DE GRUYTER J. Causal Infer. 2015; 3(2): 207-236

Denis Talbot*, Geneviéve Lefebvre and Juli Atherton
The Bayesian Causal Effect Estimation Algorithm

DOI 10.1515/jci-2014-0035

Abstract: Estimating causal exposure effects in observational studies ideally requires the analyst to have a
vast knowledge of the domain of application. Investigators often bypass difficulties related to the identi-
fication and selection of confounders through the use of fully adjusted outcome regression models.
However, since such models likely contain more covariates than required, the variance of the regression
coefficient for exposure may be unnecessarily large. Instead of using a fully adjusted model, model
selection can be attempted. Most classical statistical model selection approaches, such as Bayesian
model averaging, do not readily address causal effect estimation. We present a new model averaged
approach to causal inference, Bayesian causal effect estimation (BCEE), which is motivated by the graphical
framework for causal inference. BCEE aims to unbiasedly estimate the causal effect of a continuous
exposure on a continuous outcome while being more efficient than a fully adjusted approach.
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1 Introduction

Estimating causal exposure effects in observational studies demands a vast knowledge of the domain of
application. For instance, to estimate the causal effect of an exposure on an outcome, the graphical
framework to causality usually involves postulating a causal graph to identify an appropriate set of
confounding variables [1]. Specifying such a graph can be difficult, especially in subject areas where
prior knowledge is scarce or limited.

Investigators often bypass difficulties related to the identification and selection of confounders through
the use of fully adjusted outcome regression models. Such models express the outcome variable as a
function of the exposure variable and all available potential confounding variables. A fully adjusted
outcome regression model is commonly assumed to yield an unbiased estimator of the true effect of the
exposure. However, since such models likely contain more covariates than required, the variance of the
regression coefficient for exposure may be unnecessarily large. Instead of using a fully adjusted model,
model selection can be attempted.

Most classical statistical model selection approaches do not readily address causal effect estimation.
One such approach is Bayesian model averaging (BMA) [2, 3]. BMA averages quantities of interest (e.g. a
regression coefficient or the value of a future observation) over all possible models under consideration: in
the average, each estimate is weighted by the posterior probability attributed to the corresponding model.
When the goal is prediction, BMA accounts for the uncertainty associated with model choice and produces
confidence intervals that have adequate coverage probabilities [4]. Unfortunately, BMA can perform poorly
when used to estimate a causal effect of exposure [5, 6].

Wang et al. [6] suggested two novel approaches that modify BMA to specifically target causal effect
estimation: Bayesian adjustment for confounding (BAC) and two-stage Bayesian adjustment for confound-
ing (TBAC). Graph-based simulations presented in Wang et al. [6] show that the causal effect estimators of
BAC and TBAC are unbiased in a variety of scenarios, hence supporting their adequacy for causal inference.
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A theoretical justification for the use of BAC for causal inference purposes is further discussed in Lefebvre,
Atherton, and Talbot [7]. However, some simulations comparing BAC and TBAC to fully adjusted models
show little difference in the variance of the causal effect estimators of each method [6, 8]. Moreover, the
choice of BAC’s hyperparameter » has been recognized as challenging [9]. The value w = oo has been
recommended if one seeks an unbiased causal exposure effect estimator [7]. Lefebvre et al. [7] proposed
using cross-validation and bootstrap for selecting an o value that aims to minimize the mean-square-error
(MSE) of the BAC’s causal effect of exposure estimator. These results suggest that the optimal w value not
only depends on the data-generating scenario, but also on sample size, thus making it very hard in practice
to select an appropriate w value.

In this paper we propose a new model averaging approach to causal inference: Bayesian causal effect
estimation (BCEE). BCEE aims to unbiasedly estimate the causal effect of a continuous exposure on a
continuous outcome, while being more efficient than a fully adjusted approach. With a sample of finite size,
however, this is an ambitious objective. Hence, through a user-selected hyperparameter, BCEE enables an
analyst to consider various degrees of trade-off between bias and variance for the estimator. While BCEE
shares some similarities with TBAC, one distinctive feature of our approach is that its motivation lies in the
graphical framework for causal inference (e.g. Pearl [1]).

The paper is structured as follows. In Section 2, we present the BCEE algorithm and discuss, in
Section 3, a number of aspects of its practical implementation. We compare BCEE to some existing
approaches for causal effect estimation in Section 4. In Section 5, we apply BCEE to a real dataset where
we estimate the causal effect of mathematical perceived competence on the self-reported average in
mathematics for highschool students in the province of Quebec. We conclude in Section 6 with a discussion
of our results and provide suggestions for further research.

2 Bayesian causal effect estimation (BCEE)

Before presenting BCEE in Section 2.3, we first describe the modeling framework in Section 2.1 and provide a
proposition and corollary concerning directed acyclic graphs (DAGs) in Section 2.2. The description of how the
proposition and the corollary are used to develop BCEE is presented in Section 2.4. We conclude, in Section 2.5,
with a toy example that sheds light on BCEE’s properties. Note that although we refer to BCEE as a Bayesian
algorithm, strictly speaking, it is approximately Bayesian since it requires specifying prior distributions only for
a subset of the parameters. To simplify the discussion, we motivate BCEE from a frequentist perspective.

2.1 Modeling framework

We consider estimating the causal effect of a continuous exposure on a continuous outcome. Let X be the
random exposure variable, Y be the random outcome variable and U = {U;, Us, ..., Uy} be a set of M
available, pre-exposure, potentially confounding random covariates. Let i index the units of observations,
i=1,...,n. Our goal is to estimate the causal effect of exposure using a linear regression model for the
outcome with normal, independent and identically distributed errors. Assuming the set U is sufficient to
identify the average causal effect and the model is correctly specified, a fully adjusted linear regression
model can be used to estimate the causal effect. Under such assumptions, parameter § encodes the average
causal effect of a unit increase in X on Y in the linear model

M
E(Yi|X;, Us) = do + BXi + > omUim, 1)

m=1

where Jy is the intercept and J,, is the regression coefficient associated with covariate U,. A
disadvantage to using a fully adjusted outcome model is that the variance of the exposure effect
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estimator / can be large. Therefore, one might want to include a reduced number of covariates in the
outcome model (1), that is, to adjust for a strict subset of U also sufficient to estimate the causal effect
of Xon Y.

Consider G an assumed causal directed acyclic graph (DAG) compatible with the distribution of the
observed covariates in G, {Y, X, U}. Let D = {Dy, D5, ..., D;} C U be the set of parents (direct causes) of X in G.
Then using Pearl’s back-door criterion [1], it is straightforward to show that adjusting for the set D is sufficient
to avoid confounding. In other words, the parameter  in the linear model

J
E(Yi‘Xi,Di) = o + SXi + Zé,-Di,- (2)
=1
can also be interpreted as the average causal effect of X on Y. It can also be shown that outcome models
adjusting for sets of pre-exposure covariates that at least include the direct causes of exposure are
unbiased; BAC may be seen to be exploiting this feature [7]. Adjusting for the set of direct causes of X in
the outcome model thus seems appealing since D is generally smaller than the full set U. However, this
approach can also yield an estimator of 4, 3, whose variance is large unless those direct causes of X are also
strong predictors of Y (e.g. Lefebvre et al. [7]).

BAC, TBAC and BCEE all rely on the fact that the set of direct causes of X is sufficient for estimating the
causal effect and that this set of covariates can be identified from the data. A differentiating feature of BCEE
is that it aims to disfavor outcome models that include one or more direct causes of X that are unnecessary
to eliminate confounding. This is viewed as desirable since these variables generally increase the variance
of B. By doing so, BCEE targets sufficient models

K
E(YilXi, Zi) = Jo + BXi + Y ouZix (3)
k=1

for which the variance of A is smaller than the variance of 2 in model (1) and the variance of 2 obtained using
BAC or TBAC. In Section 2.2 we present a proposition and a corollary that underlie the functioning of BCEE.

2.2 A motivation based on directed acyclic graphs

The results presented in this section are based on Pearl’s back-door criterion and are thus obtained from a
graphical perspective to causality using directed acyclic graphs (DAGs). For a brief review of this frame-
work, we refer the reader to the appendix of VanderWeele and Shpitser [10].

Proposition 2.1 presented below gives a sufficient condition to identify a set Z that yields an unbiased
estimator /8 of the causal effect of X in eq. (3). Corollary 2.1 starts with such a sufficient set Z and provides
conditions under which a direct cause of X included in Z can be excluded so that the resulting set Z’ is
also sufficient. Remark that this corollary is akin to Proposition 1 from VanderWeele and Shpitser [10]. In
the sequel, the concept of d-separation is used to entail notions of conditional independence between
variables. Moreover, the distribution-free adjustment defined in Pearl [1] relates to the adjustment in the
linear model setting introduced in Section 2.1. For instance, see Chapter 5 from Pearl [1] and section 5.3.2
in particular.

Proposition 2.1 Consider data compatible with a causal DAG G. Let D = {Dy,D,, ...,D;} be the set of direct
causes of X and let Z be a set of covariates which we consider adjusting for. Adjusting for Z is sufficient to
identify the average causal effect of X on Y if
1) no descendants of X are in Z and
2) if for each D; € D, either

(@ DjeZor

(b) if Dj ¢ Z then Y and D; are d-separated by {X UZ}.
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Proof: see Appendix A.1.

Corollary 2.1 Consider a D; € Z and let Z' = Z\D;.

1) IfDj and Y are d-separated by {X UZ'} then all back-door paths X «— D;--- — Y are blocked by Z'.

2) Ifin addition to 1., Z is sufficient to identify the average causal effect according to Proposition 2.1, then Z'
is also sufficient to identify the average causal effect of X on Y.

Proof: see Appendix A.2.

We now address how the proposition and the corollary are used in the linear regression setting presented in
Section 2.1. First, Theorem 1.2.4 from Pearl [1] states the quasi-equivalence between d-separation and
conditional independence. That is, unless a very precise tuning of parameters occurs, d-separation of Y
and D; by {XUZ} is equivalent to conditional independence between Y and D; given {X UZ}. Hence, we
can replace d-separation by conditional independence in Proposition 2.1 and in Corollary 2.1. Under the
assumption that all variables in the graph G are multivariate normal, we have that conditional indepen-
dence is equivalent to zero partial correlation and thus to zero regression parameter in the linear model [11].
More specifically, if ¥ and D; are conditionally independent given {X U Z}, then the regression parameter
associated to D; in the linear regression of Y on D;, X and Z is 0; and this parameter is O only if Y and D; are
conditionally independent given {XUZ}. The assumption of multivariate normality is quite stringent; a
weaker assumption is that model (1) is correctly specified (see Appendix B).

2.3 The BCEE algorithm

BCEE is viewed as a BMA procedure where the prior distribution of the outcome model is informative and
constructed by using estimates from earlier steps of the algorithm, including the exposure model. In this
section, we introduce BCEE and define the aforementioned prior distribution. The connections between
Proposition 2.1, Corollary 2.1 and BCEE’s prior distribution are discussed in Section 2.4.

