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1 Introduction

About 15 years ago a major controversy arose over whether epidural analgesia for women in labor (which
provides superior pain relief to other analgesia) increases the probability of Caesarean section (C/S). Three
methods to estimate the effect of epidural analgesia versus other analgesia on the probability of C/S were
investigated: a propensity score analysis, the paired availability design, and a meta-analysis of rando-
mized trials [1]. A propensity score is an individual’s probability of receiving treatment as function of
observed baseline variables [2, 3]. A propensity score analysis is the estimation of the effect of treatment
on outcome using the propensity score. The paired availability design is a before-and-after comparison of
treatment effect in multiple medical centers, with an adjustment for various changes in availability of
treatment over time to estimate the effect of receipt of treatment on outcome [4]. When applied to the
question of whether epidural use increased the probability of C/S, a propensity score analysis and a
paired availability design gave qualitatively different results with the latter in closer agreement with
results of a meta-analysis of randomized trials [1]. Because the controversy over the effect of epidural
analgesia on the probability of C/S is ongoing, we revisit these results in light of new data and new
methodologies.

A recent advancement in the propensity score analysis is the recognition that, with an observed collider
(a variable directly influenced by at least two other variables), causal graphs are needed for appropriate
variable selection [5–8]. See Pearl [9] for a comprehensive discussion of causal graphs and Pearl [10] for a
summary. In the presence of colliders, a causal graph allows for a more precise definition of an omitted
confounder and is needed to define M-bias [9]. Both an omitted confounder and M-bias can invalidate a
propensity score analysis. M-bias in a propensity score analysis is a controversial topic [5–8, 11, 12], perhaps
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related to specialized terminology which can be confusing. To help clarify M-bias, this review of the topic
discusses M-bias in a framework involving only probability theory.

A recent advancement in the paired availability design is the recognition that extrapolation estimates
can improve generalizability [13]. The goal of the paired availability design is to estimate treatment effect
(the effect of receipt of treatment on outcome) while avoiding the self-selection bias of comparing a new
treatment in the later time period with an old treatment in the earlier time period. The paired availability
design compares outcome in all eligible persons in a later time period with outcome in all eligible persons in
an earlier time period and estimates treatment effect under plausible assumptions. The key to this estima-
tion is a potential outcomes model involving what were later called, in a more general context, principal
strata [14]. In the paired availability design, the potential outcomes model involves time periods of lower
and higher availabilities of a new treatment, and the principal strata refer to four types of subjects who
would receive a specified pair of treatments (old or new), if the time period of arrival were to correspond to
low or high availability of the new treatment. Under reasonable assumptions, it is possible to estimate
treatment effect in one or two principal strata. Sometimes an estimate of treatment effect within one
principal stratum is considered an end in itself [15]. However, because the composition of principle strata
can differ in a target population, a more appropriate goal is to estimate treatment effect among all persons
[13, 16]. An extrapolation estimate is an estimate of treatment effect among all persons that uses information
on the fraction of persons in the principal stratum. Here, new types of extrapolation estimates are
introduced and compared via simulation.

The article is organized as follows. Section 2 discusses propensity scores. Section 3 discusses the paired
availability design. Section 4 discusses the meta-analysis of randomized trials. Section 5 compares estimates
of the effect of epidural analgesia on the probability of C/S based on a propensity score analysis, a paired
availability design, and a meta-analysis of randomized trials. Section 6 is a discussion.

2 Propensity scores

A propensity score analysis with subclassification (stratification by the propensity score) is an appealing
method for adjusting for baseline variables when estimating the effect of treatment on outcome in an
observational study with two treatment groups [2, 3]. The propensity score method with subclassification
has two advantages over regression analysis in terms of “offering initial trustworthy comparisons that
are easy to communicate” [17]. First, it can easily flag a troublesome situation in which a member of one
treatment group has values of baseline variables outside the range of the values of baseline variables for
the other treatment group. This lack of overlap, which is harder to detect in regression models, could
invalidate an analysis. Second, a propensity score method with subclassification is less dependent on
the functional form of the model than a regression model. In addition, without biasing estimates of
treatment effect, researchers can investigate various models for the propensity score before the final
selection [18]. Rosenbaum and Rubin [2, 3] justified the use of propensity scores in terms of ignorable
treatment assignment. Here, we present a justification based directly on adjusting for appropriate
baseline variables, which facilitates the connection of the propensity score analysis to theory of causal
graphs.

2.1 Graphical view of adjustment

A baseline variable is a variable observed before the receipt of treatment. Adjustment for baseline
variables is a well-known technique for estimating the effect of intervention on outcome in an
observational study with concurrent treatments. To mathematically describe adjustment, let Y denote
outcome, T denote treatment, and X denote the appropriate baseline variables that when used for
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adjustment yield an unbiased (causal) estimate of treatment effect. For now, suppose the appropriate
baseline variables X are those variables that directly influence both the receipt of treatment and the
outcome. The theory of causal graphs (to be discussed) provides a comprehensive rule for selecting the
appropriate baseline variables X.

The naïve estimate of the effect of T on Y is obtained by substituting estimates into the following
equation,

ΔNAIVE ¼
Z

x
ðprðY ¼ 1jT ¼ 1;X ¼ xÞ prðX ¼ xjT ¼ 1Þ dx

�
Z
x
ðprðY ¼ 1jT ¼ 0;X ¼ xÞ prðX ¼ xjT ¼ 0Þ dx:

½1�

The reason the naïve estimate can yield incorrect conclusions is that distribution of X can differ in persons
with T = 0 and persons with T = 1. Adjustment makes the distribution of X the same in the two groups,
namely pr(X = x| T = t) = pr(X = x), and transforms Equation (1) into

ΔCASUAL ¼
Z
x
ðprðY ¼ 1jT ¼ 1;X ¼ xÞ prðX ¼ xÞ dx

�
Z
x
ðprðY ¼ 1jT ¼ 0;X ¼ xÞ prðX ¼ xÞ dx:

½2�

The causal effect is estimated by substituting estimates for the probabilities in Equation (2).
Figure 1 presents a graphical view of adjustment using a plot to graphically explain Simpson’s

paradox that was independently proposed by Jeon et al. [19] and Baker and Kramer [20]. See also Wainer
[21]. The plot involves a single baseline variable X which takes values of 0 and 1, and is sufficient for
adjustment. In Figure 1, the estimate of pr(X = 1 | T = 1) is 1/3, and the estimate of pr(X = 1 | T = 0) is 2/3. The
estimates of pr(Y = 1 | T = t, X = x) are 9/10 for {T = 1, X = 1}, 3/10 for {T = 1, X = 0}, 8/10 for {T = 0, X = 1},
and 2/10 for {T = 0, X = 0}. The naïve estimate of the effect of T on Y is obtained by substituting estimates
into

ΔNAIVE ¼ fprðY ¼ 1jT ¼ 1;X ¼ 1Þ prðX ¼ 1jT ¼ 1Þ
þ prðY ¼ 1jT ¼ 1;X ¼ 0Þ prðX ¼ 0jT ¼ 1Þg
� fprðY ¼ 1jT ¼ 0;X ¼ 1Þ prðX ¼ 0jT ¼ 1Þ
þ prðY ¼ 1jT ¼ 0;X ¼ 0Þ prðX ¼ 0jT ¼ 0Þg

½3�

to obtain the estimate

DNAIVE ¼ fð9=10Þð1=3Þ þ ð3=10Þð2=3Þg � fð8=10Þð1=3Þ þ ð2=10Þð2=3Þg
¼ 5=10� 6=10 ¼ �1=10:

½4�

In contrast, the causal estimate of the effect of T on Y is obtained by substituting estimates into the
following equation involving adjustment,

