) and (b) present the maximum ASMD for the same four pretreatment covariates as shown in
Figure 2 and Figure 3, for the “all important” scenario in which all the variables were used for estimating and
generating the true propensity scores as well as being related to the outcome. Note the four covariates from
our no distractors and distractors cases remain the most influential, even though all covariates contribute to
the true propensity scores. As shown in Figure 4(a) and (b), when the true propensity score model contains
47 or 90 covariates the maximum ASMDs for the four most influential covariates increase relative to the “no
distractors” case in which the propensity score model depends on only 4 covariates, but the results are generally
similar to those shown in Figure 3(a) and (b) (the “distractors” case). That is, modeling the propensity score with
more covariates increases the maximum ASMD, regardless of whether or not all the covariates truly belong in
the model. The story for comparing methods for choosing the optimal iteration of the GBM fit again replicates
the findings from the other two scenarios: Model fit continues to yield weights that perform poorly at balancing,
except for Case 2 when the estimand is ATT, in which case the methods perform similarly. Also, the two chasing
balance methods perform similarly in all cases except Case 2 when interest lies in ATE; in that setting, chasing
balance on ATE significantly outperforms model fit and chasing balance on ATT (the estimand that is not of
primary interest).

4.2 Impact on treatment e昀�fect estimation

Table 1 shows the standardized bias of the treatment effect, standard deviation, and RMSE for our treatment
effect estimates for all of the scenarios, methods, and estimands of interest. For the chasing balance methods,
results are shown for the stopping rule that produced optimal performance of the method with regard to RMSE.
Appendix Table 5 and Table 6 shows the results for all stopping rules in detail and emphasizes how in any given
setting the stopping rule that performed best varied.

In the no distractor scenario, all three methods perform very similarly to each other for Case 1 when interest
lies in either ATT or ATE. There is more separation between the methods for the Case 2. Here, when interest
lies in ATT, we see that chasing balance on ATT slightly outperforms the other methods (RMSE equals 0.054
relative to 0.072 and 0.068 for chasing balance on ATE and model fit, respectively). Conversely, when interest
lies in ATE, chasing balance on ATE clearly outperforms the alternatives (RMSE equals 0.226 relative to 0.327
and 0.505 for chasing balance on ATT and model fit, respectively). Notably, all methods result in biased treat-
ment effect estimates for ATE in Case 2 (standardized bias is above 0.22 for all methods). This occurs because it
is not feasible to obtain ATE weights to the match the covariate distribution for abstainers to those of the overall
population. However, chasing balance on ATE achieves substantially better balance, smaller bias, smaller stan-
dard deviation, and smaller RMSE in the resulting treatment effects than the other methods. The results cannot
be trusted for inferences about the treatment effect, but the case clearly demonstrates the strength of chasing
balance with the targeted estimand to remove group differences.

Table 1: Summary statistics for treatment effect estimates across all cases and methods.
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Case 1. PA (Treatment) vs. non-PA (Control)
ATT ATE
Bias Std Dev RMSE Bias Std Dev RMSE

No distractors
Best model fit 0.068 0.042 0.080 0.004 0.022 0.022
Chasing balance on ATT 0.061 0.041 0.073 0.012 0.022 0.025
Chasing balance on ATE 0.059 0.041 0.072 0.008 0.022 0.023
Distractors
Best model fit 0.103 0.037 0.110 0.058 0.025 0.063
Chasing balance on ATT 0.086 0.037 0.094 0.033 0.022 0.039
Chasing balance on ATE 0.085 0.038 0.093 0.032 0.022 0.039
All important
Best model fit 0.055 0.064 0.084 0.347 0.070 0.353
Chasing balance on ATT 0.048 0.063 0.079 0.201 0.045 0.206
Chasing balance on ATE 0.048 0.063 0.079 0.198 0.045 0.203
Case 2. Abstainers (Treatment) vs. drug users (Control)
No distractors
Best model fit 0.035 0.058 0.068 0.494 0.105 0.505
Chasing balance on ATT 0.001 0.054 0.054 0.313 0.096 0.327
Chasing balance on ATE −0.041 0.060 0.072 0.220 0.052 0.226
Distractors
Best model fit −0.046 0.067 0.081 0.618 0.114 0.628
Chasing balance on ATT −0.041 0.066 0.078 0.376 0.101 0.390
Chasing balance on ATE −0.064 0.063 0.090 0.285 0.059 0.291
All important
Best model fit −0.086 0.088 0.124 0.538 0.123 0.552
Chasing balance on ATT −0.076 0.092 0.119 0.434 0.132 0.453
Chasing balance on ATE −0.119 0.089 0.147 0.285 0.059 0.291

Note: The true ATE = 0 in all cases while the true ATT = 761.36 and 9.66 for the abstainers and PA case studies, respectively (e. g, 0.25
times the observed standard deviation of the outcome in those datasets).