We now define the outcome model using the same model averaging notation as in BAC and TBAC. Let
a¥ = (aof,...,al;) be an M-dimensional vector for the inclusion of the covariates U in the outcome model,
where component a, equals 1 if covariate Uy, is included in the model and «?, equals 0 if covariate U, is not
included, m =1,..., M. Letting i index the units of observation, i =1,...,n, the outcome model is the
following normal linear model

M
Yi=08 +p K+ > a0 U+, (4)
m=1
where c)‘f‘ny and /)’“Y denote respectively the unknown regression coefficients associated with U,, and X in the
outcome model specified by a¥. The parameter 53’ denotes the unknown intercept in model a¥ and the
distribution of the error terms is given by e;"y y (0, o‘zxy).

Given model (4) and a prior distribution P(aY), the use of BMA for the estimation of the exposure effect
requires first obtaining the posterior distribution of the outcome model P(a¥|Y) oc P(Y|a¥)P(aY). Standard
implementation of BMA often involves selecting a uniform prior distribution P(a¥) = 1/2¥ V aY, in which
case P(a¥|Y) o< P(Y|aY). The model-averaged exposure effect is then given by

By = || s (s o V) | pla1v). )
a¥ L0

In BCEE, we utilize an informative prior distribution rather than the usual non-informative one. This

distribution aims to give the bulk of the prior probability to outcome models in which /)""Y has a causal

interpretation according to Proposition 2.1, and that cannot be reduced according to Corollary 2.1. As will be

seen, this prior distribution is constructed by borrowing information from the data.
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The first step in the construction of BCEE’s prior distribution P?(a¥) is to compute the posterior
distribution of the exposure model. This step is also present in TBAC and is performed in BCEE to identify
possible causal exposure models and thus likely direct causes of the exposure. Recall that direct causes of
exposure play a pivotal role in both Proposition 2.1 and Corollary 2.1. We now introduce the notation for the
exposure model. Let aX = (of, ..., o) be an M-dimensional vector for the inclusion of the covariates U in
the exposure model. The exposure model is the following normal linear model

M
Xi= 08+ ah % Uy + & (6)

m=1
where éf denotes the unknown regression coefficient of Uy, m =1, ..., M, in the exposure model specified

by a*. The parameter 53‘X denotes the unknown intercept in aX and ef’x i N (0, 0% ). In this step, each model
aX is attributed a weight corresponding to its posterior probability, P(aX|X) o P(X|a*)P(a¥X). For simplifi-
cation, P(aX) is taken to be uniform (that is, P(aX) = 1/2Y Vv a¥), although other prior distributions could
be considered.

We are now ready to define PP(aY), which depends not only on P(aX|X), but also on the regression
coefficients 5§y. Remember that Proposition 2.1 and Corollary 2.1 both require verifying conditional inde-
pendences. This can be achieved through the examination of the outcome model regression coefficients (see
the final remarks of Section 2.2). To simplify the presentation, we assume for now that the true values of the
regression coefficients are provided by an oracle. The BCEE prior distribution is as follows:

PP(a") = PP(a’|a*)P(a¥|X), where
M
PP (a"@X) oc [ Qur (alogy)-
m=1

For vectors @ and a*, Qq (a}|¥) is given by one of the following:

w® 1
Qo (o = ey =1) = S5 Qur(a = Ol = 1) = oy )
1 1
Qay(ar}; = l\af,i = O) =5 Qay(a,}:, = O|a§n = O) =5

where w;”ny is defined in (8). To properly define w‘,"ny we must first define the notion of an m-nearest neighbor
outcome model. For a given model a¥ where a,‘; = 0, the m-nearest neighbor model to a¥, ay(m), has
exactly the same covariates as a¥ except with «), = 1 instead of o}, = 0. In the case where o), = 1, there is
no need to define an m-nearest neighbor model. We now define a new set of regression parameters:

52

e Y
oy m if ay, =1

ST if ¥ = 0.
For example, if U = {U;, U} and @” = (1,0) then 6% = 5;"y can be directly taken from model a¥, whereas
~ Y
5§‘y =3 @ needs to be taken from model a¥(2) = (1,1).
With this additional notation, we define the hyperparameter w‘,’,‘: as:

2
o — % (csa "_> , (8)

oy
where 0 < w < co is a user-defined hyperparameter, oy, and oy are respectively, the (true) standard
deviations of U,, and Y. Note that anyagm /oy is a standardization of any which makes it insensitive to the
measurement units of both Y and U,,. In practice, we cannot rely on an oracle to provide Sf‘ny; in the sequel,
we use the maximum likelihood estimator of 3‘,’,‘: instead. Also, the true values of oy, and oy are not known
and are estimated by sy, and sy. The prior distribution PZ(a¥) thus has an empirical Bayes flavor. Once
PB(a") is obtained, the posterior distribution of the outcome model P(a¥|Y) is computed and the posterior
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exposure effect calculated according to eq. (5). In Section 3.2, we discuss how one can account for using the
data for the specification of P?(a¥) to obtain appropriate inferences.

2.4 The rationale behind BCEE

In this section, we explain in detail how BCEE’s prior distribution PE(a¥) is motivated by causal graphs
through Proposition 2.1 and Corollary 2.1.

To begin, recall that the first step of BCEE serves to identify likely exposure models. Classical properties
of Bayesian model selection ensure that the true (structural) exposure model, the one including only and all
direct causes of X (D = {Dy, ..., D;}), is asymptotically attributed all the posterior probability by the first step
of BCEE (e.g. Haughton [12], Wasserman [13]). This result follows from assuming that the set of potential
confounding covariates U includes all direct causes of X and no descendants of X and that the specification
of the model is correct: that is, the true exposure model is indeed a normal linear model of the form
X; = 8o+ Y, 6Dy + &, with & N(0, 0%).

The algorithm BCEE aims to give the bulk of the posterior weight to outcome models in which ,b""y has a
causal interpretation according to Proposition 2.1 and that cannot be reduced according to Corollary 2.1. In
such outcome models, " includes any given direct cause (identified in the first step) only if the inclusion of
this direct cause of exposure is necessary for ﬁ"‘y to have a causal interpretation in a¥. To do so, P2(aY)
places small prior weight on outcome models which do not respect condition 2 of Proposition 2.1. In such
models, some direct causes of X are excluded (condition point 2a from Proposition 2.1) and Y is dependent
on those excluded direct causes of X given X and the potential confounding covariates already included
(condition point 2b from Proposition 2.1). Moreover, P?(a¥) seeks to limit the prior weight attributed to
outcome models that could be reduced according to Corollary 2.1. In such models, some direct causes of X
are included, but these are not associated with Y conditionally on X and the other covariates included.

To illustrate how Proposition 2.1 and Corollary 2.1 motivate the formulation of P?(a¥) we provide the
following thought experiment. To simplify our presentation, we assume that the direct causes of exposure
are known and that the outcome model (1) is correctly specified. Moreover, we order the elements of U so
that the first J elements are D, that is {U, ..., Uy} ={D, ..., Dy, U414, ..., Uy }. For ease of interpretation, we

also assume that the covariates U are standardized, although, due to the way wf‘ny is defined, this is not
necessary in practice. We consider four different situations to illustrate how BCEE functions. In each
situation, a direct cause of exposure D; = Uj is either included or excluded from the outcome model a¥

2aY
and the maximum likelihood estimate \6;-1 | is either close to O or large. The anticipated magnitudes of

Qur (of |of) and of PP(a¥|aX) for each situation are presented in Table 1. Considering jointly those four

situations, we see that only outcome models that both correctly identify the average causal effect of
exposure and that solely include necessary direct causes of exposure receive non-negligible prior

Table 1: Magnitudes of Qur (af[e) and P?(a"|a¥) for four situations defined by the inclusion of a
direct cause of exposure D; and the magnitude of |5}x |

Situation D, 18] | YLLDIX.Z W Qr(aflaX)  PP(a’|a)
1) Excl. Large Not likely Large Close to 0 Close to 0
) Incl. Close to 0 Likely Close to 0 Close to 0 Close to 0
3) Incl. Large Not likely Large Close to 1 Depends
(4) Excl. Close to 0 Likely Close to 0 Close to 1 Depends

Note: Z' denotes the potential confounding covariates included in " excluding D;, Excl.=Excluded,
Incl. = Included, Depends = Depends on other D;s
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probabilities. In the next paragraph, we describe in detail the first situation, which supposes that direct

cause D; is omitted from @ and its associated estimated parameter |5;xy| is large.

Suppose a” does not include Dj. Note that Qur ()" = Ol = 1) depends on 5? through w}‘?’y. Therefore,
PB(a¥|aX) also depends on 5? JIf |3;-x | is large, then Y is likely not independent of D; conditionally on X and
the potential confounding covariates included in &Y. It follows that a¥ does not respect condition 2b from
Proposition 2.1. Since the value of o' is large, Qur(af = Olaf =1) is small and so is PZ(a”|a¥). In this
situation, PB(aY) is well behaved: the model aY is not sufficient to identify the average causal effect of
exposure and hence it receives little prior probability. A similar reasoning can be applied for situation 4 of
Table 1. The reasoning for situations 2 and 3 is also quite similar, but requires invoking Corollary 2.1 to
determine whether the inclusion of D; is necessary or not.

Remark in Table 1 that in situations 3 and 4, where Qqu (¢ |off) is close to 1, PP(a”|a¥) depends in a
large part on the Qv associated with the other direct causes of exposure. If none of the Q,» are close to O,
then PB(a¥|aX) is non-negligible and hence favors models that identify the causal effect according to
Proposition 2.1 and Corollary 2.1. However, if any of the Quv is close to 0, then P5(a¥ |a¥) is close to 0.

2.5 A toy example

We consider a toy example to gain preliminary insights on the finite sample properties of BCEE. We
generated a sample of size n = 500 satisfying the following relationships:

X=U+U,+ex
Y =X+ 0.1U; + ¢y,

with U;, U, ~N(0,1) and ex, ey ~ N(0, 1), all independent.
The first step of BCEE is to calculate the posterior distribution of the exposure model P(a*|X). The four
possible exposure models in this example are:

We approximate P(X|aX) using exp[—0.5BIC(aX)] [14], where BIC(aX) is the Bayesian information
criterion for exposure model aX. In our example, model af receives all posterior weight, that is
P(aX = (1,1)|X) = 1.

Next, we compute the posterior distribution of the outcome model using P5(a¥). We take w = 100,/n, a
choice that is subsequently discussed in Section 3.1. The four possible outcome models are:

a YX - (of =0,0f =0),

af YX. U — (&f =1, =0),
al YIX,U, — (af =0,0) =1),
a4y CYIX, UL U — (6 =1,0) =1).

Note that only models a¥ and a} correctly identify the causal effect of exposure. We present the calculation
of PB(a¥|aX) for model a¥. Since we obtained P(aX =(1,1)|X) =1, we only need to calculate
PB(a¥ = (1,0)|aX = (1,1)) Quy (of =1]of = 1)Qa§(a§ = 0laf = 1). We have:
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2
Qur (o =1of =1) = ——,
w? +1

Y X 1

Qay(az = 0‘0‘2 = 1) B
wy? +1

o G 2 _ 2 .. .
We get w;> = w(d,” x sy, /sy)” = 100+/500(0.14 x 1.00/2.01)" = 9.75. Note that because U; is included in

2aY ~aY Y Y
al, 511’ = 672. Also, we have a)'zxz = w(5§2 X sy, /sy)? = 1004/500(—0.01 x 1.04/2.01)* = 0.05. Because U, is
not in a}, we get the regression parameter estimate for U, from its 2-nearest neighbor model, that is

342sz = 5‘;}'( . Finally, the value of the (unnormalized) prior probability of model azy is 0.8658.