ΔCASUAL ¼ fprðY ¼ 1jT ¼ 1;X ¼ 1Þ prðX ¼ 1Þ þ prðY ¼ 1jT ¼ 1;X ¼ 0Þ prðX ¼ 0Þg
� fprðY ¼ 1jT ¼ 0;X ¼ 1Þ prðX ¼ 1Þ þ prðY ¼ 0jT ¼ 0;X ¼ 0Þ prðX ¼ 0Þg ½5�

to obtain

DCASUAL ¼ fð9=10Þ prðX ¼ 1Þ þ ð3=10Þ prðX ¼ 0Þg
� fð8=10Þ prðX ¼ 1Þ þ ð2=10Þ prðX ¼ 0Þg ¼ 1=10;

½6�

In Figure 1, the naïve estimate of the effect of T = 1 versus T = 0 on Y is the vertical distance between the
dashed horizontal lines, namely 5/10–6/10 = – 1/10. The casual estimate is the vertical distance between the
diagonal lines, namely 3/10–2/10 = 1/10, an example of Simpson’s paradox involving different signs for
causal and naïve estimates.
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2.2 Propensity scores from an adjustment perspective

When the set of baseline variables X sufficient for adjustment consists of many variables, estimating the
causal effect via Equation (2) is problematic because estimates of pr(Y = 1|t, x) can be unstable due to small
sample sizes. To solve this problem, Rosenbaum and Rubin [2] proposed the use of a propensity score. The
propensity score is the probability of receiving treatment as a function of the baseline variables. Rosenbaum
and Rubin [3] justified the use of the propensity score for casual estimation by proving that if treatment
assignment is ignorable on baseline variables, then treatment assignment is ignorable on the propensity
score constructed from those baseline variables. Here an adjustment argument is presented to justify using
propensity scores to obtain a casual estimate of treatment effect. Let s = pr(T = 1|x) denote the propensity
score. Without invoking any properties of the propensity score, the naïve estimated treatment effect is
obtained by substituting estimates into

ΔNAIVEðPSÞ ¼
Z
x

Z
s
ðprðY ¼ 1jT ¼ 1; x; sÞ prðX ¼ x=s;T ¼ 1Þ prðS ¼ sjT ¼ 1Þds dx

�
Z
x

Z
s
ðprðY ¼ 1jT ¼ 0; x; sÞ prðX ¼ xjs;T ¼ 0Þ prðS ¼ sjT ¼ 0Þds dx:

½7�

In Equation (7), the distributions of X and S differ by group T. As derived in Rosenbaum and Rubin [3], with
more details given in Appendix A, the propensity score has the property that

prðX ¼ xjt; sÞ ¼ prðX ¼ xjsÞ: ½8�
Equation (8) implies that pr(X = x| T = 0, s) = pr(X = x| T = 1, s), which says that the distribution of baseline
variables is the same for each treatment group after conditioning on the propensity score. Substituting
Equation (8) into Equation (7) gives

ΔNAIVEðPSÞ ¼
Z
x

Z
s
ðprðY ¼ 1jT ¼ 1; x; sÞ prðX ¼ xjsÞ prðS ¼ sjT ¼ 1Þds dx

�
Z
x

Z
s
ðprðY ¼ 1jT ¼ 0; x; sÞ prðX ¼ xjsÞ prðS ¼ sjT ¼ 0Þds dx:

½9�

In Equation (9), only the distribution of S differs by group T. Adjustment using pr(S = s |T = t) = pr(S = s)
transforms Equation (9) into the following equation used to compute a causal estimate,

pr

pr
Figure 1 Graphical view of adjustment in a simple example.
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ΔCAUSALðPSÞ ¼
Z
x

Z
s
ðprðY ¼ 1jT ¼ 1; x; sÞprðX ¼ xjsÞprðS ¼ sÞds dx

�
Z
x

Z
s
ðprðY¼ 1 jT¼ 0; x; sÞprðX ¼x j sÞprðS¼sÞds dx

�
Z
s
ðprðY¼ 1 jT¼ 1; sÞprðS ¼ sÞds

�
Z
s
ðprðY¼ 1 jT¼ 0; sÞprðS ¼ sÞds:

½10�

The method of subclassification of propensity scores [3] can be viewed as a method of estimating the causal
effect in Equation (10) by substituting the appropriate estimates. The first step is to compute an estimated
propensity score, denoted here as s*. Under the method of subclassification, the estimated propensity score
is split into five quintiles. Let p(t, q) denote an estimate of pr(Y = 1|t,s*) for all persons with estimated
propensity score s* in the qth quintile of the estimated propensity scores. Then, the propensity score
subclassification estimate of causal effect is

DCAUSALðPSÞ ¼ �5
q¼1pð1; qÞ=5� �5

q¼1pð0; qÞ=5: ½11�

Forming subclasses based on the inverse variance of estimated treatment effect can reduce the mean
squared error [22]. Other uses of the propensity score (not discussed here) are weighting based on the
inverse of the estimated propensity score [23], propensity score matching [24, 25], and regression adjustment
with propensity scores [24].

2.3 Review of causal graphs

Before the advent of causal graphs and the recognition of colliders (to be discussed), the recommendation
for correct causal inference based on multivariate observational data was to adjust for all observed variables
associated with both treatment and outcome [26]. However with the advent of causal graphs [9], this
recommendation has been superseded by a recommendation (to be discussed) that allows for colliders.
Below, is a brief summary of the relevant aspects of causal graphs for this discussion.

A causal graph is a diagram showing the direct influence of variables on each other in an observational
study. In a causal graph, the direct influence of variable A on variable X is written as A → X. Writing
A → X→B says that X directly influences (or directly causes) B without additional information from A. Causal
graphs are usually said to be “directed” meaning there are no double arrows, and “acyclic” meaning there
are no loops specified by arrows.

Causal graphs are needed for variable selection when there is an observed collider. A collider is a
variable directly influenced by at least two other variables so that graphically there are at least two arrows
pointing to it. Using the terminology in Morgan and Winship [27], the basic patterns for causal relations are

Collider: A → X← B (mutual causation),
Non-collider: A → X→ B (mediation),
A ← X ← B (mediation),
A ← X → B (mutual dependence).

Colliders play a key role in causal inference because conditioning on a collider has a very different
implication than conditioning on a non-collider [9]. See Appendix A for a formal proof.

If X is a collider between A and B, then A and B are unconditionally independent, but A and B are
dependent conditional on X. To illustrate this property of a collider, suppose you are waiting for a bus. Here,
A is the occurrence or not of traffic accident that would delay the bus, B is an indicator of whether a slow or
fast driver is behind the wheel of the bus (as determined by scheduling done weeks in advance), and X is an
indicator of whether the bus is on time or late. If there is a traffic accident or the slow driver is behind the
wheel, the bus will be late. Prior to the scheduled bus arrival time, the occurrence or not of a traffic accident
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(A) and the presence of a slow or fast driver (B) are independent. If, prior to the scheduled bus arrival time,
you hear a traffic report that does not mention any accident on the bus route (A), you have no additional
information about which driver is behind the wheel (B), so events A and B are independent. However, if
besides hearing this traffic report (A), you also find the bus is late (conditioning on X), your most likely
conclusion is that the slow driver is behind the wheel of the bus (B). Thus A and B are independent events,
but conditioning on X makes A and B dependent events.

If X is a non-collider between A and B, then A and B are unconditionally dependent, but A and B are
independent conditional on X. To illustrate this property of a non-collider, suppose you are going to a bus
stop to catch a bus that will take you to an appointment. You are concerned the bus might be delayed due to
a traffic accident. Here, A is a traffic accident or not, X is an indicator if the bus is on time or late, and B is
an indicator of being on-time or late for your appointment. Suppose, that prior to the scheduled bus arrival
time you hear on the radio that there is an accident that could delay the bus. In this case, information on the
traffic accident (A) increases the probability of your being late for your appointment (B), so events A and B
are dependent. Once the bus arrives late (conditioning on X), information about a prior traffic accident (A),
provides no additional information about whether or not you will be late for your appointment (X),
assuming any later traffic accident is independent of an earlier traffic accident. Thus, A and B are
dependent, but conditioning on X makes A and B independent.

