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Abstract: A common problem of interest within a randomized clinical trial is the evaluation of an
inexpensive response endpoint as a valid surrogate endpoint for a clinical endpoint, where a chief purpose
of a valid surrogate is to provide a way to make correct inferences on clinical treatment effects in future
studies without needing to collect the clinical endpoint data. Within the principal stratification framework
for addressing this problem based on data from a single randomized clinical efficacy trial, a variety of
definitions and criteria for a good surrogate endpoint have been proposed, all based on or closely related to
the “principal effects” or “causal effect predictiveness (CEP)” surface. We discuss CEP-based criteria for a
useful surrogate endpoint, including (1) the meaning and relative importance of proposed criteria including
average causal necessity (ACN), average causal sufficiency (ACS), and large clinical effect modification; (2)
the relationship between these criteria and the Prentice definition of a valid surrogate endpoint; and (3) the
relationship between these criteria and the consistency criterion (i.e. assurance against the “surrogate
paradox”). This includes the result that ACN plus a strong version of ACS generally do not imply the
Prentice definition nor the consistency criterion, but they do have these implications in special cases.
Moreover, the converse does not hold except in a special case with a binary candidate surrogate. The results
highlight that assumptions about the treatment effect on the clinical endpoint before the candidate
surrogate is measured are influential for the ability to draw conclusions about the Prentice definition or
consistency. In addition, we emphasize that in some scenarios that occur commonly in practice, the
principal strata subpopulations for inference are identifiable from the observable data, in which cases
the principal stratification framework has relatively high utility for the purpose of effect modification
analysis and is closely connected to the treatment marker selection problem. The results are illustrated
with application to a vaccine efficacy trial, where ACN and ACS for an antibody marker are found to be
consistent with the data and hence support the Prentice definition and consistency.
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1 Introduction

An important goal of many biomedical research fields is identification of surrogate endpoints based on
randomized clinical efficacy trials. With precise notation defined in Section 1.1, we have one randomized
treatment (Z) for which two endpoints S and Y are both measured in each of the groups Z ¼ 0 and Z ¼ 1. S
is an inexpensive study endpoint (typically a biomarker) measured shortly after randomization that is a
candidate surrogate for the true clinical endpoint Y of interest. The primary objective of the trial is to learn
about the treatment effect on Y, which is done by directly measuring PðyjZÞ. Where possible, future
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research of the same or similar treatments would proceed by additional randomized trials that also directly
assess the treatment effect on Y. However, a valid surrogate endpoint S for Y can accelerate research to
apply and develop effective treatments against Y, given that large resources are often required to directly
measure PðyjZÞ (e.g. taking several years of follow-up) and such assessment is often infeasible or unethical
once moderately protective treatments are identified. Using the meaning surrogate ¼ replacement, S is a
valid surrogate for Y if in some sense measurement of PðsjZÞ alone can inform us about PðyjZÞ, without
needing to collect data on Y. This concept of a valid surrogate may be implemented in various ways, for
example, in terms of hypothesis testing, estimation, or both. For a perfect surrogate, PðsjZÞ alone would
provide the same information about PðyjZÞ as if Y were measured along with S, for example, providing a
way to calculate the same point and confidence interval estimates of the treatment effect on Y. However,
given the challenge in meeting this high bar the surrogate endpoint assessment literature has focused on
learning something about PðyjZÞ from PðsjZÞ but not everything that would be learned by measuring PðyjZÞ
as well; for example, the Prentice definition defines validity in terms of obtaining a valid hypothesis test of
PðyjZ ¼ 0Þ ¼ PðyjZ ¼ 1Þ based on PðsjZÞ alone but does not consider estimation.

The term “surrogate” has been used for many objectives of biomarker research in clinical trials, and in
our view it may be most clearly used for the “replacement endpoint” concept, thereby distinguishing
surrogate/replacement endpoint assessment research from other biomarker assessment research. For exam-
ple, as discussed below, studying biomarker-based subgroup effect modifiers of clinical treatment efficacy
is useful for targeting treatments/interventions to subgroups where they will work and for selecting
biomarker study endpoints for evaluating treatments in new Phase 1–2 trials. Biomarker response endpoints
are also useful for exploring biological mechanisms of clinical treatment efficacy and for studying media-
tors of clinical treatment efficacy, which are distinct research activities with different objectives than
surrogate/replacement endpoint evaluation.

Ideally, validation of a surrogate endpoint would be based on a synthesis of information from a large
number of previous randomized trials of the same or similar treatments versus control where the surrogate
and clinical endpoints were both measured (e.g. Gail et al. [1] considers this approach). However, it often
occurs that data on the surrogate and clinical endpoint are available from only a single randomized trial,
such that it is of interest to study definitions and criteria for useful surrogate and biomarker endpoints that
are applicable for the identical setting as this single trial. While these definitions and criteria will be
insufficient for validating surrogates or biomarkers for the ultimate goal of inferring clinical treatment
effects of new treatments in the same or new setting, they are useful as a first step toward this objective and
they aid clinical research in other ways that we discuss. We focus on the Prentice [2] definition of a valid
surrogate endpoint and on the principal stratification framework. This article is primarily about relating
statements about the full-data distribution, although identifiability by the observed data distribution is also
discussed and addressed in the application.

We state some of our conclusions up front. First, the literature discussing the utility of the Prentice [2]
surrogate framework has been inadequately clear in discriminating the Prentice definition (on obtaining a
valid test of the null hypothesis of no clinical treatment effect from the surrogate alone) from criteria (e.g.
conditions on the observed data distributions PðyjS; ZÞ and PðsjZÞ) for checking the definition. The defini-
tion is clear and useful whereas the criteria, without modification, can be misleading and lead to disasters
such as the surrogate paradox. For example, Frangakis and Rubin [3] criticize a “statistical surrogate”
defined as a biomarker satisfying a version of the Prentice [2] criteria, which on the surface seems to
criticize the whole Prentice framework but upon examination leaves the Prentice definition unscathed (e.g.
the surrogate paradox cannot occur if the Prentice definition holds). We consider here the definition but not
published operational criteria. In addition, while transportability of treatment effects via a surrogate
endpoint is the paramount application of a surrogate as noted above, it is still useful to check the
Prentice definition for the identical setting as the single trial, because it constitutes a first step/minimal
bar for plausibility that the surrogate could also be used for estimating treatment effects in new settings.

Secondly, the principal stratification/principal surrogate framework does not in general provide a way
to check the Prentice definition. We show that, depending on the problem context, principal stratification-
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based criteria can provide no discriminating information, partial discriminating information, or complete
discriminating information about the Prentice definition. Therefore, the principal stratification framework
has main utility for assessing whether and how treatment efficacy varies by subgroups defined by levels of
biomarker response, thus being closely aligned with the utility of the treatment marker selection problem.
In special cases, however, principal stratification criteria can establish the Prentice definition or one of its
components specificity or sensitivity, and can also guarantee avoidance of the surrogate paradox (as
illustrated in the application). In addition, the principal surrogate framework does fit the valid replacement
endpoint concept, but in a different way than the Prentice definition. In particular, by providing a point and
confidence interval estimate about clinical treatment efficacy for individuals based on their biomarker
response values, it provides information about the clinical treatment effect for future subjects (from
the same population) based on the biomarker endpoint alone without measurement of the clinical
endpoint.

1.1 Setup of randomized trial for assessing clinical efficacy

We consider a single clinical trial that randomizes n participants to active intervention (e.g. treatment or
vaccine) versus a control intervention such as placebo, with Z the indicator of assignment to active
intervention. Participants are followed for a fixed follow-up period for occurrence of the primary endpoint
Y by time τ1 post-randomization, with Y the indicator of endpoint occurrence. For simplicity of exposition
we assume no dropout during follow-up, though this could be accommodated straightforwardly under a
random censoring assumption. Let S be the candidate surrogate endpoint measured at fixed time τ < τ1 post-
randomization, which may be discrete or quantitative and may be multivariate. Let R be the indicator that S
is measured; frequently case–cohort, case–control, or two-phase sampling designs are used that only
measure S in a judiciously chosen subset. Let Y τ be the indicator of primary endpoint occurrence before
the time τ for measuring S. The observed random variables are (Z;R;RS;Y τ ;Y). Lastly, let SðzÞ, RðzÞ, Y τðzÞ,
and YðzÞ be the potential outcomes if assigned treatment z, for z ¼ 0; 1, with W the vector of potential
outcomes W ; ðSð1Þ; Sð0Þ;Rð1Þ;Rð0Þ;Y τð1Þ;Y τð0Þ;Yð1Þ;Yð0ÞÞ. We make the common assumptions for ran-
domized clinical trials of SUTVA, ignorable treatment assignment (Z?W), the probability that S is observed
in those with Y τ ¼ 0 (i.e. PðR ¼ 1jY τ ¼ 0ÞÞ depends only on observed data (missing at random assumption),
and that the ðZi;WiÞ are iid, for i ¼ 1; . . . ; n. The ignorable treatment assignment assumption will hold by
design, and the missing at random assumption will hold by design if all subjects with Y τ ¼ 0 contribute a
viable sample for potentially measuring S at the visit at τ.

