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Abstract: In this article, we study the causal inference problem with a continuous treatment variable using
propensity score-based methods. For a continuous treatment, the generalized propensity score is defined as
the conditional density of the treatment-level given covariates (confounders). The dose–response function
is then estimated by inverse probability weighting, where the weights are calculated from the estimated
propensity scores. When the dimension of the covariates is large, the traditional nonparametric density
estimation suffers from the curse of dimensionality. Some researchers have suggested a two-step estimation
procedure by first modeling the mean function. In this study, we suggest a boosting algorithm to estimate
the mean function of the treatment given covariates. In boosting, an important tuning parameter is the
number of trees to be generated, which essentially determines the trade-off between bias and variance of
the causal estimator. We propose a criterion called average absolute correlation coefficient (AACC) to
determine the optimal number of trees. Simulation results show that the proposed approach performs
better than a simple linear approximation or L2 boosting. The proposed methodology is also illustrated
through the Early Dieting in Girls study, which examines the influence of mothers’ overall weight concern
on daughters’ dieting behavior.
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1 Introduction

Much of the literature on propensity scores in causal inference has focused on binary treatments. In the past
decade, a few studies (e.g., Lechner [1]; Imai and Van Dyk [2]; Tchernis et al. [3]; Karwa et al. [4]; and
McCaffrey et al. [5]) have extended propensity score-based approaches to categorical treatments with more
than two levels.

In this article, we consider the problem of causal inference when the treatment is quantitative.
Quantitative treatments are very common in practice, such as dosage in biomedical studies [6], number
of cigarettes in prevention studies [2] and duration of training in labor studies [7]. In the special case of
continuous treatments, a main objective is to estimate the dose–response function. Hirano and Imbens [8]
propose a two-step procedure for estimating the dose–response function and suggest a technique called
“blocking” to evaluate the balance in the covariates after adjusting for the propensity scores. An alternative
approach [9] is based on marginal structural models (MSMs). In MSMs, we specify a response function and
employ IPW to consistently estimate the parameters of the function.
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A key step in both approaches is to estimate the generalized propensity score, which is defined as the
conditional density of the treatment-level given the covariates. Conditional density is usually estimated
nonparametrically, such as kernel estimation or local polynomial estimation (e.g., Hall et al. [10]; Fan et al.
[11]). When there are a large number of covariates in the study, the nonparametric estimation of the
conditional density suffers from the curse of dimensionality. Given the limited literature on this topic, we
propose a boosting algorithm to estimate the generalized propensity score. In boosting, the number of trees
to be generated is an important tuning parameter, which essentially determines the trade-off between bias
and variance of the targeted causal estimator. In the binary treatment case, it has been suggested that the
optimal number of trees be determined by minimizing the average standardized absolute mean (ASAM)
difference between the treatment group and the control group [12]. The standardized mean difference is also
a well-established criterion to assess balance in the potential confounders after weighting. This idea can
easily be extended to the categorical treatment case. Similarly, for a continuous treatment, we could divide
the treatment into several categories and draw causal inference based on the categorical treatment.
However, doing so may introduce subjective bias and information loss. Instead, we aim to develop an
innovative criterion that minimizes the correlation between the continuous treatment variable and the
covariates after weighting.

This article proceeds as follows. In Section 2, we review the concepts of dose–response function,
generalized propensity scores and the ignorability assumption. In Section 3, we propose a boosting method
to estimate the generalized propensity scores and propose an innovative criterion to determine the optimal
number of trees in boosting. A detailed algorithm is described and the corresponding R code is provided in
the Appendix. In Section 4, we compare the proposed methods through simulation studies, and a data
analysis application to the Early Dieting in Girls study is presented in Section 5. Some discussion concludes
Section 6.

2 Dose–response function

2.1 Definition and assumptions

Let Y denote the response of interest, T be the treatment level and X be a p-dimensional vector of baseline
covariates. The observed data can be represented as ðYi;Ti;XiÞ, i ¼ 1; . . . ; n, a random sample from ðY ;T;XÞ.
In addition to the observed quantities, we further define YiðtÞ as the potential outcome if subject i were
assigned to treatment-level t. Here, T is a random variable and t is a specific level of T. The dose–response
function we are interested in estimating is μðtÞ ¼ E½YiðtÞ�, and we assume YiðtÞ is well defined for t 2 τ,
where τ is a continuous domain.

Similar to the binary case, the ignorability assumption is as follows:

f ðtjYðtÞ;XÞ ¼ f ðtjXÞ; for t 2 τ;

where f ðtj�Þ refers to the conditional density. That is, the treatment assignment is conditionally independent
of the potential outcomes given the covariates. In other words, we assume there are no unmeasured
covariates that may jointly influence the treatment assignment and potential outcomes.