A path in a causal graph is a sequence of variables connected by arrows. There are two fundamental
types of paths connecting treatment T and outcome Y, back door and front door. A back door path is any
path linking T and Y which ends in an arrow pointing to T. A front door path is a path connecting T and Y in
which an arrow points away from T. The causal effect is the effect of T on Y on the front door path. A back
door path from T to Y in which T and Y are dependent can bias estimates of causal effects obtained from the
front door path. The fundamental requirement for causal inference from T to Y after conditioning on a set of
baseline variables X is that T and Y are independent on all back door paths after conditioning on X, which
implies that a change in T systematically affects Y only through the front door path.

The d-separation criterion (Pearl 2009b) is a rule for determining whether or not T and Y are independent on
all back door paths after conditioning on a set of baseline variables X. A set of baseline variables X is said to
block a single back door path P from T to Y if conditioning on X makes T and Y independent on that path. In
other words, “blocking” of a back door path can be thought of as blocking dependence between T and Y on the
back door path. Operationally, a set of baseline variables X blocks a single back door path P from T to Y if either
(i) path P contains at least one non-collider in X (so T and Y are independent due to conditioning on a

non-collider) or
(ii) path P contains at least one collider outside X with no descendants in X (so that T and Y are

independent due to not conditioning on a collider).

D-separation of T and Y by conditioning on X requires that X block all back door paths. If any back door
path is not blocked after conditioning on X, there is no d-separation of T and Y by conditioning on X, so
adjustment on X will yield biased estimates of casual effects.

2.4 Causal graphs and propensity scores

Given the possible presence of colliders, a propensity score analysis can be improved by using causal
graphs to select variables to include in the propensity score. Based on the theory of causal graphs, the
following two assumptions are needed for unbiased (causal) estimation of treatment effect when using
propensity scores,

Assumption PS-1 (no omitted confounder),
Assumption PS-2 (no latent M-bias collider).

These two assumptions will be discussed in turn.
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2.4.1 Omitted confounder

An omitted confounder with respect to a propensity score involving baseline variables X is a non-collider
outside of X that is on a back door path from treatment T to outcome Y that is not blocked by X, so T and Y
are dependent on this back door path, and T and Y are not d-separated, preventing correct causal
inference.

Figure 2 illustrates an omitted confounder. The propensity score excludes X1 so that back door path
T ← C → A ← X1 → B → D → Y is not blocked by the variables X2 in the propensity score, and thus T and Y are
dependent on this path. Hence X1 is an omitted confounder, there is no d-separation of T and Y, and there is
bias in estimating the causal effect on the front door path.

2.4.2 Latent M-bias collider

An M-diagram has the form T ← A→ X ← B→ Y, which can be plotted in the shape of the letter “M”
where the upper points of the letter are A and B and the middle point of the letter is X, which is a collider
(Figure 3).

A latent M-bias collider (a name coined here) with respect to a propensity score involving adjustment for a
set of baseline variables X is a collider included in the set X that is on a back door path from treatment T to
outcome Y which is not blocked by any variables in X; in this case, T and Y are dependent (not d-separated)
on the aforementioned back door path preventing correct causal inference.

Figure 4 illustrates a latent M-bias collider. The propensity score (which depends on only X1 and X2 )
includes the X1 collider but not the non-colliders C, A, B, and D, so the back door path T ← C→ A→ X1 ← B→
D→ Y is not blocked by conditioning on the propensity score, and thus T and Y are dependent on this path.
Hence, X1 is a latent M-bias collider, there is no d-separation of T and Y, and there is bias in estimating the
causal effect on the front door path.

A B

C                                                                  D

T Y

X1 = omitted 
confounder

X2, all variables 
in the propensity 
score

Figure 2 An omitted confounder in propensity score analysis. The shaded box indicates variables included in the propensity
score.

A B

X
T Y
Figure 3 An M-diagram.
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2.5 Application to epidural analgesia and C/S

Based on the theory of causal graphs, the two key assumptions for a valid propensity score analysis are (i)
no omitted confounder and (ii) no latent M-bias collider. To investigate these assumptions in the application
to epidural analgesia and C/S, we formulated the causal graph in Figure 5.

Our primary discussion involves the propensity score analysis in Lieberman et al. [28]. Author KSL, an
obstetric anesthesiologist, formulated the causal graph in Figure 5 using the variables considered in
Lieberman et al. [28] as well as other variables thought to be appropriate. Some aspects of the causal
graph might be debatable as there are limited data that confirm or deny its structure. Nevertheless, there is
support for the following key considerations.

(a) Dystocia (abnormal labor) directly influences cervical dilation. Impey et al. [29, 30] found that women
with less cervical dilation at admission had a greater duration of labor. A likely explanation is that
dystocia failed to dilate the cervix to a similar degree as in women with normal labor.

(b) Hypertension directly influences cervical dilation. Obstetricians frequently admit patients with gesta-
tional hypertension to the hospital for induction or augmentation of labor with very little cervical
dilation in order to deliver the baby in a manner to avoid potential problems from prolonged
hypertension.

(c) Dystocia directly influences the probability of C/S. Dystocia is an accepted indication for C/S.
(d) Chronic hypertension directly influences the type of analgesia selected. Obstetricians and anesthesiolo-

gists encourage patients with hypertension to select labor epidural analgesia for its safety over other
labor analgesia techniques and for its potential use during C/S, which is more likely in women with
hypertension.

(e) Obstetrical group directly influences both type of analgesia received and probability of C/S. Different
obstetricians may favor different types of analgesia and have different rates of C/S. Also, according to
an observational study by Beilin et al. [31], obstetrical group is a confounder for epidural analgesia and
C/S.

(f) Intense pain in labor directly influences both type of analgesia and probability of C/S. Women in intense
pain are more likely to request and receive epidural analgesia with its superior pain relief than other
analgesia. Intense pain may also lead to C/S by impairing the labor process.

Inspection of the causal graph in Figure 5 allows evaluation of the assumptions needed for unbiased
(causal) estimation of treatment effect.

Assumption PS-1 (no omitted confounder) does not likely hold because intense pain and obstetric group
are omitted confounders. Graphically, intense pain and obstetric group are non-colliders outside the
variables in the propensity score and the path T (epidural) ← X0 (intense pain, obstetric group) → B
(dystocia) → Y (C/S) is not blocked. Lieberman et al. [28] did not report collecting data on pain levels.

A B

C D

T Y

X1, a subset of variables 
in the propensity score = 
latent M-bias collider

X2, a subset of variables 
in the propensity score

Figure 4 A latent M-bias collider. Shaded boxes indicate variables included in the propensity score.
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Although Lieberman et al. [28] obtained data from 17 prenatal care sites [32], they did not report obstetrical
group.

Assumption PS-2 (no latent M-bias collider) does not likely hold because cervical dilation at admission
and initial rate of cervical dilation are latent M-bias colliders. Graphically, the path T (epidural) ← A
(maternal pregnancy induced hypertension, maternal chronic hypertension) → X1 (cervical dilation at
admission and initial rate of cervical dilation) ← B (dystocia) → Y (C/S) is not blocked by the propensity
score which includes X1 but neither A nor B.

The omitted confounder and the latent M-bias colliders provide a plausible explanation as to why the
result from the propensity score analysis of Lieberman et al. (1996) differed substantially from the result
from meta-analysis of randomized trials in Baker and Lindeman [1].