In the distractors and all important cases, we generally see similar findings, although it is a little easier to
delineate between model fit and the chasing balance methods in most cases than it was in the no distractor
case. For Case 1, the two chasing balance methods both slightly outperform model fit and perform similarly
to each other no matter whether one is interested in ATT or ATE. In contrast, chasing balance methods have
more separation in Case 2. When interest lies in ATT, we see that chasing balance on ATT for Case 2 again
yields the lowest bias and the smallest RMSE but chasing balance on ATE actually performs worse than model
fit. Also, chasing balance on ATE when interest lies in ATE in Case 2 yields optimal performance. RMSE for
chasing balance on ATE here is 0.291 (versus 0.390 for chasing balance on ATT and 0.628 for model fit) in the
“distractors” case and 0.291 (versus 0.453 and 0.552, respectively) in the “all important” case. Again for the case
of ATE when we use the abstainers data generation model, we continue to see poor performance overall given
the lack of balance.

In almost all cases, controlling for more covariates via the propensity score models and weights has detri-
mental effects on the performance of the treatment effect estimates, regardless of whether or not selection into
treatment depends on those variables. Standardized bias, standard deviation and RMSE are typically greater
for all methods for the distractor and all important scenarios than for the no distractors scenario. For example,
in the PA data generation case study, standardized bias changes from being less than 0.10 in the “no distractors
case” to being over 0.20 in the “all important” case when interest lies in ATE. The degradation in performance is
to be expected given the poorer performance in balance for the distractor and all important scenarios relative to
no distractors shown in Figure 2, Figure 3, and Figure 4. Lack of balance results in confounding of the treatment
effect estimate. Also, the balance varies more across realized samples which adds to variance in the estimated
treatment effect: A sample with particularly bad balance will yield outlying treatment effect estimates. Notably,
in both case studies, better balance and lower standardize bias is achieved when interest lies in ATT versus ATE
for the “all important” case. Finally, we note that modeling with many covariates allows for spurious variability
in the weights that does not improve balance but inflates the variability of weighted means.

A concern with any weighting is that highly variable weights, relative to their mean, can result in some
observations being extremely influential and can potentially inflate the standard error of a weighted mean. We
explored how the different criteria for tuning GBM affect the coefficient of variation (CV) of the weights (i. e.,
the ratio of the standard error of the weights to the mean) for the treatment and control group by calculating
the average values across simulated samples for each simulation setting. Full results are in Appendix Table 7.
The CV was largest for best model fit when interest lies in ATT and there are no distractors for both the PA
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and the abstainer cases (averages = 1.12 and 1.25, respectively). Notably, the mean CV was consistently smaller
for ATE than for ATT estimands. For ATT, chasing balance yielded less variable weights with the average CV
ranging from 2 to 24 % smaller than for best model fit, except in the all important case for abstainers in which
the average CV for chasing balance was 6 % larger. For ATE, without distractors, the CV was generally about
the same for the PA case study across all methods while for the abstainers case study, chasing balance on ATE
yielded smaller average values for CV. With distractors, chasing balance, especially ATE balance, yielded more
variable weights than best model fit. The same was true when all predictors were important for PA but not
abstainers. Taken altogether with the results above, for ATT, chasing balance can achieve better balance and
less bias, without increasing the variability in the weights. The same is true for ATE, when there are only
four covariates, but with many covariates, chasing balance obtained better balance at the cost of more variable
weights but not necessarily great standard errors for the estimated treatment effect.