1.2 Background: published definitions and criteria for a principal surrogate
endpoint

Joffe and Greene [4] reviewed four frameworks for evaluating surrogate endpoints. The current article
focuses on the principal stratification framework in comparison to the Prentice definition of a valid
surrogate endpoint [2] (but not to the Prentice criteria). Prentice stated his definition as “a response variable
for which a test of the null hypothesis of no relationship to the treatment groups under comparison is also a
valid test of the corresponding null hypothesis based on the true endpoint.” As stated in the first paragraph
of the Introduction, S is a valid surrogate endpoint if measurement of PðsjZÞ alone can inform us about
PðyjZÞ, and the Prentice definition implements this concept in hypothesis testing but not in estimation. In
particular, in our notation above a valid Prentice surrogate S satisfies PðYð1Þ ¼ 1Þ ¼ PðYð0Þ ¼ 1Þ if and only
if PðSð1Þ � s1Þ ¼ PðSð0Þ � s1Þ for all s1, or, equivalently based on observable random variables given the
trial is randomized, as PðY ¼ 1jZ ¼ 1Þ ¼ PðY ¼ 1jZ ¼ 0Þ if and only if PðS � s1jZ ¼ 1Þ ¼ PðS � s1jZ ¼ 0Þ for
all s1. This if and only if statement allows the Prentice definition to be divided into two components of
Specificity and Sensitivity, where Specificity means that no treatment effect on Y implies no treatment effect
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on S and Sensitivity means that a treatment effect on Y implies a treatment effect on S. In Section 3 we
develop some criteria for separately checking Specificity and Sensitivity.

This article focuses on evaluating a candidate surrogate from a single randomized clinical trial, for
evaluating its quality for the same setting as that trial. As such, within the frequency framework of
statistics, satisfaction of the Prentice definition means that if the surrogate endpoint is used in an identical
trial, then inference of the treatment effect on the surrogate is guaranteed to provide correct inference (in
the dichotomous sense of correctly accepting or rejecting the null hypothesis) about the treatment effect on
the clinical endpoint. While not directly relevant for answering the important question of whether the
surrogate will be valid for a new treatment in the same or new setting, such a result is still useful because it
provides indirect evidence that the surrogate would approximately satisfy the Prentice definition for a new
treatment if the treatment is similar to the original treatment (e.g. in the same drug class). If two candidate
surrogates are assessed in a single efficacy trial and one satisfies the Prentice definition and one does not,
then it may be rational to prioritize the Prentice surrogate as a study endpoint in subsequent Phase 1/2 trials
of new and similar treatments that will constitute the basis for selecting the most promising new treatment
to advance to the next efficacy trial.

Several papers have considered definitions and criteria for a useful principal surrogate endpoint.
Within the potential outcomes framework of causal inference, Frangakis and Rubin [3] defined S to be a
principal surrogate if every individual with a causal treatment effect on the clinical endpoint Y also has a
causal treatment effect on the surrogate S (i.e. “causal necessity”). This definition states that a valid
surrogate satisfies PðYið1Þ ¼ 1Þ ¼ PðYið0Þ ¼ 1Þ for all subjects i with Sið1Þ ¼ Sið0Þ, which departs from the
Prentice definition in (1) being required for all individuals and in (2) being unidirectional (instead of if and
only if). Gilbert and Hudgens [5], focusing on what could be evaluated from the sampling scheme of a
typical randomized trial, modified the causal necessity condition to “average causal necessity” (ACN), i.e.
no average causal treatment effect on Y in the subpopulation with Sð1Þ ¼ Sð0Þ and Y τð1Þ ¼ Y τð0Þ ¼ 0; the
latter condition was added to ensure that causal treatment effects on S are defined. ACN can be expressed in
terms of the “principal effects” or “causal effect predictiveness” (CEP) surface, which is defined in terms of
the clinical risks under each treatment assignment,

riskzðs1; s0Þ;PðYðzÞ ¼ 1jSð1Þ ¼ s1; Sð0Þ ¼ s0;Y τð1Þ ¼ Y τð0Þ ¼ 0Þ; for z ¼ 0; 1:

With hðx; yÞ a known contrast function satisfying hðx; yÞ ¼ 0 if and only if x ¼ y, for example
hðx; yÞ ¼ x � y, the CEP surface is defined as

CEPðs1; s0Þ ¼ hðrisk1ðs1; s0Þ; risk0ðs1; s0ÞÞ;
and ACN is expressed as CEPðs1; s0Þ ¼ 0 for all s1 ¼ s0. Gilbert and Hudgens [5] defined S to be a principal
surrogate if ACN and average causal sufficiency (ACS) hold, where a one-sided version of ACS (relevant for
active treatment versus control trials considered here) states that there exists a constant C � 0 such that
the subgroup of subjects with a sufficient treatment effect on S, those with fSð1Þ ¼ s1; Sð0Þ ¼ s0 with
s1 � s0 >Cg, has a beneficial causal effect on Y, i.e. CEPðs1; s0Þ has the sign indicating benefit. We refer
to one-sided ACS with C ¼ 0 as one-sided strong ACS; note that for a biomarker satisfying ACN plus one-
sided strong ACS, the subgroup with no individual causal effect on S has zero clinical treatment effect
and the subgroup with positive individual causal effect on S has a beneficial clinical treatment effect. Thus
Gilbert and Hudgen’s [5] definition of a strong (C ¼ 0) one-sided principal surrogate can be stated
as PðYð1Þ ¼ 1jSð1Þ ¼ Sð0Þ;Y τð1Þ ¼ Y τð0Þ ¼ 0Þ ¼ PðYð0Þ ¼ 1jSð1Þ ¼ Sð0Þ;Y τð1Þ ¼ Y τð0Þ ¼ 0Þ and PðYð1Þ ¼
1jSð1Þ> Sð0Þ;Y τð1Þ ¼ Y τð0Þ ¼ 0Þ<PðYð0Þ ¼ 1jSð1Þ> Sð0Þ;Y τð1Þ ¼ Y τð0Þ ¼ 0Þ.

Moreover, both Frangakis and Rubin [3] and Gilbert and Hudgens [5] expressed the concept that
studying the whole CEP surface is important for evaluating the utility of a candidate principal surrogate;
the former authors expressed this by stating that a more useful biomarker will have relatively more
associative than dissociative effects, whereas the latter authors expressed this by stating that a more useful
biomarker will have wide variability in the CEP surface over subgroups defined by ðSð1Þ; Sð0ÞÞ, i.e. the
biomarker is a strong effect modifier.
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The marginal CEP curve causal parameter, closely related to the CEP surface, is also useful for
evaluating a principal surrogate, which contrasts the risks averaged over the distribution of Sð0Þ:
mCEP ðs1Þ; hðmrisk1ðs1Þ;mrisk0ðs1ÞÞ, where

mriskzðs1Þ ; PðYðzÞ ¼ 1jSð1Þ ¼ s1;Y τð1Þ ¼ Y τð0Þ ¼ 0Þ for z ¼ 0; 1:

While ACN and ACS are not in general defined for this causal parameter, the “wide variability/strong effect
modifier” principal surrogate criterion is operable, and identifiability is achieved under weaker assump-
tions [6]. Below we consider both the CEP and mCEP full-data causal parameters as useful quantities for
evaluating and understanding principal surrogate quality.

