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Abstract: Estimating causal exposure effects in observational studies ideally requires the analyst to have a
vast knowledge of the domain of application. Investigators often bypass difficulties related to the identi-
fication and selection of confounders through the use of fully adjusted outcome regression models.
However, since such models likely contain more covariates than required, the variance of the regression
coefficient for exposure may be unnecessarily large. Instead of using a fully adjusted model, model
selection can be attempted. Most classical statistical model selection approaches, such as Bayesian
model averaging, do not readily address causal effect estimation. We present a new model averaged
approach to causal inference, Bayesian causal effect estimation (BCEE), which is motivated by the graphical
framework for causal inference. BCEE aims to unbiasedly estimate the causal effect of a continuous
exposure on a continuous outcome while being more efficient than a fully adjusted approach.
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1 Introduction

Estimating causal exposure effects in observational studies demands a vast knowledge of the domain of
application. For instance, to estimate the causal effect of an exposure on an outcome, the graphical
framework to causality usually involves postulating a causal graph to identify an appropriate set of
confounding variables [1]. Specifying such a graph can be difficult, especially in subject areas where
prior knowledge is scarce or limited.

Investigators often bypass difficulties related to the identification and selection of confounders through
the use of fully adjusted outcome regression models. Such models express the outcome variable as a
function of the exposure variable and all available potential confounding variables. A fully adjusted
outcome regression model is commonly assumed to yield an unbiased estimator of the true effect of the
exposure. However, since such models likely contain more covariates than required, the variance of the
regression coefficient for exposure may be unnecessarily large. Instead of using a fully adjusted model,
model selection can be attempted.

Most classical statistical model selection approaches do not readily address causal effect estimation.
One such approach is Bayesian model averaging (BMA) [2, 3]. BMA averages quantities of interest (e.g. a
regression coefficient or the value of a future observation) over all possible models under consideration: in
the average, each estimate is weighted by the posterior probability attributed to the corresponding model.
When the goal is prediction, BMA accounts for the uncertainty associated with model choice and produces
confidence intervals that have adequate coverage probabilities [4]. Unfortunately, BMA can perform poorly
when used to estimate a causal effect of exposure [5, 6].

Wang et al. [6] suggested two novel approaches that modify BMA to specifically target causal effect
estimation: Bayesian adjustment for confounding (BAC) and two-stage Bayesian adjustment for confound-
ing (TBAC). Graph-based simulations presented in Wang et al. [6] show that the causal effect estimators of
BAC and TBAC are unbiased in a variety of scenarios, hence supporting their adequacy for causal inference.
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A theoretical justification for the use of BAC for causal inference purposes is further discussed in Lefebvre,
Atherton, and Talbot [7]. However, some simulations comparing BAC and TBAC to fully adjusted models
show little difference in the variance of the causal effect estimators of each method [6, 8]. Moreover, the
choice of BAC’s hyperparameter ω has been recognized as challenging [9]. The value ω ¼ 1 has been
recommended if one seeks an unbiased causal exposure effect estimator [7]. Lefebvre et al. [7] proposed
using cross-validation and bootstrap for selecting an ω value that aims to minimize the mean-square-error
(MSE) of the BAC’s causal effect of exposure estimator. These results suggest that the optimal ω value not
only depends on the data-generating scenario, but also on sample size, thus making it very hard in practice
to select an appropriate ω value.

In this paper we propose a new model averaging approach to causal inference: Bayesian causal effect
estimation (BCEE). BCEE aims to unbiasedly estimate the causal effect of a continuous exposure on a
continuous outcome, while being more efficient than a fully adjusted approach. With a sample of finite size,
however, this is an ambitious objective. Hence, through a user-selected hyperparameter, BCEE enables an
analyst to consider various degrees of trade-off between bias and variance for the estimator. While BCEE
shares some similarities with TBAC, one distinctive feature of our approach is that its motivation lies in the
graphical framework for causal inference (e.g. Pearl [1]).

The paper is structured as follows. In Section 2, we present the BCEE algorithm and discuss, in
Section 3, a number of aspects of its practical implementation. We compare BCEE to some existing
approaches for causal effect estimation in Section 4. In Section 5, we apply BCEE to a real dataset where
we estimate the causal effect of mathematical perceived competence on the self-reported average in
mathematics for highschool students in the province of Quebec. We conclude in Section 6 with a discussion
of our results and provide suggestions for further research.

2 Bayesian causal effect estimation (BCEE)

Before presenting BCEE in Section 2.3, we first describe the modeling framework in Section 2.1 and provide a
proposition and corollary concerning directed acyclic graphs (DAGs) in Section 2.2. The description of how the
proposition and the corollary are used to develop BCEE is presented in Section 2.4. We conclude, in Section 2.5,
with a toy example that sheds light on BCEE’s properties. Note that although we refer to BCEE as a Bayesian
algorithm, strictly speaking, it is approximately Bayesian since it requires specifying prior distributions only for
a subset of the parameters. To simplify the discussion, we motivate BCEE from a frequentist perspective.

2.1 Modeling framework

We consider estimating the causal effect of a continuous exposure on a continuous outcome. Let X be the
random exposure variable, Y be the random outcome variable and U ¼ fU1;U2; :::;UMg be a set of M
available, pre-exposure, potentially confounding random covariates. Let i index the units of observations,
i ¼ 1; :::; n. Our goal is to estimate the causal effect of exposure using a linear regression model for the
outcome with normal, independent and identically distributed errors. Assuming the set U is sufficient to
identify the average causal effect and the model is correctly specified, a fully adjusted linear regression
model can be used to estimate the causal effect. Under such assumptions, parameter β encodes the average
causal effect of a unit increase in X on Y in the linear model

E YijXi;Uið Þ ¼ δ0 þ βXi þ
XM
m¼1

δmUim; ð1Þ

where δ0 is the intercept and δm is the regression coefficient associated with covariate Um. A
disadvantage to using a fully adjusted outcome model is that the variance of the exposure effect
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estimator β̂ can be large. Therefore, one might want to include a reduced number of covariates in the
outcome model (1), that is, to adjust for a strict subset of U also sufficient to estimate the causal effect
of X on Y.

Consider G an assumed causal directed acyclic graph (DAG) compatible with the distribution of the
observed covariates in G, fY ;X;Ug. Let D ¼ fD1;D2; :::;DJg � U be the set of parents (direct causes) of X in G.
Then using Pearl’s back-door criterion [1], it is straightforward to show that adjusting for the set D is sufficient
to avoid confounding. In other words, the parameter β in the linear model

E YijXi;Dið Þ ¼ δ0 þ βXi þ
XJ
j¼1

δjDij ð2Þ

can also be interpreted as the average causal effect of X on Y. It can also be shown that outcome models
adjusting for sets of pre-exposure covariates that at least include the direct causes of exposure are
unbiased; BAC may be seen to be exploiting this feature [7]. Adjusting for the set of direct causes of X in
the outcome model thus seems appealing since D is generally smaller than the full set U. However, this
approach can also yield an estimator of β, β̂, whose variance is large unless those direct causes of X are also
strong predictors of Y (e.g. Lefebvre et al. [7]).

BAC, TBAC and BCEE all rely on the fact that the set of direct causes of X is sufficient for estimating the
causal effect and that this set of covariates can be identified from the data. A differentiating feature of BCEE
is that it aims to disfavor outcome models that include one or more direct causes of X that are unnecessary
to eliminate confounding. This is viewed as desirable since these variables generally increase the variance
of β̂. By doing so, BCEE targets sufficient models

E YijXi;Zið Þ ¼ δ0 þ βXi þ
XK
k¼1

δkZik ð3Þ

for which the variance of β̂ is smaller than the variance of β̂ in model (1) and the variance of β̂ obtained using
BAC or TBAC. In Section 2.2 we present a proposition and a corollary that underlie the functioning of BCEE.

2.2 A motivation based on directed acyclic graphs

The results presented in this section are based on Pearl’s back-door criterion and are thus obtained from a
graphical perspective to causality using directed acyclic graphs (DAGs). For a brief review of this frame-
work, we refer the reader to the appendix of VanderWeele and Shpitser [10].

Proposition 2.1 presented below gives a sufficient condition to identify a set Z that yields an unbiased
estimator β̂ of the causal effect of X in eq. (3). Corollary 2.1 starts with such a sufficient set Z and provides
conditions under which a direct cause of X included in Z can be excluded so that the resulting set Z 0 is
also sufficient. Remark that this corollary is akin to Proposition 1 from VanderWeele and Shpitser [10]. In
the sequel, the concept of d-separation is used to entail notions of conditional independence between
variables. Moreover, the distribution-free adjustment defined in Pearl [1] relates to the adjustment in the
linear model setting introduced in Section 2.1. For instance, see Chapter 5 from Pearl [1] and section 5.3.2
in particular.

Proposition 2.1 Consider data compatible with a causal DAG G. Let D ¼ fD1;D2; :::;DJg be the set of direct
causes of X and let Z be a set of covariates which we consider adjusting for. Adjusting for Z is sufficient to
identify the average causal effect of X on Y if
1) no descendants of X are in Z and
2) if for each Dj 2 D, either

(a) Dj 2 Z or
(b) if Dj ‚ Z then Y and Dj are d-separated by fX¨Zg.
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Proof: see Appendix A.1.

Corollary 2.1 Consider a Dj 2 Z and let Z 0 ¼ ZnDj.
1) If Dj and Y are d-separated by fX¨ Z 0g then all back-door paths X  Dj � � � ! Y are blocked by Z 0.
2) If in addition to 1., Z is sufficient to identify the average causal effect according to Proposition 2.1, then Z 0

is also sufficient to identify the average causal effect of X on Y.

Proof: see Appendix A.2.