Table 2 presents the results for the impact on inferences for the different approaches to tuning GBM. For
chasing balance the stopping rule which yielded the worst coverage rate is reported for each simulation setting
(results for all methods are shown in Table 8 and Table 9). The estimated standard errors tend to be somewhat
more accurate for best model fit than chasing balance. However, for both model fit and chasing balance, the
sandwich standard errors are almost always notably too large for both approaches to tuning GBM. The bias
in the sandwich standard errors tends to be largest for conditions in which the weights substantially reduced
large differences between the treatment and the control group as they did for ATT and ATE using chasing ATE
balance in the abstainer case. This result is consistent with fact that the sandwich standard error estimator es-
timates the standard error of the treatment effect as the square root of the variance of the weighted treatment
mean plus the variance of the weighted control group mean and effectively ignores the correlation between
these two weighted means. However, when the weights achieve balance they effectively create a positive cor-
relation between the estimated treatment and control group means, so the standard error estimator tends to
be too large, particularly in cases when the weights remove large differences between groups. Because chasing
balance tends to achieve better balance than model fit, the sandwich standard errors tend to have greater bias
for chasing balance than model fit.

Table 2: Summary statistics for standard errors and inferences all cases and methods.

Case 1. PA (Treatment) vs. non-PA (Control)
ATT ATE
Relative standard
error

Coverage rate Relative standard
error

Coverage rate

No distractors
Best model fit 0.85 0.47 1.57 1.00
Chasing balance on ATT 0.99 0.60 1.58 1.00
Chasing balance on ATE 0.98 0.61 1.56 1.00
Distractors
Best model fit 0.97 0.19 1.38 0.68
Chasing balance on ATT 1.04 0.36 1.58 0.95
Chasing balance on ATE 1.04 0.35 1.59 0.95
All important
Best model fit 1.19 0.93 1.21 0.00
Chasing balance on ATT 1.20 0.93 1.86 0.17
Chasing balance on ATE 1.21 0.93 1.85 0.17
Case 2. Abstainers (Treatment) vs. drug users (Control)
No distractors
Best model fit 2.04 1.00 1.33 0.02
Chasing balance on ATT 2.27 1.00 1.70 0.19
Chasing balance on ATE 2.02 1.00 2.68 0.84
Distractors
Best model fit 1.64 0.99 1.04 0.00
Chasing balance on ATT 1.78 0.99 0.82 0.00
Chasing balance on ATE 1.81 0.99 2.06 0.19
All important
Best model fit 1.58 0.98 1.15 0.01
Chasing balance on ATT 1.57 0.98 0.97 0.00
Chasing balance on ATE 1.64 0.95 2.21 0.35

Note: The relative standard error equals the ratio of the Monte Carlo average of the estimated standard errors to the Monte Carlo
standard deviation of the estimated treatment effects.
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Across all the simulation conditions, chasing balance tends to have better coverage than model fit. There are,
however, several conditions where both methods have low coverage such as ATE for the abstainers, where the
estimated treatment effects tend to have large bias and ATT for PA for the no-distractors and distractor cases. In
these settings, although the bias is not large relative to the standard deviation of the outcome, it is large relative
to the true standard error and the estimated standard errors are accurate for chasing balance. In other cases,
such as ATT for the abstainers or ATE for PA with no distractors, both methods have very high coverage. This
is the result of three factors: 1) the bias is relatively small; 2) achieving balance is difficult so the true standard
errors are relatively large, so that bias is smaller relative to the standard error than in other cases such as ATT
for PA; and 3) the estimated standard errors consistently have large positive bias which increase the confidence
intervals widths and coverage rates.

5 Illustrative data analyses

5.1 PA vs non-PA

Table 3 shows the balance results and treatment effect estimates from applying our three methods for fine tuning
GBM to the original PA versus non-PA example. Here, the propensity score models only included the four
most influential pretreatment covariates that were used to generate Model A in our simulation studies (namely
self-reported need for treatment (sum of 5 items), sum of number of problems paying attention, controlling
their behavior or breaking rules, an indicator for needing treatment for marijuana use, and SFS). As expected,
in both the ATT and ATE analyses, model fit does the worst at obtaining balance on the pretreatment covariates
(max ASMD equals 0.21 in both cases). Here, both chasing balance methods perform similarly for ATT and ATE,
yielding max ASMDs ranging from 0.13 to 0.15. In spite of these differences in balance for model fit and the
other methods, the treatment effect estimates for the three methods are highly similar: Among the population
assigned to PA, the treatment appears to reduce substance use relative to the other alternative placements the
probationers might have received, although confidence intervals include zero. PA does not appear effective for
youth who would typically not be assigned to it as the ATE is close to zero regardless of the method used to
tune GBM.