Our results below use an additive difference contrast hðx; yÞ ¼ x � y, with advantage that, under equal
early clinical risk (EECR) defined below and a no-harm monotonicity assumption [PðYð1Þ ¼ 1;
Yð0Þ ¼ 0Þ ¼ 0], �CEPðs1; s0Þ has interpretation as a conditional probability of the disease being averted
by assignment to Z ¼ 1: �CEPðs1; s0Þ ¼ PðYð1Þ ¼ 0;Yð0Þ ¼ 1jSð1Þ ¼ s1; Sð0Þ ¼ s0;Y τð1Þ ¼ Y τð0Þ ¼ 0Þ; simi-
larly �mCEPðs1Þ ¼ PðYð1Þ ¼ 0;Yð0Þ ¼ 1jSð1Þ ¼ s1;Y τð1Þ ¼ Y τð0Þ ¼ 0Þ. Other principal surrogate evaluation
literature has considered the CEP surface [7] or closely related causal parameters. Taylor et al. [8] studied
the proportion associative (PA) summary measure of principal surrogate value,

PA ; PrðSð1Þ> Sð0ÞjYð1Þ ¼ 0;Yð0Þ ¼ 1Þ;

which is the proportion of the study population with a beneficial clinical effect that also has a positive
surrogate effect. (This definition assumes no clinical events before τ.) With the additive difference contrast
hðx; yÞ ¼ x � y and no-harm monotonicity defined above, straightforward calculation shows that PA ¼R
s1 > s0

CEPðs1; s0Þ dpðs1; s0ÞCE, where Pðs1; s0Þ is the joint cdf of Sð1Þ and Sð0Þ conditional on Y τð1Þ ¼
Y τð0Þ ¼ 0 and CE ; hðPðYð1Þ ¼ 1Þ;PðYð0Þ ¼ 1ÞÞ is the overall clinical treatment effect. For the special
case of binary S, Li, Taylor, and Elliott [9] studied the 16 causal parameters constituting the joint
distribution of ðSð1Þ; Sð0ÞÞ and ðYð1Þ;Yð0ÞÞ. Under the same assumptions given above, these parameters
for Yð1Þ ¼ 0 and Yð0Þ ¼ 1 map to the CEP surface: PðSð1Þ ¼ s1; Sð0Þ ¼ s0;Yð1Þ ¼ 0;Yð0Þ ¼ 1Þ ¼
CEPðs1; s0ÞPðs1; s0Þ=CE for ðs1; s0Þ 2 f0; 1g.

Additional work clarified the value or limitations of the above criteria for a biomarker’s utility as a
principal surrogate and suggested new criteria. VanderWeele [10] showed that ACN can hold yet the
treatment has a causal effect on Y not mediated through S. For example, this situation may occur if there
are two independent biological mechanisms of clinical protection, one that operates directly through S and
one that does not. On the positive side for ACN, VanderWeele [10] also showed that failure of ACN does
imply that the treatment has a causal effect on Y not mediated through S; thus, ACN is a valid criterion to
“disprove” full mediation but cannot affirm it. (Thus Frangakis and Rubin’s [3] principal surrogate defini-
tion is about a one-way implication, different from the if and only if implications of the Prentice definition.)
In addition, Gilbert et al. [11] emphasized that, for the purpose of iteratively developing increasingly
efficacious treatments, ACN and ACS may be less important for a useful principal surrogate than the strong
effect modifier criterion that CEPðs1; s0Þ widely varies across subgroups defined by ðs1; s0Þ. Strong effect
modification may occur in many ways not implying ACN nor ACS, and strong effect modification alone
combined with an overall beneficial clinical treatment effect implies that there is at least one subgroup with
relatively large clinical efficacy. Strong effect modification “sets the target” for future development of
improved treatments, where the goal is to find refined treatments that generate S in the “high efficacy
zone” for a greater percentage of active treatment recipients; combining these data results with context-
dependent bridging assumptions (e.g. Pearl and Bareinboim [12] initiated a framework for combining data
with bridging assumptions) would predict that the refined treatment would confer greater overall clinical
efficacy. One way that wide variability could lead to erroneous bridging for improving a treatment would be
if new subjects added to the high efficacy zone by the new treatment have a different distribution of clinical
effect modifiers than the subgroup in the high efficacy zone in the original trial. Nevertheless, wide
variability is a useful criterion for research areas that study a battery of biomarker endpoints as potential
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surrogates; this criterion may be used for prioritizing/ranking the biomarker endpoints to use in Phase 1/2
trials for comparing refined treatments and for selecting the most promising treatments to advance to the
next efficacy trial.

Another criterion for a good surrogate endpoint is the original Prentice [2] definition of a valid
replacement endpoint for the clinical endpoint, and below we provide results on the implications of ACN
þ one-sided strong ACS on the Prentice definition and vice versa. The results show how the implications
depend on assumptions about causal treatment effects on the clinical endpoint before and after the
biomarker is measured. These implications yield alternative criteria to the original Prentice criteria for
checking the Prentice definition of a valid surrogate endpoint.

Many authors including Chen et al. [13], Ju and Geng [14], and VanderWeele [15] rightly assert that a
reasonable surrogate endpoint should be assured to avoid the “surrogate paradox” pitfall, defined as the
scenario where the effect of the treatment on the surrogate is positive, the surrogate and clinical outcomes
are positively correlated, yet the overall clinical treatment effect CE indicates harm by the active treatment.
Below we note scenarios, which commonly occur in practice, for which ACN plus one-sided strong ACS
guarantee a “consistent surrogate” (defined as the surrogate paradox cannot happen).

The remainder of this article is organized as follows. Section 2 clarifies that principal surrogate analysis
is essentially subgroup effect modification analysis. Section 3 provides results on ACN and one-sided ACS
as criteria for checking the Prentice surrogate definition. Section 4 provides results on these criteria for
checking a consistent surrogate. Section 5 illustrates the relationships with a Zoster vaccine (ZV) efficacy
trial, Section 6 provides discussion, and the appendix contains proofs of results.

2 Principal surrogate assessment: subgroup effect modification
analysis

2.1 Connection to the treatment marker selection problem

Principal surrogate analysis is subgroup analysis (hence suggesting a name such as principal stratification
effect modification analysis), with an objective to characterize how clinical treatment efficacy varies over
subgroups, where these subgroups are defined by post-randomization principal strata (which by construc-
tion may be treated as baseline covariates) and possibly also by actual baseline covariates. The analysis
essentially repeats the overall intention-to-treat analysis for each of a range of these subgroups, assessing
the effect of treatment assignment on disease risk within each subgroup, and, like the overall analysis,
provides little or no direct information about mechanisms or mediators of protection. As such, the principal
surrogate problem has a close connection with the “treatment marker selection problem,” which has a goal
to determine if and how clinical treatment efficacy varies over subgroups defined by biomarkers measured
at baseline (e.g. Huang et al. [16]). While the statistical approaches for these two problems are highly
related, the applications are partly overlapping and partly distinct; for instance, both fields seek to rank
biomarker endpoints by their strength of effect modification and hence utility for treatment development,
but, unlike the treatment marker selection field that often focuses on individual decision making for
tailored allocation of therapy, the principal surrogate field has focused on different applications including
the prediction of overall treatment efficacy from the biomarker distribution in a similar or new setting [17,
18]. In addition, the treatment marker selection field does not endeavor to identify “perfect” or “valid”
treatment selection markers; rather it focuses on characterizing efficacy over subgroups and the ranking of
biomarkers by the strength of effect modification. Similarly, principal surrogate evaluation is primarily
about comparing candidate surrogates and ranking them by the degree of their utility as effect modifiers,
and the field should not be dominated by the objective to identify perfect/valid surrogates. Nevertheless,
the joint criterion of ACN together with strong ACS has particular value in checking the Prentice definition
or the individual components of the Prentice definition as described below.
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The analogy with the treatment marker selection literature also suggests that if very strong baseline
effect modifiers exist, then it may be unimportant to develop a biomarker response effect modifier – one can
simply predict clinical treatment effects based on actual baseline variables, avoiding the identifiability
challenges of the principal stratification framework (Ross Prentice has voiced this point). While true, in
practice a response to treatment may be a stronger effect modifier, motivating principal surrogacy assess-
ment, and many such examples exist. The analogy also raises the question as to when the principal strata
subgroups are identifiable from the observable data, as an affirmative answer to this question places the
principal stratification problem much closer to the treatment marker selection problem where subgroups
are obviously directly observable.

2.2 Is the principal stratum for inference observable?

A key issue for the utility of principal stratification research in general is whether the principal stratum for
inference is observable versus latent and never observable. Many principal strata of interest in a variety of
applications are not observable, rendering the approach unhelpful for decision making for individual
patients or for health policy (e.g., Joffe [19]). However, for present application there is a special case
where the principal stratum for inference is identifiable from the observable data, the “Constant Biomarker”
scenario (i.e. the conditional distribution Sð0ÞjY τð0Þ ¼ 0 is degenerate), which has been considered in
several papers. In Case CB the CEP surface collapses to the mCEP curve, and ACN and ACS may be assessed
based on the mCEP curve. Case CB is important because the principal strata subgroups are specified by
fSð1Þ ¼ s1;Y τð1Þ ¼ Y τð0Þ ¼ 0g, which are identifiable (equating to fSð1Þ ¼ s1;Y τð1Þ ¼ 0g) under the no
early-protection monotonicity assumption PðY τð1Þ ¼ 0;Y τð0Þ ¼ 1Þ ¼ 0. Where this assumption fails, the
principal strata subgroups will be approximately equal to the identifiable subgroups if at most a very
small subgroup receives clinical protection by τ, which is especially likely to hold if the rate of disease by τ
is much less than the rate of disease after τ.