We now address how the proposition and the corollary are used in the linear regression setting presented in
Section 2.1. First, Theorem 1.2.4 from Pearl [1] states the quasi-equivalence between d-separation and
conditional independence. That is, unless a very precise tuning of parameters occurs, d-separation of Y
and Dj by fX¨Zg is equivalent to conditional independence between Y and Dj given fX¨Zg. Hence, we
can replace d-separation by conditional independence in Proposition 2.1 and in Corollary 2.1. Under the
assumption that all variables in the graph G are multivariate normal, we have that conditional indepen-
dence is equivalent to zero partial correlation and thus to zero regression parameter in the linear model [11].
More specifically, if Y and Dj are conditionally independent given fX¨ Zg, then the regression parameter
associated to Dj in the linear regression of Y on Dj, X and Z is 0; and this parameter is 0 only if Y and Dj are
conditionally independent given fX¨ Zg. The assumption of multivariate normality is quite stringent; a
weaker assumption is that model (1) is correctly specified (see Appendix B).

2.3 The BCEE algorithm

BCEE is viewed as a BMA procedure where the prior distribution of the outcome model is informative and
constructed by using estimates from earlier steps of the algorithm, including the exposure model. In this
section, we introduce BCEE and define the aforementioned prior distribution. The connections between
Proposition 2.1, Corollary 2.1 and BCEE’s prior distribution are discussed in Section 2.4.

We now define the outcome model using the same model averaging notation as in BAC and TBAC. Let
αY ¼ ðαY1 ; :::; αYMÞ be an M-dimensional vector for the inclusion of the covariates U in the outcome model,
where component αYm equals 1 if covariate Um is included in the model and αYm equals 0 if covariate Um is not
included, m ¼ 1; :::;M. Letting i index the units of observation, i ¼ 1; :::; n, the outcome model is the
following normal linear model

Yi ¼ δα
Y

0 þ βα
Y
Xi þ

XM
m¼1

αYmδ
αY

m Uim þ �α
Y

i ; ð4Þ

where δα
Y

m and βα
Y
denote respectively the unknown regression coefficients associated with Um and X in the

outcome model specified by αY . The parameter δα
Y

0 denotes the unknown intercept in model αY and the
distribution of the error terms is given by �α

Y

i ,iid Nð0; σ2αY Þ.
Given model (4) and a prior distribution PðαY Þ, the use of BMA for the estimation of the exposure effect

requires first obtaining the posterior distribution of the outcome model PðαY jYÞ / PðY jαYÞPðαY Þ. Standard
implementation of BMA often involves selecting a uniform prior distribution PðαY Þ ¼ 1=2M " αY , in which
case PðαY jYÞ / PðY jαY Þ. The model-averaged exposure effect is then given by

E½βjY � ¼
X
αY

ð1
�1

βα
Y
P βα

Y jαY ;Y
� �

dβα
Y

� �
P αY jY� �

: ð5Þ

In BCEE, we utilize an informative prior distribution rather than the usual non-informative one. This
distribution aims to give the bulk of the prior probability to outcome models in which βα

Y
has a causal

interpretation according to Proposition 2.1, and that cannot be reduced according to Corollary 2.1. As will be
seen, this prior distribution is constructed by borrowing information from the data.
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The first step in the construction of BCEE’s prior distribution PBðαY Þ is to compute the posterior
distribution of the exposure model. This step is also present in TBAC and is performed in BCEE to identify
possible causal exposure models and thus likely direct causes of the exposure. Recall that direct causes of
exposure play a pivotal role in both Proposition 2.1 and Corollary 2.1. We now introduce the notation for the
exposure model. Let αX ¼ ðαX1 ; :::; αXMÞ be an M-dimensional vector for the inclusion of the covariates U in
the exposure model. The exposure model is the following normal linear model

Xi ¼ δα
X

0 þ
XM
m¼1

αXmδ
αX
m Uim þ �α

X

i ; ð6Þ

where δα
X

m denotes the unknown regression coefficient of Um, m ¼ 1; :::;M, in the exposure model specified

by αX . The parameter δα
X

0 denotes the unknown intercept in αX and �α
X

i ,iid Nð0; σ2αX Þ. In this step, each model

αX is attributed a weight corresponding to its posterior probability, PðαX jXÞ / PðXjαXÞPðαXÞ. For simplifi-

cation, PðαXÞ is taken to be uniform (that is, PðαXÞ ¼ 1=2M " αX), although other prior distributions could
be considered.

We are now ready to define PBðαYÞ, which depends not only on PðαX jXÞ, but also on the regression
coefficients δα

Y

m . Remember that Proposition 2.1 and Corollary 2.1 both require verifying conditional inde-
pendences. This can be achieved through the examination of the outcome model regression coefficients (see
the final remarks of Section 2.2). To simplify the presentation, we assume for now that the true values of the
regression coefficients are provided by an oracle. The BCEE prior distribution is as follows:

PBðαY Þ ¼
X
αX

PB αY jαX� �
PðαX jXÞ;where

PB αY jαX� � /YM
m¼1

QαY αYmjαXm
� �

:

For vectors αY and αX, QαY αYmjαXm
� �

is given by one of the following:

QαY αYm ¼ 1jαXm ¼ 1
� � ¼ ωαY

m

ωαY

m þ 1
; QαY αYm ¼ 0jαXm ¼ 1

� � ¼ 1
ωαY

m þ 1
;

QαY αYm ¼ 1jαXm ¼ 0
� � ¼ 1

2
; QαY αYm ¼ 0jαXm ¼ 0

� � ¼ 1
2
;

ð7Þ

where ωαY

m is defined in (8). To properly define ωαY

m we must first define the notion of an m-nearest neighbor

outcome model. For a given model αY where αYm ¼ 0, the m-nearest neighbor model to αY , αYðmÞ, has
exactly the same covariates as αY except with αYm ¼ 1 instead of αYm ¼ 0. In the case where αYm ¼ 1, there is
no need to define an m-nearest neighbor model. We now define a new set of regression parameters:

~δα
Y

m ¼
δα

Y

m if αYm ¼ 1

δα
Y ðmÞ

m if αYm ¼ 0:

8<:
For example, if U ¼ fU1;U2g and αY ¼ ð1;0Þ then ~δα

Y

1 ¼ δα
Y

1 can be directly taken from model αY , whereas
~δα

Y

2 ¼ δα
Y ð2Þ

2 needs to be taken from model αY ð2Þ ¼ ð1; 1Þ.
With this additional notation, we define the hyperparameter ωαY

m as:

ωαY

m ¼ ω� ~δα
Y

m
σUm

σY

� 	2

; ð8Þ

where 0 � ω � 1 is a user-defined hyperparameter, σUm and σY are respectively, the (true) standard
deviations of Um and Y. Note that ~δα

Y

m σUm=σY is a standardization of ~δα
Y

m which makes it insensitive to the
measurement units of both Y and Um. In practice, we cannot rely on an oracle to provide ~δα

Y

m ; in the sequel,
we use the maximum likelihood estimator of ~δα

Y

m instead. Also, the true values of σUm and σY are not known
and are estimated by sUm and sY . The prior distribution PBðαYÞ thus has an empirical Bayes flavor. Once
PBðαY Þ is obtained, the posterior distribution of the outcome model PðαY jYÞ is computed and the posterior
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exposure effect calculated according to eq. (5). In Section 3.2, we discuss how one can account for using the
data for the specification of PBðαYÞ to obtain appropriate inferences.

2.4 The rationale behind BCEE

In this section, we explain in detail how BCEE’s prior distribution PBðαYÞ is motivated by causal graphs
through Proposition 2.1 and Corollary 2.1.

To begin, recall that the first step of BCEE serves to identify likely exposure models. Classical properties
of Bayesian model selection ensure that the true (structural) exposure model, the one including only and all
direct causes of X (D ¼ fD1; :::;DJg), is asymptotically attributed all the posterior probability by the first step
of BCEE (e.g. Haughton [12], Wasserman [13]). This result follows from assuming that the set of potential
confounding covariates U includes all direct causes of X and no descendants of X and that the specification
of the model is correct: that is, the true exposure model is indeed a normal linear model of the form

Xi ¼ δ0 þ
PJ

j¼1 δjDij þ �Xi , with �Xi ,
iid
Nð0; σ2XÞ.

The algorithm BCEE aims to give the bulk of the posterior weight to outcome models in which βα
Y
has a

causal interpretation according to Proposition 2.1 and that cannot be reduced according to Corollary 2.1. In
such outcome models, αY includes any given direct cause (identified in the first step) only if the inclusion of
this direct cause of exposure is necessary for βα

Y
to have a causal interpretation in αY . To do so, PBðαY Þ

places small prior weight on outcome models which do not respect condition 2 of Proposition 2.1. In such
models, some direct causes of X are excluded (condition point 2a from Proposition 2.1) and Y is dependent
on those excluded direct causes of X given X and the potential confounding covariates already included
(condition point 2b from Proposition 2.1). Moreover, PBðαY Þ seeks to limit the prior weight attributed to
outcome models that could be reduced according to Corollary 2.1. In such models, some direct causes of X
are included, but these are not associated with Y conditionally on X and the other covariates included.

To illustrate how Proposition 2.1 and Corollary 2.1 motivate the formulation of PBðαYÞ we provide the
following thought experiment. To simplify our presentation, we assume that the direct causes of exposure
are known and that the outcome model (1) is correctly specified. Moreover, we order the elements of U so
that the first J elements are D, that is fU1; :::;UMg¼fD1; :::;DJ ;UJþ1; :::;UMg. For ease of interpretation, we

also assume that the covariates U are standardized, although, due to the way ωαY

m is defined, this is not
necessary in practice. We consider four different situations to illustrate how BCEE functions. In each

situation, a direct cause of exposure Dj ¼ Uj is either included or excluded from the outcome model αY

and the maximum likelihood estimate j~̂δα
Y

j j is either close to 0 or large. The anticipated magnitudes of

QαY ðαYj jαXj Þ and of PBðαY jαXÞ for each situation are presented in Table 1. Considering jointly those four

situations, we see that only outcome models that both correctly identify the average causal effect of
exposure and that solely include necessary direct causes of exposure receive non-negligible prior

Table 1: Magnitudes of QαY ðαYj jαXj Þ and PBðαY jαX Þ for four situations defined by the inclusion of a
direct cause of exposure Dj and the magnitude of j~̂δα

Y

j j.