Table 3: ASMD for each pretreatment covariate and summary statistics across covariates as well as treatment effect
estimates (standardized) for ATE and ATT analyses for each candidate approach to select optimal iteration of GBM for PA
versus non-PA example

Unweighted Chasing balance
on ATT

Chasing balance
on ATE

Model fit

ATE analysis
Need for tx 0.79 0.15 0.15 0.18
SFS 0.63 0.09 0.09 0.15
Sum of probs 0.08 0.02 0.02 0.02
Tx for mj 0.67 0.14 0.14 0.21
Mean ASMD 0.54 0.10 0.10 0.14
Max ASMD 0.79 0.15 0.15 0.21
TE (95 % CI) −0.31 (−0.51,

−0.1)
−0.03 (−0.28, 0.22) −0.03 (−0.28, 0.21) −0.06 (−0.30, 0.18)

ATT analysis
Need for tx 0.89 0.13 0.13 0.16
SFS 0.69 0.06 0.06 0.08
Sum of probs 0.09 0.06 0.04 0.01
Tx for mj 0.54 0.13 0.14 0.21
Mean ASMD 0.55 0.10 0.09 0.12
Max ASMD 0.89 0.13 0.14 0.21
TE −0.31 (−0.51,

−0.1)
−0.18 (−0.42, 0.05) −0.17 (−0.4, 0.06) −0.14 (−0.38, 0.09)

5.2 Abstainers vs drug users

Table 4 shows the balance results and treatment effect estimates from applying our three methods for fine-
tuning GBM to the original abstainers versus drug users data. Here, the propensity score models only included
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the four most influential pretreatment covariates that were used to generate Model A in our simulation studies
(namely SFS, SRS, IMDS and proportion of days in the past 90 the youth was drunk or high for most of the
day) and we only utilized the maximum ASMD stopping rule. As expected given our simulation study, when
interest lies in estimating ATE, the best balance is achieved by selecting the iteration of GBM that optimizes
ATE balance while chasing balance on ATT and model fit do much worse (chasing balance on ATE has a max-
imum ASMD of 0.19 versus 0.36 and 0.26 for the other two methods, respectively). Similarly, when interest
lies in estimating ATT, chasing balance on ATT clearly outperforms chasing balance on ATE and the model
fit methods (max ASMD = 0.07, 0.14, 0.29, respectively). In spite of these differences in balance, the treatment
effect estimates for the three methods are highly similar. For all three methods, the results of both the ATE and
ATT analyses are also similar and suggest that abstaining from drugs for one year post-intake increases income
7-years later by 1.6 standard deviations. For ATT, the confidence intervals do not include zero, whereas for ATE
confidence intervals include zero since the standard errors are larger because both groups are weighted and the
weights are highly variable with the groups being highly disparate. The differential imbalance in the covariates
across methods for tuning GBM does not affect the treatment effect estimates because the covariates are only
weakly related to outcomes (multiple R-squared is less than 0.01).

Table 4: ASMD for each pretreatment covariate and summary statistics across covariates as well as treatment effect
estimates (standardized) for ATE and ATT analyses for each candidate approach to select optimal iteration of GBM for the
abstainers versus drug users example.

Unweighted Chasing balance
on ATT

Chasing balance
on ATE

Model fit

ATE analysis
SFS 0.70 0.34 0.18 0.26
SRS 0.60 0.36 0.19 0.25
IMDS 0.15 0.12 0.15 0.17
Days high or drunk 0.62 0.28 0.15 0.24
Mean ASMD 0.52 0.27 0.17 0.23
Max ASMD 0.70 0.36 0.19 0.26
TE (95 % CI) 1.55 (−0.04, 3.13) 1.85 (−0.33, 4.03) 1.59 (−0.13, 3.31) 1.48 (−0.14, 3.09)
ATT analysis
SFS 1.01 0.02 0.10 0.25
SRS 0.64 0.02 0.06 0.17
IMDS 0.18 0.07 0.06 0.01
Days high or drunk 1.02 0.05 0.14 0.29
Mean ASMD 0.71 0.04 0.09 0.18
Max ASMD 1.02 0.07 0.14 0.29
TE 1.55 (−0.04, 3.13) 1.60 (−0.02, 3.22) 1.67 (0.07, 3.27) 1.66 (0.06, 3.25)