While Case CB has been motivated by vaccine efficacy trials, it also may occur in general active treatment
versus control randomized trials with S defined as the difference in a biomarker readout between time τ and
the time of randomization [20]. In this scenario, if τ is reasonably close to baseline and the passage of time
from baseline to τ is not expected to alter the biomarker during that time for subjects assigned Z ¼ 0, then it
may be reasonable to set Sð0Þ ¼ 0 for all subjects. While in many applications the measured differences S may
have some variability about 0, sometimes this scatter may be assumed to be random measurement error, in
which case it is of interest to assess the “de-noised” variable S as a principal surrogate that does have Sð0Þ ¼ 0
for all subjects. Another advantage of this “difference biomarker” scenario is that the baseline biomarker may
be predictive of S, which aids identifiability and efficiency of estimation of the CEP surface and mCEP curve via
the baseline immunogenicity predictor (BIP) augmented trial design [5, 17, 18, 20–23].

In sum, if the principal strata subgroups are identifiable from observable random variables, then principal
stratification effect modification assessment has utility similar to baseline covariate subgroup analysis of effect
modification, whereas otherwise, the utility is reduced, but still present for the purposes of ranking candidate
biomarkers and for providing inputs into bridging formulas for predicting overall treatment efficacy.

3 Connection of ACN and one-sided ACS with the Prentice
definition of a valid surrogate endpoint

3.1 Prentice definition

A criterion for a good principal surrogate endpoint is satisfaction of Prentice’s [2] definition as a valid
replacement endpoint for the clinical endpoint. This definition may be expressed as perfect population-level
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specificity and sensitivity of the surrogate. Henceforth we use hðx; yÞ ¼ x � y such that CE ¼ PðYð1Þ
¼ 1Þ � PðYð0Þ ¼ 1Þ and CE <0 indicates clinical benefit, and CEPðs1; s0Þ ¼ risk1ðs1; s0Þ � risk0ðs1; s0Þ.

We define two-sided and one-sided versions of Specificity and Sensitivity as follows:

Two-sided Specificity: CE ¼0 ) Sð1Þ ¼d Sð0Þ

Two-sided Sensitivity: CE�0 ) Sð1Þ� d Sð0Þ

One-sided Specificity: CE ¼ 0 ) Sð1Þ ¼d Sð0Þ

One-sided Sensitivity: CE<0 ) Sð1Þ> st Sð0Þ:

We use the contrapositive forms of two-sided Specificity and one-sided Specificity to distinguish them:
Sð1Þ� d Sð0Þ ) CE�0 and Sð1Þ> st Sð0Þ ) CE<0, respectively. In the above definitions > st indicates
stochastically larger, i.e. Sð1Þ> st Sð0Þ means that PðSð1Þ> sÞ � PðSð0Þ> sÞ for all s with > for at least one
s. Because CE is an intention-to-treat parameter, in the above definitions we include “undefined” (�) as one
of the values of S, such that Sð1Þ ¼d Sð0Þ means that PðSð1Þ � sÞ ¼ PðSð0Þ � sÞ for all defined s and
PðSð1Þ ¼ �Þ ¼ PðSð0Þ ¼ �Þ, where this last equality is equivalent to no early average clinical treatment
effect PðY τð1Þ ¼ 1Þ ¼ PðY τð0Þ ¼ 1Þ.

Specificity means that rejecting the null hypothesis of no treatment effect on the surrogate implies a
treatment effect on the clinical endpoint (CE �0 or a one-sided version), whereas Sensitivity means that
accepting the null hypothesis of no treatment effect on the surrogate implies no treatment effect on the
clinical endpoint (CE¼ 0).

3.2 Overall clinical efficacy averaged over the CEP surface

Criteria for checking Specificity and Sensitivity may be derived solely based on observable random vari-
ables, without the need for potential outcomes, following Prentice [2] and subsequent work. However, in
this work we study the relationship of Specificity and Sensitivity to ACN and one-sided ACS, which requires
potential outcomes notation. In Section 5 we provide an example where principal stratification effect
modification analysis supports ACN þ one-sided strong ACS for a biomarker endpoint, generating the
question of what does this imply about whether Specificity and/or Sensitivity hold? As a preliminary step,
we partition CE as a weighted average of the CEP surface across subgroups. The results are developed for
the additive difference contrast function hðx; yÞ ¼ x � y; additional research would be needed for alter-
native contrasts. For concreteness in the following results we suppose S is discrete with J levels
f0; . . . ; J � 1g (in addition to the level S ¼ �). While we present the results for discrete S, they carry over
to the case of continuous S by replacing sums with integrals.

Define Pðs1; s0Þ;PðSð1Þ ¼ s1; Sð0Þ ¼ s0jY τð1Þ ¼ Y τð0Þ ¼ 0Þ for ðs1; s0Þ 2 f0; . . . ; J � 1g � f0; . . . ; J � 1g,
P�ðj; kÞ ¼ PðY τð1Þ ¼ j;Y τð0Þ ¼ kÞ for j; k 2 f0; 1g � f0; 1g, and P�

j ¼ PðY τðjÞ ¼ 1Þ for j ¼ 0; 1. We refer to the
subgroups defined by fY τð1Þ ¼ 0;Y τð0Þ ¼ 0g, fY τð1Þ ¼ 0;Y τð0Þ ¼ 1g and fY τð1Þ ¼ 1;Y τð0Þ ¼ 0g as the
early-always-at-risk, early-protected and early-harmed principal strata, respectively. In addition, define

CEðj; kÞ ; PðYð1Þ ¼ 1jY τð1Þ ¼ j;Y τð0Þ ¼ kÞ � PðYð0Þ ¼ 1jY τð1Þ ¼ j;Y τð0Þ ¼ kÞ

for j; k 2 f0; 1g � f0; 1g.
Throughout we assume P�ð0;0Þ>0, which should be safe to assume in almost all meaningful

applications for evaluating a surrogate endpoint. We state a result for easy reference in the forthcoming
results.
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3.2.1 CE Decomposition

CE ¼
X1

j¼0

X1

k¼0

CEðj; kÞP�ðj; kÞ

¼
XJ�1

s1¼0

CEPðs1; s1ÞPðs1; s1ÞP�ð0;0Þ ð1Þ

þ
X
s1 > s0

CEPðs1; s0ÞPðs1; s0Þ þ
X
s1 < s0

CEPðs1; s0ÞPðs1; s0Þ
" #

P�ð0;0Þ ð2Þ

þ CEð1;0ÞP�ð1;0Þ ð3Þ
þ CEð0; 1ÞP�ð0; 1Þ: ð4Þ

The above decomposition is useful for judging the utility of ACN, ACS, and wide variability in CEPðs1; s0Þ as
criteria for a useful biomarker. In general we wish for high power to reject H0 : CE � 0 in favor of a
beneficial clinical treatment effect H1 : CE<0. If ACN holds, then by eqs (1)–(4), for a biomarker to correctly
reflect a “big” overall clinical treatment effect, we need –CEPðs1; s0Þ large when Pðs1; s0Þ is large. This
equation indicates that for developing highly efficacious treatments, there is nothing essential about ACS;
what is needed is large –CEPðs1; s0Þ for some subgroups defined by fSð1Þ ¼ s1; Sð0Þ ¼ s0;Y τð1Þ ¼ Y τð0Þ ¼ 0g
and the ability of an improved treatment to generate large subgroups of this kind. It also indicates that ACN
is not essential either; this is related to the comment above on the limitation of ACN that it does not imply
full mediation. Therefore, strong effect modification/wide variability of CEPðs1; s0Þ is a more important
criterion for developing new treatments than ACS and even ACN, and greater attention to criteria for valid
bridging to new subgroups is needed [12]; the latter issue is paramount but beyond the scope of this article.

The overall efficacy CE is a weighted average of the CEðj; kÞ for the early-always-at-risk, early-protected,
and early-harmed principal strata, with weights P�ð0; 0Þ, P�ð0; 1Þ, and P�ð1;0Þ. The P�ðj; kÞ are not identifi-
able from the observed data without assumptions about early clinical treatment effects, but with early no-
harm monotonicity (ENHM) defined below they are identified, with P�ð0;0Þ ¼ 1� P�

0, P�ð1; 1Þ ¼ P�
1 ,

P�ð1;0Þ ¼ 0, and P�ð0; 1Þ ¼ P�
0 � P�

1 .