Following the same process for the three other outcome models, we calculate the prior probabilities.
From there, we calculate the posterior distribution of the outcome model using the relationship
P(a¥|Y) x P(Y|aY)PE(aY). Again, we use exp[—0.5BIC(aY)] to approximate P(Y|aY). Table 2 provides the
results with the details of the intermediate steps.

Table 2: Calculation of the BCEE outcome model posterior distribution with intermediate steps.

Model U.PE(a") PE(a¥) BIC BMA P(a”|Y) P(a¥|Y)
a}’ 0.0230 0.0229 1,435.82 0.4602 0.0254
al 0.8658 0.8618 1,435.81 0.4629 0.9625
a; 0.0749 0.0746 1,440.04 0.0560 0.0101
aZ 0.0409 0.0407 1,442.00 0.0209 0.0021

Note: U.P5(aY) is the unnormalized prior probability, P®(aY¥) is the prior probability, BIC is the Bayesian
information criterion, BMA P(a"|Y) is the posterior probability the model resulting from a BMA procedure with
a non-informative prior distribution, and P(a"|Y) is the posterior probability using BCEE.

We see from these results how BCEE, as compared to BMA, shifts the posterior weight toward models that
identify the causal effect of exposure. In fact, in this toy example, BCEE puts almost all the posterior weight
on the true outcome model. BCEE accomplishes this by using an informative prior distribution for the
outcome model that borrows information both from the exposure selection step and from neighboring
regression coefficient estimates in the outcome models.

3 Practical considerations regarding BCEE

In this section we discuss practical considerations regarding the usage of the BCEE algorithm. First, we
discuss the choice of the hyperparameter w value in eq. (8), then we suggest two alternative ways of
implementing BCEE.

3.1 Choice of w

Recall that BCEE’s prior distribution P2(aY) depends on a user-selected hyperparameter . In what follows,
we suggest making « proportional to \/n on the basis of asymptotic results related to the quantities Qv in
eq. (7). Without loss of generality, we only discuss the case Qu(a), = 1|aX =1). Indeed, the cases
Qqr (af, = 1o = 0) and Qqr (0}, = 0|aX = 0) are trivial because the two quantities are both equal to 1/2.
Moreover, the case Qv (af, = 0|aX = 1) is essentially equivalent to the case Qqr(a}, = 1o = 1) since these
quantities are closely (and negatively) associated. Remark that because we consider the case where a}, = 1,
o = 5;",,Y. However, we present the reasoning in terms of 6% to allow a direct generalization to the case
where o), = 0.
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Assume that the true outcome model is a normal linear model of the form (1) and first consider the case
5;",: =0 for a given model a¥. Then covariate U, is conditionally independent of Y given the (other)

covariates included in model a¥. Hence Uy, should be left out of @¥ on the basis of Corollary 2.1. It is thus
2aqY 2

desirable that Quv (¢}, = 1|a = 1) — 0 as n — oo, which happens lfa) =wX ((5“ SUm/Sy) — 0asn— oo.

Consider the case 6% #0. According to Proposition 2.1, it is now desirable that Qu (o, = 1|, = 1) — 1

as n — oo, since this would allow for covariates causing less confounding to be forced in the outcome

model as n grows. Thus we need @f, — oo as n — oo if 5"‘ #0.

If 5"‘Y =0 then 5 iO and thus, for any finite constant value of w, A‘,"n HO where kS means

convergence in probability. However, if 5;",1 #0, we need to choose w as a function of sample size n in
order to ensure that &)ﬁ — oo as n — oo. We consider rates of convergence to find an appropriate function
of n. .

Recall that ®% is a function of the MLE 5:7,‘1 (Section 2.3). Under mild regularity conditions, it follows

2a¥ ~
from the results in Yuan and Chan [15] that 5;1" su,, /Sy L 0¥ gy, /oy at rate 0,(1/y/n), where O, is the usual

2qY 2 ~ 2
big-0, notation (Agresti [16], p. 588). Thus (5;1,, SU /sY) LA (55@"1 /ay> at rate O,(1/n).
By taking o = cn?, with 0 < b< 1, where c is a user-fixed constant that does not depend on sample size,

we obtain (Z);"ny — oo (at rate n?) if Sf‘,:’#o and cb;"ny 2o (with convergence rate Op(1/ n'-b)) if Efny =0, as
desired. The value b = 1/2 appears to make a good compromise between the two desired convergence
behaviors. The simulation study presented in Section 4 shows that BCEE performs well for « = c\/n with
100 < ¢ < 1000. We also see that larger values of c yield less bias and more variance in the estimator of the
causal effect, and conversely for smaller values of c. Appendix C illustrates how Qg (o), = 1|aX = 1)
behaves for different values of ¢ in some simple settings.

3.2 Implementing BCEE

In this section, we first consider a naive implementation of BCEE that closely follows our presentation of the
algorithm in Section 2.3. Then we describe a modified implementation that accounts for using the MLE 5
in P2(a¥).

We perform three steps to sample one draw from the posterior distribution of the average causal
exposure effect P(5|Y). Several such draws are taken to obtain approximations to quantities of interest,
such as the posterior mean and variance of 4. The steps of the sampling procedure are:

S1. Draw a* from the posterior distribution of the exposure model P(aX|X) x P(X|aX), using
exp[—0.5BIC(aX)] to approximate P(X|aX);

S2. Draw aY from the conditional posterior distribution P(a¥|aX,Y) o< PE(a¥|aX)P(Y|aY), where the regres-
sion coefficients 5;",:’ are estimated by their MLEs and P(Y|a¥) is approximated by exp[—0.5BIC(aY)];

S3. Draw g from the conditional posterior distribution P(ﬂ“y|¢x", Y), which we approximate by its limit

normal distribution N | ( SE QB )) [17, 18], where ﬁ’“y is the maximum likelihood estimator of ﬂ"‘y

and SE (B*") is its estimated standard error.

The sampling for the first two steps is done using Markov chain Monte Carlo model composition (MC3) [19].
We refer to this naive implementation of BCEE as N-BCEE.

Because N-BCEE does not take into account the uncertainty related to the estimation of the regression
coefficients Sf‘ny in P2(aY), we anticipate that the confidence (credible) interval for $ will be too narrow. Our
insight relies on the Empirical Bayes literature, where it has been extensively shown that data-dependent
prior distributions lead to confidence intervals that tend to be “too short, inappropriately centered, or both”
[20]. Also, narrow confidence intervals for  are observed in simulations presented in Section 4. Although
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many solutions to this problem have been proposed (see Carlin and Louis [21] for a short discussion), most
cannot be realistically applied to BCEE due to the complexity of the algorithm. Therefore, we propose the
following simple ad hoc solution, which happens to be notably faster than N-BCEE. We refer to this
modified implementation of BCEE as A-BCEE.

A-BCEE is the same as N-BCEE except for step S2. Recall that this step is directed at sampling from the
conditional posterior distribution P(aY|aX,Y) using MC®. This MC® scheme requires calculating a
Metropolis-Hasting ratio (RP) which involves the ratio of the (conditional) prior probabilities of the
proposed outcome model, af, to the current outcome model, ay:

PP (af|@®) _ [Tons Qay (o) /C N ﬁ Quy (o)
pE (agmx) H%:l Qazy (“m“iﬁ)/c m=1 Qa;( (a};\aﬁ) 7

RP = 9)

where C is a normalizing constant such that PE(a¥|aX) = [Tn_, Qur (af|aX)/C. In RP, &} and a} are two
neighbor outcome models that differ only by their inclusion of a single covariate U,,. A-BCEE utilizes the
following simplification for RP:

RP ~ Qa}’ (ayl‘:z’ |ai(n’)

R~ 70@, (a};,|a§n,) . (10)

The heuristic for suggesting this approximation is that the individual ratio that is the most likely to
significantly differ from 1 in eq. (9) is the one associated to covariate U,, that is
Quy (yy |5y ) / Qay (4l ). In fact, unless the covariates U are very strongly correlated with each other,

2Y
we expect the 5':,, s (m#m’) to be of the same magnitude between two neighboring models. Note that we also
expect many terms in the RP product to be exactly equal to 1 since an individual ratio equals 1 when its

corresponding covariate is not included in the exposure model (QaIY (omlony, = 0) /Qqy (4n|ony, = 0) = 1).

Simulations were performed to verify the validity of approximation (10) (results not presented).
Using simplified RP (10), it becomes an easy task to incorporate the variability associated with the

2aY

-y ~y 2qY —~ /2a¥ —~
estimation of the * s. We assume that 6%, ~N (éfn,,SE (5;)), where SE (5

m,) is the estimated standard

2a¥ . . . ¥
error of ¢,,. In summary, in step S2 of the sampling procedure of A-BCEE we simply draw o}, from
¥ = /ka¥ op s . . . . . op s
N (5,”/ ,SE (ém)) and use it in approximation (10). We remark that this strategy is akin to specifying an

empirical Bayes type of hyperprior for 5"

The finite sample properties of N-BCEE and A-BCEE are studied and compared in some simulation
scenarios presented in the next section. We also consider nonparametric bootstrap [22] in a few simple and
small scale simulations as an alternative to A-BCEE to correct confidence intervals. Note that, due to
computing time, this bootstrapped BCEE (B-BCEE) approach is considerably less practical than A-BCEE to
evaluate in simulations and to apply to real data sets of moderate to large sizes.

4 Simulation studies

In this section, we study the finite sample properties of BCEE in various simulation scenarios. The first
primary objective of the simulations is to compare BCEE to standard or related methods that are used to
estimate total average causal effects of exposure. The second primary objective is to study the sensitivity of
BCEE to the choice of its user-selected hyperparameter w. In Appendix D, we study two other secondary
objectives relating to the large, whilst finite, properties of BCEE and to the performance of B-BCEE.

To achieve the two main objectives, we examine 24 different simulation scenarios obtained by con-
sidering three factors: data-generating process (DGP1, DGP2, DGP3 and DGP4), sample size (200, 600 and
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1,000) and true causal effect of exposure (8= 0.1 or f=0). The four data-generating processes are
described below.
The first data-generating process (DGP1) satisfies the following relationships:

Us=U;+ ¢

Us=U;+e¢s
X=U+U+U +e

Y = Us +0.1U, + Us + X + ey,

with Uy, Uy, Uy, €3, €5, €x, ey~N(0,1) all independent. The set of available covariates is U = {U;, U, ..., Us}.
The second data-generating process (DGP2) involves a larger number of covariates than DGP1 and
features an indirect effect of X on Y:

Ui=U+ea
U, =U;+e
Us=Us+ e
Us =U; + €5

X=U+U,+U;+e
Us = 0.5X + Us + ¢4

Y = 0.1U, + 0.1Us + BUg + 0.58X + ey,

where Uy, €, 6, €3,¢€5,€x,66,6y~N(0,1) all independent. The set of available covariates is
U={U,,Us,...,Us,U;,...,Uss}, where Uy,..., Uy are all independent N(0,1). We exclude Uy from the
set of potential confounding covariates since one must not adjust for descendants of the exposure X to
identify the total average causal effect. Here the total effect of X on Y (direct effect plus indirect effect
through Us) is 0.58 + 0.58 = f. For simulation purposes, we consider the model a¥ = (0,0,1,1,1,0,...,0) as
the “true” outcome model.