6 Discussion

In this paper, we examine two important issues regarding implementation of GBM to estimate propensity
score weights: the criteria for tuning the GBM and impact of including irrelevant covariates (distractors) in
the models. In terms of criteria of tuning the model, our findings regarding the performance of the best model
fit approach versus chasing balance approaches relates to the theoretical result in the field that show modeling
with estimated propensity scores yields more precise treatment effect estimates than modeling with the true
propensity scores because the estimated propensity score adjust for the imbalances that are observed between
the treatment groups being compared [38]. Thus, even though the best model fit approach produces estimated
propensity scores that most closely line up with the “true” propensity score model (results available upon re-
quest), the estimated propensity scores that result from this type of optimization do not obtain the best balance
between the treatment and control groups and hence in turn result in treatment effect estimates that have larger
bias. We suspect overfitting helps to correct for small sample bias that prevents the GBM from fully recovering
the true propensity score model. By overfitting using balance to tune the model, GBM fit via chasing balance
better balances the pretreatment covariates and reduces bias. These findings also reinforce the point made by
others [39] that obtaining best model fit for a propensity score model does not correspond with how well it
actually performs in bias reduction.

As expected, we found that including distrators in the GBM modeling degraded the balance achieved by
the resulting weights and increased the RMSE of the estimated treatment effects, in all simulations studied.
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This finding is consistent with what others in the field have found [18, 19, 40]. Given that we include such a
large number of variables into the model, it is notable that all of the methods still perform reasonably well in all
cases where distractor variables are added into the model (maximum mean ASMDs and standardized bias in the
treatment effect estimate are all below 0.11), except the ATE case in the abstainers data generation case study.
We would not expect such high performance from a parametric approach like the logistic regression model.
Thus, while we do not recommended including so many variables in a propensity score estimation model if
some can be eliminated on substantive grounds, it is clear that machine learning techniques can handle a large
number of pretreatment covariates (e. g., between 47 and 90) where traditional parametric models are likely
to fail. We found the modeling with many variables related to both treatment and outcomes also degrades
performance relative to modeling with a small number of relevant variables, suggesting a limit to how far GBM
can be pushed with a moderately large sample size of 1,000. Even with the rise of machine learning techniques
in propensity score estimation, analysts and researchers should still be careful when selecting the number of
variables to include in the propensity score model in order to help ensure the best results are achieved. Future
work could examine settings in which a variable selection step might be necessary prior to utilizing a machine
learning approach for propensity score estimation.

The results for inferences are less clear than those for the accuracy of the treatment effect point estimate.
No method of tuning GBM clearly provides better coverage than the others. Three factors contribute to this
finding. First, bias in the treatment effect estimates reduces the probability of coverage. Second, large true stan-
dard errors increase the probability of coverage and, third, overestimating the standard error further increases
the probability of coverage. Although chasing balance results in smaller bias, failure to balance the groups
can increase the true standard errors so that model fit can have smaller bias relative to true standard errors,
which makes coverage more likely even though the magnitude of the bias is greater. In addition, the sandwich
standard error estimator that ignores the estimation of the weights overestimates the standard errors further
distorting the coverage rates. The bias in the standard errors tends to be somewhat larger for chasing balance
than best fit, precisely because chasing balance better balances covariates and reduces bias in the treatment
effect. However, if bias in the treatment effect is small then even if intervals do not include the true value, they
will be close to the truth. For example, if the effect is zero, and bias is small but the intervals do not include
zero the inference would still be that the effect is small. On the other hand, large bias may be misinterpreted.
For example, a large point value may be interpreted as a large effect, even if the interval is large and includes
small values. Thus, even though the results on coverage do not favor any tuning method, chasing balance may
still be preferable because it yields more accurate point estimates.

The results of our simulation study clearly demonstrate the poor performance of the sandwich standard
error estimator that does not account for estimating weights. However, in a limited simulation study using a
subset of the PA no-distractor samples, bootstrap standard errors also substantially overestimated the standard
error, sometimes by a greater amount than the sandwich. Additional work is needed to determine the cause of
the bias in the bootstrap standard errors and for potential alternatives.