Situation Dj |~̂δαY

j | Y^^Dj | X ; Z 0 ωαY

j QαY ðαY
j | α

X
j Þ PBðαY | αX Þ

() Excl. Large Not likely Large Close to  Close to 

() Incl. Close to  Likely Close to  Close to  Close to 

() Incl. Large Not likely Large Close to  Depends
() Excl. Close to  Likely Close to  Close to  Depends

Note: Z 0 denotes the potential confounding covariates included in αY excluding Dj, Excl.¼ Excluded,
Incl.¼ Included, Depends¼Depends on other Djs
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probabilities. In the next paragraph, we describe in detail the first situation, which supposes that direct

cause Dj is omitted from αY and its associated estimated parameter j~̂δα
Y

j j is large.
Suppose αY does not include Dj. Note that QαY ðαYj ¼ 0jαXj ¼ 1Þ depends on ~̂δ

αY

j through ωαY

j . Therefore,
PBðαY jαXÞ also depends on ~̂δ

αY

j . If j~̂δα
Y

j j is large, then Y is likely not independent of Dj conditionally on X and
the potential confounding covariates included in αY . It follows that αY does not respect condition 2b from
Proposition 2.1. Since the value of ωαY

j is large, QαY ðαYj ¼ 0jαXj ¼ 1Þ is small and so is PBðαY jαXÞ. In this
situation, PBðαYÞ is well behaved: the model αY is not sufficient to identify the average causal effect of
exposure and hence it receives little prior probability. A similar reasoning can be applied for situation 4 of
Table 1. The reasoning for situations 2 and 3 is also quite similar, but requires invoking Corollary 2.1 to
determine whether the inclusion of Dj is necessary or not.

Remark in Table 1 that in situations 3 and 4, where QαY ðαYj jαXj Þ is close to 1, PBðαY jαXÞ depends in a
large part on the QαY associated with the other direct causes of exposure. If none of the QαY are close to 0,
then PBðαY jαXÞ is non-negligible and hence favors models that identify the causal effect according to
Proposition 2.1 and Corollary 2.1. However, if any of the QαY is close to 0, then PBðαY jαXÞ is close to 0.

2.5 A toy example

We consider a toy example to gain preliminary insights on the finite sample properties of BCEE. We
generated a sample of size n ¼ 500 satisfying the following relationships:

X ¼ U1 þ U2 þ �X

Y ¼ X þ 0:1U1 þ �Y ;

with U1, U2 ,Nð0; 1Þ and �X, �Y ,Nð0; 1Þ, all independent.
The first step of BCEE is to calculate the posterior distribution of the exposure model PðαX jXÞ. The four

possible exposure models in this example are:

αX
1 : Xj ! ðαX1 ¼ 0; αX2 ¼ 0Þ;

αX
2 : XjU1 ! ðαX1 ¼ 1; αX2 ¼ 0Þ;

αX
3 : XjU2 ! ðαX1 ¼ 0; αX2 ¼ 1Þ;

αX
4 : XjU1;U2 ! ðαX1 ¼ 1; αX2 ¼ 1Þ:

We approximate PðXjαXÞ using exp½�0:5BICðαXÞ� [14], where BICðαXÞ is the Bayesian information
criterion for exposure model αX . In our example, model αX

4 receives all posterior weight, that is
PðαX ¼ ð1; 1ÞjXÞ ¼ 1.

Next, we compute the posterior distribution of the outcome model using PBðαY Þ. We take ω ¼ 100
ffiffiffi
n
p

, a
choice that is subsequently discussed in Section 3.1. The four possible outcome models are:

αY
1 : Y jX ! ðαY1 ¼ 0; αY2 ¼ 0Þ;

αY
2 : Y jX;U1 ! ðαY1 ¼ 1; αY2 ¼ 0Þ;

αY
3 : Y jX;U2 ! ðαY1 ¼ 0; αY2 ¼ 1Þ;

αY
4 : Y jX;U1;U2 ! ðαY1 ¼ 1; αY2 ¼ 1Þ:

Note that only models αY
2 and αY

4 correctly identify the causal effect of exposure. We present the calculation
of PBðαY jαXÞ for model αY

2 . Since we obtained PðαX ¼ ð1; 1ÞjXÞ ¼ 1, we only need to calculate
PBðαY ¼ ð1;0ÞjαX ¼ ð1; 1ÞÞ / QαY

2
ðαY1 ¼ 1jαX1 ¼ 1ÞQαY

2
ðαY2 ¼ 0jαX2 ¼ 1Þ. We have:
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QαY
2
ðαY1 ¼ 1jαX1 ¼ 1Þ ¼ ω

αY
2

1

ω
αY
2

1 þ 1
;

QαY
2
ðαY2 ¼ 0jαX2 ¼ 1Þ ¼ 1

ω
αY
2

2 þ 1
:

We get ω
αY
2

1 ¼ ωð~̂δα
Y
2

1 � sU1=sYÞ2 ¼ 100
ffiffiffiffiffiffiffiffi
500
p ð0:14� 1:00=2:01Þ2 ¼ 9:75. Note that because U1 is included in

αY
2 , ~̂δ

αY
2

1 ¼ δ̂
αY
2

1 . Also, we have ω
αY2
2 ¼ ωð~̂δα

Y
2

2 � sU2=sYÞ2 ¼ 100
ffiffiffiffiffiffiffiffi
500
p ð�0:01� 1:04=2:01Þ2 ¼ 0:05. Because U2 is

not in αY
2 , we get the regression parameter estimate for U2 from its 2-nearest neighbor model, that is

~̂δ
αY
2

2 ¼ δ̂
αY
4

2 . Finally, the value of the (unnormalized) prior probability of model αY
2 is 0.8658.

Following the same process for the three other outcome models, we calculate the prior probabilities.
From there, we calculate the posterior distribution of the outcome model using the relationship
PðαY jYÞ / PðY jαY ÞPBðαY Þ. Again, we use exp½�0:5BICðαYÞ� to approximate PðY jαY Þ. Table 2 provides the
results with the details of the intermediate steps.

We see from these results how BCEE, as compared to BMA, shifts the posterior weight toward models that
identify the causal effect of exposure. In fact, in this toy example, BCEE puts almost all the posterior weight
on the true outcome model. BCEE accomplishes this by using an informative prior distribution for the
outcome model that borrows information both from the exposure selection step and from neighboring
regression coefficient estimates in the outcome models.

3 Practical considerations regarding BCEE

In this section we discuss practical considerations regarding the usage of the BCEE algorithm. First, we
discuss the choice of the hyperparameter ω value in eq. (8), then we suggest two alternative ways of
implementing BCEE.

3.1 Choice of ω

Recall that BCEE’s prior distribution PBðαY Þ depends on a user-selected hyperparameter ω. In what follows,
we suggest making ω proportional to

ffiffiffi
n
p

on the basis of asymptotic results related to the quantities QαY in
eq. (7). Without loss of generality, we only discuss the case QαY ðαYm ¼ 1jαXm ¼ 1Þ. Indeed, the cases
QαY ðαYm ¼ 1jαXm ¼ 0Þ and QαY ðαYm ¼ 0jαXm ¼ 0Þ are trivial because the two quantities are both equal to 1/2.
Moreover, the case QαY ðαYm ¼ 0jαXm ¼ 1Þ is essentially equivalent to the case QαY ðαYm ¼ 1jαXm ¼ 1Þ since these
quantities are closely (and negatively) associated. Remark that because we consider the case where αYm ¼ 1,
~δα

Y

m ¼ δα
Y

m . However, we present the reasoning in terms of ~δα
Y

m to allow a direct generalization to the case
where αYm ¼ 0.

Table 2: Calculation of the BCEE outcome model posterior distribution with intermediate steps.

Model U:PBðαY Þ PBðαY Þ BIC BMA PðαY jY Þ PðαY jY Þ
αY
1 . . ,. . .

αY
2 . . ,. . .

αY
3 . . ,. . .

αY
4 . . ,. . .

Note: U:PBðαY Þ is the unnormalized prior probability, PBðαY Þ is the prior probability, BIC is the Bayesian
information criterion, BMA PðαY jYÞ is the posterior probability the model resulting from a BMA procedure with
a non-informative prior distribution, and PðαY jYÞ is the posterior probability using BCEE.
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Assume that the true outcome model is a normal linear model of the form (1) and first consider the case
~δα

Y

m ¼ 0 for a given model αY . Then covariate Um is conditionally independent of Y given the (other)

covariates included in model αY . Hence Um should be left out of αY on the basis of Corollary 2.1. It is thus

desirable that QαY ðαYm ¼ 1jαXm ¼ 1Þ ! 0 as n!1, which happens if ω̂αY

m ¼ ω� ~̂δ
αY

m sUm=sY
� �2

! 0 as n!1.

Consider the case ~δα
Y

m �0. According to Proposition 2.1, it is now desirable that QαY ðαYm ¼ 1jαXm ¼ 1Þ ! 1
as n!1, since this would allow for covariates causing less confounding to be forced in the outcome

model as n grows. Thus, we need ω̂αY

m !1 as n!1 if ~δα
Y

m �0.
If ~δα

Y

m ¼ 0 then ~̂δ
αY

m !
P
0 and thus, for any finite constant value of ω, ω̂αY

m !
P
0, where !P means

convergence in probability. However, if ~δα
Y

m �0, we need to choose ω as a function of sample size n in

order to ensure that ω̂αY

m !1 as n!1. We consider rates of convergence to find an appropriate function
of n.