The third data-generating process (DGP3) is similar to the first simulation example in Wang et al. [6] but
includes only 18 additional (noise) covariates (instead of 49):

X =0.7U; 4+ /(1 - 0.7%)ex

Y = 01U1 + 01U2 +,BX + €y,

where Ui, Uy, ex, ey ~N(0, 1) all independent. The set of available covariates is U = {U, U, . .., Uy }, where
Us, ..., Uy are also independent N(0,1).

The fourth data-generating process (DGP4) is inspired by a DAG presented in Morgan and Winship [23],
Figure 1.1, page 25:

X = OlU] + Ole + 01U3 + €x
Us = Us + €6
Y= 0.1U4 + 05U5 + 05U6 +ﬁX + €y,

where ey, €6, ey~N(0,1) all independent. Covariates U;, U,, Us, Uy, Us are also N(0,1) and are all indepen-
dent except Uy, U; and Uy, U, for which we have Cov(Ui, U,) = 0.7 and Cov(U;, U,) = 0.7. Notice that U; is a
collider between U, and U, and thus Cov(U,, U,) = 0.
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For each of the 24 simulation scenarios, we randomly generated 500 datasets. We estimated the average
causal effect of exposure using 8 different procedures: (1) the true outcome model, (2) the fully adjusted
model, (3) Bayesian model averaging (BMA) with a uniform prior distribution on the outcome model, (4)
Bayesian adjustment for confounding (BAC) with » chosen with cross-validation criterion C}}}(w) proposed
in Lefebvre et al. [7], (5) BAC with o = oo, (6) Two-stage Bayesian adjustment for confounding (TBAC) with
® = oo, (7) N-BCEE, and (8) A-BCEE. For both N-BCEE and A-BCEE, we used o = cy/n and considered
¢ =100, ¢ =500 and c = 1000. For each scenario and each method of estimation, we computed the
average causal effect estimate (Mean), the average standard error estimate (SEE), the standard deviation
of the estimates (SDE), the root mean squared error (v/MSE) and the coverage probability of 95% confidence
intervals (CP). All 95% confidence intervals were computed using the normal approximation j + 1.96SEE.
Tables 3, 4, 5 and 6 summarize the results for # = 0.1. The marginal posterior probability of inclusion of

Table 3: Comparison of estimates of S obtained from the true outcome model, the fully adjusted model, BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the first data-generating process (DGP1).

n Method Mean SEE SDE MSE cP
200 True model 0.100 0.045 0.047 0.047 94
200 Fully adjusted model 0.098 0.072 0.074 0.074 94
200 BMA 0.113 0.047 0.047 0.048 95
200 BAC (C7(w)) 0.104 0.055 0.064 0.064 92
200 BAC (w0 = o0) 0.098 0.072 0.074 0.074 94
200 TBAC (w = 0) 0.098 0.072 0.074 0.074 94
200 N-BCEE (c=100) 0.108 0.051 0.055 0.056 93
200 N-BCEE (c=500) 0.104 0.055 0.062 0.062 92
200 N-BCEE (c=1000) 0.102 0.057 0.065 0.065 93
200 A-BCEE (c=100) 0.107 0.055 0.054 0.054 95
200 A-BCEE (c=500) 0.104 0.061 0.060 0.060 96
200 A-BCEE (c=1000) 0.103 0.063 0.063 0.063 96
600 True model 0.100 0.026 0.025 0.025 96
600 Fully adjusted model 0.100 0.041 0.039 0.039 97
600 BMA 0.111 0.027 0.027 0.029 94
600 BAC (C7(w)) 0.105 0.031 0.035 0.035 95
600 BAC (v = o0) 0.100 0.041 0.039 0.039 97
600 TBAC (w = 0) 0.100 0.041 0.039 0.039 96
600 N-BCEE (c=100) 0.108 0.029 0.031 0.031 93
600 N-BCEE (c=500) 0.106 0.030 0.033 0.034 93
600 N-BCEE (c=1000) 0.105 0.031 0.034 0.034 93
600 A-BCEE (c=100) 0.108 0.030 0.030 0.031 95
600 A-BCEE (c=500) 0.105 0.033 0.032 0.032 97
600 A-BCEE (c=1000) 0.105 0.035 0.033 0.033 97
1,000 True model 0.101 0.020 0.020 0.020 95
1,000 Fully adjusted model 0.100 0.032 0.033 0.033 94
1,000 BMA 0.111 0.021 0.022 0.025 92
1,000 BAC (€] (w)) 0.102 0.026 0.030 0.030 93
1,000 BAC (w = o0) 0.100 0.032 0.033 0.033 94
1,000 TBAC (w = o0) 0.100 0.032 0.033 0.033 94
1,000 N-BCEE (c=100) 0.107 0.022 0.024 0.025 94
1,000 N-BCEE (c=500) 0.105 0.023 0.026 0.026 94
1,000 N-BCEE (c=1000) 0.104 0.024 0.026 0.027 94
1,000 A-BCEE (c=100) 0.107 0.023 0.024 0.025 95
1,000 A-BCEE (c=500) 0.105 0.026 0.026 0.026 96
1,000 A-BCEE (c=1000) 0.104 0.027 0.027 0.027 96

Note: Mean is the mean estimated value of / where the true value is 0.1, SEE is the mean standard error estimate, SDE is the standard
deviation of the estimates of g, VMSE is the squared-root of the mean squared error, CP is the coverage probability in % of 95%
confidence intervals.
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Table 4: Comparison of estimates of # obtained from the true outcome model, the fully adjusted model, BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the second data-generating process (DGP2).

n Method Mean SEE SDE VMSE cP
200 True model 0.102 0.046 0.045 0.045 96
200 Fully adjusted model 0.104 0.075 0.078 0.078 94
200 BMA 0.148 0.044 0.046 0.067 68
200 BAC (€] (w)) 0.118 0.052 0.075 0.077 76
200 BAC (v = ) 0.103 0.073 0.077 0.077 95
200 TBAC (w = o0) 0.103 0.073 0.076 0.076 95
200 N-BCEE (c=100) 0.120 0.053 0.068 0.071 83
200 N-BCEE (c=500) 0.110 0.058 0.073 0.074 86
200 N-BCEE (c=1000) 0.107 0.060 0.074 0.074 88
200 A-BCEE (c=100) 0.120 0.062 0.066 0.069 92
200 A-BCEE (c=500) 0.112 0.067 0.071 0.072 95
200 A-BCEE (c=1000) 0.110 0.068 0.072 0.073 95
600 True model 0.100 0.026 0.026 0.026 96
600 Fully adjusted model 0.102 0.042 0.041 0.041 95
600 BMA 0.133 0.030 0.032 0.046 70
600 BAC (C](w)) 0.106 0.036 0.042 0.042 85
600 BAC (v = ) 0.102 0.041 0.041 0.041 96
600 TBAC (w = o0) 0.102 0.041 0.041 0.041 96
600 N-BCEE (c=100) 0.114 0.032 0.037 0.040 86
600 N-BCEE (c=500) 0.108 0.034 0.039 0.039 91
600 N-BCEE (c=1000) 0.106 0.035 0.039 0.040 91
600 A-BCEE (c=100) 0.114 0.036 0.037 0.039 92
600 A-BCEE (c=500) 0.109 0.038 0.038 0.039 94
600 A-BCEE (c=1000) 0.107 0.039 0.039 0.039 94
1,000 True model 0.100 0.020 0.021 0.021 95
1,000 Fully adjusted model 0.100 0.032 0.032 0.032 95
1,000 BMA 0.121 0.024 0.027 0.034 80
1,000 BAC (€] (w)) 0.100 0.029 0.031 0.031 92
1,000 BAC (v = ) 0.099 0.032 0.032 0.031 95
1,000 TBAC (o = o0) 0.099 0.032 0.032 0.031 95
1,000 N-BCEE (c=100) 0.107 0.025 0.029 0.029 90
1,000 N-BCEE (c=500) 0.103 0.026 0.029 0.029 90
1,000 N-BCEE (c=1000) 0.102 0.026 0.030 0.030 91
1,000 A-BCEE (c=100) 0.108 0.028 0.028 0.029 93
1,000 A-BCEE (c=500) 0.104 0.029 0.029 0.029 94
1,000 A-BCEE (c=1000) 0.103 0.030 0.029 0.030 95

Note: Mean is the mean estimated value of § where the true value is 0.1, SEE is the mean standard error estimate, SDE is the standard
deviation of the estimates of g, VMSE is the squared-root of the mean squared error, CP is the coverage probability in % of 95%
confidence intervals.

each potential confounding covariate can be found in Tables 11 to 14 in Appendix E. The results for f =0
are similar (not presented).

We start by discussing the results pertaining to non-BCEE methods for estimating the average causal
effect of exposure. Then, we discuss the results for BCEE and contrast them to the former results.

As expected, Bayesian model averaging (BMA) can perform very poorly to estimate the average causal
effect. More precisely, the simulation results show that the bias can be substantial when the most important
confounding covariates are only slightly associated with the outcome (DGP2 and DGP3). For instance, in
DGP2, U; and U, are important confounding covariates often excluded by BMA (see Table 12 in Appendix
E). Similarly, in DGP3, U; is often excluded by BMA (see Table 13). This situation also yields confidence
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Table 5: Comparison of estimates of 4 obtained from the true outcome model, the fully adjusted model, BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the third data-generating process (DGP3).

n Method Mean SEE SDE VMSE cP
200 True model 0.103 0.100 0.100 0.100 95
200 Fully adjusted model 0.101 0.105 0.104 0.104 96
200 BMA 0.149 0.085 0.086 0.099 89
200 BAC (€] (w)) 0.116 0.087 0.103 0.104 90
200 BAC (0w = o0) 0.101 0.100 0.101 0.101 95
200 TBAC (w = o0) 0.102 0.101 0.101 0.101 95
200 N-BCEE (c=100) 0.113 0.093 0.100 0.101 93
200 N-BCEE (c=500) 0.106 0.096 0.101 0.101 94
200 N-BCEE (c=1000) 0.104 0.097 0.101 0.101 94
200 A-BCEE (c=100) 0.116 0.096 0.098 0.099 95
200 A-BCEE (c=500) 0.109 0.098 0.099 0.100 95
200 A-BCEE (c=1000) 0.108 0.099 0.100 0.100 95
600 True model 0.098 0.057 0.060 0.060 96
600 Fully adjusted model 0.098 0.058 0.061 0.061 96
600 BMA 0.138 0.054 0.061 0.072 80
600 BAC (C](w)) 0.104 0.054 0.065 0.065 87
600 BAC (v = ) 0.097 0.058 0.060 0.060 96
600 TBAC (w = o0) 0.097 0.057 0.060 0.060 95
600 N-BCEE (c=100) 0.108 0.056 0.064 0.064 88
600 N-BCEE (c=500) 0.101 0.056 0.062 0.062 92
600 N-BCEE (c=1000) 0.100 0.056 0.061 0.061 92
600 A-BCEE (c=100) 0.111 0.057 0.063 0.064 90
600 A-BCEE (c=500) 0.104 0.057 0.062 0.062 92
600 A-BCEE (c=1000) 0.103 0.057 0.062 0.062 94
1,000 True model 0.098 0.044 0.043 0.043 96
1,000 Fully adjusted model 0.098 0.045 0.043 0.043 95
1,000 BMA 0.130 0.045 0.050 0.058 79
1,000 BAC (€] (w)) 0.102 0.043 0.046 0.046 91
1,000 BAC (0w = o) 0.098 0.045 0.043 0.043 96
1,000 TBAC (w0 = o0) 0.098 0.044 0.043 0.043 96
1,000 N-BCEE (c=100) 0.106 0.044 0.048 0.048 91
1,000 N-BCEE (c=500) 0.101 0.044 0.045 0.045 93
1,000 N-BCEE (c=1000) 0.100 0.044 0.044 0.044 94
1,000 A-BCEE (c=100) 0.108 0.045 0.048 0.048 92
1,000 A-BCEE (c=500) 0.103 0.045 0.046 0.046 94
1,000 A-BCEE (c=1000) 0.102 0.045 0.045 0.045 94

Note: Mean is the mean estimated value of § where the true value is 0.1, SEE is the mean standard error estimate, SDE is the standard
deviation of the estimates of g, VVMSE is the squared-root of the mean squared error, CP is the coverage probability in % of 95%
confidence intervals.

intervals with poor coverage probabilities. Although increasing sample size seems to reduce the bias, the
coverage probability remains mostly unchanged. In situations where the most important confounding
covariates are strongly associated with the outcome (DGP1 and DGP4), BMA performs very well both in
terms of mean squared error (MSE) and coverage probability.