Denote the generalized propensity score as rðt;XÞ;fTjXðtjXÞ, which is the conditional density of
observing the treatment-level t given the covariates [6]. The ignorability assumption implies

f ðtjYðtÞ; rðt;XÞÞ ¼ f ðtjrðt;XÞÞ; for t 2 τ:

That is, to adjust for confounding, it is sufficient to condition on the generalized propensity scores instead
of conditioning on the vector of covariates, which might be high dimensional.
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2.2 Estimation based on marginal structural models

Under the ignorability assumption, we focus on the marginal structural model approach to estimate the
dose–response function proposed by Robins [9] and Robins et al. [13]. The method works by building a
marginal structural model for the potential outcomes. For example, we may assume a linear model:

E½YðtÞ� ¼ α0 þ α1t: ½1�

Model (1) is marginal because it is defined for the expected value of potential outcomes without condition-
ing on any covariates (which is different from regression models). Based on the observed data ðYi;Ti;XiÞ,
i ¼ 1; . . . ; n, the parameters in eq. (1) can be consistently estimated by IPW. For the ith subject, the weight is

wi ¼ fTðTiÞ
fTjXðTijXiÞ ¼

rðTiÞ
rðTi;XiÞ ; for i ¼ 1; . . . ; n: ½2�

There are two important issues related to this approach: (i) the estimation of the inverse probability
weights; (ii) the functional form of the outcome model in eq. (1). The first issue is the main topic of this
article and will be explored in the next section. Here we briefly discuss the second issue. The consistency
result of MSM estimators relies on the correct specification of the outcome model. However, the true form of
E½YðtÞ� is unknown in reality and a flexible model is always preferred. In the data application, we assume a
regression spline function [14] for the outcome model:

E½YðtÞ� ¼ β0 þ β1t þ � � � þ βpt
p þ βpþ1ðt � τ1Þpþ þ � � � þ βpþKðt � τKÞpþ; ½3�

where upþ ¼ ðuþÞp is a truncated power function and uþ ¼ maxð0; uÞ. p is the order of the polynomial
function and K is the total number of inner knots. The inner knots are either distributed evenly on τ or
defined as the equally spaced sample quantiles of Ti, i ¼ 1; . . . ; n. That is,

τj ¼ T ½100j=ðK þ 1Þ�ð Þ; j ¼ 1; 2; . . . ;K;

where TðiÞ is the ith quantile of T1, T2, …, Tn.
To determine the regression spline function, we need to find the optimal p and K. The traditional model

selection criteria, such as AIC and BIC, are based on a simple random sample. These criteria can be
extended to determine the form of the marginal structural model for a non-randomized sample [15, 16].
Under the assumption that Y is normally distributed, the weighted AIC can be defined as

AICw ¼
Xn
i¼1

wi

 !
ln

Pn
i¼1

wiðYi � ŶiÞ
2

Pn
i¼1

wi

0
BBB@

1
CCCA þ 2l; ½4�

where l is the total number of parameters. In eq. (3), l ¼ K þ pþ 1. Notice that in this stage, we treat w0
is as

fixed. Similarly, we define the weighted BIC as

BICw ¼
Xn
i¼1

wi

 !
ln

Pn
i¼1

wiðYi � Ŷ iÞ2

Pn
i¼1

wi

0
BB@

1
CCA þ ln

Xn
i¼1

wi

 !
l: ½5�

We will illustrate the specification of the outcome model through the data application in Section 5.3. In the
next section, we will focus on the first issue and propose a boosting algorithm for estimating the generalized
propensity scores.

Y. Zhu et al.: A Boosting Algorithm 27



3 The proposed method

3.1 Modeling the generalized propensity scores

In the MSM approach, the estimation of w0
is in eq. (2) is essential. For simplicity, we assume T follows a

normal distribution so that rðTiÞ can be easily estimated by normal density. To be noticed, if the normality
assumption does not hold for T, we can always employ a nonparametric method, such as Kernel density
estimation, to estimate rðTiÞ. To estimate rðTi;XiÞ, a traditional way is to assume

T ¼ X0β þ "; ",Nð0; σ2Þ: ½6�
Then, the estimation of rðTi;XiÞ follows two steps [13]:
1. Run a multiple regression of Ti on Xi, i ¼ 1; . . . ; n and get T̂i and σ̂;
2. Calculate the residuals "̂i ¼ Ti � T̂i; rðTi;XiÞ can be approximated by

r̂ðTi;XiÞ � f ð"̂iÞ � 1ffiffiffiffiffi
2π

p
σ̂
exp � "̂i

2

2σ̂2

� �
: ½7�

Because the ignorability assumption is untestable, researchers usually collect a large number of covariates,
which means X is high dimensional. In this case, eq. (6) may not hold. A more general approach is to assume

T ¼ mðXÞ þ "; ",Nð0; σ2Þ: ½8�
where mðXÞ is the mean function of T given X. We advocate a machine learning algorithm, boosting, to
estimate mðXÞ. The advantage of boosting is that it is a nonparametric algorithm that can automatically
pick important covariates, nonlinear terms and interaction terms among covariates [12]. It fits an additive
model and each component (base learner) is a regression tree. Mathematically, it can be written as:

mðXÞ ¼
XM
m¼1

XKm

j¼1

cmjIfX 2 Rmjg; ½9�

where M is the total number of trees, Km is the number of terminal nodes for the mth tree, Rmj is the indicator
of rectangular region in the feature space spanned by X and cmj is the predicted constant in region Rmj. Km and
Rmj are determined by optimizing some nonparametric information criterion, such as Entropy, misclassification
rate or Gini Index. cmj is simply the average value of Ti in the training data that fall in the region Rmj. Details
about how to construct a tree classifier can be found in Breiman et al. [17].

In boosting, M is an important tuning parameter. It determines the trade-off between bias and variance
of the causal estimator. In inverse weighted methods, if subject i receives a weight wi, it means the subject
will be replicated wi � 1 times; that is, there will be wi � 1 replications in the weighted pseudo-sample. In
the weighted sample, if the propensity scores are correctly estimated, the treatment assignment and the
covariates are supposed to be unconfounded under the ignorability assumption [13]. Consequently, the
causal effect can be estimated as in a simple randomized study without confounding. Therefore, a reason-
able criterion is to stop the algorithm at the number of trees such that the treatment assignment and the
covariates are independent (unconfounded) in the weighted sample. Next, we propose stopping criteria for
boosting based on this idea.