Nguyen et al. [33] also used a propensity score analysis to estimate the effect of epidural analgesia on
the probability of C/S. Their baseline variables were type of care, age, race, marital status, height, weight,

|      

X0 = Intense pain, Obstetric group =  Omitted confounders

A ={Maternal pregnancy induced hypertension,  
Maternal chronic hypertension},which were
candidate variables forinclusion in the propensity
score but were not selected

= Dystocia B
abnormal( labor)

C = Magnesium sulfate
therapy

X1 = {Cervical dilation at admission,  Initial 
rate of cervical dilation}, which are variables 
in the propensity score  = Latent M-bias
colliders

X4 = {Maternal
age, Insurance,
Male infant}, 
which were
candidate 
variables for
inclusion in the
propensity score 
but were  not 
selected

X5 = ( Ruptured membrane at   
admission), which was a candidate 
variable for inclusion in the 
propensity score but wasnot selected 

D = infection

Y = Caesarean sectionT = Epidural analgesia

X3 = {Maternal height, Infant birth weight,
Gestational duration,  Station of fetal head at
admission,Treatment for active management
of labor},which are variables in the propensity
score

X2 = Maternal pre-pregnant weight,which is
a variable in the propensity score

Figure 5 Causal graph for observational study of effect of epidural analgesia on the probability of Caesarean section. Shaded
boxes indicate variables included in the propensity score.
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educational level, country of birth, language spoken, payment method, prior medical history, major ante
partum complications, cervical dilation at admission, rupture of membranes at presentation, complications
at presentation. As with Lieberman et al., they found a strong effect of epidural analgesia on the probability
of C/S. Also, as with Lieberman et al. [28], bias could have arisen due to the same omitted confounders of
intense pain and obstetrical group, and the same latent M-bias collider of cervical dilation at admission.

Lieberman et al. [28] only studied women who were nulliparous (no previous live births). In contrast,
Nguyen et al. [33] performed separate analyses by parity (number of previous successful live births) and
found that the estimated effect of epidural on the probability of C/S was larger for women who were
nulliparous than for women who were multiparous (at least one previous live birth). The estimates and
confidence intervals based on these propensity score analyses are summarized in Section 5.

2.6 A note on variable selection

Lieberman et al. [28] used stepwise logistic regression to select baseline variables for the propensity score
analysis. Let XTY denote variables that directly cause both treatment selection and outcome, XT denote
variables that directly cause only treatment selection, and XY denote variables that directly cause only
outcome. Based on simulations for propensity score subclassification involving no unobserved confounders
and no observed colliders, Brookhart et al. [34] and Austin et al. [25] found that the mean squared error was
smaller when adjusting for a combination of XTY and XY versus a combination of XTY and XT. If there are no
unobserved confounders and there are observed colliders, Pearl [9, 35] noted that adjusting for either (i) all
observed direct causes of outcome or (ii) all observed direct causes of treatment selection gives the same
unbiased estimate of the effect of treatment on outcome (as either strategy blocks all back-door paths).
However, if there are unobserved confounders; Pearl [35] prefers the former to avoid bias amplification.
VanderWeele and Shpitser [36] showed that if an adjustment using any subset of the observed baseline
variables (including colliders) controls for confounding, confounding could also be controlled by adjusting
for baseline variables that are direct causes of treatment selection or outcome or both. These variable
selection methods will yield biased results if there is an omitted confounder or a latent M-bias collider.

3 The paired availability design

The paired availability design is a method for estimating treatment effect (the effect of receipt of treatment
on outcome) using historical controls [1, 4, 13, 37–39). There are two problems with using historical controls
to estimate treatment effect. First, a naïve comparison of outcome among recipients of new treatment at a
later time with outcome of recipients of old treatment at an earlier time is generally biased. Second, a
comparison of all outcomes at a later time with all outcomes an earlier time gives a diluted estimate of
treatment effect even if there is no systematic error over time.

The paired availability design circumvents these problems by comparing all outcomes at a later time
with all outcomes at an earlier time, and then using an adjustment to obtain an unbiased estimate (if
assumptions hold) of the effect of receipt of treatment in a subgroup called a principal stratum. Each
principal stratum is a baseline variable determined by the actual or hypothetical receipt of different
treatments at different time periods (or, in other applications, different randomization groups). Principal
stratification is the name given to this type of model when applied more generally [14].

The principal stratification model with two plausible assumptions for identifiability that is discussed
here was independently formulated by Permutt and Hebel [40], Baker and Lindeman [4], Imbens and
Angrist [41] followed by Angrist et al. [42], and Cuzick et al. [43]. Baker et al. [13] introduced the extrapola-
tion estimate to increase the plausibility of generalizing the treatment effect from a principal stratum to the
entire population. Here, new extrapolation estimates are introduced, evaluated by simulation, and applied
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to data on epidural analgesia and probability of C/S. Following Baker and Lindeman [4], Cuzick et al. [43],
and Cox [44], our formulation of the principal stratification model uses standard probability notation
instead of the potential outcomes notation of Angrist et al. [42].

3.1 Review of the paired availability design

Let T0 denote a standard treatment which is available to all eligible patients, and let T1 denote a new
treatment with limited availability. Let time period Z = 0 denote lower availability of T1 and time period
Z = 1 denote higher availability of T1 at a particular medical center. The goal is to estimate the average
causal effect over medical centers of the receipt of T1 instead of T0 on the probability of outcome Y.

3.1.1 Time periods similar to randomization groups

The paired availability design requires that estimates of the effect of time period on outcome are unbiased,
as if the time periods were similar to randomization groups. To this end, the following four assumptions [13]
are invoked:

Assumption PAD-1 (stable population): from one time period to the next, there are no changes in the
characteristics of the eligible population that would affect the probability of outcome;

Assumption PAD-2 (stable ancillary care): from one time period to the next, there are no systematic
changes in patient management unrelated to the treatment of interest that would affect the probability of
outcome after any adjustment;

Assumption PAD-3 (stable disease progression): from one time period to the next, there are no systematic
changes in the timing of disease-related events or the spectrum of manifestations of disease in the absence
of treatment;

Assumption PAD-4 (stable evaluation): from one time period to the next, there are no changes in
eligibility criteria and definitions of outcome.

Some of these assumptions can be made more plausible by design. To support Assumption PAD-1 (stable
population), investigators can choose medical centers with little in- or out- migration, such as geographi-
cally isolated medical centers or army medical centers. Also, if data are available from medical centers in
which treatment does not change over time, investigators may be able to adequately estimate the back-
ground effect of time period on the probability of outcome and use that estimate to adjust for bias due to
changes over time [37]. To support Assumption PAD-2 (stable ancillary care), investigators can follow
protocols and minimize staff changes. If these assumptions hold, the change in probability of outcome as a
function of time period is

Δoverall ¼ prðY ¼ 1 j Z ¼ 1Þ � prðY ¼ 1 j Z ¼ 0Þ: ½12�

3.1.2 Principal stratification and identifiability

To estimate the effect of receipt of treatment from a comparison of outcomes in different time periods, the
paired availability design uses a principal stratification model with two assumptions for identifiability.

A participant is defined as a person who arrives at the designated medical center during either of the
time periods and receives either treatment T0 or T1. Using this definition of a participant and the convention
that availability of treatment T1 is greater in time period Z = 1 than in time period Z = 0, the principal strata,
denoted R = r, are as follows:
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Never-receiver, R = n, if a participant would receive treatment T0 if the time period of arrival corresponded
to an availability of treatment at either the level in time period Z = 0 or the level in time period Z = 1,

Consistent-receiver, R = c, if a participant would receive T0, if the time period of arrival corresponded to an
availability of treatment at the level in time period Z = 0 and would receive T1 if the time period of arrival
corresponded to an availability of treatment at the level in time period Z = 1,

Inconsistent receiver, R = i, if a participant would receive T1 if the time period of arrival corresponded to
availability of treatment at the level in time period Z = 0, and would receive T0 if the time period
corresponded to an availability of treatment at the level in time period Z = 1,

Always-receiver, R = a, if a participant would receive treatment T1 if the time period of arrival corresponded
to availability of treatment at either the level in time period Z = 0 or the level in time period Z = 1.