The simulation results also support the claim that BAC and TBAC with @ = oo do not yield a notable
reduction in the variance of the estimated causal effect as compared to the fully adjusted model. This is partly
due to the fact that BAC and TBAC tend to include more covariates than needed to achieve unbiasedness (see
Appendix E). Moreover, using BAC with cross-validation criterion CJ}(w) gives relatively poor results. Even
though this method sometimes gives smaller MSE than BAC with w = co, the estimated standard
error remarkably underestimate the true standard error (the standard deviation of the estimates of p).
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Table 6: Comparison of estimates of # obtained from the true outcome model, the fully adjusted model, BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the fourth data-generating process (DGP4).

n Method Mean SEE SDE VMSE cP
200 True model 0.103 0.054 0.052 0.052 96
200 Fully adjusted model 0.105 0.072 0.068 0.068 95
200 BMA 0.119 0.060 0.054 0.057 96
200 BAC (€] (w)) 0.110 0.061 0.062 0.063 95
200 BAC (v = ) 0.103 0.072 0.068 0.068 95
200 TBAC (w = o0) 0.105 0.071 0.067 0.067 96
200 N-BCEE (c=100) 0.108 0.061 0.063 0.064 93
200 N-BCEE (c=500) 0.106 0.064 0.066 0.066 94
200 N-BCEE (c=1000) 0.105 0.065 0.066 0.066 95
200 A-BCEE (c=100) 0.110 0.066 0.062 0.062 96
200 A-BCEE (c=500) 0.107 0.068 0.064 0.064 96
200 A-BCEE (c=1000) 0.107 0.068 0.065 0.065 96
600 True model 0.099 0.031 0.031 0.031 95
600 Fully adjusted model 0.097 0.041 0.043 0.043 95
600 BMA 0.110 0.036 0.036 0.038 92
600 BAC (C](w)) 0.100 0.037 0.042 0.042 92
600 BAC (v = ) 0.096 0.041 0.043 0.043 95
600 TBAC (w = o0) 0.096 0.041 0.042 0.043 94
600 N-BCEE (c=100) 0.102 0.036 0.040 0.040 92
600 N-BCEE (c=500) 0.099 0.037 0.041 0.041 92
600 N-BCEE (c=1000) 0.098 0.037 0.042 0.042 92
600 A-BCEE (c=100) 0.102 0.038 0.040 0.040 94
600 A-BCEE (c=500) 0.100 0.039 0.041 0.041 94
600 A-BCEE (c=1000) 0.099 0.040 0.041 0.041 94
1,000 True model 0.099 0.024 0.024 0.024 96
1,000 Fully adjusted model 0.099 0.032 0.032 0.032 95
1,000 BMA 0.107 0.028 0.029 0.030 92
1,000 BAC (€] (w)) 0.100 0.029 0.032 0.032 91
1,000 BAC (v = ) 0.098 0.032 0.032 0.032 94
1,000 TBAC (o = o0) 0.098 0.032 0.032 0.032 93
1,000 N-BCEE (c=100) 0.102 0.028 0.030 0.030 92
1,000 N-BCEE (c=500) 0.100 0.028 0.031 0.031 92
1,000 N-BCEE (c=1000) 0.100 0.029 0.032 0.031 92
1,000 A-BCEE (c=100) 0.102 0.030 0.031 0.031 94
1,000 A-BCEE (c=500) 0.101 0.030 0.031 0.031 94
1,000 A-BCEE (c=1000) 0.100 0.031 0.032 0.032 94

Note: Mean is the mean estimated value of § where the true value is 0.1, SEE is the mean standard error estimate, SDE is the standard
deviation of the estimates of g, VMSE is the squared-root of the mean squared error, CP is the coverage probability in % of 95%
confidence intervals.

One possible explanation for this underestimation is that BAC with C}}(w) neglects the uncertainty associated
with the choice of the hyperparameter w.

The simulation results show that the choice of using @ = c\/n, ¢ € [100, 1000}, for A-BCEE and N-BCEE
is reasonable. The results do not appear too sensitive to the choice of c¢ in this interval. The simulation
results also confirm that N-BCEE can yield lower than expected coverage probabilities. This seems to be
particularly true in complex scenarios that contain many covariates, such as DGP2, DGP3 and DGP4.

Despite sometimes producing slightly biased estimates, A-BCEE performs at least as well as BAC and
TBAC with @ = oo in terms of MSE. The bias is small enough that in all simulation scenarios we
considered, A-BCEE (with any c) yields appropriate coverage probability. In general, A-BCEE gives less
weight to variables only associated with the exposure than BAC and TBAC (see Appendix E). In DGP1,
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Figure 1: Comparison of the distribution ofﬁ obtained from BAC (w = o) and A-BCEE (¢ =100, 500, and 1,000) for all four
data-generating processes and a sample size n = 200. The red line corresponds to the true value f=0.1.

A-BCEE outperforms BAC and TBAC with w = oo in terms of MSE. In DGP2 and DGP4, A-BCEE has smaller
MSE than BAC and TBAC although comparatively to a lesser extent. Results are quite similar between
BAC, TBAC and A-BCEE in DGP3. Note that in DGP3, the true model and the fully adjusted model have
the same MSE. There is thus no possible gain in using another model than the fully adjusted model.
Figure 1 illustrates the distribution of 3 obtained by using A-BCEE and BAC with w = oo for all four data-
generating processes with n =200 (analogous figures are displayed in Appendix F with n = 600 and
n = 1000). This figure shows how estimates obtained with A-BCEE, despite being slightly biased, are
more concentrated around the true value f than estimates obtained with BAC. Moreover, Figure 1
illustrates the bias-variance tradeoff associated with the choice of ¢ in A-BCEE: smaller values of c, as
compared to larger values of c, favor a reduced variance in the estimator of the causal effect at the cost of
an increase in bias.

On the basis of these results, we hypothesized that BCEE would perform best when (1) there are some
direct causes of the exposure that are strongly associated with the exposure, and (2) there exists variables
that can d-separate those direct causes from the outcome. In such situations, we expect BCEE to favor
models excluding those direct causes and including the d-separating variables. To verify this, we simulated
data according to a fifth data-generating scenario (DGP5) which meets these two conditions. The equations
for DGP5 are:
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U =U;+ U, +Us + U; + €5
X=U+Uy+U;+U;+ ¢x

Y = Us + X + ey,

where ¢5, ex, ey~ N(0,1), all independent. In this example, BCEE’s prior distribution, PB(aY), is devised to
give non negligible prior weight to the two following sufficient outcome models: (i) the one including
{U1, U, Us, U}, and (ii) the one including only {Us}. However, because the marginal likelihood of the
model (i) should dominate the one of model (i) for large n, we expect the second outcome model to receive
increased posterior weight as n grows. To reduce computational burden, we only considered # = 0.1 and
did not estimate § with N-BCEE. The results are presented in Table 7. Those results show how under such
ideal conditions, the MSE obtained by using A-BCEE is much smaller than the one obtained using the fully
adjusted outcome model, BAC or TBAC. In fact, A-BCEE’s MSE is similar to the MSE of the true outcome
model. Moreover, Table 15 in Appendix E reveals that models including Us, but excluding Uy, U,, Us and U,
are favored by A-BCEE, particularly for the larger sample sizes. Indeed, the marginal posterior probabilities
of covariates U; to U, decrease with sample size while the posterior probability of Us remains at 1 for all
sample sizes considered. This is as opposed to BAC and TBAC where the full model (including U; to Us)
receives a posterior probability of 1 at all sample sizes.

Table 7: Comparison of estimates of # obtained from the true outcome model, the fully adjusted model, BMA, BAC, TBAC and
A-BCEE for 500 Monte Carlo replicates of the fifth data-generating process (DGP5).

n Method Estimate SEE SDE MSE cP
200 True model 0.103 0.053 0.054 0.054 92
200 Fully adjusted model 0.102 0.072 0.076 0.076 94
200 BMA 0.103 0.054 0.055 0.055 93
200 BAC (C7(w)) 0.102 0.059 0.066 0.066 92
200 BAC (0w = o) 0.102 0.072 0.076 0.076 94
200 TBAC (w = o0) 0.102 0.072 0.076 0.076 95
200 A-BCEE (c=100) 0.103 0.055 0.056 0.056 93
200 A-BCEE (c=500) 0.103 0.059 0.059 0.059 94
200 A-BCEE (c=1000) 0.102 0.061 0.061 0.061 95
600 True model 0.099 0.031 0.029 0.029 96
600 Fully adjusted model 0.097 0.041 0.040 0.040 96
600 BMA 0.099 0.031 0.029 0.029 96
600 BAC (Cﬁ(a})) 0.097 0.034 0.036 0.036 95
600 BAC (v = ) 0.097 0.041 0.040 0.040 96
600 TBAC (v = o) 0.097 0.041 0.040 0.040 96
600 A-BCEE (c=100) 0.098 0.031 0.030 0.030 96
600 A-BCEE (c=500) 0.098 0.033 0.030 0.030 97
600 A-BCEE (c=1000) 0.098 0.034 0.031 0.031 97
1,000 True model 0.100 0.024 0.023 0.023 95
1,000 Fully adjusted model 0.100 0.032 0.031 0.031 94
1,000 BMA 0.100 0.024 0.023 0.023 96
1,000 BAC (€] (w)) 0.101 0.027 0.027 0.027 95
1,000 BAC (w0 = ) 0.100 0.032 0.031 0.031 94
1,000 TBAC (w = o0) 0.100 0.032 0.031 0.031 95
1,000 A-BCEE (c=100) 0.100 0.024 0.023 0.023 96
1,000 A-BCEE (c=500) 0.100 0.025 0.023 0.023 96
1,000 A-BCEE (c=1000) 0.100 0.025 0.023 0.023 96

Note: Mean is the mean estimated value of g where the true value is 0.1, SEE is the mean standard error estimate, SDE is the standard
deviation of the estimates of g, VMSE is the squared-root of the mean squared error, CP is the coverage probability in % of 95%
confidence intervals.
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5 Application: estimation of the causal effect of perceived
mathematical competence on grades in mathematics

In this section we use A-BCEE to estimate the causal effect of perceived competence in mathematics
(measured on a scale from 1 to 7) on self-reported grades (in %) in mathematics. We consider
longitudinal data obtained from 1,430 students during their first three years of highschool. Participants
lived in various regions throughout Quebec, Canada. The data were collected by postal questionnaires
every year for a period of three years (time 1, time 2 and time 3). Further details can be found in Guay
et al. [24].