3.2 Algorithm

We propose four different criteria (summarized in Table 1) for how to measure the degree of independence/
correlation between the treatment and each covariate. These criteria are named as “Pearson/polyserial,”
“Spearman,” “Kendall” and “distance.” Pearson/polyserial, Spearman and Kendall correlations are
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commonly used correlation matrices; distance correlation [18, 19] is the most recently proposed and is
gaining popularity due to its nice property: it can be defined for two variables of arbitrary dimensions and
arbitrary types. Next, we will briefly describe these four correlations.

We denote one of the covariates as Xj, for j ¼ 1; 2; . . . ; J, where J is the total number of covariates. If both T
and Xj are normally distributed, the Pearson correlation coefficient will be zero given that T and Xj are
independent. When Xj is categorical, the Pearson correlation coefficient could be biased [20]. Instead, we
should use the polyserial correlation coefficient [21], which essentially assumes that the categorical variable is
obtained by classifying an underlying continuous variable X0

j. The unknown parameters of X0
j can be estimated

by maximum likelihood. Then, the polyserial correlation is calculated as the Pearson correlation between T
and X0

j. Spearman and Kendall correlation coefficients are rank-based correlations that can be applied to both
continuous and categorical variables. If T and Xj are independent, we would expect the Spearman and Kendall
correlation coefficients to be close to zero. A more flexible measurement of correlation/independence is
distance correlation. The distance correlation takes values between zero and one and it equals zero if and
only if T and Xj are independent, regardless of the type of Xj.

In the binary treatment case, to check whether the propensity scores adequately balance the covariates,
we calculate the standardized difference in the weighted mean between the treatment group and the control
group. If balance is achieved, the difference should be small. In the continuous case, we propose a general
algorithm that uses bootstrapping to calculate the weighted correlation coefficient. The procedure requires
the following steps for each value of M (number of trees).
1. Calculate r̂ðTi;XiÞ using boosting with M trees. Then, calculate

wi ¼ r̂ðTiÞ
r̂ðTi;XiÞ for i ¼ 1; . . . ; n:

2. Sample n observations from the original dataset with replacement. Each data point is sampled with the
inverse probability weight obtained from the first step. Calculate the corresponding coefficient between
T and Xj on the weighted sample and denote it as dji;

3. Repeat Step (2) k times and get dj1; dj2; . . . ; djk. Calculate the average correlation coefficient between T
and Xj, denoted as �dj;

4. Perform a Fisher transformation on �dj, i.e.,

zj ¼ 1
2
ln

1þ �dj
1� �dj

 !
: ½10�

5. Average the absolute value of zj over all the covariates and get the average absolute correlation
coefficient (AACC).

For each value of M ¼ 1; 2; . . . ; 20;000, calculate AACC and find the optimal number of trees that lead
to the smallest AACC value. The R code for calculating AACC is displayed in Appendix A. An alternative
suggestion is to replace Step 5 by calculating the maximum value of the absolute correlation coefficient
(MACC) over all the covariates and find the optimal number of trees that lead to the smallest MACC value.
After the value of M is determined, the generalized propensity score is estimated by eqs (9) and (7). The
Fisher transformation in Step 4 is mainly for the determination of the cut-off value for AACC (MACC). We

Table 1: Stopping criteria based on different correlation coefficients.

Criterion Continuous Xj Categorical Xj

Pearson/polyserial Pearson ρ Polyserial ρ
Spearman Spearman ρ Spearman ρ

Kendall Kendall τ Kendall τ
Distance Distance r Distance r
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know that, in the binary treatment case, a well-accepted cut-off value for ASAM is 0.2 [12]. In the continuous
treatment case, we set the cut-off value for AACC (MACC) to be 0.1. That is, when AACC<0:1 (MACC<0:1), we
claim that the confounding effect between the treatment and the outcome is small. Appendix B shows a
heuristic proof for the claimed cut-off value. Figure 1 is an illustration of the Fisher transformation. As can
be seen, when j�djj is small, the transformation is almost the identity; when j�djj is large, jzjj increases faster
than j�djj. This is another advantage of using Fisher transformation: when we try to minimize AACC, the
larger absolute values of correlation coefficients will get more penalty compared to the original scale.

4 Simulation

4.1 Simulation setup

In this section, we conduct simulation studies to compare the performance of the proposed methods to the
existing methods. The generation of observed ðY ;T;XÞ is as follows. First, the vector of baseline covariates
(potential confounders), denoted as X ¼ ðX1;X2; . . . ;X10Þ, is generated from the following distributions:
X1;X2,Nð0; 1Þ, X3,Bernoullið0:5Þ, X4,Bernoullið0:3Þ, X5; . . . ;X7,Nð0; 1Þ and X8; . . . ;X10,Bernoullið0:5Þ.
Among the ten covariates, X1 � X4 are real confounders related to both the treatment and the outcome.