Recall that ω̂αY

m is a function of the MLE ~̂δ
αY

m (Section 2.3). Under mild regularity conditions, it follows

from the results in Yuan and Chan [15] that ~̂δ
αY

m sUm=sY!
P ~δα

Y

m σUm=σY at rate Opð1=
ffiffiffi
n
p Þ, where Op is the usual

big-Op notation (Agresti [16], p. 588). Thus ~̂δ
αY

m sUm=sY
� �2

!P ~δα
Y

m σUm=σY
� �2

at rate Opð1=nÞ.
By taking ω ¼ cnb, with 0< b< 1, where c is a user-fixed constant that does not depend on sample size,

we obtain ω̂αY

m !1 (at rate nb) if ~δα
Y

m �0 and ω̂αY

m !
P
0 (with convergence rate Opð1=n1�bÞ) if ~δαY

m ¼ 0, as
desired. The value b ¼ 1=2 appears to make a good compromise between the two desired convergence

behaviors. The simulation study presented in Section 4 shows that BCEE performs well for ω ¼ c
ffiffiffi
n
p

with
100 � c � 1000. We also see that larger values of c yield less bias and more variance in the estimator of the

causal effect, and conversely for smaller values of c. Appendix C illustrates how QαY ðαYm ¼ 1jαXm ¼ 1Þ
behaves for different values of c in some simple settings.

3.2 Implementing BCEE

In this section, we first consider a naive implementation of BCEE that closely follows our presentation of the
algorithm in Section 2.3. Then we describe a modified implementation that accounts for using the MLE ~̂δ

αY

m

in PBðαYÞ.
We perform three steps to sample one draw from the posterior distribution of the average causal

exposure effect PðβjYÞ. Several such draws are taken to obtain approximations to quantities of interest,
such as the posterior mean and variance of β. The steps of the sampling procedure are:
S1. Draw αX from the posterior distribution of the exposure model PðαX jXÞ / PðXjαXÞ, using

exp½�0:5BICðαXÞ� to approximate PðXjαXÞ;
S2. Draw αY from the conditional posterior distribution PðαY jαX ;YÞ / PBðαY jαXÞPðY jαY Þ, where the regres-

sion coefficients ~δα
Y

m are estimated by their MLEs and PðY jαY Þ is approximated by exp½�0:5BICðαY Þ�;
S3. Draw β from the conditional posterior distribution PðβαY jαY ;YÞ, which we approximate by its limit

normal distribution N β̂
αY

; cSEðβ̂αY

Þ
� 	

[17, 18], where β̂α
Y
is the maximum likelihood estimator of βα

Y

and cSEðβ̂αY Þ is its estimated standard error.

The sampling for the first two steps is done using Markov chain Monte Carlo model composition (MC3) [19].
We refer to this naive implementation of BCEE as N-BCEE.

Because N-BCEE does not take into account the uncertainty related to the estimation of the regression
coefficients ~δα

Y

m in PBðαYÞ, we anticipate that the confidence (credible) interval for β will be too narrow. Our
insight relies on the Empirical Bayes literature, where it has been extensively shown that data-dependent
prior distributions lead to confidence intervals that tend to be “too short, inappropriately centered, or both”
[20]. Also, narrow confidence intervals for β are observed in simulations presented in Section 4. Although
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many solutions to this problem have been proposed (see Carlin and Louis [21] for a short discussion), most
cannot be realistically applied to BCEE due to the complexity of the algorithm. Therefore, we propose the
following simple ad hoc solution, which happens to be notably faster than N-BCEE. We refer to this
modified implementation of BCEE as A-BCEE.

A-BCEE is the same as N-BCEE except for step S2. Recall that this step is directed at sampling from the
conditional posterior distribution PðαY jαX ;YÞ using MC3. This MC3 scheme requires calculating a
Metropolis-Hasting ratio (RP) which involves the ratio of the (conditional) prior probabilities of the
proposed outcome model, αY

1 , to the current outcome model, αY
2 :

RP ¼ PB αY
1 jαX

� �
PB αY

2 jαX
� � ¼QM

m¼1 QαY
1
αYmjαXm
� �

=CQM
m¼1 QαY

2
αYmjαXm
� �

=C
¼
YM
m¼1

QαY1
αYmjαXm
� �

QαY2
αYmjαXm
� � ; ð9Þ

where C is a normalizing constant such that PBðαY jαXÞ ¼QM
m¼1 QαY αYmjαXm

� �
=C. In RP, αY

1 and αY
2 are two

neighbor outcome models that differ only by their inclusion of a single covariate Um0 . A-BCEE utilizes the
following simplification for RP:

RP �
QαY

1
αYm0 jαXm0
� �

QαY
2
αYm0 jαXm0
� � : ð10Þ

The heuristic for suggesting this approximation is that the individual ratio that is the most likely to
significantly differ from 1 in eq. (9) is the one associated to covariate Um0 , that is

QαY
1
αYm0 jαXm0
� �

=QαY
2
αYm0 jαXm0
� �

. In fact, unless the covariates U are very strongly correlated with each other,

we expect the ~̂δ
αY

m s (m�m0) to be of the same magnitude between two neighboring models. Note that we also
expect many terms in the RP product to be exactly equal to 1 since an individual ratio equals 1 when its

corresponding covariate is not included in the exposure model QαY
1
αYmjαXm ¼ 0
� �

=QαY
2
αYmjαXm ¼ 0
� � ¼ 1

� �
.

Simulations were performed to verify the validity of approximation (10) (results not presented).
Using simplified RP (10), it becomes an easy task to incorporate the variability associated with the

estimation of the ~δα
Y
s. We assume that ~δα

Y

m0,N ~̂δ
αY

m0 ;
cSE ~̂δ

αY

m0

� �� �
, where cSE ~̂δ

αY

m0

� �
is the estimated standard

error of ~̂δ
αY

m0 . In summary, in step S2 of the sampling procedure of A-BCEE we simply draw ~δα
Y

m0 from

N ~̂δ
αY

m0 ;
cSE ~̂δ

αY

m0

� �� �
and use it in approximation (10). We remark that this strategy is akin to specifying an

empirical Bayes type of hyperprior for ~δα
Y
.

The finite sample properties of N-BCEE and A-BCEE are studied and compared in some simulation
scenarios presented in the next section. We also consider nonparametric bootstrap [22] in a few simple and
small scale simulations as an alternative to A-BCEE to correct confidence intervals. Note that, due to
computing time, this bootstrapped BCEE (B-BCEE) approach is considerably less practical than A-BCEE to
evaluate in simulations and to apply to real data sets of moderate to large sizes.

4 Simulation studies

In this section, we study the finite sample properties of BCEE in various simulation scenarios. The first
primary objective of the simulations is to compare BCEE to standard or related methods that are used to
estimate total average causal effects of exposure. The second primary objective is to study the sensitivity of
BCEE to the choice of its user-selected hyperparameter ω. In Appendix D, we study two other secondary
objectives relating to the large, whilst finite, properties of BCEE and to the performance of B-BCEE.

To achieve the two main objectives, we examine 24 different simulation scenarios obtained by con-
sidering three factors: data-generating process (DGP1, DGP2, DGP3 and DGP4), sample size (200, 600 and
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1,000) and true causal effect of exposure (β ¼ 0:1 or β ¼ 0). The four data-generating processes are
described below.

The first data-generating process (DGP1) satisfies the following relationships:

U3 ¼ U2 þ �3

U5 ¼ U4 þ �5

X ¼ U1 þ U2 þ U4 þ �X

Y ¼ U3 þ 0:1U4 þ U5 þ βX þ �Y ;

with U1;U2;U4; �3; �5; �X; �Y,Nð0; 1Þ all independent. The set of available covariates is U ¼ fU1;U2; . . . ;U5g.
The second data-generating process (DGP2) involves a larger number of covariates than DGP1 and

features an indirect effect of X on Y:

U1 ¼ U4 þ �1

U2 ¼ U4 þ �2

U3 ¼ U4 þ �3

U5 ¼ U1 þ �5

X ¼ U1 þ U2 þ U3 þ �X

U6 ¼ 0:5X þ U3 þ �6

Y ¼ 0:1U4 þ 0:1U5 þ βU6 þ 0:5βX þ �Y ;

where U4; �1; �2; �3; �5; �X; �6; �Y,Nð0; 1Þ all independent. The set of available covariates is
U ¼ fU1;U2; . . . ;U5;U7; . . . ;U15g, where U7; . . . ;U15 are all independent Nð0; 1Þ. We exclude U6 from the
set of potential confounding covariates since one must not adjust for descendants of the exposure X to
identify the total average causal effect. Here the total effect of X on Y (direct effect plus indirect effect
through U6) is 0:5β þ 0:5β ¼ β. For simulation purposes, we consider the model αY ¼ ð0;0; 1; 1; 1;0; :::;0Þ as
the “true” outcome model.

The third data-generating process (DGP3) is similar to the first simulation example in Wang et al. [6] but
includes only 18 additional (noise) covariates (instead of 49):

X ¼ 0:7U1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 0:72Þ

q
�X

Y ¼ 0:1U1 þ 0:1U2 þ βX þ �Y ;

where U1;U2; �X; �Y,Nð0; 1Þ all independent. The set of available covariates is U ¼ fU1;U2; . . . ;U20g, where
U3; . . . ;U20 are also independent Nð0; 1Þ.