We used measures of perceived competence in mathematics at time 2 as the exposure and grades in
mathematics at time 3 as the outcome to estimate the causal effect of interest. Recall that A-BCEE requires
specifying a set of potential confounding covariates that includes all direct causes of the exposure and none
of its descendants. Moreover, it is beneficial that this set also includes strong predictors of the outcome. We
took advantage of the longitudinal feature of the data to build the set of potential confounding covariates.
Because a cause always precedes its effect in time, we constructed the set of potential confounding
covariates by including variables at time 1 that were potential direct causes of perceived-competence at
time 2. We also included variables at time 2 that were thought to be strong predictors of grades in
mathematics at time 3.

We selected the following 26 covariates: gender, highest level of education reached by the mother,
highest level of education reached by the father, perceived competence in mathematics (at time 1),
perceived autonomy support from the mother, perceived autonomy support from the father, perceived
autonomy support from the mathematics teacher, perceived autonomy support from friends at school,
self-reported mathematics’ grades, intrinsic motivation in mathematics, identified motivation in mathe-
matics, introjected motivation in mathematics, externally regulated motivation in mathematics, victimiza-
tion and sense of belonging to school. All variables except the first four were considered both at times 1
and 2.

Before applying A-BCEE on these data, we obtained some descriptive statistics. We drew scatter plots
of the outcome versus the exposure and versus each potential confounding covariate to roughly verify the
linearity assumption and to check for outliers. For the same reasons, we drew scatter plots of the
exposure versus each potential confounding covariate. We also noticed that only 46.5% of the
participants have complete information for all the selected covariates. The variables measured at time 1
have generally few missing cases (between 1.8% and 8.3%), but the variables measured at times 2
and 3 have a larger degree of missingness (between 26.4% and 36.4%). We performed multiple imputa-
tion [25] to account for the missing data, using 50 imputed datasets to ensure the power falloff is
negligible [26].

We estimated the causal effect of perceived competence on grades in mathematics using the fully
adjusted outcome model, A-BCEE with o = c¢y/n (c=100, 500, 1,000), BAC, and TBAC (with & = c0).
Results are summarized in Table 8. The computational burden of BCEE on these data is manageable and
comparable to the one of TBAC, although quite heavier than the one of BAC when using the BACprior
package [27]. The approximate running times of A-BCEE, BAC, and TBAC on one imputed dataset are
respectively, 22.5, 1.2, and 21.2 min on a PC with 2.4 GHz and 8 Gb RAM.

Because Step S1 of A-BCEE aims to find the direct causes of the exposure, it is reasonable to only allow
covariates measured before the exposure to be selected in this step. Hence, we ran the A-BCEE algorithm a
second time, but this time excluding the possibility that covariates measured at time 2 enter the exposure
model. We denote this implementation of A-BCEE as A-BCEE* in Table 8.

Table 8 shows that the results from A-BCEE and A-BCEE* are very similar. This is not surprising since
the marginal posterior probability of inclusion of covariates do not differ much between A-BCEE and A-
BCEE* (not shown). Using A-BCEE instead of the fully adjusted model slightly decreases the standard error
of estimate, between 0.3% and 3.5%, which translates in a small decrease of the 95% confidence intervals’
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Table 8: Comparison of the estimated causal effect of perceived mathematical competence in
mathematics on self-reported mathematics’ grades.

Method Estimate SEE cl
Fully adjusted model 0.693 0.460 (-0.208, 1.594)
BAC (v = ) 0.729 0.462 (-0.178, 1.635)
TBAC (» = ) 0.778 0.465 (-0.133, 1.690)
A-BCEE (c=100) 0.807 0.451 (-0.076, 1.691)
A-BCEE (c=500) 0.790 0.456 (-0.105, 1.685)
A-BCEE (c=1000) 0.786 0.459 (-0.113, 1.685)
A-BCEE* (c=100) 0.823 0.445 (-0.049, 1.696)
A-BCEE* (c=500) 0.808 0.444 (-0.062, 1.679)
A-BCEE* (c=1000) 0.803 0.444 (-0.066, 1.673)

Note: Estimate is the estimated causal effect, SEE is the standard error estimate, C/ is a 95% confidence
interval for the causal effect.

width. Moreover the standard errors of estimate for BAC and TBAC are slightly larger than the one for the
fully adjusted model in this illustration. Although the point estimates appear to vary substantially between
methods, the differences are small relative to the magnitude of the estimated standard errors. We conclude
that perceived competence in mathematics at one point in time likely has little or no causal effect on self-
reported grades in mathematics a year later.

6 Discussion

We have introduced the Bayesian causal effect estimation (BCEE) algorithm to estimate causal exposure
effects in observational studies. This novel data-driven approach avoids the need to rely on the specification
of a causal graph and aims to control the variability of the estimator of the exposure effect. BCEE employs a
prior distribution that is motivated by a theoretical proposition embedded in the graphical framework to
causal inference. We also proposed a practical implementation of BCEE, A-BCEE, that accounts for the fact
that this prior distribution uses information from the data. Using simulation studies, we found that A-BCEE
generally achieves at least some reduction of the MSE of the causal effect estimator as compared to the MSE
generated by a fully-adjusted model approach or by other data-driven approaches to causal inference, such as
BAC and TBAC, thus resulting in estimates that are overall closer to the true value. In some circumstances, the
reduction of the MSE can be substantial. Moreover, confidence intervals with appropriate coverage probabil-
ities were obtained. Hence, we believe that BCEE is a promising algorithm to perform causal inference.

Some current limitations of BCEE could be addressed in future research. The generalization to non
continuous exposure variable (e.g. binary) is straightforward. Recall that the first step of BCEE aims at
identifying the direct causes of the exposure. As in the normal case we have considered, classical Bayesian
procedures asymptotically select the true exposure model with probability 1 when assuming X belongs to an
exponential family (e.g. Bernoulli) and that an adequate parametric model is considered [12]. The general-
ization of BCEE to other types of outcome variables is less straightforward. One could specify a generalized
linear model for the outcome of the form g(E[Y;|X;, U;]) = do + BX; + Z%:l OmUim. However, unless g is the
identity or the log link, such models are generally not collapsible for # over covariate U,, [28]. In other
words, the true value of 8, and thus its interpretation, depends on whether U, is included or not in the
outcome model, even when U, is a not confounding covariate. In such circumstances, averaging the
estimated value of g over different outcome models would not be advisable.

We think that BCEE can be particularly helpful to those working in fields where current subject-matter
knowledge is sparse. To facilitate usage of the BCEE algorithm, we provide an R package named BCEE
(available at http://cran.r-project.org).
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Appendix
A Proofs

A.1 Proof of Proposition 2.1

Proof. First, we know from Pear] [1] section 3.3.1 that a set Z is sufficient for identifying the causal effect of
an exposure X on an outcome Y if (i) no descendants of X are in Z and (ii) Z blocks all back-door paths
between X and Y. According to condition 1 we assume that there are no descendants of X in Z. Suppose that
G admits some back-door paths. All back-door paths are such that the second variable appearing in the
path is a direct cause of X; the back-door paths thus have the form X «— D;--- — Y.

Suppose that a direct cause D; is included in Z. Then D; (and therefore the set Z) blocks all back-door
paths of the form X — D;--- — Y. Indeed no variable in Z\D; can reopen a path X < D;--- — Y once closed
by D;. Therefore, all back-door paths admitting a direct cause in Z are blocked by Z.

It remains to show that all back-door paths for which the second variable in the path is not a direct
cause included in Z are closed when condition 2b in the proposition holds. Consider D; ¢ Z. Now assume
that Y and D; are d-separated by {XUZ}. By the definition of d-separation, this means that every path
connecting D; to Y is blocked by {X U Z}. Recall that all back-door paths associated with this D; are of the
form X — D;--- — Y. Because by (2b) D; and Y are d-separated by {XUZ} and since each subpath
D;--- — Y in these back-door paths does not contain the variable X, these subpaths are blocked by Z.
This reasoning is applied to each D; ¢ Z separately.

The proof is complete by the back-door criterion as we realize that all back-door paths, whether their D;
is contained in Z or not, are blocked by Z. O

A.2 Proof of Corollary 2.1

Proof. 1. Suppose that G admits some back-door paths of the form X — D;--- — Y. If D; and Y are
d-separated by {XUZ'}, then by definition of d-separation all paths between D; and Y are blocked by
{XUZ'}. Using the same argument as the one used in the third paragraph of the proof of Proposition 2.1, it
follows that all back-door paths X « D;--- — Y are blocked by Z'.

2. To prove that Z' is sufficient for estimating the causal effect of X on Y, we show that all back-door
paths between X and Y are blocked by Z'.

First, we consider the back-door paths that admit D; as second variable. From point 1) of the corollary,
we already know that these back-door paths are blocked.

Next, we divide the back-door paths that do not admit D; as second variable into two categories: (1) the
paths whose second variable is a D; € Z', j'#j, and (2) the paths whose second variable is a D; ¢ Z'. For 1),
following the same argument as in the second paragraph of the proof of Proposition 2.1, we know that all
back-door paths whose second variable is a D; € Z’ are blocked.
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The case where the second variable is a D; ¢ Z' is more involved. Here, note that Dy is not in Z either
since Z' = Z\D;. The fact that Z is sufficient to identify the average causal effect according to Proposition
2.1 implies that Dy and Y are d-separated by {X UZ}. Therefore, every path between D; and Y is blocked
by {X UZ}. For those paths that do not include D, it is easy to see that they are also blocked by {X UZ'}.
For those paths that include Dj, that is, paths of the form D; ---D;--- — Y, we know from point 1. that
they are blocked in the subpaths D;--- — Y by {X UZ'}. Thus, every path between D; and Y is blocked by
{XuUZ'}, whether or not it includes D;. Using the same arguments as the ones used in the third
paragraph of the proof of Proposition 2.1, it follows that all back-door paths X < D; --- — Y are blocked
by {XUZ'}. The whole reasoning is applied for each possible D, according to their inclusion or
exclusion in Z'.

Hence, all back-door paths between X and Y in G are blocked by {X U Z'}. Also, because Z is sufficient
to identify the average causal effect according to Proposition 2.1, Z does not include any descendants of X
and therefore Z' does not either. According to the back-door criterion, Z’ is thus sufficient to identify the
average causal effect and the proof is complete. O

B General conditions for the equivalence of zero regression
coefficient and conditional independence

We show that the independence of Y and Uy conditional on X and Uy, ..., Ux_1, U1, ..., Uy is equivalent to
having regression parameter d; associated to Uy in the linear regression of Y on X and U equal to zero under
less stringent assumptions than multivariate normality for the covariates X and U.