Let T = 0 denote receipt of treatment T0, and let T = 1 denote receipt of treatment T1. The definitions of the
principal strata imply

prðT ¼ 1 j Z ¼ 0Þ ¼ prðR ¼ iÞ þ prðR ¼ nÞ; ½13�

because only participants in principal strata R = i and R = n would receive T1 in time period T = 0. Similarly,

prðT ¼ 1 j Z ¼ 1Þ ¼ prðR ¼ cÞ þ prðR ¼ aÞ ½14�
because only participants in principal strata R = c and R = a would receive T1 in time period T = 1. The
treatment effect in principal stratum r is written as

ΔstratumðrÞ ¼ prðY ¼ 1 j Z ¼ 1; rÞ � prðY ¼ 1 j Z ¼ 0; rÞ: ½15�
This treatment effect in Equation (15) is called a causal effect because it represents the effect of treatment in
a subset of participants defined by a baseline variable with the two time periods taking the role of
randomization groups. Using Equation (15), Equation (12) can be written as

Δoverall ¼ ΔstratumðaÞprðR ¼ aÞ þ ΔstratumðcÞprðR ¼ cÞ � ΔstratumðiÞprðR ¼ iÞ � ΔstratumðnÞprðR ¼ nÞ ½16�
To obtain the causal effect of receipt of treatment, the following two additional assumptions are invoked:

Assumption PAD-5 (stable treatment effect): the effect of treatment on the probability of outcome does
not change over the time periods among always-receivers and never-receivers;

Assumption PAD-6 (stable preferences): preference for treatment does not change over the time periods.

These assumptions have important implications for formulating the causal effect. Assumption PAD-5
(stable treatment effect) implies the probability of outcome in always-receives and never-receivers does
not vary with time period, namely

prðY ¼ 1 j Z ¼ z; R ¼ nÞ ¼ prðY ¼ 1 jR ¼ nÞ; ½17�

prðY ¼ 1 j Z ¼ z; R ¼ aÞ ¼ prðY ¼ 1 jR ¼ aÞ: ½18�

Substituting Equations (17) and (18) into Equation (16) gives

Δoverall ¼ ΔstratumðcÞprðR ¼ cÞ � ΔstratumðiÞprðR¼iÞ: ½19�

The implications of Assumption PAD-6 (stable preferences) depend on whether availability is fixed or
random. Under fixed availability, the availability of treatment T1 in the second time period subsumes the
availability of T1 in the first time period, for example availability in evenings and daytime subsumes
availability only in the daytime. Under random availability, availability of treatment T1 in the second
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time period is greater than in the first time period, but there is a chance component related to its timing.
Under fixed availability, Assumption PAD-6 (stable preferences) implies

prðR ¼ iÞ ¼ 0; ½20�
because no participant would switch from T1 to T0 when T1 becomes more available. Under random
availability, Assumption PAD-6 (stable preferences) implies

prðY ¼ 1 j Z ¼ z; R ¼ cÞ ¼ prðY ¼ 1 j Z ¼ 1� z; R ¼ iÞ; ½21�
because receipt of T1 or T0 occurs by chance among principal strata R = c and R = i. Based on Equations (13)
and (14), the effect of time period on the probability of receiving treatment T1 is

Δtreated ¼ prðT ¼ 1j Z ¼ 1Þ � prðT ¼ 1j Z ¼ 0Þ ¼ prðR ¼ cÞ��prðR ¼ iÞ: ½22�
Equation (21) implies Δstratum(c) = Δstratum(i). Combining either Equation (20) or (21) with Equations (19) and
(22), and simplifying gives the causal effect of treatment in the consistent-receiver principal stratum (under
fixed availability) or the combination of consistent-receiver and inconsistent-receiver principal strata (under
random-availability), which is written in both cases as

ΔstratumðcÞ ¼ Δoverall=Δtreated; ½23�

Look-see proofs, which have been derived for the Pythagorean theory [45] and for the sum of an infinite
geometric series [46], provide insight not available with algebraic proofs. Figures 6 and 7 provide look-see
proofs for the causal effect in Equation (23) under fixed and random availability, respectively.

In Figures 6 and 7, the area of the box (outlined by the black perimeter) is proportional to the
probability of being in a principle stratum. Also, the area of the colored bar as a fraction of the area of
the box is the probability of outcome in the principal stratum. Treatment received (which is a function of
principal stratum and time period) is indicated above each box for the principal stratum. Under
Assumption PAD-5 (stable treatment effect), the area of the colored bars in both time periods are the
same among never-receivers and always-receivers. Under Assumption PAD-6 (stable preferences) with
fixed availability, there are no inconsistent-receivers (Figure 6). Under Assumption PAD-6 (stable prefer-
ences) with random availability, the area of the colored bar corresponding to a given treatment is the same
for a consistent-receiver and an inconsistent- receiver (Figure 7). Graphically, the causal effect Δoverall/Δtreated
is the difference (between time periods) in the sum of the bar areas divided by the difference (between time
periods) in box areas corresponding to T1. The right sides of Figures 6 and 7 demonstrate that this causal
effect is a difference in probabilities of outcome among either (i) consistent-receivers under fixed availability
(Figure 6) or (ii) a combination of consistent-receivers and inconsistent-receivers under random availability
(Figure 7).

Always receiver Always receiver

Consistent receiver Consistent receiver

Never receiver

T1

T0

T0

T1

T1

T0

Time period 1 Time period 2

Consistent receiver Consistent receiver

Outcome difference

Divided by T1 difference

Area of box
Never receiver~

~ ~ ~ ~

~

Figure 6 Look-see proof of causal effect under fixed availability.
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In terms of estimates, Equation (23) can be written as

dstratumðcÞ ¼ doverall=dtreated: ½24�
where doverall is the difference in estimated probabilities of outcome between the two time periods, and
dtreated is the differences in estimated probabilities of receiving the treatment of interest in the two time
periods.

The estimate dstratum(c) in Equation (24) is analogous to the estimated local average treatment effect in
principal stratificationmodels for randomized trialswith all-or-none compliance [42]; it ismaximum likelihood
if all estimates of parameters yield a perfect fit to the categorical data [4]. If there is no perfect fit solution, the
maximum likelihood estimate of treatment effect can be computed using an iterative algorithm [47, 13].

3.1.3 Generalizability

The assumptions presented so far ensure an unbiased (causal) estimate of treatment effect within principal
stratum R = c, under fixed availability, or within both principal strata R = c and R = i under random
availability. A limitation of these estimates is that the composition of principal strata can change in the
future, making the estimates invalid. For example, a favorable estimate of treatment effect may encourage
some never-receivers to become consistent-receivers. Therefore, the goal is to estimate the effect of receipt of
treatment among all persons, not just among persons in some principal strata. This goal requires the
following assumption:

Assumption PAD-7 (generalizability): the estimated effect of receipt of treatment in principal strata R = c
(under fixed availability) or R = c and R = i (under random availability) is a good estimate of the effect of
receipt of treatment among all eligible persons.

3.2 Extrapolation estimates

The plausibility of Assumption PAD-7 (generalizability) can be increased by using an extrapolation
estimate [13]. This discussion focuses on principal stratum R = c under fixed availability, but the results
apply directly to principal strata R = c and R = i under random availability.