The fourth data-generating process (DGP4) is inspired by a DAG presented in Morgan and Winship [23],
Figure 1.1, page 25:

X ¼ 0:1U1 þ 0:1U2 þ 0:1U3 þ �X

U6 ¼ U3 þ �6

Y ¼ 0:1U4 þ 0:5U5 þ 0:5U6 þ βX þ �Y ;

where �X; �6; �Y,Nð0; 1Þ all independent. Covariates U1;U2;U3;U4;U5 are also Nð0; 1Þ and are all indepen-
dent except U1;U2 and U1;U4 for which we have CovðU1;U2Þ ¼ 0:7 and CovðU1;U4Þ ¼ 0:7. Notice that U1 is a
collider between U2 and U4 and thus CovðU2;U4Þ ¼ 0.
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For each of the 24 simulation scenarios, we randomly generated 500 datasets. We estimated the average
causal effect of exposure using 8 different procedures: (1) the true outcome model, (2) the fully adjusted
model, (3) Bayesian model averaging (BMA) with a uniform prior distribution on the outcome model, (4)
Bayesian adjustment for confounding (BAC) with ω chosen with cross-validation criterion Cm

V ðωÞ proposed
in Lefebvre et al. [7], (5) BAC with ω ¼ 1, (6) Two-stage Bayesian adjustment for confounding (TBAC) with
ω ¼ 1, (7) N-BCEE, and (8) A-BCEE. For both N-BCEE and A-BCEE, we used ω ¼ c

ffiffiffi
n
p

and considered
c ¼ 100, c ¼ 500 and c ¼ 1000. For each scenario and each method of estimation, we computed the
average causal effect estimate (Mean), the average standard error estimate (SEE), the standard deviation
of the estimates (SDE), the root mean squared error (

ffiffiffiffiffiffiffiffiffiffi
MSE
p

) and the coverage probability of 95% confidence
intervals (CP). All 95% confidence intervals were computed using the normal approximation β̂ 	 1:96SEE.
Tables 3, 4, 5 and 6 summarize the results for β ¼ 0:1. The marginal posterior probability of inclusion of

Table 3: Comparison of estimates of β obtained from the true outcome model, the fully adjusted model, BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the first data-generating process (DGP1).

n Method Mean SEE SDE
ffiffiffiffiffiffiffiffiffiffi
MSE
p

CP

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (Cm
V ðωÞ) . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (Cm
V ðωÞ) . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

, True model . . . . 

, Fully adjusted model . . . . 

, BMA . . . . 

, BAC (Cm
V ðωÞ) . . . . 

, BAC (ω ¼ 1) . . . . 

, TBAC (ω ¼ 1) . . . . 

, N-BCEE (c¼ ) . . . . 

, N-BCEE (c¼ ) . . . . 

, N-BCEE (c¼ ) . . . . 

, A-BCEE (c¼) . . . . 

, A-BCEE (c¼) . . . . 

, A-BCEE (c¼) . . . . 

Note: Mean is the mean estimated value of β where the true value is 0.1, SEE is the mean standard error estimate, SDE is the standard
deviation of the estimates of β,

ffiffiffiffiffiffiffiffiffiffi
MSE
p

is the squared-root of the mean squared error, CP is the coverage probability in % of 95%
confidence intervals.
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each potential confounding covariate can be found in Tables 11 to 14 in Appendix E. The results for β ¼ 0
are similar (not presented).

We start by discussing the results pertaining to non-BCEE methods for estimating the average causal
effect of exposure. Then, we discuss the results for BCEE and contrast them to the former results.

As expected, Bayesian model averaging (BMA) can perform very poorly to estimate the average causal
effect. More precisely, the simulation results show that the bias can be substantial when the most important
confounding covariates are only slightly associated with the outcome (DGP2 and DGP3). For instance, in
DGP2, U3 and U4 are important confounding covariates often excluded by BMA (see Table 12 in Appendix
E). Similarly, in DGP3, U1 is often excluded by BMA (see Table 13). This situation also yields confidence

Table 4: Comparison of estimates of β obtained from the true outcome model, the fully adjusted model, BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the second data-generating process (DGP2).

n Method Mean SEE SDE
ffiffiffiffiffiffiffiffiffiffi
MSE
p

CP

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (Cm
V ðωÞ) . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (Cm
V ðωÞ) . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

, True model . . . . 

, Fully adjusted model . . . . 

, BMA . . . . 

, BAC (Cm
V ðωÞ) . . . . 

, BAC (ω ¼ 1) . . . . 

, TBAC (ω ¼ 1) . . . . 

, N-BCEE (c¼ ) . . . . 

, N-BCEE (c¼ ) . . . . 

, N-BCEE (c¼ ) . . . . 

, A-BCEE (c¼ ) . . . . 

, A-BCEE (c¼ ) . . . . 

, A-BCEE (c¼ ) . . . . 

Note: Mean is the mean estimated value of β where the true value is 0.1, SEE is the mean standard error estimate, SDE is the standard
deviation of the estimates of β,

ffiffiffiffiffiffiffiffiffiffi
MSE
p

is the squared-root of the mean squared error, CP is the coverage probability in % of 95%
confidence intervals.
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intervals with poor coverage probabilities. Although increasing sample size seems to reduce the bias, the
coverage probability remains mostly unchanged. In situations where the most important confounding
covariates are strongly associated with the outcome (DGP1 and DGP4), BMA performs very well both in
terms of mean squared error (MSE) and coverage probability.

The simulation results also support the claim that BAC and TBAC with ω ¼ 1 do not yield a notable
reduction in the variance of the estimated causal effect as compared to the fully adjusted model. This is partly
due to the fact that BAC and TBAC tend to include more covariates than needed to achieve unbiasedness (see
Appendix E). Moreover, using BAC with cross-validation criterion Cm

V ðωÞ gives relatively poor results. Even
though this method sometimes gives smaller MSE than BAC with ω ¼ 1, the estimated standard
error remarkably underestimate the true standard error (the standard deviation of the estimates of β).

Table 5: Comparison of estimates of β obtained from the true outcome model, the fully adjusted model, BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the third data-generating process (DGP3).

n Method Mean SEE SDE
ffiffiffiffiffiffiffiffiffiffi
MSE
p

CP

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (Cm
V ðωÞ) . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 N-BCEE (c¼) . . . . 

 N-BCEE (c¼) . . . . 

 N-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (Cm
V ðωÞ) . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 N-BCEE (c¼) . . . . 

 N-BCEE (c¼) . . . . 

 N-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

, True model . . . . 

, Fully adjusted model . . . . 

, BMA . . . . 

, BAC (Cm
V ðωÞ) . . . . 

, BAC (ω ¼ 1) . . . . 

, TBAC (ω ¼ 1) . . . . 

, N-BCEE (c¼) . . . . 

, N-BCEE (c¼) . . . . 

, N-BCEE (c¼) . . . . 

, A-BCEE (c¼) . . . . 

, A-BCEE (c¼) . . . . 

, A-BCEE (c¼) . . . . 

Note: Mean is the mean estimated value of β where the true value is 0.1, SEE is the mean standard error estimate, SDE is the standard
deviation of the estimates of β,

ffiffiffiffiffiffiffiffiffiffi
MSE
p

is the squared-root of the mean squared error, CP is the coverage probability in % of 95%
confidence intervals.
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One possible explanation for this underestimation is that BAC with Cm
V ðωÞ neglects the uncertainty associated

with the choice of the hyperparameter ω.
The simulation results show that the choice of using ω ¼ c

ffiffiffi
n
p

, c 2 ½100; 1000�, for A-BCEE and N-BCEE
is reasonable. The results do not appear too sensitive to the choice of c in this interval. The simulation
results also confirm that N-BCEE can yield lower than expected coverage probabilities. This seems to be
particularly true in complex scenarios that contain many covariates, such as DGP2, DGP3 and DGP4.

Despite sometimes producing slightly biased estimates, A-BCEE performs at least as well as BAC and
TBAC with ω ¼ 1 in terms of MSE. The bias is small enough that in all simulation scenarios we
considered, A-BCEE (with any c) yields appropriate coverage probability. In general, A-BCEE gives less
weight to variables only associated with the exposure than BAC and TBAC (see Appendix E). In DGP1,

Table 6: Comparison of estimates of β obtained from the true outcome model, the fully adjusted model, BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the fourth data-generating process (DGP4).

n Method Mean SEE SDE
ffiffiffiffiffiffiffiffiffiffi
MSE
p

CP

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (Cm
V ðωÞ) . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (Cm
V ðωÞ) . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 N-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

 A-BCEE (c¼ ) . . . . 

, True model . . . . 

, Fully adjusted model . . . . 

, BMA . . . . 

, BAC (Cm
V ðωÞ) . . . . 

, BAC (ω ¼ 1) . . . . 

, TBAC (ω ¼ 1) . . . . 

, N-BCEE (c¼ ) . . . . 

, N-BCEE (c¼ ) . . . . 

, N-BCEE (c¼ ) . . . . 

, A-BCEE (c¼ ) . . . . 

, A-BCEE (c¼ ) . . . . 

, A-BCEE (c¼ ) . . . . 

Note: Mean is the mean estimated value of β where the true value is 0.1, SEE is the mean standard error estimate, SDE is the standard
deviation of the estimates of β,

ffiffiffiffiffiffiffiffiffiffi
MSE
p

is the squared-root of the mean squared error, CP is the coverage probability in % of 95%
confidence intervals.
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A-BCEE outperforms BAC and TBAC with ω ¼ 1 in terms of MSE. In DGP2 and DGP4, A-BCEE has smaller
MSE than BAC and TBAC although comparatively to a lesser extent. Results are quite similar between
BAC, TBAC and A-BCEE in DGP3. Note that in DGP3, the true model and the fully adjusted model have
the same MSE. There is thus no possible gain in using another model than the fully adjusted model.
Figure 1 illustrates the distribution of β̂ obtained by using A-BCEE and BAC with ω ¼ 1 for all four data-
generating processes with n ¼ 200 (analogous figures are displayed in Appendix F with n ¼ 600 and
n ¼ 1000). This figure shows how estimates obtained with A-BCEE, despite being slightly biased, are
more concentrated around the true value β than estimates obtained with BAC. Moreover, Figure 1
illustrates the bias-variance tradeoff associated with the choice of c in A-BCEE: smaller values of c, as
compared to larger values of c, favor a reduced variance in the estimator of the causal effect at the cost of
an increase in bias.