Consider the same normal linear model as in eq. (1)

M
Yi = do + X+ ) dnUim + i,

m=1
where ¢; N (0,0%). We assume that this model is correctly specified, that is, the data for Y is
generated according to eq. (1) with possibly some regression coefficients set to 0. However, we make no
assumptions about the distribution of variables X and U. To simplify the notation, we denote
{Ui, ..., Ux_1, Uxy1, ...Un} by U\Ui. We consider the case where Uy is a continuous variable. Similar argu-
ments can be used when Uy is discrete or has a mixture distribution. Using a conditional normal distribu-
tion for Y, we have

M 2
flybe,u) = \/%—zexp{—%‘z {y - (60 +px + Zémumﬂ }
o m=1

and the conditional distribution of Y|X, U\ Uy can be calculated as

00

flylx,u\uy) = J F(uge|x, u\wg )f (v|x, w)duy. (11)

If 6 =0

2
f(y|x,u) _\/%_ZeXp{_Tiz |:y_ (50 +ﬁx+25mum>:| }7
o m#k

and the expression (11) for f(y|x, u\uy) becomes
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OO 2
J f(uge|x, u\uy) ﬁexp - %‘2 {y — (60 + px + Z 6mum>} duy,

m#k

o¢]

=) | Flufo ),

o]

which equals f(y|x, u).

Thus if 6y = 0 in eq. (1) then Y 1L Uy|X, U\Uy. Also, it is obvious that if Y Il Uy|X, U\Uy, then J; = 0.
Therefore, assuming model (1) is correctly specified we have that Y 1L Uy|X, U\ Uy if and only if 6, = 0. Recall
that no assumptions were made concerning the distribution of X and U\ U.

C The behavior of Q,»

In Figure 2 we examine how the term Qv (o}, = 1|aX, = 1) in the definition of PE(aY¥) behaves as a function

of the constant ¢, the sample size n and the standardized parameter S;XHYSUM /Sy. Specifically, we take
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Figure 2: Qu (¢, = 1|a, = 1) with o = ¢\/n as a function of ¢ € [0,1000] for n = 200,600, 1000
and (S’,‘nysum/s,/ =0.1 (a), 5;‘,,Vsum/5y =0.05 (b) and (S“mysum/s,/ = 0.01 (c).
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o = ¢\/n, as suggested in Section 3.2, and plot the Qv (e}, = 1|0 = 1) values as a function of ¢ € [0,1000]
for fixed values of n (n = 200, 600,1000) and 5‘,‘nysum/5y (anysum /sy = 0.1,0.05,0.01).

In Figure 2(A), we see that, for all sample sizes considered, Qay(ay = 1\ax = 1) rapidly increase from O
to the limit 1 as ¢ goes from 0 to 1,000. This behavior is desirable since a standardized regression parameter
of 0.1 is non negligible. A similar pattern is seen in Figure 2(B), although the progression of
Qqr (@Y = 1]oX = 1) from O to 1 is slightly less rapid. In Figure 2(C), the progression of Qg (a¥ = 1jo* = 1)
is much slower, especially for the smaller sample size. This behavior is desirable as well since an effect size
of 0.01 would usually be considered as negligible.

D Additional simulations

We now address the secondary objectives with additional simulations. The first secondary goal is to study
the large, whilst finite, sample properties of BCEE. To do this, we examine four different simulation
scenarios obtained by considering the four data-generating processes (DGP1, DGP2, DGP3 and DGP4)
with a sample size of 10,000. Once again, for each scenario, we randomly generated 500 datasets. We
estimated the average causal effect of exposure using A-BCEE and N-BCEE with o = c¢y/n. Because the
sample size is large and the computational burden is heavy, we considered only one value of ¢ (c = 500).
The results are shown in Table 9. These simulations suggest that A-BCEE and N-BCEE with o = cy/n
unbiasedly estimate the causal effect of exposure when n is large and when BCEE’s working assumptions
hold (i.e., U includes all direct causes of X and the normal linear model is a correct specification for both X
and Y).

Table 9: Estimates of 8 for N-BCEE and A-BCEE with a sample size of n=10,000 for 500 Monte Carlo replicates of each
data-generating process.

DGP Method Mean SEE SDE MSE cP
1 N-BCEE (c = 500) 0.100 0.0068 0.0067 0.0067 97
1 A-BCEE (c=500) 0.100 0.0069 0.0066 0.0066 97
2 N-BCEE (c = 500) 0.100 0.0074 0.0075 0.0075 96
2 A-BCEE (c=500) 0.100 0.0079 0.0075 0.0075 98
3 N-BCEE (c = 500) 0.100 0.0140 0.0141 0.0141 95
3 A-BCEE (c=500) 0.100 0.0140 0.0141 0.0141 95
4 N-BCEE (c = 500) 0.099 0.0083 0.0084 0.0084 96
4 A-BCEE (c=500) 0.099 0.0089 0.0086 0.0086 97

Note: DGP is the data-generating process, Mean is the mean estimated value of  where the true value is 0.1, SEE is the mean standard
error estimate, SDE is the standard deviation of the estimates of 8, vVMSE is the squared-root of the mean squared error, CP is the
coverage probability in % of 95% confidence intervals.

The second secondary objective is to study the performance of B-BCEE to correct the confidence intervals
of N-BCEE. Since this bootstrapped implementation is very computationally intensive, we only considered
two simulation scenarios: DGP1 and DGP4 with a sample size of 200. In this case, only 100 datasets were
generated for each scenario. We estimated the causal effect of exposure using the fully adjusted model,
the true outcome model, BMA, BAC, TBAC, A-BCEE, N-BCEE and B-BCEE. For A-BCEE, N-BCEE and B-
BCEE we took w = cy/n with ¢ = 500. For B-BCEE we performed 200 bootstrap resamplings and con-
sidered an estimate with and without a bias correction. The results are presented in Table 10. We find
that the non-parametric bootstrap implementation of BCEE yields correct estimates of the standard error
of estimate and correct coverage probabilities. However, B-BCEE does not seem to be as efficient nor as
practical as A-BCEE.
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Table 10: Comparison of estimates of 4 obtained from the true model, the fully adjusted model, BMA, BAC, TBAC, N-BCEE,
A-BCEE and B-BCEE for the first and fourth data-generating processes (DGP1 and DGP4). Sample size is n = 200, 100 datasets
were generated for each data-generating process. For B-BCEE, 200 bootstrap resamplings were performed.

DGP Method Mean SEE SDE MSE cP
1 True model 0.105 0.045 0.053 0.053 93
1 Fully adjusted model 0.104 0.072 0.075 0.075 94
1 BMA 0.121 0.048 0.050 0.054 93
1 BAC (0 = o0) 0.104 0.072 0.075 0.075 94
1 TBAC (0 = c0) 0.104 0.072 0.075 0.074 93
1 N-BCEE (c=500) 0.112 0.056 0.063 0.064 92
1 A-BCEE (c=500) 0.111 0.062 0.061 0.062 96
1 B-BCEE (¢ = 500, no bias corr.) 0.112 0.067 0.063 0.064 96
1 B-BCEE (c =500, w/bias corr.) 0.107 0.067 0.066 0.066 96
4 True model 0.111 0.063 0.063 0.063 96
4 Fully adjusted model 0.106 0.072 0.064 0.064 96
4 BMA 0.120 0.060 0.051 0.055 96
4 BAC (o = o0) 0.105 0.072 0.064 0.064 96
4 TBAC (0 = 00) 0.106 0.071 0.064 0.063 96
4 N-BCEE (c=500) 0.108 0.064 0.061 0.061 97
4 A-BCEE (c=500) 0.109 0.068 0.060 0.060 96
4 B-BCEE (¢ = 500, no bias corr.) 0.108 0.071 0.061 0.061 97
4 B-BCEE (¢ = 500, w/bias corr.) 0.107 0.071 0.062 0.062 98

Note: DGP is the data-generating process, Mean is the mean estimated value of  where the true value is 0.1, SEE is the mean standard
error estimate, SDE is the standard deviation of the estimates of 8, VMSE is the squared-root of the mean squared error, CP is the
coverage probability in % of 95% confidence intervals.

E Marginal posterior probabilities of inclusion of potential
confounding covariates

Table 11: Marginal posterior probability of inclusion of potential confounding covariate U, m =1, ..., 5, for BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the first data-generating process (DGP1). The covariates included in the
true outcome model are {Us, U,, Us}.

n Method U1 Uz U3 U4 U5
200 BMA 0.11 0.11 1.00 0.18 1.00
200 BAC (C7(w)) 0.35 0.35 1.00 0.41 1.00
200 BAC (w = ) 1.00 1.00 1.00 1.00 1.00
200 TBAC (w = c) 1.00 1.00 1.00 1.00 1.00
200 N-BCEE (c=100) 0.19 0.24 1.00 0.37 1.00
200 N-BCEE (c=500) 0.36 0.41 1.00 0.54 1.00
200 N-BCEE (c=1000) 0.44 0.49 1.00 0.61 1.00
200 A-BCEE (c=100) 0.29 0.35 1.00 0.44 1.00
200 A-BCEE (c=500) 0.51 0.56 1.00 0.63 1.00
200 A-BCEE (c=1000) 0.60 0.64 1.00 0.70 1.00
600 BMA 0.06 0.06 1.00 0.24 1.00
600 BAC (C7 (w)) 0.32 0.33 1.00 0.47 1.00
600 BAC (w = ) 1.00 1.00 1.00 1.00 1.00
600 TBAC (w = c0) 1.00 1.00 1.00 1.00 1.00
600 N-BCEE (c=100) 0.11 0.15 1.00 0.44 1.00

(continued)
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Table 11: (continued)
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n Method U, U, Us Uq Us
600 N-BCEE (c=500) 0.22 0.30 1.00 0.60 1.00
600 N-BCEE (c=1000) 0.28 0.37 1.00 0.66 1.00
600 A-BCEE (c=100) 0.15 0.21 1.00 0.45 1.00
600 A-BCEE (c=500) 0.34 0.42 1.00 0.63 1.00
600 A-BCEE (c=1000) 0.44 0.51 1.00 0.70 1.00
1,000 BMA 0.05 0.04 1.00 0.33 1.00
1,000 BAC (C]'(w)) 0.38 0.37 1.00 0.61 1.00
1,000 BAC (v = ) 1.00 1.00 1.00 1.00 1.00
1,000 TBAC (w = o0) 1.00 1.00 1.00 1.00 1.00
1,000 N-BCEE (c=100) 0.09 0.11 1.00 0.55 1.00
1,000 N-BCEE (c=500) 0.19 0.22 1.00 0.69 1.00
1,000 N-BCEE (c=1000) 0.25 0.28 1.00 0.74 1.00
1,000 A-BCEE (c=100) 0.12 0.15 1.00 0.54 1.00
1,000 A-BCEE (c=500) 0.30 0.34 1.00 0.70 1.00
1,000 A-BCEE (c=1000) 0.39 0.44 1.00 0.75 1.00
Table 12: Marginal posterior probability of inclusion of potential confounding covariate U,,, m =1,...,5,7,8, for BMA, BAC,
TBAC, N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the second data-generating process (DGP2). The covariates
included in the true outcome model are {Us, Uy, Us}.