The continuous treatment is generated from NðmðXÞ; 1Þ, where the mean function is defined for
different scenarios. In Scenario (A), mðXÞ is a linear combination of the real confounders. In Scenario
(B), we consider a nonparametric model that is similar to a tree structure with main effects and one
quadratic term while in Scenario (C), we add two interaction terms. The true forms of mðXÞ in different
scenarios are displayed as follows:
– Scenario (A): mðXÞ ¼ 6þ 0:3X1 þ 0:65X2 � 0:35X3 � 0:4X4;
– Scenario (B): mðXÞ ¼ 6þ 0:3IfX1>0:5g þ 0:65IfX2<0g � 0:35IfX3 ¼ 1g � 0:4IfX4 ¼ 0g þ 0:65IfX1>0g

IfX1>1g;
– Scenario (C): mðXÞ ¼ 6þ 0:3IfX1>0:5g þ 0:65IfX2<0g � 0:35IfX3 ¼ 1g � 0:4IfX4 ¼ 0g þ 0:65IfX1>0g

IfX1>1g þ 0:3IfX1>0gIfX4 ¼ 1g � 0:65IfX2>0:3gIfX3 ¼ 0g.
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Figure 1: An illustration of Fisher transformation.
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The potential outcome function for a subject with covariates X is generated from

YðtÞjX ¼ 3:85þ 0:4t þ 0:3X1 þ 0:36X2 þ 0:73X3 � 0:2X4 þ 0:25X2
1 þ ";

where ",Nð0; 1Þ. Based on the data generation process, the true dose–response function is

E½YðtÞ� ¼ EfE½YðtÞjX�g ¼ 4:405þ 0:4t: ½11�

4.2 Results

To compare different methods, we set the value of the parameter of interest to be 0.4, which is the
coefficient of T in the dose–response function (11). We apply IPW to estimate the coefficient and employ
four different methods to estimate mðXÞ in the generalized propensity scores: (1) linear approximation (eq.
6) using all the covariates; (2) linear approximation with variable selection; (3) L2 boosting by minimizing
the empirical quadratic loss, called mboost by Bühlmann and Yu [22]; (4) boosting with the proposed
stopping criteria: Pearson/polyserial, Spearman, Kendall and distance. In Method (2), we employ a variable
selection technique that is similar to the idea suggested by Hirano and Imbens [8] to select covariates in the
generalized propensity score model. First, we divide the treatment variable into three groups with equal
sizes. Then, we test if each covariate is distributed the same in different treatment “groups” using ANOVA at
the significance level of 0.05. We only include those covariates that are significantly different among
treatment “groups”. In Table 2, we denote Method (1) as Linear1 and Method (2) as Linear2. We generate
1,000 datasets with a sample size of 500. The simulation results are shown in Table 2.

Table 2: Simulation results for Scenarios (A), (B) and (C).

True causal effect: 0.4

Method Mean Bias SD MSE CI Cov (%)

Scenario (A)
Linear1 0.417 0.017 0.097 0.0097 87.7
Linear2 0.409 0.009 0.096 0.0093 87.9
Mboost 0.431 0.031 0.079 0.0072 87.3
Proposed (Pearson/polyserial) 0.423 0.023 0.076 0.0064 91.9
Proposed (Spearman) 0.421 0.021 0.077 0.0064 92.2
Proposed (Kendall) 0.422 0.022 0.077 0.0064 91.6
Proposed (distance) 0.427 0.027 0.075 0.0064 89.8
Scenario (B)
Linear1 0.445 0.045 0.071 0.0070 90.6
Linear2 0.434 0.034 0.069 0.0060 91.9
Mboost 0.376 −0.024 0.065 0.0048 93.7
Proposed (Pearson/polyserial) 0.383 −0.017 0.066 0.0046 94.5
Proposed (Spearman) 0.383 −0.017 0.067 0.0048 94.2
Proposed (Kendall) 0.384 −0.016 0.067 0.0048 94.3
Proposed (distance) 0.380 −0.020 0.068 0.0051 93.5
Scenario (C)
Linear1 0.437 0.037 0.078 0.0075 92.8
Linear2 0.426 0.026 0.076 0.0064 93.3
Mboost 0.385 −0.015 0.067 0.0047 94.5
Proposed (Pearson/polyserial) 0.390 −0.010 0.068 0.0047 95.7
Proposed (Spearman) 0.390 −0.010 0.069 0.0048 95.6
Proposed (Kendall) 0.390 −0.010 0.068 0.0047 95.2
Proposed (distance) 0.389 −0.011 0.068 0.0047 95.7
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In Scenario (A), the true mean function mðXÞ is linear in the covariates, and hence the linear
approximation proposed by Robins et al. [13] leads to the smallest bias. In addition, Linear2 has smaller
bias and MSE than Linear1, which indicates that variable selection in the propensity score model does
improve the performance. Compared to Linear1 and Linear2, the proposed methods yield much smaller
variances and MSEs, as well as better confidence interval coverages. Compared to the proposed methods,
mboost based on L2 boosting yields larger bias and MSE. In Scenarios (B) and (C) where mðXÞ follows a tree
structure, Linear2 performs better than Linear1. In addition, the proposed methods are superior in terms of
the bias, MSE and 95% confidence interval coverage. Our simulation results are not very sensitive to the
choice of the correlation matrices among Pearson/polyserial, Spearman and Kendall correlations. Distance
leads to slightly more biased estimates compared to the other proposed criteria.

To further explore the proposed algorithm, we randomly select 100 datasets from the simulated
datasets in each scenario. We then compare the number of trees selected by each criterion with the optimal
number of trees that leads to the smallest absolute bias with respect to the true causal effect (0.4). Table 3
shows the average number of trees based on the 100 datasets. Compared to the “best” model with the
optimal number of trees, “distance” tends to select smaller models, which explains that “distance” yields
relatively larger bias than the other three criteria in the simulation. The differences in the number of trees
between the “best” model and the models selected by “Pearson/polyserial”, “Spearman” and “Kendall” are
relatively small. In Scenarios (A) and (C), they yield slightly more complex models than the “best” models
and in Scenario (B), they yield slightly smaller models.