On the basis of these results, we hypothesized that BCEE would perform best when (1) there are some
direct causes of the exposure that are strongly associated with the exposure, and (2) there exists variables
that can d-separate those direct causes from the outcome. In such situations, we expect BCEE to favor
models excluding those direct causes and including the d-separating variables. To verify this, we simulated
data according to a fifth data-generating scenario (DGP5) which meets these two conditions. The equations
for DGP5 are:
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Figure 1: Comparison of the distribution of β̂ obtained from BAC (ω ¼ 1) and A-BCEE (c¼ 100, 500, and 1,000) for all four
data-generating processes and a sample size n ¼ 200. The red line corresponds to the true value β¼0.1.
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U5 ¼ U1 þ U2 þ U3 þ U4 þ �5

X ¼ U1 þ U2 þ U3 þ U4 þ �X

Y ¼ U5 þ βX þ �Y ;

where �5; �X; �Y, N(0,1), all independent. In this example, BCEE’s prior distribution, PBðαYÞ, is devised to
give non negligible prior weight to the two following sufficient outcome models: (i) the one including
fU1;U2;U3;U4g, and (ii) the one including only fU5g. However, because the marginal likelihood of the
model (ii) should dominate the one of model (i) for large n, we expect the second outcome model to receive
increased posterior weight as n grows. To reduce computational burden, we only considered β ¼ 0:1 and
did not estimate β with N-BCEE. The results are presented in Table 7. Those results show how under such
ideal conditions, the MSE obtained by using A-BCEE is much smaller than the one obtained using the fully
adjusted outcome model, BAC or TBAC. In fact, A-BCEE’s MSE is similar to the MSE of the true outcome
model. Moreover, Table 15 in Appendix E reveals that models including U5, but excluding U1, U2, U3 and U4

are favored by A-BCEE, particularly for the larger sample sizes. Indeed, the marginal posterior probabilities
of covariates U1 to U4 decrease with sample size while the posterior probability of U5 remains at 1 for all
sample sizes considered. This is as opposed to BAC and TBAC where the full model (including U1 to U5)
receives a posterior probability of 1 at all sample sizes.

Table 7: Comparison of estimates of β obtained from the true outcome model, the fully adjusted model, BMA, BAC, TBAC and
A-BCEE for 500 Monte Carlo replicates of the fifth data-generating process (DGP5).

n Method Estimate SEE SDE
ffiffiffiffiffiffiffiffiffiffi
MSE
p

CP

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (Cm
V ðωÞ) . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (Cm
V ðωÞ) . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

, True model . . . . 

, Fully adjusted model . . . . 

, BMA . . . . 

, BAC (Cm
V ðωÞ) . . . . 

, BAC (ω ¼ 1) . . . . 

, TBAC (ω ¼ 1) . . . . 

, A-BCEE (c¼) . . . . 

, A-BCEE (c¼) . . . . 

, A-BCEE (c¼) . . . . 

Note: Mean is the mean estimated value of β where the true value is 0.1, SEE is the mean standard error estimate, SDE is the standard
deviation of the estimates of β,

ffiffiffiffiffiffiffiffiffiffi
MSE
p

is the squared-root of the mean squared error, CP is the coverage probability in % of 95%
confidence intervals.
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5 Application: estimation of the causal effect of perceived
mathematical competence on grades in mathematics

In this section we use A-BCEE to estimate the causal effect of perceived competence in mathematics
(measured on a scale from 1 to 7) on self-reported grades (in %) in mathematics. We consider
longitudinal data obtained from 1,430 students during their first three years of highschool. Participants
lived in various regions throughout Quebec, Canada. The data were collected by postal questionnaires
every year for a period of three years (time 1, time 2 and time 3). Further details can be found in Guay
et al. [24].

We used measures of perceived competence in mathematics at time 2 as the exposure and grades in
mathematics at time 3 as the outcome to estimate the causal effect of interest. Recall that A-BCEE requires
specifying a set of potential confounding covariates that includes all direct causes of the exposure and none
of its descendants. Moreover, it is beneficial that this set also includes strong predictors of the outcome. We
took advantage of the longitudinal feature of the data to build the set of potential confounding covariates.
Because a cause always precedes its effect in time, we constructed the set of potential confounding
covariates by including variables at time 1 that were potential direct causes of perceived-competence at
time 2. We also included variables at time 2 that were thought to be strong predictors of grades in
mathematics at time 3.

We selected the following 26 covariates: gender, highest level of education reached by the mother,
highest level of education reached by the father, perceived competence in mathematics (at time 1),
perceived autonomy support from the mother, perceived autonomy support from the father, perceived
autonomy support from the mathematics teacher, perceived autonomy support from friends at school,
self-reported mathematics’ grades, intrinsic motivation in mathematics, identified motivation in mathe-
matics, introjected motivation in mathematics, externally regulated motivation in mathematics, victimiza-
tion and sense of belonging to school. All variables except the first four were considered both at times 1
and 2.

Before applying A-BCEE on these data, we obtained some descriptive statistics. We drew scatter plots
of the outcome versus the exposure and versus each potential confounding covariate to roughly verify the
linearity assumption and to check for outliers. For the same reasons, we drew scatter plots of the
exposure versus each potential confounding covariate. We also noticed that only 46.5% of the
participants have complete information for all the selected covariates. The variables measured at time 1
have generally few missing cases (between 1.8% and 8.3%), but the variables measured at times 2
and 3 have a larger degree of missingness (between 26.4% and 36.4%). We performed multiple imputa-
tion [25] to account for the missing data, using 50 imputed datasets to ensure the power falloff is
negligible [26].

We estimated the causal effect of perceived competence on grades in mathematics using the fully
adjusted outcome model, A-BCEE with ω ¼ c

ffiffiffi
n
p

(c¼ 100, 500, 1,000), BAC, and TBAC (with ω ¼ 1).
Results are summarized in Table 8. The computational burden of BCEE on these data is manageable and
comparable to the one of TBAC, although quite heavier than the one of BAC when using the BACprior
package [27]. The approximate running times of A-BCEE, BAC, and TBAC on one imputed dataset are
respectively, 22.5, 1.2, and 21.2 min on a PC with 2.4 GHz and 8 Gb RAM.

Because Step S1 of A-BCEE aims to find the direct causes of the exposure, it is reasonable to only allow
covariates measured before the exposure to be selected in this step. Hence, we ran the A-BCEE algorithm a
second time, but this time excluding the possibility that covariates measured at time 2 enter the exposure
model. We denote this implementation of A-BCEE as A-BCEE* in Table 8.

Table 8 shows that the results from A-BCEE and A-BCEE* are very similar. This is not surprising since
the marginal posterior probability of inclusion of covariates do not differ much between A-BCEE and A-
BCEE* (not shown). Using A-BCEE instead of the fully adjusted model slightly decreases the standard error
of estimate, between 0.3% and 3.5%, which translates in a small decrease of the 95% confidence intervals’
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width. Moreover the standard errors of estimate for BAC and TBAC are slightly larger than the one for the
fully adjusted model in this illustration. Although the point estimates appear to vary substantially between
methods, the differences are small relative to the magnitude of the estimated standard errors. We conclude
that perceived competence in mathematics at one point in time likely has little or no causal effect on self-
reported grades in mathematics a year later.

6 Discussion

We have introduced the Bayesian causal effect estimation (BCEE) algorithm to estimate causal exposure
effects in observational studies. This novel data-driven approach avoids the need to rely on the specification
of a causal graph and aims to control the variability of the estimator of the exposure effect. BCEE employs a
prior distribution that is motivated by a theoretical proposition embedded in the graphical framework to
causal inference. We also proposed a practical implementation of BCEE, A-BCEE, that accounts for the fact
that this prior distribution uses information from the data. Using simulation studies, we found that A-BCEE
generally achieves at least some reduction of the MSE of the causal effect estimator as compared to the MSE
generated by a fully-adjusted model approach or by other data-driven approaches to causal inference, such as
BAC and TBAC, thus resulting in estimates that are overall closer to the true value. In some circumstances, the
reduction of the MSE can be substantial. Moreover, confidence intervals with appropriate coverage probabil-
ities were obtained. Hence, we believe that BCEE is a promising algorithm to perform causal inference.

Some current limitations of BCEE could be addressed in future research. The generalization to non
continuous exposure variable (e.g. binary) is straightforward. Recall that the first step of BCEE aims at
identifying the direct causes of the exposure. As in the normal case we have considered, classical Bayesian
procedures asymptotically select the true exposure model with probability 1 when assuming X belongs to an
exponential family (e.g. Bernoulli) and that an adequate parametric model is considered [12]. The general-
ization of BCEE to other types of outcome variables is less straightforward. One could specify a generalized
linear model for the outcome of the form gðE YijXi;Ui½ �Þ ¼ δ0 þ βXi þ

PM
m¼1 δmUim. However, unless g is the

identity or the log link, such models are generally not collapsible for β over covariate Um [28]. In other
words, the true value of β, and thus its interpretation, depends on whether Um is included or not in the
outcome model, even when Um is a not confounding covariate. In such circumstances, averaging the
estimated value of β over different outcome models would not be advisable.

We think that BCEE can be particularly helpful to those working in fields where current subject-matter
knowledge is sparse. To facilitate usage of the BCEE algorithm, we provide an R package named BCEE
(available at http://cran.r-project.org).

Table 8: Comparison of the estimated causal effect of perceived mathematical competence in
mathematics on self-reported mathematics’ grades.

Method Estimate SEE CI

Fully adjusted model . . (–., .)
BAC (ω ¼ 1) . . (–., .)
TBAC (ω ¼ 1) . . (–., .)
A-BCEE (c¼ ) . . (–., .)
A-BCEE (c¼ ) . . (–., .)
A-BCEE (c¼ ) . . (–., .)
A-BCEE* (c¼ ) . . (–., .)
A-BCEE* (c¼ ) . . (–., .)
A-BCEE* (c¼ ) . . (–., .)

Note: Estimate is the estimated causal effect, SEE is the standard error estimate, CI is a 95% confidence
interval for the causal effect.
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Appendix

A Proofs

A.1 Proof of Proposition 2.1

Proof. First, we know from Pearl [1] section 3.3.1 that a set Z is sufficient for identifying the causal effect of
an exposure X on an outcome Y if (i) no descendants of X are in Z and (ii) Z blocks all back-door paths
between X and Y. According to condition 1 we assume that there are no descendants of X in Z. Suppose that
G admits some back-door paths. All back-door paths are such that the second variable appearing in the
path is a direct cause of X; the back-door paths thus have the form X  Dj � � � ! Y .