Findings from this work have important implications for the field. Various promising methods are now
available to researchers interested in estimating causal treatment effects with propensity scores. For many of
the available approaches, it may be possible to improve performance if more care is taken in how the methods
are fine-tuned to select a solution. For example, use of the super learning method which simultaneously runs
multiple machine learning methods (including GBM) to estimate propensity scores is currently fine-tuned to
select as optimal the combination of machine learners that yields the best prediction [4, 7]. It may be feasible to
improve the already high performance of this method by fine-tuning it so it selects as optimal the combination
of machine-learners that yields the best balance. Future work might examine whether there are gains to this
type of fine-tuning for that methodology.

Additionally, findings from our work follow in line with much of where the field is headed when developing
new methods for improving estimation of propensity scores. For example, Imai and Ratkovic [10] specifically
developed the Covariate Balance Propensity Score (CBPS) method to improve performance of the standard
logistic regression model for estimating propensity scores by incorporating a balance penalty function into
the way in which logistic regression models estimate the propensity score. In addition, Hainmuller [6] and
Graham et al. [41] use entropy or exponential tilting weights that provide exact balance on the covariates.
Moreover, the high-dimensional propensity score (hd-PS) algorithm which is an automated technique that
examines thousands of covariates in the study population to select the most salient variables for use in the
propensity score model uses a strategy for selecting the most salient variables that prioritizes for selection those
variables that are associated with the outcome and most imbalanced between the treatment and control groups
[42]. Thus in general, our results here may extend beyond machine learning methods, to support our inference
that propensity score estimation in general can be optimized through careful consideration of balance.
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Table 5: Summary Statistics for Treatment Effect Estimates for all stopping rules and methods considered for the
abstainers’ example

Abstainers (Treatment) vs. Drug Users (Control)
ATT ATE
Bias Sth Dev RMSE Bias Sth Dev RMSE

No Distractors
Best Model Fit 0.035 0.058 0.068 0.494 0.105 0.505
Chasing Balance on ATT
es.max -0.007 0.057 0.058 0.313 0.096 0.327
es.mean 0.001 0.054 0.054 0.344 0.084 0.354
ks.max -0.001 0.060 0.060 0.335 0.098 0.349
es.mean 0.003 0.054 0.054 0.350 0.083 0.360
Chasing Balance on ATE
es.max -0.046 0.061 0.076 0.223 0.053 0.229
es.mean -0.048 0.060 0.077 0.220 0.052 0.226
ks.max -0.046 0.061 0.076 0.222 0.053 0.228
ks.mean -0.041 0.060 0.072 0.222 0.052 0.228
Distractors
Best Model Fit -0.046 0.067 0.081 0.618 0.114 0.628
Chasing Balance on ATT
es.max -0.045 0.068 0.081 0.604 0.198 0.636
es.mean -0.041 0.066 0.078 0.702 0.158 0.719
ks.max -0.049 0.063 0.080 0.376 0.101 0.390
ks.mean -0.042 0.066 0.078 0.647 0.143 0.662
Chasing Balance on ATE
es.max -0.067 0.063 0.092 0.299 0.061 0.305
es.mean -0.066 0.062 0.090 0.291 0.057 0.296
ks.max -0.073 0.062 0.096 0.285 0.059 0.291
ks.mean -0.064 0.063 0.090 0.294 0.055 0.299
All Important
Best Model Fit -0.086 0.088 0.124 0.538 0.123 0.552
Chasing Balance on ATT
es.max -0.086 0.093 0.127 0.656 0.210 0.689
es.mean -0.076 0.092 0.119 0.751 0.155 0.766
ks.max -0.089 0.090 0.126 0.434 0.132 0.453
ks.mean -0.076 0.091 0.119 0.677 0.144 0.692
Chasing Balance on ATE
es.max -0.121 0.086 0.149 0.306 0.064 0.312
es.mean -0.121 0.085 0.148 0.290 0.059 0.296
ks.max -0.131 0.086 0.156 0.285 0.059 0.291
ks.mean -0.119 0.086 0.147 0.293 0.058 0.299

Table 6: Summary Statistics for Treatment Effect Estimates for all stopping rules and methods considered for the PA
example