5 Data analysis example

5.1 Early dieting in girls study

It is reported that dieting increases the likelihood of overeating, weight gain and chronic health problems
[23]. We analyze the Early Dieting in Girls study, which is a longitudinal study that aims to examine
parental influences on daughters’ growth and development from ages 5 to 15 [24]. The study involves 197
daughters and their mothers, who are from non-Hispanic, White families living in central Pennsylvania. The
participants were assessed at five different waves. At each wave, daughters and their mothers were
interviewed during a scheduled visit to the laboratory.

In this analysis, we study the influence of mothers’ weight concern on girls’ early dieting behavior. The
treatment variable is mother’s overall weight concern (M2WTCON), which is measured at daughter’s age 7.
It is the average score of five questions in the questionnaire. A higher value implies the mother is more
concerned about gaining weight. In the dataset, its values range from 0 to 3.4. The histogram in Figure 2(A)
and the QQ plot in Figure 2(B) show that the treatment is approximately normally distributed. The outcome
is whether the daughter diets between ages 7 and 11. We exclude those daughters who reported dieting
before age 7, which results in 158 subjects, of which 45 daughters reported dieting. There are 50 potential
baseline confounders in this study regarding participants’ characteristics, such as: family history of
diabetes and obesity, family income, daughter’s disinhibition, daughter’s body esteem, mother’s perception
of mother’s current size and mother’s satisfaction with daughter’s current body [25].

Table 3: Average number of trees in boosting selected by each criterion.

Pearson/polyserial Spearman Kendall Distance Best

Scenario (A) 11,782.05 12,053.14 11,189.09 9953.57 11,011.24
Scenario (B) 11,695.03 12,160.33 11,502.69 10,437.27 12,282.18
Scenario (C) 10,155.62 10,232.12 10,962.81 7,981.67 9,703.48
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5.2 Estimation of the generalized propensity scores

Since the treatment is self-selected, to draw causal inferences, we need to adjust for the confounders in the
study. Given a large number of potential confounders, we employ a boosting algorithm to estimate the
generalized propensity scores. The simulation studies in Section 4 show that the estimation results are not
sensitive to the choice of the correlation matrices among Pearson/polyserial, Kendall and Spearman. Therefore,
we use “Pearson/polyserial” as the main criterion to select the optimal number of trees in boosting. Figure 3
displays the AACC value versus the number of trees from 1 to 20,000. Based on the data, the optimal number
of trees M ¼ 4; 846 and AACC ¼ 0:11. Figure 2(C) and (D) shows that the residuals from the boosting model
(Ti � m̂ðXiÞ) have approximately constant variance and they are normally distributed. Based on the residual
plots, we conclude that the boosting model sufficiently estimates the treatment-level given covariates.

Now we will focus on assessing the balance in the covariates. Notice that in the original data,
AACC ¼ 0:177, which is much larger than 0.1, the cut-off value. In addition, if we look at each covariate
separately, there are many covariates whose absolute correlation coefficients with T are larger than 0.2. As
shown in Figure 4, after applying the weights, most of the absolute correlations among the treatment and
each covariate in the weighted sample are below 0.1 on both the original scale and the Fisher transformed
scale. This indicates that the confounding effect of the covariates between the treatment and the outcome is
greatly reduced after weighting.

5.3 Modeling the mean outcome

To draw causal inferences, the next step is to determine the functional form of the outcome model. The
boxplot of the estimated inverse weights from our proposed method is displayed in Figure 5. As shown,
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Figure 2: Model diagnostics for the fitted boosting model.
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most weights are distributed around the value of 1. However, there are some extreme weights with values
larger than 10. Extreme weights are harmful to the analysis because they increase the variance of the causal
estimates [26]. When we estimate the dose–response function, we shrink the top 5% of the weights to the
95th quantile.
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Figure 3: AACC value for M ¼ 1; . . . ; 20;000.
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Figure 4: Absolute value of correlation coefficients between T and each covariate before weighting (black dots) and after
weighting (red plus signs).The left panel shows the original scale and the right panel shows the Fisher transformed scale.
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Since all the potential confounders are well-adjusted by the propensity model, we can model the
outcome as a function of the treatment. Otherwise, we may also include covariates that are related to the
treatment in the outcome model. We then assume a regression spline function as in eq. (3). For binary
outcomes, the regression spline function is

logitfE½YðtÞ�g ¼ β0 þ β1t þ � � � þ βpt
p þ βpþ1ðt � τ1Þpþ þ � � � þ βpþKðt � τKÞpþ:

The weighted AIC and BIC displayed in eqs. (4) and (5) are employed to determine the optimal p and K. For
a binary outcome, the first part of eqs. (4) and (5) should be replaced by

� 2
Xn
i¼1

wiYi ln p̂i þ wið1� YiÞ lnð1� p̂iÞ½ �;

where p̂i is the estimated probability of early dieting for subject i. We consider three different values for p:
p ¼ 1; 2; 3, which corresponds to piecewise linear, quadratic and cubic models. We consider
K ¼ 0; 1; 2; . . . ; 9. We select the optimal number of p and K based on the values of BICw, which are displayed
in Table 4. As shown, the best model is when p ¼ 1 and K ¼ 0. Therefore, the model we fit is

logitfE½YðtÞ�g ¼ β0 þ β1t:

The causal log odds ratio (β) is estimated as 0.1782 with a standard error 0.2865 (p-value ¼ 0.5349). The
standard error is obtained using sandwich formula by the survey package in R. We may also
employ bootstrapping to estimate the standard error by repeatedly taking a bootstrap sample with
replacement from the original dataset and applying the same estimating procedure. Based on 1,000
replications, the bootstrapping estimate of the standard error is 0.2374, which is slightly smaller than
the sandwich formula. It indicates that the probability of daughter’s early dieting increases when
the mother’s weight concern increases. However, the causal effect is not significant at the significance
level of 0.1.
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Figure 5: Boxplot of the inverse probability weights using Pearson/polyserial correlation.
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6 Discussion

In this article, we focused on the causal inference problem with a continuous treatment variable. We are
mainly interested in estimating the dose–response function. IPW based on marginal structural models is a
useful tool to estimate the causal effect. When the treatment variable is continuous, the generalized
propensity score is defined as the conditional density of the treatment given covariates. Because the
dimension of covariates is usually large, it is suggested that the conditional density can be estimated in
two steps. First, a mean function of the treatment given covariates is estimated; second, the conditional
density is normally approximated using residuals from the first step or nonparametrically estimated by a
kernel method. We suggest using a boosting algorithm to estimate the mean function and propose an
innovative stopping criterion based on the correlation metrics. The proposed stopping criterion is similar to
generalized boosted model proposed by McCaffrey et al. [12] for the binary treatment. Simulation results
show that the proposed method performs better than the existing methods, especially when the function of
the treatment given covariates is not linear.

It is known that, in causal inference problems, propensity scores are nuisance parameters and the
parameter of interest is the causal treatment effect. It has been shown that a propensity score model with a
better predictive performance may not lead to better causal treatment effect estimates [27–29]. Therefore,
while modeling propensity scores, we should really focus on the property of the causal estimates [30, 31].
However, the true causal treatment effect is unknown in practice. For example, in Brookhart and van der
Laan [30], an over-fitted parametric propensity score model is used as the reference model; Galdo et al. [31]
proposed a weighted cross-validation technique to approximate mean integrated squared error of the
counterfactual mean function. From another perspective, some recent literature has focused on the
estimation of propensity scores by achieving balance in the covariates (e.g., McCaffrey et al. [12];
Hainmueller [32]; Imai and Ratkovic [33]). The underlying idea is that by achieving balance, the bias in
the treatment effect estimate due to measured covariates can be reduced [34]. The stopping rules proposed
for boosting in this study also falls into this realm: we select the optimal number of trees in boosting by
achieving balance in the covariates. The balance is measured through correlation between the treatment
variable and the covariates in the weighted pseudo-sample.

There are several potential areas for future research. For example, in the proposed algorithm described
in Section 3.2, the correlations in the weighted pseudo-sample are estimated using bootstrapping with
unequal probabilities. However, bootstrapping in this case is computationally intensive. A more straightfor-
ward approach is to develop the weighted Pearson or distance correlation for nonrandom samples using
estimating equations. It may greatly improve the computation time.

In the data application, we use a cut-off value of 0.1 for AACC. In other words, if AACC<0:1, we claim
that the confounding effect of the covariates (potential confounders) is small; Based on Cohen’s effect sizes

Table 4: BICw for different K and p.

K p ¼ 1 p ¼ 2 p ¼ 3

0 215.20 219.43 221.42
1 220.20 220.33 225.84
2 219.88 227.68 228.32
3 225.69 226.35 234.54
4 225.24 230.33 235.60
5 231.95 233.94 239.36
6 231.51 235.47 242.31
7 236.21 238.53 248.72
8 240.47 243.61 249.15
9 242.38 249.14 251.93

36 Y. Zhu et al.: A Boosting Algorithm



for the Pearson correlation coefficient [35], we may also claim that, when 0:1<AACC<0:3, the confounding
effect is medium; and when AACC>0:55, the confounding effect is large. However, more theoretical and
empirical justification is needed for the choice of the cut-off value, which can be explored in future work.

Finally, we should point out that the estimation of the generalized propensity scores is a much more
challenging task than the case of a binary treatment. The reason is that we are concerned about all
moments of the conditional distribution of the treatment given covariates, while in the binary case, we
are only interested in the conditional mean. In the proposed method, we follow a two-step procedure by
first modeling the mean function of the treatment given covariates. As shown in eq. (8), we assume that the
random errors are normally distributed and have constant variance. If the model diagnostics (e.g., Figure 2)
show that either of the two assumptions is invalid, we may transform the treatment variable (see the lottery
example in Hirano and Imbens [8]) or use nonparametric methods to estimate the density. For example,
replace eq. (7) by a kernel density estimator. Future research may explore the application of other machine
learning algorithms or a mixture of normal distributions to estimate the conditional density.

Appendix A: R codes

The following R function calculates the average absolute correlation coefficient (AACC) among a continuous
treatment and covariates after applying the inverse probability weights. The subsequent R codes demon-
strate how to estimate the dose–response function using a real dataset.