Suppose that a direct cause Dj is included in Z. Then Dj (and therefore the set Z) blocks all back-door
paths of the form X  Dj � � � ! Y . Indeed no variable in ZnDj can reopen a path X  Dj � � � ! Y once closed
by Dj. Therefore, all back-door paths admitting a direct cause in Z are blocked by Z.

It remains to show that all back-door paths for which the second variable in the path is not a direct
cause included in Z are closed when condition 2b in the proposition holds. Consider Dj ‚Z. Now assume
that Y and Dj are d-separated by fX¨Zg. By the definition of d-separation, this means that every path
connecting Dj to Y is blocked by fX¨ Zg. Recall that all back-door paths associated with this Dj are of the
form X  Dj � � � ! Y . Because by (2b) Dj and Y are d-separated by fX¨ Zg and since each subpath
Dj � � � ! Y in these back-door paths does not contain the variable X, these subpaths are blocked by Z.
This reasoning is applied to each Dj ‚Z separately.

The proof is complete by the back-door criterion as we realize that all back-door paths, whether their Dj

is contained in Z or not, are blocked by Z. □

A.2 Proof of Corollary 2.1

Proof. 1. Suppose that G admits some back-door paths of the form X  Dj � � � ! Y . If Dj and Y are
d-separated by fX¨ Z 0g, then by definition of d-separation all paths between Dj and Y are blocked by
fX¨Z 0g. Using the same argument as the one used in the third paragraph of the proof of Proposition 2.1, it
follows that all back-door paths X  Dj � � � ! Y are blocked by Z 0.

2. To prove that Z 0 is sufficient for estimating the causal effect of X on Y, we show that all back-door
paths between X and Y are blocked by Z 0.

First, we consider the back-door paths that admit Dj as second variable. From point 1) of the corollary,
we already know that these back-door paths are blocked.

Next, we divide the back-door paths that do not admit Dj as second variable into two categories: (1) the
paths whose second variable is a Dj0 2 Z 0, j0�j, and (2) the paths whose second variable is a Dj0 ‚Z 0. For 1),
following the same argument as in the second paragraph of the proof of Proposition 2.1, we know that all
back-door paths whose second variable is a Dj0 2 Z 0 are blocked.
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The case where the second variable is a Dj0 ‚Z 0 is more involved. Here, note that Dj0 is not in Z either
since Z 0 ¼ ZnDj. The fact that Z is sufficient to identify the average causal effect according to Proposition
2.1 implies that Dj0 and Y are d-separated by fX¨Zg. Therefore, every path between Dj0 and Y is blocked
by fX¨ Zg. For those paths that do not include Dj, it is easy to see that they are also blocked by fX¨Z 0g.
For those paths that include Dj, that is, paths of the form Dj0 � � �Dj � � � ! Y, we know from point 1. that
they are blocked in the subpaths Dj � � � ! Y by fX¨Z 0g. Thus, every path between Dj0 and Y is blocked by
fX¨Z 0g, whether or not it includes Dj. Using the same arguments as the ones used in the third
paragraph of the proof of Proposition 2.1, it follows that all back-door paths X  Dj0 � � � ! Y are blocked
by fX¨ Z 0g. The whole reasoning is applied for each possible Dj0 , according to their inclusion or
exclusion in Z 0.

Hence, all back-door paths between X and Y in G are blocked by fX¨Z 0g. Also, because Z is sufficient
to identify the average causal effect according to Proposition 2.1, Z does not include any descendants of X
and therefore Z 0 does not either. According to the back-door criterion, Z 0 is thus sufficient to identify the
average causal effect and the proof is complete. □

B General conditions for the equivalence of zero regression
coefficient and conditional independence

We show that the independence of Y and Uk conditional on X and U1; :::;Uk�1;Ukþ1; :::;UM is equivalent to
having regression parameter δk associated to Uk in the linear regression of Y on X and U equal to zero under
less stringent assumptions than multivariate normality for the covariates X and U.

Consider the same normal linear model as in eq. (1)

Yi ¼ δ0 þ βXi þ
XM
m¼1

δmUim þ �i;

where �i ,
iid
Nð0; σ2Þ. We assume that this model is correctly specified, that is, the data for Y is

generated according to eq. (1) with possibly some regression coefficients set to 0. However, we make no
assumptions about the distribution of variables X and U. To simplify the notation, we denote
fU1; :::;Uk�1;Ukþ1; :::UMg by UnUk. We consider the case where Uk is a continuous variable. Similar argu-
ments can be used when Uk is discrete or has a mixture distribution. Using a conditional normal distribu-
tion for Y, we have

f ðyjx;uÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2πσ2
p exp � 1

2σ2
y � δ0 þ βx þ

XM
m¼1

δmum

 !" #28<:
9=;

and the conditional distribution of Y jX;UnUk can be calculated as

f ðyjx;unukÞ ¼
ð1
�1

f ðukjx;unukÞf ðyjx;uÞduk: ð11Þ

If δk ¼ 0

f ðyjx;uÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2πσ2
p exp � 1

2σ2
y � δ0 þ βx þ

X
m�k

δmum

 !" #28<:
9=;;

and the expression (11) for f ðyjx;unukÞ becomes
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ð1
�1

f ðukjx;unukÞ 1ffiffiffiffiffiffiffiffiffi
2πσ2
p exp � 1

2σ2
y � δ0 þ βx þ

X
m�k

δmum

 !" #28<:
9=;duk

¼ f ðyjx;uÞ
ð1
�1

f ðukjx;unukÞduk;

which equals f ðyjx;uÞ.
Thus if δk ¼ 0 in eq. (1) then Y??UkjX;UnUk. Also, it is obvious that if Y??UkjX;UnUk, then δk ¼ 0.

Therefore, assuming model (1) is correctly specified we have that Y??UkjX;UnUk if and only if δk ¼ 0. Recall
that no assumptions were made concerning the distribution of X and UnUk.

C The behavior of QαY

In Figure 2 we examine how the term QαY ðαYm ¼ 1jαXm ¼ 1Þ in the definition of PBðαYÞ behaves as a function

of the constant c, the sample size n and the standardized parameter ~δα
Y

m sUm=sY . Specifically, we take
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Figure 2: QαY αXm ¼ 1jαXm ¼ 1
� �

with ω ¼ c
ffiffiffi
n
p

as a function of c 2 ½0; 1000� for n ¼ 200; 600; 1000
and ~δα

Y

m sUm=sY ¼ 0:1 (a), ~δα
Y

m sUm=sY ¼ 0:05 (b) and ~δα
Y

m sUm=sY ¼ 0:01 (c).
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ω ¼ c
ffiffiffi
n
p

, as suggested in Section 3.2, and plot the QαY ðαYm ¼ 1jαXm ¼ 1Þ values as a function of c 2 ½0; 1000�
for fixed values of n (n ¼ 200; 600; 1000) and ~δα

Y

m sUm=sY (~δα
Y

m sUm=sY ¼ 0:1;0:05;0:01).
In Figure 2(A), we see that, for all sample sizes considered, QαY ðαY ¼ 1jαX ¼ 1Þ rapidly increase from 0

to the limit 1 as c goes from 0 to 1,000. This behavior is desirable since a standardized regression parameter
of 0.1 is non negligible. A similar pattern is seen in Figure 2(B), although the progression of

QαY ðαY ¼ 1jαX ¼ 1Þ from 0 to 1 is slightly less rapid. In Figure 2(C), the progression of QαY ðαY ¼ 1jαX ¼ 1Þ
is much slower, especially for the smaller sample size. This behavior is desirable as well since an effect size
of 0.01 would usually be considered as negligible.

D Additional simulations

We now address the secondary objectives with additional simulations. The first secondary goal is to study
the large, whilst finite, sample properties of BCEE. To do this, we examine four different simulation
scenarios obtained by considering the four data-generating processes (DGP1, DGP2, DGP3 and DGP4)
with a sample size of 10,000. Once again, for each scenario, we randomly generated 500 datasets. We
estimated the average causal effect of exposure using A-BCEE and N-BCEE with ω ¼ c

ffiffiffi
n
p

. Because the
sample size is large and the computational burden is heavy, we considered only one value of c (c ¼ 500).
The results are shown in Table 9. These simulations suggest that A-BCEE and N-BCEE with ω ¼ c

ffiffiffi
n
p

unbiasedly estimate the causal effect of exposure when n is large and when BCEE’s working assumptions
hold (i.e., U includes all direct causes of X and the normal linear model is a correct specification for both X
and Y).

The second secondary objective is to study the performance of B-BCEE to correct the confidence intervals
of N-BCEE. Since this bootstrapped implementation is very computationally intensive, we only considered
two simulation scenarios: DGP1 and DGP4 with a sample size of 200. In this case, only 100 datasets were
generated for each scenario. We estimated the causal effect of exposure using the fully adjusted model,
the true outcome model, BMA, BAC, TBAC, A-BCEE, N-BCEE and B-BCEE. For A-BCEE, N-BCEE and B-
BCEE we took ω ¼ c

ffiffiffi
n
p

with c ¼ 500. For B-BCEE we performed 200 bootstrap resamplings and con-
sidered an estimate with and without a bias correction. The results are presented in Table 10. We find
that the non-parametric bootstrap implementation of BCEE yields correct estimates of the standard error
of estimate and correct coverage probabilities. However, B-BCEE does not seem to be as efficient nor as
practical as A-BCEE.

Table 9: Estimates of β for N-BCEE and A-BCEE with a sample size of n¼ 10,000 for 500 Monte Carlo replicates of each
data-generating process.

DGP Method Mean SEE SDE
ffiffiffiffiffiffiffiffiffiffi
MSE
p

CP

 N-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 N-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 N-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 N-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

Note: DGP is the data-generating process, Mean is the mean estimated value of β where the true value is 0.1, SEE is the mean standard
error estimate, SDE is the standard deviation of the estimates of β,

ffiffiffiffiffiffiffiffiffiffi
MSE
p

is the squared-root of the mean squared error, CP is the
coverage probability in % of 95% confidence intervals.
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Table 10: Comparison of estimates of β obtained from the true model, the fully adjusted model, BMA, BAC, TBAC, N-BCEE,
A-BCEE and B-BCEE for the first and fourth data-generating processes (DGP1 and DGP4). Sample size is n ¼ 200, 100 datasets
were generated for each data-generating process. For B-BCEE, 200 bootstrap resamplings were performed.