PA (Treatment) vs. non-PA (Control)
ATT ATE
Bias Sth Dev RMSE Bias Std Dev RMSE

No Distractors
Best Model Fit 0.068 0.042 0.080 0.004 0.022 0.022
Chasing Balance on ATT
es.max 0.061 0.041 0.073 0.013 0.022 0.025
es.mean 0.061 0.041 0.074 0.013 0.022 0.025
ks.max 0.062 0.041 0.074 0.013 0.022 0.026
ks.mean 0.061 0.041 0.073 0.012 0.022 0.025
Chasing Balance on ATE
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es.max 0.059 0.041 0.072 0.009 0.022 0.024
es.mean 0.059 0.042 0.072 0.009 0.022 0.024
ks.max 0.059 0.042 0.072 0.009 0.022 0.024
ks.mean 0.059 0.042 0.073 0.008 0.022 0.023
Distractors
Best Model Fit 0.103 0.037 0.110 0.058 0.025 0.063
Chasing balance on ATT
es.max 0.086 0.037 0.094 0.033 0.022 0.039
es.mean 0.086 0.037 0.094 0.033 0.022 0.039
ks.max 0.087 0.037 0.094 0.033 0.022 0.039
ks.mean 0.086 0.037 0.094 0.033 0.022 0.039
Chasing Balance on ATE
es.max 0.087 0.037 0.095 0.032 0.022 0.039
es.mean 0.085 0.038 0.093 0.032 0.022 0.039
ks.max 0.088 0.037 0.095 0.032 0.022 0.039
ks.mean 0.085 0.038 0.093 0.032 0.022 0.039

All Important
Best Model Fit via cv.folds 0.055 0.064 0.084 0.347 0.070 0.353
Chasing Balance on ATT
es.max 0.052 0.063 0.081 0.205 0.045 0.209
es.mean 0.048 0.063 0.080 0.201 0.045 0.206
ks.max 0.053 0.063 0.082 0.206 0.044 0.211
ks.mean 0.048 0.063 0.079 0.201 0.045 0.206
Chasing Balance on ATE
es.max 0.053 0.063 0.083 0.203 0.044 0.208
es.mean 0.048 0.063 0.079 0.198 0.045 0.203
ks.max 0.055 0.063 0.083 0.205 0.044 0.210
ks.mean 0.048 0.063 0.079 0.198 0.045 0.203

Table 7: The average coefficient of variation (CV) of the weights for all cases and methods.

Case 1. PA case study Case 2. Abstainers case study
ATT ATE-control ATE-treated ATT ATE-control ATE-treated

No distractors
Best model fit 1.12 0.39 0.64 1.25 0.26 0.64
Chasing balance on ATT
es.max 1.06 0.38 0.60 1.09 0.24 0.64
es.mean 1.05 0.38 0.59 1.12 0.24 0.64
ks.max 1.05 0.38 0.59 1.11 0.24 0.64
ks.mean 1.06 0.38 0.60 1.12 0.24 0.65
Chasing balance on ATE
es.max 1.10 0.39 0.63 0.95 0.21 0.62
es.mean 1.11 0.39 0.63 0.94 0.21 0.62
ks.max 1.10 0.39 0.63 0.95 0.21 0.62
ks.mean 1.12 0.39 0.64 0.96 0.21 0.63
Distractors
Best model fit 0.96 0.22 0.47 0.95 0.13 0.46
Chasing balance on ATT
es.max 0.87 0.29 0.50 0.94 0.12 0.43
es.mean 0.87 0.29 0.50 0.98 0.11 0.37
ks.max 0.86 0.29 0.50 0.84 0.16 0.55
ks.mean 0.88 0.29 0.51 0.96 0.12 0.42
Chasing balance on ATE
es.max 0.85 0.29 0.50 0.76 0.15 0.54
es.mean 0.89 0.29 0.51 0.76 0.15 0.55
ks.max 0.84 0.29 0.49 0.74 0.15 0.54
ks.mean 0.90 0.29 0.52 0.77 0.16 0.55
All important
Best model fit 0.98 0.19 0.42 0.79 0.12 0.44
Chasing balance on ATT
es.max 0.87 0.29 0.50 0.84 0.10 0.34
es.mean 0.90 0.29 0.51 0.89 0.09 0.30
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ks.max 0.86 0.28 0.49 0.74 0.13 0.45
ks.mean 0.90 0.29 0.51 0.86 0.11 0.36
Chasing balance on ATE
es.max 0.85 0.28 0.49 0.62 0.13 0.44
es.mean 0.90 0.29 0.52 0.61 0.13 0.44
ks.max 0.84 0.28 0.49 0.59 0.12 0.43
ks.mean 0.90 0.29 0.52 0.62 0.13 0.44

Table 8: Relative standard errors and coverage rates for all stopping rules and methods considered for the abstainers
example.