3.3 Results on the relationship of ACN and one-sided ACS to Specificity and
Sensitivity

We consider a menu of assumptions that will be selected from to infer results.

Equal Early Clinical Risk (EECR): PðY τð1Þ ¼ Y τð0ÞÞ ¼ 1, i.e. treatment has no early clinical effect for any
individual

Early No-Harm Monotonicity (ENHM): P�ð1;0Þ ; PðY τð1Þ ¼ 1;Y τð0Þ ¼ 0Þ ¼ 0, i.e. treatment does not
cause early harm for any individual (the early-harmed subgroup is empty)

Population Early Monotonicity (PEM): CEð1;0ÞP�ð1;0Þ þ CE ð0; 1ÞP�ð0; 1Þ ¼ PðYð1Þ ¼ 1;Y τð1Þ� Y τð0ÞÞ�
PðYð0Þ ¼ 1;Y τð1Þ�Y τð0ÞÞ � 0, i.e. the union of the early-protected and early-harmed subgroups does not
have population-level clinical harm

No Negative Marker Effects (NNMEs): PðSð1Þ � Sð0ÞjY τð1Þ ¼ Y τð0Þ ¼ 0Þ ¼ 1, i.e. active treatment versus
control does not reduce the biomarker for any individual in the early-always-at-risk subgroup

Monotonicity: CEPðs1; s0Þ � 0 for all subgroups defined by biomarker levels fSð1Þ ¼ s1; Sð0Þ ¼ s0g 2
f0; . . . ; J � 1g � f0; . . . ; J � 1g, i.e. treatment does not cause harm for any individual in the early-always-
at-risk subgroup
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Case CB: PðSð0Þ ¼ 0Þ ¼ 1
The following results attain, with proofs in the appendix. For these results we re-define ACN and one-

sided ACS slightly as follows. ACN is CEPðs1; s1Þ ¼ 0 for all s1 with Pðs1; s1Þ>0 and one-sided ACS is
CEPðs1; s0Þ< 0 for all s1 � s0 >C for some C � 0 and Pðs1; s0Þ>0. The results are organized by the strength
of the assumption about early clinical treatment effects, from strongest to weakest.

Result 1 (Under EECR): EECR þ ACN þ Case CB imply Sensitivity. Conversely, EECR þ Sensitivity þ Case
CB imply ACN. Apart from Case CB, EECR þ ACN do not imply Sensitivity and EECR þ Sensitivity do not
imply ACN, even under all four of the extra assumptions PEM þ NNMEs þ Monotonicity þ Case CB.

EECR þ ACN þ one-sided strong ACS imply Specificity under any of NNMEs, Monotonicity, or Case CB.
Conversely, EECR þ Specificity þ Sensitivity do not imply one-sided ACS for any C � 0, even under all four
of the extra assumptions.

Result 2 (Under ENHM): ENHM þ ACN do not imply Sensitivity even under all four of the extra assump-
tions. Conversely, ENHM þ Sensitivity þ Monotonicity þ Case CB imply ACN.

Similar to Result 1, ENHM þ ACN þ one-sided strong ACS imply Specificity under any of NNMEs,
Monotonicity, or Case CB, whereas ENHM þ Specificity þ Sensitivity do not imply one-sided ACS for any
C � 0 even under all four of the extra assumptions.

Result 3 (General): ACN does not imply Sensitivity even under all four of the extra assumptions.
Conversely, Sensitivity þ PEM þ Monotonicity þ Case CB imply ACN.

ACN þ one-sided strong ACS þ PEM imply Specificity under any of NNMEs, Monotonicity, or Case CB.
As for Results 1 and 2, Specificity þ Sensitivity do not imply one-sided ACS for any C � 0 even under all
four of the extra assumptions.

Results 1 and 2 show that the principal surrogate conditions can be used to check the two parts of the
Prentice definition. They show that EECR þ Case CB are needed for inferring the full Prentice definition
from ACN and one-sided strong ACS, where relaxing either one loses the implication. Results 1 and 2 also
show the importance of EECR for the principal surrogate criteria to have implications on the Prentice
definition (required for inferring Sensitivity), even under all four extra assumptions PEM, NNMEs,
Monotonicity, and Case CB. Results 1 and 2 also show that the Prentice definition does not imply ACS
even under many possible assumptions; the basic reason is that there are many ways for CE �0 with
CEPðs1; s0Þ zero for some s1 � s0 and below zero for other s1 � s0.

A useful application of Result 3 is that in general applications where PEM and NNMEs or Monotonicity
hold (which is often plausible), if the estimated vaccine efficacy curve takes the classic shape of being near
zero at s1 ¼ 0 (supporting ACN) and rising above zero for positive values s1 >0 (e.g. as in our example
illustrated in Figure 2), then one may conclude Specificity. That is, a classic vaccine efficacy curve indicates
that an inference of beneficial overall vaccine efficacy follows from the observation that vaccine recipients
tend to have higher biomarker responses than placebo recipients.

Next we state Result 1 for the special case that S is binary. The results on implications of ACN and ACS
for Sensitivity and Specificity are unchanged, whereas the reverse implications are strengthened. In
contrast, Results 2 and 3 are unchanged for S binary compared to S categorical with more than two
categories.

Result 1-Binary (Binary S Under EECR): In the special case of S binary and EECR þ Case CB, ACN implies
Sensitivity and Sensitivity implies ACN. In addition ACN plus one-sided strong ACS imply Specificity and
Sensitivity þ Specificity imply one-sided strong ACS.

Result 1-Binary shows that EECR þ Case CB þ S binary constitutes a scenario where both principal
surrogate conditions hold if and only if the Prentice definition holds. For a binary S the Prentice definition
does not have implications on ACS if EECR is relaxed, however, further highlighting the importance of
EECR.
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3.4 Results under minor violations of Case CB and EECR

In the example described in Section 5, there may be minor violations of the Case CB and EECR assump-
tions, raising the question of whether the results are approximately correct under such violations. We
state a variant version of Result 1 to address this question with proof in the appendix, and note that the
other results have similar properties under minor violations. We use the following extension of the
notation.

Define Case CB-" as PðSð0Þ>0Þ ¼ " for " a small positive constant, EECR-" as PðY τð1Þ�Y τð0ÞÞ ¼ ",
ENHM-" as PðY τð1Þ ¼ 1;Y τð0Þ ¼ 0Þ ¼ ", Sensitivity-" as Sð1Þ ¼d Sð0Þ ) CE ! 0 as " ! 0, one-sided
Specificity-" as Sð1Þ> st Sð0Þ ) CE ! c as " ! 0 for some negative constant c, ACN-" as CEPðs1; s1Þ ! 0
as " ! 0 for all s1 2 f0; . . . ; J � 1g, and ACN-"ð0;0Þ as CEPð0;0Þ ! 0 as " ! 0.

Result 4 (Result 1 Under Minor Violations of Case CB and EECR): EECR þ ACN-" þ Case CB-" imply
Sensitivity-". Conversely, EECR þ Sensitivity-" þ Case CB-" imply ACN-"ð0;0Þ but not ACN-". EECR þ ACN-
" þ one-sided strong ACS imply Specificity-" under any of NNMEs, Monotonicity, or Case CB-". The same
implications hold replacing EECR with EECR-".

Result 4 implies that the principal stratification criteria do correctly check the Prentice definition under
minor violations converging to zero in that Sensitivity-" and Specificity-" hold when Case CB is relaxed to
Case CB-" and EECR is relaxed to EECR-". In addition, while Result 4 shows that the Prentice definition
does not imply ACN-" if Case CB is minorly violated, it shows that the Prentice definition does imply ACN-
"ð0;0Þ, which may what matter in practice given that the principal stratum fSð1Þ ¼ Sð0Þ ¼ 0g constitutes
the only causal necessity principal stratum containing study subjects as " ! 0. See Appendix for a proof of
Result 4.

Result 2 extends to a result where ENHM-" þ Sensitivity-" þ Monotonicity þ Case CB-" imply ACN-" and
ENHM-" þ ACN-" þ 1-sided strong ACS imply Specificity-" under any of NNMEs, Monotonicity, or Case CB-".
Result 3 extends to a result where Sensitivity-" þ PEM þ Monotonicity þ Case CB-" imply ACN-". Result
1-Binary extends to a result where, for S binary and assuming EECR-" þ Case CB-", ACN-" implies
Sensitivity-" and Sensitivity-" implies ACN-"ð0;0Þ but not ACN-"; moreover ACN-" plus one-sided strong
ACS imply Specificity-" and Sensitivity-" þ Specificity-" imply one-sided strong ACS.