F.aac.iter¼function(i,data,ps.model,ps.num,rep,criterion) {

# i: number of iterations (trees)

# data: dataset containing the treatment and the covariates

# ps.model: the boosting model to estimate p(T_iX_i)

# ps.num: the estimated p(T_i)

# rep: number of replications in bootstrap

# criterion: the correlation metric used as the stopping criterion

GBM.fitted¼predict(ps.model,newdata¼data,n.trees¼floor(i),

type¼ “response”)

ps.den¼dnorm((data$T-GBM.fitted)/sd(data$T-GBM.fitted),0,1)

wt¼ps.num/ps.den

aac_iter¼rep(NA,rep)

for (i in 1:rep){

bo¼sample(1:dim(data)[1],replace¼TRUE,prob¼wt)

newsample¼data[bo,]

j.drop¼match(c(“T”),names(data))

j.drop¼j.drop[!is.na(j.drop)]

x¼newsample[,-j.drop]

if(criterion¼ ¼ “spearman”| criterion¼ ¼ “kendall”){

ac¼apply(x, MARGIN¼2, FUN¼cor, y¼newsample$T,

method¼criterion)

} else if (criterion¼ ¼ “distance”){

ac¼apply(x, MARGIN¼2, FUN¼dcor, y¼newsample$T)

} else if (criterion¼ ¼ “pearson”){

ac¼matrix(NA,dim(x)[2],1)

for (j in 1:dim(x)[2]){

ac[j] ¼ifelse (!is.factor(x[,j]), cor(newsample$T, x[,j],

method¼criterion),polyserial(newsample$T, x[,j]))

}
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} else print(“The criterion is not correctly specified”)

aac_iter[i]¼mean(abs(1/2*log((1þac)/(1-ac))),na.rm¼TRUE)

}

aac¼mean(aac_iter)

return(aac)

}

# Create the data frame for the covariates

x¼data.frame(BMIZ, factor(DIABETZ1), G1BDESTM, G1WTCON,

factor(INCOME1), M1AGE1, M1BMI, factor(M1CURLS), factor(M1CURMT),

M1DEPRS, M1ESTEEM, M1GFATCN, M1GNOW, factor(M1GSATN),

M1MFATCN, M1MNOW, factor(M1MSAT), factor(M1NOEX), M1OGIBOD,

M1PCEAFF, M1PCEEFF, M1PCEEXT, M1PCEIMP, M1PCEPER, M1PDSTOT,

M1RLOAD, factor(M1SMOKE), M1WGTTES, M1WTCON, M1YRED, factor(OBESE1),

g1discal, g1obcdc, g1ovrcdc, g1pFM, g1wgttes, m1cfqcwt, m1cfqenc,

m1cfqmon, m1cfqpwt, m1cfqrsp, m1cfqrst, m1cfqwtc, m1dis, m1hung,

m1lim, m1picky, m1rest, m1zsav, m1zsweet)

# Find the optimal number of trees using Pearson/polyserial correlation

library(gbm)

library(polycor)

mydata¼data.frame(T¼M2WTCON,X¼x)

model.num¼lm(T~1,data¼mydata)

ps.num¼dnorm((mydata$T-model.num$fitted)/(summary(model.num))$sigma,0,1)

model.den¼gbm(T~.,data¼mydata, shrinkage¼0.0005,

interaction.depth¼4, distribution¼ “gaussian”,n.trees¼20000)

opt¼optimize(F.aac.iter,interval¼c(1,20000), data¼mydata, ps.model¼
model.den,

ps.num¼ps.num,rep¼50,criterion¼ “pearson”)

best.aac.iter¼opt$minimum

best.aac¼opt$objective

# Calculate the inverse probability weights

model.den$fitted¼predict(model.den,newdata¼mydata,

n.trees¼floor(best.aac.iter), type¼ “response”)

ps.den¼dnorm((mydata$T-model.den$fitted)/sd(mydata$T-model.den

$fitted),0,1)

weight.gbm¼ps.num/ps.den

# Outcome analysis using survey package

library(survey)

dataset¼data.frame(earlydiet,M2WTCON, weight.gbm)

design.b¼svydesign(ids¼~1, weights¼~weight.gbm, data¼dataset)

fit¼svyglm(earlydiet~M2WTCON, family¼quasibinomial(),design¼design.b)

summary(fit)

Appendix B: Cut-off value for AACC

In this section, we provide a heuristic proof for the cut-off value for AACC. In the continuous treatment case,
denote a covariate as Xj and the treatment variable as T. If ðXj;TÞ has a bivariate normal distribution and Xj,
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T are independent, the Fisher transformed Pearson’s correlation coefficient, zj, has the following asymptotic
distribution:

ffiffiffiffiffiffi
nzj

p �!d N 0; 1ð Þ as n ! 1:

On the other hand, if we dichotomize the continuous treatment to a binary treatment with a sample size of
n1 for the treatment group and n0 for the control group (n1 þ n0 ¼ n), we know the Cohen’s effect size is
defined as:

Δj ¼
�Xtreated
j � �Xcontrol

j

s
;

where s is the pooled standard deviation. If there is no difference between the two groups, asymptotically,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n0

n1 þ n0

r
Δj �!d Nð0; 1Þ; as n1; n0 ! 1:

Therefore, if the cut-off value for the standardized mean difference is 0.2 in the binary treatment case, the
cut-off value for AACC in the continuous treatment case should be 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n0

nðn1þn0Þ
q

, which has a maximum
value of 0.1 when n1 ¼ n0 ¼ n

2. In fact, this cut-off value is consistent with what has been claimed regarding
the effect size of Pearson correlation coefficient r [35]. That is, when jrj<0:1, the effect size is small; when
0:1<jrj<0:3, the effect size is medium; when jrj>0:5, the effect size is large.

Acknowledgments: The project described was supported by Award Number P50DA010075 from the National
Institute on Drug Abuse and 5R21 DK082858-02 from the National Institute on Diabetes and Digestive and
Kidney Disorders. The content is solely the responsibility of the authors and does not necessarily represent
the official views of the National Institute on Drug Abuse or the National Institutes of Health. We would also
like to thank Jennifer Savage Williams and Leann Birch for permission to use the Early Dieting in Girls
Study data, which was funded by National Institute of Child Health and Human Development R01 HD32973.
The content is solely the responsibility of the authors and does not necessarily represent the official views
of NICHD.