Abstainers (Treatment) vs. drug users (Control)
ATT ATE
Relative standard
error

Coverage rate Relative standard
error

Coverage rate

No distractors
Best model fit 2.04 1.00 1.33 0.02
Chasing balance on ATT
es.max 2.12 1.00 1.47 0.39
es.mean 2.27 1.00 1.67 0.22
ks.max 2.03 1.00 1.44 0.31
ks.mean 2.23 1.00 1.70 0.19
Chasing balance on ATE
es.max 1.99 1.00 2.67 0.84
es.mean 2.02 1.00 2.72 0.86
ks.max 1.98 1.00 2.68 0.84
ks.mean 2.02 1.00 2.70 0.85
Distractors
Best model fit 1.64 0.99 1.04 0.00
Chasing balance on ATT
es.max 1.66 0.99 0.60 0.01
es.mean 1.70 1.00 0.73 0.00
ks.max 1.78 0.99 1.23 0.06
ks.mean 1.71 1.00 0.82 0.00
Chasing balance on ATE
es.max 1.79 0.99 2.06 0.19
es.mean 1.81 0.99 2.23 0.23
ks.max 1.80 0.99 2.13 0.26
ks.mean 1.80 0.99 2.27 0.21
All important
Best model fit 1.58 0.98 1.15 0.01
Chasing balance on ATT
es.max 1.51 0.98 0.67 0.02
es.mean 1.54 0.98 0.90 0.00
ks.max 1.57 0.98 1.07 0.08
ks.mean 1.55 0.98 0.97 0.00
Chasing balance on ATE
es.max 1.63 0.96 2.21 0.35
es.mean 1.65 0.97 2.42 0.44
ks.max 1.64 0.95 2.39 0.46
ks.mean 1.64 0.96 2.47 0.41

Table 9: Relative standard errors and coverage rates for all stopping rules and methods considered for the PA example.

ATT ATE
Relative standard
error

Coverage rate Relative standard
error

Coverage rate

No distractors
Best model fit 0.85 0.47 1.57 1.00
Chasing balance on ATT
es.max 0.99 0.61 1.58 1.00
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es.mean 0.99 0.60 1.58 1.00
ks.max 1.00 0.60 1.57 1.00
ks.mean 0.99 0.61 1.57 1.00
Chasing balance on ATE
es.max 0.99 0.62 1.56 1.00
es.mean 0.99 0.62 1.56 1.00
ks.max 0.99 0.62 1.56 1.00
ks.mean 0.98 0.61 1.55 1.00
Distractors
Best model fit 0.97 0.19 1.38 0.68
Chasing balance on ATT
es.max 1.03 0.37 1.58 0.95
es.mean 1.03 0.37 1.58 0.95
ks.max 1.04 0.36 1.58 0.95
ks.mean 1.04 0.37 1.58 0.95
Chasing balance on ATE
es.max 1.04 0.36 1.59 0.95
es.mean 1.03 0.38 1.58 0.96
ks.max 1.04 0.35 1.59 0.95
ks.mean 1.03 0.38 1.58 0.95
All important
Best model fit via cv.folds 1.19 0.93 1.21 0.00
Chasing balance on ATT
es.max 1.20 0.94 1.85 0.18
es.mean 1.20 0.94 1.85 0.21
ks.max 1.20 0.93 1.86 0.17
ks.mean 1.20 0.94 1.86 0.20
Chasing balance on ATE
es.max 1.20 0.93 1.87 0.18
es.mean 1.20 0.94 1.86 0.22
ks.max 1.21 0.93 1.85 0.17
ks.mean 1.20 0.95 1.86 0.22

Notes
1For example, the number of citations for the 2004 paper by McCaffrey et al. which proposed the use of GBM for propensity score

estimation has increased from 30 in 2010 to over 70 in each of 2015 and 2016.
2To improve prediction, the GBM fitting algorithm typically includes “bagging” where the model is estimated at each iteration using a

random subsample of the data. The prediction error on the sample not used for estimation or the “out-of-bag” sample can be used to tune
the model to obtain the out-of-bag estimate, see Ridgeway [25],for details.
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