3.5 Interpretation and testability of the assumptions

The first two assumptions EECR and ENHM are about the effect of treatment on Y before the biomarker is
measured. The stronger assumption EECR assumes no effect for any individual, and has been used for all
but one paper on evaluating a principal surrogate, given the great help it provides toward identifying the
CEP surface and the marginal CEP curve. Wolfson and Gilbert [6] considered sensitivity analysis methods
that relax EECR to ENHM or to no assumption about early treatment effects. EECR and ENHM are not fully
testable but have testable implications, e.g. they can be rejected by finding early clinical treatment effects
overall or in subgroups.

PEM is only relevant if EECR fails, as under EECR P�ð1;0Þ ¼ P�ð0; 1Þ ¼ 0, such that CEð1;0Þ and CEð0; 1Þ
are irrelevant, as treatment effects in empty subgroups. There are no obvious testable implications of PEM.
It holds under the no-harm monotonicity assumption considered above. Without this monotonicity assump-
tion, it may be relatively plausible in settings where the early-protected subgroup is much larger than the
early-harmed subgroup and there is reason to expect that the early protected also receive some later
protection. NNMEs will be plausible in many active versus control trials and can be partially checked by
comparing the distributions of Sð1ÞjY τð1Þ ¼ 0 and Sð0ÞjY τð0Þ ¼ 0. Monotonicity will be more plausible in
settings with higher overall efficacy and can be partially checked similarly to checking ENHM. Case CB can
be checked by examining the distribution of Sð0ÞjY τð0Þ ¼ 0.
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4 Connection of ACN and one-sided ACS with verifying a consistent
surrogate

As argued by several authors including Fleming and DeMets [24], Chen et al. [13], Ju and Geng [14], and
VanderWeele [15], a good surrogate endpoint should be assured to avoid the “surrogate paradox” pitfall,
defined as the scenario where the treatment effect on the surrogate is positive (i.e. Sð1Þ > st Sð0Þ),
the surrogate and clinical outcomes are positively correlated (i.e. SðzÞjYðzÞ ¼ 0;Y τðzÞ ¼ 0> st SðzÞ
jYðzÞ ¼ 1;Y τðzÞ ¼ 0 for each z ¼ 0; 1), yet the overall clinical treatment effect CE is harmful (CE >0). For
scenarios that commonly occur in practice, examination of the CEP surface immediately establishes that
ACN plus 1-sided strong ACS defined above guarantee that the surrogate paradox cannot occur, i.e., the
surrogate is consistent. In particular, under EECR, ACN plus one-sided strong ACS guarantee a consistent
surrogate if any of NNMEs, Monotonicity, or Case CB hold. Under ENHM, these same conditions imply a
consistent surrogate if PEM is added to the set of assumptions. If ENHM is also relaxed, then no combina-
tion of these conditions implies a consistent surrogate. As also discussed by VanderWeele [15], while the
principal stratification framework provides criteria for a consistent surrogate, the fundamental challenge to
its implementation is ensuring valid estimation of the CEP surface given identifiability challenges.
(Identifiability assumptions are discussed extensively in the literature.)

5 Application to the ZEST

We apply the above results to the Phase 3 Zostavax Efficacy and Safety Trial (ZEST), which randomized
22,439 North American and European subjects aged 50–59 years in a 1:1 allocation to receive attenuated ZV
or Zostavax (Merck & Co., Whitehouse Station, NJ) or placebo, with primary objective to assess the vaccine
efficacy to prevent herpes zoster (HZ). Schmader et al. [25] reported an estimated overall vaccine efficacy of
69.8%, using a 1 – relative risk (vaccine/placebo) estimand � 100%. Here we focus on the additive
difference estimand CE;PðYð1Þ ¼ 1Þ � PðYð0Þ ¼ 1Þ, obtaining an estimated CE of –0.0065 with 95%
confidence interval –0.0093 to –0.0037 and two-sided p<0:001 for CE being different from zero. A study
objective was to assess varicella zoster virus (VZV) antibody titers measured by gpELISA as a surrogate
endpoint for HZ. A variety of principal surrogate analyses have been performed to evaluate various VZV-
antibody-based candidate surrogates [26], and here we focus attention on S defined as the difference in the
log10 gpELISA titer at Week 6 minus the same variable at baseline. The biomarker S was measured following
a prospective case–cohort sampling design [27], measured from a 10% random sample of subjects selected
at study entry (and with Y τ ¼ 0 and an available Week 6 sample) and from all subjects who experienced the
disease endpoint Y ¼ 1 after week 6 (n ¼ 1,218 vaccine, n ¼ 1,273 placebo). Figure 1(A) displays boxplots
of S for the vaccine and placebo groups with Y τ ¼ 0, showing higher levels in the vaccine group.

We conduct the analysis assuming Case CB such that PðSð0Þ ¼ 0jY τð0Þ ¼ 0Þ ¼ 1. While there is some
scatter of S about zero in the Z ¼ 0 placebo group (Figure 1(A)), we interpret this scatter to be due to
measurement error. A testable implication of Case CB is that H0 : E½Sð0ÞjY τð0Þ ¼ 0� ¼ 0 must hold, and the
data are consistent with this null hypothesis, with a paired t-test yielding p ¼ 0:71. Under Case CB, the
additive difference CEP surface parameter simplifies to CEPðs1Þ;CEPðs1;0Þ ¼ risk1ðs1;0Þ � risk0ðs1;0Þ.

EECR is plausible and ENHM highly plausible, with 5 of 11,184 vaccine recipients and 8 of 11,212 placebo
recipients experiencing the primary endpoint by τ ¼6 weeks. If EECR is violated, the results are unlikely to
be sensitive to the assumption deviation, given the small number of early events compared to those
occurring after week 6 (25 and 91 events in the vaccine and placebo groups).

We applied the Weibull-model estimated-likelihood method of Gabriel and Gilbert [20] to estimate
CEPðs1Þ, which assumes EECR and accommodates the case–cohort sampling design under a missing at
random assumption. This method also accommodates the right censoring of T that occurred due to drop-out
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or to end-of-follow-up censoring, under a random censoring assumption. The proportional hazards version
of the model was used, given that, based on a coefficient-based Wald test, a parametrized shape component
was deemed unnecessary (p ¼ 0.78). This Weibull method uses the aforementioned BIP technique [5, 17],
with the BIP, X, being the baseline/pre-immunization value of the log10 gpELISA titer. The BIP was
reasonably well correlated with S (Figure 1(B), Spearman rank correlation –0.58), which improves the
accuracy and precision for estimating CEPðs1Þ.

We maximized the estimated likelihood using a parametric normal model for Sð1Þ conditional on X,
where model diagnostics supported that the normal model provided a reasonable approximation. Figure 2
shows the estimated CEPðs1Þ curve for Y ¼ I½T � τ1� for τ1 fixed at 2 years. The estimated CEPð0Þ is 0.000079
with bootstrap 95% confidence interval –0.0045 to 0.0040, which is consistent with ACN. The estimated
curve shows CEPðs1Þ widely varying and monotone decreasing in Sð1Þ, with p-value <0:001 for variation of
CEPðs1Þ in s1. In addition, the estimated curve is consistent with one-sided strong ACS, given that it is

Figure 1: For vaccine and placebo recipients in the immunological substudy of ZEST (chosen as a 10% simple random sample,
n ¼ 1,218 vaccine and n ¼ 1,273 placebo), the (A) boxplots depict the distribution of SjY τ ¼ 0, the log10 fold-rise of gpELISA
antibody titers from baseline (day 1; pre-immunization) to week 6. Data points are shown for random samples of 100
participants. (B) The association between SjY τ ¼ 0 and baseline gpELISA antibody titers (the BIP) in the vaccine group

Figure 2: Point and 95% confidence interval estimates of the CEP curve, CEPðs1Þ;CEPðs1;0Þ ¼ risk1ðs1;0Þ � risk0ðs1;0Þ, for the
ZEST data with candidate surrogate S the log10 fold-rise of gpELISA antibody titers from baseline to week 6. The Weibull-
estimated maximum likelihood method of Gabriel and Gilbert [6] was used, assuming a parametric normal model for Sð1Þ
conditional on the BIP X and using the clinical endpoint Y ¼ I½T � t� for t ¼2 years
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negative for all values of s1 >0:016 and the 95% bootstrap confidence intervals for CEPðs1Þ are below 0 for
all s1 >0:25. Therefore, this principal stratification analysis supports ACN and one-sided strong ACS. In
addition, we applied the weighted pseudo-score method of Huang, Gilbert, and Wolfson [18] to the ZEST
data, which also accommodates the case–cohort sampling design. This method avoids parametric assump-
tions about the joint distribution of Sð1Þ and X by employing nonparametric estimation of the distribution of
Sð1Þ conditional on X and the indicator that Sð1Þ was sampled, with X discretized into quartiles. This
analysis also supported ACN and one-sided strong ACS. Applying Result 1, Sensitivity and Specificity hold,
supporting that the fold-rise in gpELISA titer satisfies the Prentice definition of a surrogate endpoint as well
as being a useful principal surrogate. In addition, sufficient conditions for a consistent surrogate discussed
in Section 4 are met (ACN þ one-sided ACS þ EECR þ Case CB), supporting that the biomarker is a
consistent surrogate. Moreover, both Case CB and EECR may be slightly violated, and Result 4 provides
assurance that the inference about the Prentice definition is not sensitive to these minor violations.