There are three key ideas for extrapolation. First, if the change in the fraction of consistent-receivers
equals 1, then everyone is receiving T1 instead of T0. (In practice, the maximum change in fraction of

Always receiver Always receiver

Consistent receiver Consistent receiver

Inconsistent receiver~

~ ~

~ ~

~

~

~

~~

Inconsistent receiver

Never receiver Never receiver

T1

T0

T1

T0

T1

T1

T0
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Consistent receiver Consistent receiver

Inconsistent receiver Inconsistent receiver

Outcome difference

Divided by T1 difference

Area of box Area of box

Time period 1 Time period 2

Figure 7 Look-see proof of causal effect under random availability.
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consistent-receivers may be a little less than one, as for example when epidural analgesia cannot be
administered due to rapid delivery). Second, there is an estimate of the fraction of women who are
consistent-receivers at each medical center. Third, the estimates from these fractions may be used to
extrapolate to the treatment effect when the fraction of women who are consistent-receivers equals 1.

Let j index medical center. Let dj denote the value of dstratum(c) for medical center j. Let vj denote
the estimated variance of dj. Let fj denote the estimate of dtreated for medical center j. We discuss the following
four estimates: the original random effects estimate without extrapolation and three extrapolation estimates.

3.2.1 Random effects (RE)

DerSimonian and Laird [48] introduced well-known random effects estimate for a meta-analysis of random
trials, which has been applied to the paired availability design. In the DerSimonian and Laird [48] frame-
work, the estimated variance under a random effects model is vRANj = vj + τ2, where τ2 = max[0,{Q – (k – 1)}/
{Σjwj – Σj (wj)

2/(Σj wj)}, Q = Σj wj {dj – Σjwj dj}
2, wj = 1/vj and k is the number of studies. Let wRAN = 1/vRANj.

The estimated treatment effect and its variance are

dRE ¼ dj hREj;

vRE ¼ �j vRANj ðhREjÞ2;
where hREj ¼ wRANj=�j wRANj:

½25�

To compute confidence intervals for the random effects estimate, Baker and Lindeman [1] used a compu-
tationally intensive paired permutation approach of Follman and Proschan [49]. A much simpler approx-
imate confidence interval [49, 50] is CIRE = [dRE – t(k–1) seRE, dRE – t(k–1) seRE], where seRE = (vRE)

1/2 and t(k–1) is
the upper 0.025 quantile of a t-distribution with k–1 degrees of freedom.

3.2.2 Random effects using fraction treated (REF)

The REF extrapolation estimate takes the RE estimate and multiplies the weight by the fraction receiving
treatment, giving the following estimated treatment effect and variance,

dREF ¼ ��j dj hREFj;

vREF ¼ �j vRANj ðhREFjÞ2;
where hREFj ¼ fi wRANj�jfi wRANj:

½26�

The approximate 95% confidence interval is CIREF = [dREF – t(k–1) seREF, dREF – t(k–1) seREF], where seREF = (vREF)
1/2.

3.2.3 Random effects using fraction treated squared (REF2)

The REF2 extrapolation estimate takes the RE estimate and multiplies the weight by the square of the
fraction receiving treatment, giving the following estimated treatment effect and variance,

dREF2 ¼ �j dj hREF2j;

vREF2 ¼ �j vRANj ðhREF2jÞ2;
where hREF2j ¼ ðfjÞ2wRANj=�j ðfjÞ2wRANj:

½27�

The approximate 95% confidence interval is CIREF2 = [dREF2 – t(k–1) seREF2, dREF2 – t(k–1) seREF2], where seREF2 =
(vREF2)

1/2.
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3.2.4 Flat/linear/quadratic/sigmoid model (FLQS)

The FLQS estimate involves fitting the following models to the data

Flat: dj ¼ α0 þ "j;

Linear: dj ¼ β0 þ β1 fj þ "j;

Quadratic: di ¼ γ0 þ γ1fj þ γ2ðfjÞ2 þ "j;

Sigmoid: dj ¼ ф0 þ ð1�ф0Þ expðfj � ф2Þ=f1þ expðfj � ф2Þg þ "j;

½28�

where εj denotes a random error which is normally distributed with mean 0. Model selection is based on the
smallest value of the Akaike information criterion [51]. If the flat model is selected, the RE estimates are
reported. Otherwise, the extrapolation estimate is computed at fj = fmax, where fmax is the largest anticipated
change in the fraction who would receive treatment in a population.

3.2.5 Simulation

We investigated the properties of the estimates RE, REF, REF2, and FLQS (with fmax = 1) using simulation.
Because the number of possible data patterns is too large for a comprehensive investigation, we selected
eight informative patterns for investigation: four shapes of flat, linear, quadratic, and sigmoid, each with
either a small and large variance for the random generation of points (Figure 8).

Mean squared errors (Figure 9) and coverage probabilities for nominal 95% confidence intervals
(Figure 10) were computed using 2000 simulations of the patterns in Figure 8.

For the flat shape, RE had the smallest mean squared error, and all estimates had good coverage
probabilities. For the linear, quadratic, and sigmoid data, REF2 and FLQS performed best in terms of mean
squared error and coverage probabilities. Because no single estimate performed best for all patterns, a
sensitivity analysis using all the estimates is recommended.

This simulation included some medical centers with a large fraction of consistent receivers. The
extrapolation estimate will be less informative if there are no medical centers with a large fraction who
are consistent receivers.

3.3 Application to epidural analgesia and C/S

The paired availability design was applied to the study of the effect of epidural analgesia on the probability
of C/S. To reduce bias from including only published studies, data were collected from abstracts, articles,
and a personal note (Table 1). In this application, treatment T0 is not receiving epidural analgesia (which
includes receiving opioid analgesia or not receiving any analgesia) and treatment T1 is receiving epidural
analgesia. Based on the information reported in some studies and the clinical expertise of author KSL, who
is an obstetric anesthesiologist, the first six assumptions for the paired availability design were thought to
be plausible.

Assumption PAD-1 (stable population) was plausible because some medical centers were geographically
or institutionally isolated (Table 1), and it is unlikely that a woman in labor would go to an inconvenient
hospital in order to receive epidural analgesia.

Assumption PAD-2 (stable ancillary care) was plausible because most studies reported no changes in
obstetric practice other than the increase in availability of epidural analgesia (Table 1).

Assumption PAD-3 (stable disease progression) was plausible because there was no known risk factor
altering the time course of C/S for women in labor. However, there is a concern that women not in labor who
received C/S, for example following a previous C/S, could have a probability of C/S that changed over time [52].
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This concern was mitigated by restricting the population studied to women in labor, women with anticipated
vaginal delivery, women with elected C/S excluded, or women without previous C/S (Tables 1 and 2).

Assumption PAD-4 (stable evaluation) was plausible because the eligibility criterion of labor did not
change over time and the determination of the C/S outcome is unambiguous.

Assumption PAD-5 (stable treatment effect) says that an always-receiver has the same probability of C/S
in both time periods regardless of (i) receiving epidural analgesia after other analgesia in the time period of
less availability and (ii) receiving epidural analgesia from the start in the time period of greater availability
of epidural analgesia. Support for this assumption comes from randomized trials showing that the timing of
epidural initiation does not affect the probability of C/S [53–56].

Assumption PAD-6 (stable preferences) was plausible because there was no new information that would
have changed the preference for epidural analgesia.

Figure 8 Hypothetical patterns for simulation. Dashed lines are 95% confidence intervals. Each point represents a study.
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To increase the plausibility of AssumptionPAD-1(stable population) and Assumption PAD-2 (stable
ancillary care), the analysis was restricted to a total time change over two periods of 6 or fewer years,
which meant splitting the data from Dailey (2000) into two groups and dropping one study of duration of 11
years that had been included in Baker and Lindeman [1]. We now turn to the final assumption.