DGP Method Mean SEE SDE
ffiffiffiffiffiffiffiffiffiffi
MSE
p

CP

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 N-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 B-BCEE (c¼ , no bias corr.) . . . . 

 B-BCEE (c¼ , w/bias corr.) . . . . 

 True model . . . . 

 Fully adjusted model . . . . 

 BMA . . . . 

 BAC (ω ¼ 1) . . . . 

 TBAC (ω ¼ 1) . . . . 

 N-BCEE (c¼) . . . . 

 A-BCEE (c¼) . . . . 

 B-BCEE (c¼ , no bias corr.) . . . . 

 B-BCEE (c¼ , w/bias corr.) . . . . 

Note: DGP is the data-generating process, Mean is the mean estimated value of β where the true value is 0.1, SEE is the mean standard
error estimate, SDE is the standard deviation of the estimates of β,

ffiffiffiffiffiffiffiffiffiffi
MSE
p

is the squared-root of the mean squared error, CP is the
coverage probability in % of 95% confidence intervals.

Table 11: Marginal posterior probability of inclusion of potential confounding covariate Um, m ¼ 1; :::; 5, for BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the first data-generating process (DGP1). The covariates included in the
true outcome model are fU3;U4;U5g.

n Method U1 U2 U3 U4 U5

 BMA . . . . .
 BAC (Cm

V ðωÞ) . . . . .
 BAC (ω ¼ 1) . . . . .
 TBAC (ω ¼ 1) . . . . .
 N-BCEE (c¼ ) . . . . .
 N-BCEE (c¼ ) . . . . .
 N-BCEE (c¼ ) . . . . .
 A-BCEE (c¼) . . . . .
 A-BCEE (c¼) . . . . .
 A-BCEE (c¼) . . . . .

 BMA . . . . .
 BAC (Cm

V ðωÞ) . . . . .
 BAC (ω ¼ 1) . . . . .
 TBAC (ω ¼ 1) . . . . .
 N-BCEE (c¼ ) . . . . .

(continued )
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Table 11: (continued )

n Method U1 U2 U3 U4 U5

 N-BCEE (c¼) . . . . .
 N-BCEE (c¼) . . . . .
 A-BCEE (c¼ ) . . . . .
 A-BCEE (c¼ ) . . . . .
 A-BCEE (c¼ ) . . . . .

, BMA . . . . .
, BAC (Cm

V ðωÞ) . . . . .
, BAC (ω ¼ 1) . . . . .
, TBAC (ω ¼ 1) . . . . .
, N-BCEE (c¼) . . . . .
, N-BCEE (c¼) . . . . .
, N-BCEE (c¼) . . . . .
, A-BCEE (c¼ ) . . . . .
, A-BCEE (c¼ ) . . . . .
, A-BCEE (c¼ ) . . . . .

Table 12: Marginal posterior probability of inclusion of potential confounding covariate Um, m ¼ 1; :::; 5; 7; 8, for BMA, BAC,
TBAC, N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the second data-generating process (DGP2). The covariates
included in the true outcome model are fU3;U4;U5g.

n Method U1 U2 U3 U4 U5 U7 U8

 BMA . . . . . . .
 BAC (Cm

V ðωÞ) . . . . . . .
 BAC (ω ¼ 1) . . . . . . .
 TBAC (ω ¼ 1) . . . . . . .
 N-BCEE (c¼ ) . . . . . . .
 N-BCEE (c¼ ) . . . . . . .
 N-BCEE (c¼ ) . . . . . . .
 A-BCEE (c¼) . . . . . . .
 A-BCEE (c¼) . . . . . . .
 A-BCEE (c¼) . . . . . . .

 BMA . . . . . . .
 BAC (Cm

V ðωÞ) . . . . . . .
 BAC (ω ¼ 1) . . . . . . .
 TBAC (ω ¼ 1) . . . . . . .
 N-BCEE (c¼ ) . . . . . . .
 N-BCEE (c¼ ) . . . . . . .
 N-BCEE (c¼ ) . . . . . . .
 A-BCEE (c¼) . . . . . . .
 A-BCEE (c¼) . . . . . . .
 A-BCEE (c¼) . . . . . . .

, BMA . . . . . . .
, BAC (Cm

V ðωÞ) . . . . . . .
, BAC (ω ¼ 1) . . . . . . .
, TBAC (ω ¼ 1) . . . . . . .
, N-BCEE (c¼ ) . . . . . . .
, N-BCEE (c¼ ) . . . . . . .
, N-BCEE (c¼ ) . . . . . . .
, A-BCEE (c¼) . . . . . . .
, A-BCEE (c¼) . . . . . . .
, A-BCEE (c¼) . . . . . . .
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Table 13: Marginal posterior probability of inclusion of potential confounding covariate Um, m ¼ 1; :::; 4, for BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the third data-generating process (DGP3). The covariates included in the
true outcome model are fU1;U2g.

n Method U1 U2 U3 U4

 BMA . . . .
 BAC (Cm

V ðωÞ) . . . .
 BAC (ω ¼ 1) . . . .
 TBAC (ω ¼ 1) . . . .
 N-BCEE (c¼) . . . .
 N-BCEE (c¼) . . . .
 N-BCEE (c¼) . . . .
 A-BCEE (c¼) . . . .
 A-BCEE (c¼) . . . .
 A-BCEE (c¼) . . . .

 BMA . . . .
 BAC (Cm

V ðωÞ) . . . .
 BAC (ω ¼ 1) . . . .
 TBAC (ω ¼ 1) . . . .
 N-BCEE (c¼) . . . .
 N-BCEE (c¼) . . . .
 N-BCEE (c¼) . . . .
 A-BCEE (c¼) . . . .
 A-BCEE (c¼) . . . .
 A-BCEE (c¼) . . . .

, BMA . . . .
, BAC (Cm

V ðωÞ) . . . .
, BAC (ω ¼ 1) . . . .
, TBAC (ω ¼ 1) . . . .
, N-BCEE (c¼) . . . .
, N-BCEE (c¼) . . . .
, N-BCEE (c¼) . . . .
, A-BCEE (c¼) . . . .
, A-BCEE (c¼) . . . .
, A-BCEE (c¼) . . . .

Table 14: Marginal posterior probability of inclusion of potential confounding covariate Um, m ¼ 1; :::; 6, for BMA, BAC, TBAC,
N-BCEE, and A-BCEE for 500 Monte Carlo replicates of the fourth data-generating process (DGP4). The covariates included in the
true outcome model are fU4;U5;U6g.

n Method U1 U2 U3 U4 U5 U6

 BMA . . . . . .
 BAC (Cm

V ðωÞ) . . . . . .
 BAC (ω ¼ 1) . . . . . .
 TBAC (ω ¼ 1) . . . . . .
 N-BCEE (c¼) . . . . . .
 N-BCEE (c¼) . . . . . .
 N-BCEE (c¼) . . . . . .
 A-BCEE (c¼ ) . . . . . .
 A-BCEE (c¼ ) . . . . . .
 A-BCEE (c¼ ) . . . . . .

 BMA . . . . . .
 BAC (Cm

V ðωÞ) . . . . . .
 BAC (ω ¼ 1) . . . . . .
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Table 14: (continued )

n Method U1 U2 U3 U4 U5 U6

 TBAC (ω ¼ 1) . . . . . .
 N-BCEE (c¼ ) . . . . . .
 N-BCEE (c¼ ) . . . . . .
 N-BCEE (c¼ ) . . . . . .
 A-BCEE (c¼) . . . . . .
 A-BCEE (c¼) . . . . . .
 A-BCEE (c¼) . . . . . .

, BMA . . . . . .
, BAC (Cm

V ðωÞ) . . . . . .
, BAC (ω ¼ 1) . . . . . .
, TBAC (ω ¼ 1) . . . . . .
, N-BCEE (c¼ ) . . . . . .
, N-BCEE (c¼ ) . . . . . .
, N-BCEE (c¼ ) . . . . . .
, A-BCEE (c¼) . . . . . .
, A-BCEE (c¼) . . . . . .
, A-BCEE (c¼) . . . . . .

Table 15: Marginal posterior probability of inclusion of potential confounding covariate Um, m ¼ 1; :::; 5, for BMA, BAC,
TBAC, and A-BCEE for 500 Monte Carlo replicates of the fifth data-generating process (DGP5). The true outcome model includes
only U5.

n Method U1 U2 U3 U4 U5

 BMA . . . . .
 BAC (Cm

V ðωÞ) . . . . .
 BAC (ω ¼ 1) . . . . .
 TBAC (ω ¼ 1) . . . . .
 A-BCEE (c¼) . . . . .
 A-BCEE (c¼) . . . . .
 A-BCEE (c¼) . . . . .

 BMA . . . . .
 BAC (Cm

V ðωÞ) . . . . .
 BAC (ω ¼ 1) . . . . .
 TBAC (ω ¼ 1) . . . . .
 A-BCEE (c¼) . . . . .
 A-BCEE (c¼) . . . . .
 A-BCEE (c¼) . . . . .

, BMA . . . . .
, BAC (Cm

V ðωÞ) . . . . .
, BAC (ω ¼ 1) . . . . .
, TBAC (ω ¼ 1) . . . . .
, A-BCEE (c¼) . . . . .
, A-BCEE (c¼) . . . . .
, A-BCEE (c¼) . . . . .
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F Comparison of the distribution of β̂ obtained from A-BCEE
and BAC
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Figure 3: Comparison of the distribution of β̂ obtained from BAC (ω ¼ 1) and A-BCEE (c¼ 100, 500, and 1,000) for all four
data-generating processes and a sample size n ¼ 600. The red line corresponds to the true value β¼0.1.
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