We note that, as described in Huang and Gilbert [21] and Huang, Gilbert, and Wolfson [18], the
employed statistical methods account for the case–cohort sampling design nested within a randomized
trial in order to obtain unbiased estimators of CEPðs1Þ; this is why the results of Section 3 hold under a
subsampling design and the missing at random assumption. If a naive statistical method that ignored the
subsampling design were used then the estimators of CEPðs1Þ would be biased and consequently the results
would no longer be correct, highlighting the necessity of properly accounting for the subsampling design in
checking of ACN and ACS.

Figure 2 also highlights the interpretability of the CEP curve analysis, for example allowing researchers
to infer that a fold rise in gpELISA antibody titers from baseline of 10-fold (titer difference ¼ 1.0)
corresponds to an estimated clinical efficacy of –0.033; under the no-harm monotonicity assumption, this
can be interpreted as 3.3 of 100 vaccine recipients with Sð1Þ ¼ 1:0 avoid zoster disease who would have
experienced it had they not been assigned to receive vaccine. Such results are highly interpretable for
vaccine researchers and public health policy decision makers.

Several articles have discussed the limitation of the BIP-based methods for estimating the CEP surface
that the modeling assumptions for risk0ðs1; s0Þ are not fully testable (e.g. [5, 7]. This is a major reason why
the BIP þ closeout placebo vaccination design has been advocated [17, 18, 28], as closeout placebo
vaccination makes the modeling assumptions for risk0ðs1; s0Þ fully testable. Hence in a very large study,
ACN þ one-sided ACS can be fully empirically verified in a BIP þ closeout placebo vaccination design
under EECR, SUTVA, ignorable treatment assignment, missing at random sampling of S, and random
censoring. For applications like the ZEST where a BIP is available but closeout placebo vaccination was
not performed, an appropriate causal analysis would include a sensitivity analysis that assesses how the
inference depends on violations to any untestable modeling assumptions asserted for risk0ðs1; s0Þ.
Development of such methods is the subject of current research.

6 Discussion

We studied implications of the principal surrogate criteria ACN and one-sided strong ACS for the Prentice
definition of a valid surrogate endpoint (i.e. Specificity and Sensitivity), and vice versa. We found that in
general (for a general S, not in Case CB, and not assuming EECR or EHHM), these two types of criteria do
not imply one other. We also found that Case CB together with EECR or ENHM do allow several implica-
tions, in particular EECR þ Case CB þ ACN imply Sensitivity and conversely EECR þ Sensitivity imply ACN.
Relaxing EECR to ENHM, however, loses the first implication, while the second implication still holds if
Monotonicity is added. Apart from Case CB, the only implication that can be derived is that EECR þ ACN
imply Specificity if NNMEs or Monotonicity hold, and ENHM þ ACN imply Specificity if NNMEs or
Monotonicity hold. In the ZEST example EECR, Case CB, ACN, and 1-sided strong ACS are consistent with
the observed data, illustrating how principal surrogate criteria can be used to help validate the Prentice
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definition. In addition, we found that Case CB for a binary candidate surrogate S allows more implications.
In fact, in the special case EECR þ Case CB, ACN þ one-sided strong ACS hold if and only if the Prentice
definition holds.

The following question arises – if the principal surrogate criteria are only useful for checking the
Prentice definition in Case CB, of what value are the results? Previous authors (e.g. [6] and [29]) have noted
that the Prentice [2] criteria cannot be checked in Case CB, because there is no variability of the biomarker
in the placebo group. However, this article ignores the Prentice [2] criteria and goes straight to checking the
Prentice definition, showing that in Case CB the principal surrogate criteria can be used to check part or all
of the Prentice definition. This is useful in practice given that the Prentice definition of the treatment effect
on the surrogate being concordant with the treatment effect on the clinical endpoint is a relevant property
of a useful surrogate, allowing reliable predictions of clinical efficacy in the same setting of the trial based
on the surrogate and guaranteeing a consistent surrogate. Additional research is needed for evaluating the
reliability of biomarker endpoints for making inferences about clinical efficacy of new treatments in the
same or similar setting (the bridging or transportability surrogate problem), in particular for studying
whether and how the principal surrogate/strong effect modifier and/or Prentice surrogate frameworks are
useful for this problem.
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Appendix: proofs of results

We prove the results using one-sided Specificity and one-sided Sensitivity; the proofs are similar using two-sided
Specificity and two-sided Sensitivity.

Proof of result 1

Examining eqs (1)–(4), it follows immediately that ACN implies line (1) equals zero, and EECR implies lines
(3) and (4) are zero. Therefore under EECR þ ACN

CE ¼
X
s1 > s0

CEPðs1; s0ÞPðs1; s0Þ þ
X
s1 < s0

CEPðs1; s0ÞPðs1; s0Þ
" #

P�ð0;0Þ: ð5Þ

In general, Sð1Þ ¼d Sð0Þ does not imply CE ¼ 0 (i.e. Sensitivity is not implied), because Sð1Þ ¼d Sð0Þ is only
weakly informative about the joint distribution Pðs1; s0Þ. However, in Case CB, eq. (5) simplifies to

CE ¼
X
s1 >0

CEPðs1;0ÞPðs1;0ÞP�ð0;0Þ: ð6Þ

In addition, Case CB implies PðSð1Þ ¼ 0jY τ
1 ¼ 0Þ ¼ PðSð0Þ ¼ 0jY τ

0 ¼ 0Þ ¼ 1, such that Pð0;0Þ ¼ 1 and
Pðs1;0Þ ¼ 0 for all s1 >0. As a consequence, from eq. (6), CE ¼ 0, such that EECR þ ACN þ Case CB
imply Sensitivity.

Conversely, in Case CB

CE ¼ CEPð0;0ÞPð0;0ÞP�ð0;0Þ þ
X
s1 > 0

CEPðs1;0ÞPðs1;0ÞP�ð0;0Þ: ð7Þ
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Now, Sensitivity means that Sð1Þ ¼dSð0Þ implies CE¼ 0, and means that the second term in eq. (7) is zero,
such that CEPð0;0ÞPð0;0ÞP�ð0;0Þ ¼ 0. Thus ACN holds.

Next, we consider the conditions under which ACN þ one-sided strong ACS imply Specificity. By one-
sided strong ACS, CEPðs1; s0Þ<0 for all s1 > s0 with Pðs1; s0Þ>0. Adding ACN, from eq. (5) it follows that
under any of (i) NNMEs, (ii) Monotonicity, or (iii) Case CB, the second termX

s1 < s0

CEPðs1; s0ÞPðs1; s0ÞP�ð0;0Þ ð8Þ

is bounded above by zero. Therefore, under any of (i), (ii), or (iii), CE <0, such that Specificity holds. If
none of (i)–(iii) hold, however, then ACN þ one-sided strong ACS do not imply Specificity, because the
second term (8) may be positive, such that CE in eq. (5) is not necessarily zero (nor is it necessarily
negative). Next, suppose Specificity and Sensitivity and all the assumptions (i)–(iii) hold. Because
Sensitivity þ Case CB imply ACN,

CE ¼
X
s1 >0

CEPðs1;0ÞPðs1;0ÞP�ð0;0Þ:

Now, under Case CB Sð1Þ� d Sð0Þ implies Pðs1;0Þ>0 for at least one s1 >0. Under Specificity, this implies
CE �0, and adding Monotonicity it implies CE <0. Nevertheless, one-sided ACS still may not hold for any
C � 0, because CEPðs1;0Þ could be negative for some s1 with Pðs1;0Þ>0 and nonnegative for other s1 with
Pðs1;0Þ>0.