Assumption PAD-7 (generalizability) was made more plausible by using extrapolation estimates. For the
FLQS estimate, the maximum fraction who could receive epidural analgesia was set to 0.89 to account for
rapid deliveries. The value of 0.89 was based on studies reporting numbers of rapid deliveries [66–68].

Figure 11 shows the estimates of treatment effect and 95% confidence intervals for each study in the paired
availability design. Summary estimates and confidence intervals are presented in Section 5, which compares
all the estimates.

Figure 9 Mean squared errors based on simulation.
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4 Meta-analysis of randomized trials

Randomized trials were also used to study the effect of epidural analgesia on the probability of C/S.
A randomized trial has the advantage over the propensity score analysis and the paired availability design
of balancing the distribution of both observed and unobserved variables in the two groups [69], thereby
obviating some assumptions in the other approaches. Nevertheless, randomized trials are not a perfect gold
standard in this application for reasons discussed below.

One concern with randomized trials in this application is a high fraction of crossovers (epidural to non-
epidural and vice versa) that makes intent-to-treat estimates less relevant because the effect of receipt of
epidural analgesia on the probability of C/S is substantially diluted [52]. A second concern is that an
estimate of treatment effect based on only those who comply with treatment protocol in the randomization
group can be biased. These concerns can be circumvented by using a similar principal stratification model
with two plausible assumptions as that discussed with the paired availability design.

Figure 10 Coverage of 95% confidence intervals based on simulation.
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The following additional notation is introduced. Let G = 0 denote the non-epidural analgesia randomization
group, and let G = 1 denote the epidural analgesia randomization group. Let T0 denote not receiving
epidural analgesia and T1 denote receiving epidural analgesia. T0 includes receiving study non-epidural
drug, receiving a non-study drug, refusal to receive any pain relief, and rapid delivery. Using the terminol-
ogy of Angrist et al. [42], the principal strata are

Never-taker, if a participant would receive treatment T0 if randomized to either G = 0 or G = 1.
Complier, if a participant would receive T0 if randomized to G = 0 and T1 if randomized to G = 1.
Defier, if a participant would receive T1 if randomized to G = 0 and T0 if randomized to G = 1.
Always-taker, if a participant would receive treatment T1 randomized to G = 0 or G = 1.

The following assumptions are invoked, where the terms “exclusion restriction” and “monotonicity” come
from Angrist et al. [42].

Table 1 Information about studies used in the paired availability design to investigate the effect of epidural analgesia on the
probability of C/S.

Study Source Type of
medical
center

Parity Support for
Assumption PAD-3
(stable disease
progression)

Support for Assumption PAD-1 (stable
population) and Assumption PAD-2
(stable ancillary care)

Gribble and Meier
[57]

Article regional
center

mixed with
nulliparous
subset

“in labor” “our patient population base has not
changed … the same eight obstetricians
were involved … no apparent changes in
their approaches”

Larsen [58] Meeting
abstract

city
hospital

mixed “same five obstetricians … patient
population was similar during each year”

Mancuso [59] Meeting
abstract

army
medical
center

mixed “elective Cesarean
deliveries
excluded”

Johnson and
Rosenfeld [60]

Article family
practice

mixed no previous C/S “no other changes in physician care,
nursing staff, hospital, physicians
involved, or demographics of population”

Newman et al. [61] Meeting
abstract

city
hospital

mixed

Lyon et al. [62] Article Army
medical
center

nulliparous “anticipated vaginal
delivery”

“no change in patient population
demographics”

“small practice variations could not be
excluded because of personnel changes”

Fogel et al. [63] Article City-
county
hospital

Mixed (31%
nulliparous)

“same group of attending obstetricians
and anesthesiologists”

Yancey et al. [64] Article Army
medical
center

Mixed (48%
nulliparous)

data available from
women with no
previous C/S

“no dramatic personnel changes”

Dailey (personal
communication,
1999)

Personal
note

City
hospital

Mixed

Impey et al. [29, 30] Article City
hospital

Nulliparous “in spontaneous
labor”

“consistency of obstetric practice in this
group that is almost unparalleled”.
“confounding variables, such as
electronic fetal monitoring were constant”

Zhang et al. [65] Article Army
medical
center

Nulliparous “spontaneous onset
of labor”

“no significant personnel change nor any
new obstetric protocol implemented”
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Assumption RCT-1 (exclusion restriction): the effect of treatment on the probability of outcome does not
change with randomization group among always-takers and never-takers,

Assumption RCT-2 (monotonicity): no participant would receive T1 if randomized to T0 and receive T0 if
randomized to T1.

Assumption RCT-3 (generalizability): the estimated effect of receipt of treatment based on compliers is a
good estimate of the effect of receipt of treatment among all eligible persons.

Assumption RCT-4 (blinding equivalence): knowledge of treatment received did not affect the probability
of outcome, as if the investigators and patients were blinded to the treatment received.

Table 2 Basic estimates computed for paired availability design to study the effect of epidural analgesia on the probability
of C/S.

Study Time period Number Fraction receiving epidural Fraction with C/S

Gribble et al. [57] 1986–87 1,298 0.000 0.090
1989–91 1,084 0.480 0.082

Nulliparous subset 1986–87 526 0.000 0.167
Nulliparous subset 1989–91 425 0.610 0.160

Larsen [58] 1989–90 1,919 0.270 0.280
1990–91 2,073 0.380 0.230

Mancuso [59] 1990–91 4,685 0.190 0.150
1991–92 4,087 0.670 0.120

Johnson and Rosenfeld [60] 1993 103 0.220 0.180
1994 116 0.590 0.170

Newman et al. [61] 1998 2,628 0.400 0.240
1989 2,808 0.460 0.240

Time period ↑ 1990 2,672 0.550 0.260
Time period ↓ 1991 2,486 0.610 0.270

1992 2,520 0.660 0.290
1993 2,492 0.710 0.280
1994 2,420 0.740 0.280

Lyon et al. [62] 1992–93 373 0.130 0.110
1993–94 421 0.590 0.100

Fogel et al. [63] 1992–93 3,195 0.012 0.091
1993–94 3,733 0.290 0.097

Yancey et al. [64] 1992–93 4,778 0.008 0.130a

1995–96 4,859 0.590 0.130a

Dailey (1999, personal communication) 1989 2,175 0.180 0.210
Time period ↑ 1990 2,239 0.270 0.200
Time period ↓ 1991 2,115 0.350 0.230

1992 2,226 0.430 0.220
1993 2,404 0.400 0.200
1994 2,476 0.470 0.210

Time period ↑ 1995 2,450 0.490 0.210
Time period ↓ 1996 2,334 0.520 0.210

1997 2,320 0.480 0.200
1998 2,289 0.540 0.220

Impey et al. [29, 30] Time period ↑ 1987 1,000 0.099 0.038
Time period ↓ 1992 1,000 0.450 0.050

1994 1,000 0.570 0.040
Zhang et al. [65] 1993 507 0.100 0.140

1996 581 0.840 0.120

Note: aExcludes C/S after a previous C/S.
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We now consider the plausibility of these assumptions in the meta-analysis of randomized trials involving
the effect of epidural analgesia on the probability of C/S.

Assumption RCT-1(exclusion restriction) says that women who receive epidural analgesia after receiving
non-epidural analgesia (and thus classified as receiving epidural analgesia) have the same probability of
C/S as women who received only epidural analgesia. Support comes from randomized trials showing that
the timing of epidural analgesia does not affect the probability of C/S [53–56].

Assumption RCT-2(monotonicity) is plausible because preference for epidural analgesia does not change
with assignment to randomization group.

The combination of Assumption RCT-1(exclusion restriction) and Assumption RCT-2 (monotonicity)
allows estimation of the effect of epidural analgesia on the probability of C/S among compliers, which is
analogous to Equation (24) for the paired availability design; this estimate is called the local average
treatment effect [42] or the complier average causal effect [70].