n Method U, U, U3 U[, Us U7 Ug
200 BMA 0.14 0.12 0.20 0.18 0.31 0.10 0.10
200 BAC (C",”(a))) 0.44 0.41 0.48 0.18 0.32 0.12 0.11
200 BAC (v = o0) 1.00 1.00 1.00 0.22 0.40 0.15 0.15
200 TBAC (o = o0) 1.00 1.00 1.00 0.18 0.29 0.14 0.14
200 N-BCEE (c=100) 0.45 0.39 0.55 0.26 0.34 0.14 0.14
200 N-BCEE (c=500) 0.64 0.58 0.72 0.28 0.35 0.17 0.17
200 N-BCEE (c=1000) 0.71 0.66 0.78 0.29 0.36 0.18 0.18
200 A-BCEE (c=100) 0.64 0.56 0.66 0.19 0.30 0.13 0.13
200 A-BCEE (c=500) 0.79 0.73 0.81 0.19 0.30 0.14 0.14
200 A-BCEE (c=1000) 0.84 0.79 0.85 0.19 0.30 0.14 0.14
600 BMA 0.12 0.09 0.39 0.25 0.64 0.08 0.07
600 BAC (€] (w)) 0.63 0.59 0.75 0.22 0.62 0.09 0.07
600 BAC (0w = o0) 1.00 1.00 1.00 0.21 0.57 0.07 0.06
600 TBAC (w = o0) 1.00 1.00 1.00 0.19 0.53 0.09 0.08
600 N-BCEE (c=100) 0.37 0.26 0.73 0.28 0.65 0.09 0.08
600 N-BCEE (c=500) 0.56 0.45 0.84 0.29 0.63 0.11 0.09
600 N-BCEE (c=1000) 0.64 0.54 0.88 0.29 0.61 0.12 0.10
600 A-BCEE (c=100) 0.56 0.43 0.76 0.22 0.59 0.08 0.07
600 A-BCEE (c=500) 0.74 0.63 0.86 0.21 0.56 0.09 0.08
600 A-BCEE (c=1000) 0.80 0.70 0.90 0.20 0.56 0.09 0.08
1,000 BMA 0.12 0.08 0.55 0.33 0.82 0.06 0.06
1,000 BAC (€] (w)) 0.69 0.66 0.86 0.28 0.75 0.06 0.06
1,000 BAC (0 = o0) 1.00 1.00 1.00 0.25 0.71 0.05 0.05
1,000 TBAC (w = o0) 1.00 1.00 1.00 0.25 0.69 0.07 0.07
1,000 N-BCEE (c=100) 0.34 0.23 0.83 0.34 0.78 0.07 0.07
1,000 N-BCEE (c = 500) 0.50 0.39 0.90 0.34 0.76 0.08 0.08
1,000 N-BCEE (c=1000) 0.58 0.47 0.92 0.34 0.75 0.08 0.08
1,000 A-BCEE (c=100) 0.50 0.37 0.84 0.28 0.75 0.06 0.07
1,000 A-BCEE (c=500) 0.69 0.57 0.91 0.27 0.72 0.07 0.07
1,000 A-BCEE (c=1000) 0.75 0.65 0.93 0.26 0.71 0.07 0.07
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Table 13: Marginal posterior probability of inclusion of potential confounding covariate U,,, m =1, ..., 4, for BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the third data-generating process (DGP3). The covariates included in the
true outcome model are {U;, U,}.

n Method U, U, U3 Uq
200 BMA 0.17 0.26 0.08 0.09
200 BAC (C7(w)) 0.48 0.29 0.09 0.10
200 BAC (v = ) 1.00 0.28 0.08 0.10
200 TBAC (w = c0) 1.00 0.30 0.14 0.15
200 N-BCEE (c=100) 0.57 0.32 0.14 0.16
200 N-BCEE (c=500) 0.75 0.34 0.17 0.19
200 N-BCEE (c=1000) 0.80 0.35 0.18 0.20
200 A-BCEE (c=100) 0.62 0.30 0.13 0.14
200 A-BCEE (c=500) 0.77 0.30 0.13 0.14
200 A-BCEE (c=1000) 0.83 0.30 0.13 0.15
600 BMA 0.29 0.50 0.07 0.05
600 BAC (€7 (w)) 0.75 0.53 0.07 0.06
600 BAC (0 = ) 1.00 0.52 0.07 0.05
600 TBAC (w = c0) 1.00 0.51 0.09 0.08
600 N-BCEE (c=100) 0.68 0.52 0.10 0.08
600 N-BCEE (c=500) 0.82 0.53 0.11 0.10
600 N-BCEE (c=1000) 0.87 0.53 0.12 0.10
600 A-BCEE (c=100) 0.68 0.51 0.09 0.07
600 A-BCEE (c=500) 0.81 0.51 0.09 0.08
600 A-BCEE (c=1000) 0.85 0.51 0.09 0.08
1,000 BMA 0.41 0.68 0.05 0.05
1,000 BAC (€7 (w)) 0.86 0.70 0.06 0.05
1,000 BAC (0 = ) 0.99 0.69 0.06 0.05
1,000 TBAC (w = o0) 1.00 0.68 0.07 0.07
1,000 N-BCEE (c=100) 0.76 0.69 0.07 0.07
1,000 N-BCEE (c=500) 0.88 0.69 0.08 0.08
1,000 N-BCEE (c=1000) 0.91 0.69 0.09 0.09
1,000 A-BCEE (c=100) 0.75 0.68 0.07 0.07
1,000 A-BCEE (c=500) 0.85 0.68 0.07 0.07
1,000 A-BCEE (c=1000) 0.89 0.68 0.07 0.07

Table 14: Marginal posterior probability of inclusion of potential confounding covariate Uy, m = 1,..., 6, for BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the fourth data-generating process (DGP4). The covariates included in the
true outcome model are {U,, Us, Us }.

n Method Uy U, U3 U4 U5 U6
200 BMA 0.15 0.14 0.13 0.22 1.00 1.00
200 BAC (€] (w)) 0.32 0.15 0.31 0.22 1.00 1.00
200 BAC (0 = c0) 0.97 0.23 0.98 0.24 1.00 1.00
200 TBAC (0 = ) 0.87 0.23 0.99 0.25 1.00 1.00
200 N-BCEE (c=100) 0.36 0.17 0.36 0.29 1.00 1.00
200 N-BCEE (c=500) 0.53 0.22 0.57 0.32 1.00 1.00
200 N-BCEE (c =1000) 0.60 0.25 0.66 0.33 1.00 1.00
200 A-BCEE (c=100) 0.50 0.19 0.48 0.23 1.00 1.00
200 A-BCEE (c=500) 0.65 0.21 0.66 0.24 1.00 1.00
200 A-BCEE (c=1000) 0.70 0.21 0.73 0.24 1.00 1.00
600 BMA 0.14 0.10 0.08 0.35 1.00 1.00
600 BAC (€7 (w)) 0.44 0.16 0.41 0.29 1.00 1.00
600 BAC (» = c0) 0.99 0.24 1.00 0.27 1.00 1.00

(continued)
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Table 14: (continued)

n Method U, U, Us U, Us Ug
600 TBAC (0 = 0) 0.96 0.23 1.00 0.26 1.00 1.00
600 N-BCEE (c=100) 0.33 0.12 0.22 0.41 1.00 1.00
600 N-BCEE (c = 500) 0.50 0.18 0.41 0.41 1.00 1.00
600 N-BCEE (c=1000) 0.58 0.21 0.50 0.41 1.00 1.00
600 A-BCEE (c=100) 0.48 0.16 0.32 0.31 1.00 1.00
600 A-BCEE (c = 500) 0.67 0.19 0.53 0.29 1.00 1.00
600 A-BCEE (c=1000) 0.73 0.20 0.61 0.28 1.00 1.00
1,000 BMA 0.13 0.09 0.07 0.52 1.00 1.00
1,000 BAC (C7(w)) 0.48 0.18 0.42 0.42 1.00 1.00
1,000 BAC (v = 0) 0.99 0.30 1.00 0.35 1.00 1.00
1,000 TBAC (w = o0) 0.99 0.30 1.00 0.34 1.00 1.00
1,000 N-BCEE (c=100) 0.30 0.12 0.19 0.57 1.00 1.00
1,000 N-BCEE (c=500) 0.45 0.19 0.36 0.56 1.00 1.00
1,000 N-BCEE (c=1000) 0.53 0.22 0.44 0.54 1.00 1.00
1,000 A-BCEE (c=100) 0.47 0.18 0.26 0.44 1.00 1.00
1,000 A-BCEE (c=500) 0.67 0.23 0.47 0.40 1.00 1.00
1,000 A-BCEE (c=1000) 0.73 0.25 0.56 0.38 1.00 1.00

Table 15: Marginal posterior probability of inclusion of potential confounding covariate Uy, m =1, ..., 5, for BMA, BAC,
TBAC, and A-BCEE for 500 Monte Carlo replicates of the fifth data-generating process (DGP5). The true outcome model includes
only Us.

n Method Uy U, U3 U4 U5
200 BMA 0.11 0.12 0.12 0.11 1.00
200 BAC (C7(w)) 0.42 0.42 0.42 0.42 1.00
200 BAC (v = 0) 1.00 1.00 1.00 1.00 1.00
200 TBAC (w = 0) 1.00 1.00 1.00 1.00 1.00
200 A-BCEE (c=100) 0.21 0.22 0.22 0.21 1.00
200 A-BCEE (c=500) 0.45 0.45 0.46 0.45 1.00
200 A-BCEE (c=1000) 0.55 0.55 0.56 0.55 1.00
600 BMA 0.08 0.07 0.08 0.08 1.00
600 BAC (C7(w)) 0.42 0.41 0.42 0.42 1.00
600 BAC (w = 0) 1.00 1.00 1.00 1.00 1.00
600 TBAC (w = 0) 1.00 1.00 1.00 1.00 1.00
600 A-BCEE (c=100) 0.12 0.11 0.12 0.12 1.00
600 A-BCEE (c=500) 0.30 0.29 0.31 0.31 1.00
600 A-BCEE (c=1000) 0.40 0.40 0.41 0.41 1.00
1,000 BMA 0.06 0.07 0.06 0.06 1.00
1,000 BAC (C7(w)) 0.41 0.41 0.41 0.40 1.00
1,000 BAC (v = 0) 1.00 1.00 1.00 1.00 1.00
1,000 TBAC (w = 0) 1.00 1.00 1.00 1.00 1.00
1,000 A-BCEE (c=100) 0.08 0.09 0.09 0.08 1.00
1,000 A-BCEE (c=500) 0.22 0.23 0.23 0.22 1.00

1,000 A-BCEE (c=1000) 0.32 0.33 0.33 0.32 1.00
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F Comparison of the distribution of[Ai obtained from A-BCEE
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Figure 3: Comparison of the distribution of 2 obtained from BAC (w = oc) and A-BCEE (c =100, 500, and 1,000) for all four
data-generating processes and a sample size n = 600. The red line corresponds to the true value #=0.1.
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Figure 4: Comparison of the distribution of  obtained from BAC (w = c0) and A-BCEE (c =100, 500, and 1,000) for all
four data-generating processes and a sample size n = 1000. The red line corresponds to the true value f=0.1.
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