Research funding: National Institute on Drug Abuse (Grant/Award Number: “P50DA010075”) National
Institute on Diabetes and Digestive and Kidney Disorders (Grant/Award Number: “5R21 DK082858-02”).

References

1. Lechner M. Program heterogeneity and propensity score matching: an application to the evaluation of active labor market
policies. Rev Econ Stat 2002;84:205–20.

2. Imai K, Van Dyk D. Causal inference with general treatment regimes. J Am Stat Assoc 2004;99:854–66.
3. Tchernis R, Horvitz-Lennon M, Normand SL. On the use of discrete choice models for causal inference. Stat Med

2005;24:2197–212.
4. Karwa V, Slavković AB, Donnell ET. Causal inference in transportation safety studies: comparison of potential outcomes and

causal diagrams. Ann Appl Stat 2011;5:1428–55.
5. McCaffrey DF, Griffin BA, Almirall D, Slaughter ME, Ramchand R, Burgette LF. A tutorial on propensity score estimation for

multiple treatments using generalized boosted models. Stat Med 2013;32:3388–414.
6. Imbens GW. The role of the propensity score in estimating dose-response functions. Biometrika 2000;87:706–10.
7. Kluve J, Schneider H, Uhlendorff A, Zhao Z. Evaluating continuous training programmes by using the generalized propensity

score. J R Stat Soc Ser A (Stat Soc) 2012;175:587–617.
8. Hirano K, Imbens GW. The propensity score with continuous treatments. Applied Bayesian modeling and causal inference

from incomplete-data perspectives, 2004:73–84.
9. Robins J. Association, causation, and marginal structural models. Synthese 1999;121:151–79.
10. Hall P, Wolff RC, Yao Q. Methods for estimating a conditional distribution function. J Am Stat Assoc 1999;94:154–63.
11. Fan J, Yao Q, Tong H. Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems,.

Biometrika 1996;83:189–206.

Y. Zhu et al.: A Boosting Algorithm 39



12. McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in
observational studies. Psychol Methods 2004;9:403–25.

13. Robins J, Hernán M, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology
2000;11:550–60.

14. Eubank RL. Spline smoothing and nonparametric regression. New York: Marcel Dekker, 1988.
15. Hens N, Aerts M, Molenberghs G. Model selection for incomplete and design-based samples. Stat Med 2006;25:2502–20.
16. Platt RW, Brookhart AM, Cole SR, Westreich D, Schisterman EF. An information criterion for marginal structural models. Stat

Med 2012;32:1383–93.
17. Breiman L, Friedman J, Stone C, Olshen R. Classification and regression trees. Belmont, CA: Chapman & Hall/CRC, 1984.
18. Székely GJ, Rizzo ML. Brownian distance covariance. Ann Appl Stat 2009;32:1236–65.
19. Székely GJ, Rizzo ML, Bakirov NK. Measuring and testing dependence by correlation of distances. Ann Stat 2007;35:2769–94.
20. Olsson U. Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika 1979;44:443–60.
21. Olsson U, Drasgow F, Dorans NJ. The polyserial correlation coefficient. Psychometrika 1982;47:337–47.
22. Bühlmann P, Yu B. Boosting with the l2 loss: regression and classification. J Am Stat Assoc 2003;98:324–39.
23. Neumark-Sztainer D, Wall M, Story M, Standish AR. Dieting and unhealthy weight control behaviors during adolescence:

associations with 10-year changes in body mass index. J Adolesc Health 2012;50:80–6.
24. Fisher JO, Birch LL. Eating in the absence of hunger and overweight in girls from 5 to 7 y of age. Am J Clin Nutr

2002;76:226–31.
25. Birch LL, Fisher JO. Mothers’ child-feeding practices influence daughters’ eating and weight. Am J Clin Nutr

2000;71:1054–61.
26. Kang JDY, Schafer JL. Demystifying double robustness: a comparison of alternative strategies for estimating a population

mean from incomplete data. Stat Sci 2007;22:523–39.
27. Drake C. Effects of misspecification of the propensity score on estimators of treatment effect. Biometrics 1993;49:1231–6.
28. Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a

comparative study. Stat Med 2004;23:2937–60.
29. Schafer JL, Kang J. Average causal effects from nonrandomized studies: a practical guide and simulated example. Psychol

Methods 2008;13:279–313.
30. Brookhart MA, van der Laan MJ. A semiparametric model selection criterion with applications to the marginal structural

model. Comput Stat Data Anal 2006;50:475–98.
31. Galdo JC, Smith J, Black D. Bandwidth selection and the estimation of treatment effects with unbalanced data. Ann

d’Economie Statistique 2008;91-92:189–216.
32. Hainmueller J. Entropy balancing for causal effects: a multivariate reweighting method to produce balanced samples in

observational studies. Political Anal 2012;20:25–46.
33. Imai K, Ratkovic M. Covariate balancing propensity score. J R Stat Soc Ser B (Stat Methodol) 2014;76:243–63.
34. Harder VS, Stuart EA, Anthony JC. Propensity score techniques and the assessment of measured covariate balance to test

causal associations in psychological research. Psychol Methods 2010;15:234.
35. Cohen J. Statistical power analysis for the behavioral sciences. New York: Psychology Press, 1988.

40 Y. Zhu et al.: A Boosting Algorithm