Proof of result 2

Under ENHM, line (3) is zero, and under ACN, line (1) is zero. Therefore, under ENHM þ ACN

CE ¼
X
s1 > s0

CEPðs1; s0ÞPðs1; s0Þ þ
X
s1 < s0

CEPðs1; s0ÞPðs1; s0Þ
" #

P�ð0;0Þ

þ CEð0; 1ÞP�ð0; 1Þ
The condition Sð1Þ ¼d Sð0Þ places only a limited restriction on Pðs1; s0Þ and P�ð0; 1Þ, such that under all of
the extra conditions PEM, NNMEs, Monotonicity, and Case CB, CE still may be non-zero. In fact, under Case
CB (with or without NNMEs and/or Monotonicity), Sð1Þ ¼d Sð0Þ implies CE ¼ CE�ð0; 1ÞP�ð0; 1Þ, which may
be nonzero under ENHM. Thus ENHM þ ACN þ Case CB do not imply Sensitivity.

Conversely, assume Sensitivity, Monotonicity, and Case CB. In Case CB

CE ¼ CEPð0;0ÞPð0;0ÞP�ð0;0Þ þ
X
s1 >0

CEPðs1;0ÞPðs1;0ÞP�ð0;0Þ þ CEð0; 1ÞP�ð0; 1Þ:

Now, Sensitivity means that Sð1Þ ¼d Sð0Þ implies CE¼ 0, and from the proof of Result 1, Pðs1;0Þ ¼ 0 for all
s1 >0, such that 0 ¼ CE ¼ CEPð0;0ÞPð0; 0ÞP�ð0;0Þ þ CEð0; 1ÞP�ð0; 1Þ. Now, because CEð0; 1Þ ¼ PðYð1Þ ¼ 1
jY τð1Þ ¼ 0;Y τð0Þ ¼ 1Þ � 1, CEð0; 1Þ must be non-positive. This implies that CEPð0;0Þ must be non-negative if
Pð0;0Þ >0. However, by Monotonicity, CEPð0;0Þ � 0. These results together imply CEPð0;0Þ ¼ 0 if
Pð0;0Þ >0. Thus ACN holds.

Next, we determine the conditions under which ACN þ one-sided strong ACS imply Specificity. As in
the proof of Result 1, adding any of NNMEs, Monotonicity, or Case CB to ENHM þ ACN, we obtain

CE �
X
s1 > s0

CEPðs1; s0ÞPðs1; s0Þ
" #

P�ð0;0Þ þ CEð0; 1ÞP�ð0; 1Þ:

By 1-sided strong ACS, CEPðs1; s0Þ<0 for all s1 > s0 with Pðs1; s0Þ>0. We need to show that Sð1Þ> st Sð0Þ
implies CE above is less than zero. If CEð0; 1Þ ¼ 0, then this holds using the same argument as in Result 1.
Thus we may assume CEð0; 1Þ�0, and, because CEð0; 1Þ � 0, we may assume CEð0; 1Þ<0. This can only
make CE smaller, thus CE <0 and the result follows.
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Conversely, Sensitivity þ Specificity together with NNMEs, Monotonicity, and Case CB do not imply
one-sided ACS for any C � 0. The proof is the same as for Result 1.

Proof of result 3

Result 2 shows that under ENHM, ACN does not imply Sensitivity even under the four extra assumptions.
Thus with ENHM relaxed, ACN also does not imply Sensitivity. Conversely, assume Sensitivity,
Monotonicity, and Case CB. In Case CB

CE ¼ CEPð0;0ÞPð0;0ÞP�ð0;0Þ þ
X
s1 >0

CEPðs1;0ÞPðs1;0ÞP�ð0;0Þ

þ CEð1;0ÞP�ð1;0Þ þ CEð0; 1ÞP�ð0; 1Þ
Now, as in the Proof of Result 2, by Sensitivity 0¼CE¼CEPð0;0ÞPð0;0ÞP�ð0;0Þ þ CEð1;0ÞP�ð1;0Þþ
CEð0; 1ÞP�ð0; 1Þ. Now, by PEM, CEð1;0ÞP�ð1;0Þ must be non-positive. This implies that CEPð0;0Þ must be
non-negative if Pð0;0Þ>0. However, by Monotonicity, CEPð0;0Þ � 0. These results together imply
CEPð0;0Þ ¼ 0 if Pð0;0Þ >0. Thus ACN holds.

Next, we consider conditions under which ACN þ 1-sided strong ACS imply Specificity. Adding any of
NNMEs, Monotonicity, or Case CB to ENHM þ ACN, we obtain

CE �
X
s1 > s0

CEPðs1; s0ÞPðs1; s0Þ
" #

P�ð0;0Þ þ CEð1;0ÞP�ð1;0Þ þ CEð0; 1ÞP�ð0; 1Þ:

By one-sided strong ACS, CEPðs1; s0Þ<0 for all s1 > s0 with Pðs1; s0Þ>0. We need to show that Sð1Þ > st Sð0Þ
implies CE above is less than zero. In general, CEð1;0Þ can be greater than zero while the remaining terms
can be less than zero, and they could exactly counter-balance one another. However, if PEM is added, then
CEð1;0Þ � 0, implying that CE <0, such that Specificity holds.

Proof of result 1-Binary

Under EECR and Case CB,

CE ¼ CEPð0;0ÞPð0;0Þ þ CEPð1;0ÞPð1;0Þ½ �P�ð0;0Þ: ð9Þ
The condition Sð1Þ ¼d Sð0Þ implies Pð0;0Þ ¼ 1; thus CE ¼ CEP ð0;0ÞP�ð0;0Þ. Sensitivity entails that CE ¼
CEPð0;0ÞP�ð0;0Þ implies CE ¼ 0, implying that CEPð0;0Þ ¼ 0, i.e. ACN holds.

Next, we also assume Specificity. Specificity (accounting for the fact that ACN holds) states that
Sð1Þ> st Sð0Þ implies CE ¼ CEPð1;0ÞPð1;0ÞP�ð0; 0Þ<0, which implies both CEPð1;0Þ<0 and Pð1;0Þ >0.
From this it follows that if CEPð1;0Þ � 0, then one-sided Specificity could not hold; this contradiction
establishes one-sided strong ACS.

Proof of result 4

With P"ðs1; s0Þ defined the same as for Pðs1; s0Þ with constraints under Case CB-", the overall clinical
efficacy CE under EECR can be written as

CE" ¼ CEPð0;0ÞP"ð0;0Þ þ
XJ�1

s1¼1

CEPðs1; s1ÞP"ðs1; s1Þ
" #

P�ð0;0Þ ð10Þ

þ
X
s1 > s0

CEPðs1; s0ÞP"ðs1; s0Þ þ
X
s1 < s0

CEPðs1; s0ÞP"ðs1; s0Þ
" #

P�ð0;0Þ: ð11Þ
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Under Case-CB-" and Sð1Þ ¼d Sð0Þ, P"ðs1; s0Þ ! 0 as " ! 0 for all ðs1; s0Þ� ð0;0Þ and P"ð0;0Þ ! 1 as " ! 0.
Examining the above formula for CE", these convergence results imply that CE" ! CEPð0;0Þ as " ! 0.
Therefore Sensitivity implies ACN-"ð0;0Þ. However, ACN-" does not hold, because CEPðs1; s1Þ for s1 >0 is not
constrained.

Next we show that EECR þ ACN-"þ Case CB-" imply Sensitivity-". Under ACN-"þ Case CB-", CE" equals
expression (11). By Case CB-", when Sð1Þ ¼d Sð0Þ, every P"ðs1; s0Þ in this expression converges to 0 as " ! 0,
showing that CE" ! 0 as " ! 0.

Next we note that EECR þ ACN-" þ one-sided strong ACS þ Case CB-" imply Specificity-". As above CE"

equals expression (11), and under Case CB-" and Sð1Þ> st Sð0Þ, Ps1 < s0 CEPðs1; s0ÞP"ðs1; s0ÞP�ð0;0Þ ! 0 as
" ! 0. By one-sided strong ACS

P
s1 > s0 CEPðs1; s0ÞP"ðs1; s0ÞP�ð0;0Þ ! P

s1 >0 CEPðs1;0ÞP�ð0;0Þ<0.
Lastly, the same results attain with EECR replaced with EECR-", because CE" now has an extra term

stemming from eqs (3) and (4), CEð1;0ÞP�
" ð1;0Þ þ CEð0; 1ÞP�

"ð0; 1Þ, which converges to zero as " ! 0.
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