AssumptionRCT-3 (generalizability) is needed because the composition of principal strata can change in the
future. To make this assumption more plausible, extrapolation estimates are used. However, there is also a
concern that persons enrolled in a randomized trial are not representative of the general population [52]. The
use of multiple randomized trials to broaden the study population mitigates this concern. The estimates for
each trial that are used to compute the extrapolation estimate are displayed in Figure 12.

Assumption RCT-4 (blinding equivalence) was plausible because of the use of written protocols for
performing a C/S (Tables 3 and 4).

The estimates and confidence intervals based on the meta-analysis of the randomized trials are summarized
in Section 5.

E

Figure 11 Estimates of effect of receipt of epidural analgesia on probability of C/S for each study in the paired availability
design. The rectangle size is proportional to the reciprocal of the estimated variance. Vertical lines correspond to 95%
confidence intervals. Red dashed lines correspond to studies involving only nulliparous women; black solid lines correspond
to studies involving women of mixed parity.

72 S.G. Baker and K.S. Lindeman: Revisiting a Discrepant Result



Table 3 Information about randomized trials to study the effect of epidural analgesia on the probability of C/S.

Study Source Parity Support for Assumption RCT-4 (blinding equivalence)

Philipsen and
Jensen [71]

Article Nulliparous
(93%)

Thorp et al. [72] Article Nulliparous indications for C/S
Muir et al. [73] Meeting

abstract
Nulliparous

Ramin et al. [74]a Article Mixed (56%
nulliparous)

“all staff followed a written procedural manual”

Bofill et al. [75] Article Nulliparous “strict guidelines regarding labor management were in force throughout the
duration of the study”

Sharma et al. [66] Article Mixed (54%
nulliparous)

“all staff followed procedures recording in a written manual”

Clark et al. [76] Article Nulliparous indications for C/S
Gambling et al. [67] Article Mixed (53%

nulliparous)
“all women were treated using standardized written protocols”

Loughnan et al. [77] Article Nulliparous “labour was managed according to a protocol”
Norris et al. [78] Article Mixed (42%

nulliparous)
“obstetric residents and labor nurses unaware of the anesthetic
administered, managed labors according to standardized protocols”

Howell et al. [79] Article Nulliparous “apart from the choice of analgesia, no attempt was made to influence.
practice relating to other aspects of management of labor”

Dickinson et al. [80] Article Nulliparous “those monitoring the adherence to the obstetrical protocol were blinded to
analgesic treatment group”

Sharma et al. [81] Article Nulliparous “all pregnancies were managed … following a written protocol”
Halpern et al. [82] article Nulliparous indications for C/S
Sharma et al. [68] Article Nulliparous “all pregnancies were managed … following a written protocol”

Note: athe reported outcome was operative delivery for dystocia, which is usually C/S.

E

Figure 12 Estimates of the effect of receipt of epidural analgesia on probability of C/S for each trial in the meta-analysis of
randomized trials. The rectangle size is proportional to the reciprocal of the estimated variance. Vertical lines correspond to
95% confidence intervals. Red dashed lines correspond to trials involving only or almost only nulliparous women; black solid
lines correspond to trials involving women of mixed parity.
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5 Comparison of estimates

Two sets of analyses were conducted: one for nulliparous women and one for women of mixed parity
(Figure 13). Generally, no separate data were available for multiparous women. In studies involving women
of mixed parity, the reported fraction of nulliparous women ranged from 31 to 56%. With data from only
four studies, the FLQS estimate was thought to be too unreliable and not included. For data on
nulliparous women in Nguyen et al. [33], the estimated effect of epidural analgesia on the probability
of C/S was based on Equation (11). For data on women of mixed parity (43% nulliparous) in Nguyen et
al. [33], the estimated effect of epidural analgesia on the probability of C/S was computed using the
equation in Appendix C.

The main result is that confidence intervals for the effect of epidural analgesia on the probability of C/S
from the paired availability design and the randomized trials both included zero, in contrast to the
confidence intervals from the propensity score analysis which excluded zero.

6 Discussion

In these investigations of the effect of epidural analgesia on the probability of C/S, randomized trials are
viewed as the gold standard but with additional assumptions related to crossovers and lack of blinding.

Table 4 Basic estimates computed from randomized trials to study the effect of epidural analgesia on the probability of C/S.

Study Randomization group Number Fraction receiving epidural Fraction with C/S

Philipsen and Jensen [71] Control 54 0.000 0.110
Epidural 57 1.000 0.180

Thorp et al. [72] Control 45 0.022 0.022
Epidural 48 0.980 0.250

Muir et al. (1996) Control 22 0.500 0.091
Epidural 28 0.000 0.110

Ramin et al. [74] Control 666 0.160 0.050
Epidural 665 0.090 0.059

Bofill et al. [75] Control 51 0.240 0.059
Epidural 49 0.960 0.100

Sharma et al. [66] Control 357 0.014 0.045
Epidural 358 0.680 0.036

Clark et al. [76] Control 162 0.520 0.140
Epidural 156 0.940 0.096

Gambling et al. [67] Control 607 0.260 0.056
Epidural 616 0.650 0.063

Loughnan et al. [77] Control 310 0.570 0.130
Epidural 304 0.830 0.120

Howell et al. [79] Control 185 0.280 0.086
Epidural 184 0.670 0.071

Norris et al. [78] Control 1,071 0.099 0.150
Epidural 112 9.400 0.130

Dickinson et al. [80] Control 499 0.370 0.140
Epidural 493 0.720 0.170

Sharma et al. [81] Control 233 0.060 0.086
Epidural 226 0.950 0.071

Halpern et al. [82] Control 118 0.100 0.100
Epidural 124 1.000 0.097

Sharma et al. [68] Control 1,364 0.140 0.100
Epidural 1,339 0.820 0.110
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The meta-analysis of randomized trials and the paired availability design involves similar assumptions
related to principal stratification, Assumption RCT-1 (exclusion restriction), Assumption RCT-2
(monotonicity) and their analogs Assumption PAD-5 (stable treatment effect) and Assumption
PAD-6 (stable preferences). However, it does not follow that the paired availability design will yield
similar estimates as the meta-analysis of randomized trials because the paired availability design requires
additional assumptions in lieu of randomization. Both the propensity score method and the paired
availability design will yield correct estimates if their assumptions hold and likely incorrect estimates if
their assumptions do not hold. Therefore, when performing these analyses, it is a critical look at the
plausibility of the assumptions.

Based on the theory of causal graphs, the propensity score method requires two assumptions,
Assumption PS-1 (no omitted confounder) and Assumption PS-2 (no latent M-bias collider).
Unfortunately, it is easy to be overconfident that these assumptions hold. For example in the application
discussed here, Lieberman et al. [28] wrote “for some other factor not controlled in our analysis to be
responsible for the association we have noted, it would have to be very strongly associated with epidural
analgesia use and cesarean delivery. There are no obvious candidates apart from the factors we have
measured.” We believe that omitted confounders of intense pain and obstetrical practice and a latent M-bias

Figure 13 Estimates of the effect of epidural analgesia on the probability of C/S for propensity score (PS), paired availability
design (PAD), and randomized clinical trial (RCT). The number of studies is in parentheses. The red (dotted line) denotes studies
involving only (or almost only) nulliparous women. For propensity score analyses, Study 1 is Lieberman et al. (1995) and Study 2
is Nguyen et al. [33].
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colliders of cervical dilation at admission and initial rate of cervical dilation could have biased results from
the propensity score analysis.

The paired availability design requires seven assumptions. Four assumptions ensure that time periods can
be treated like arms of a randomized trial for drawing conclusions: Assumption PAD-1 (stable population),
Assumption PAD-2 (stable ancillary care), Assumption PAD-3 (stable disease progression), Assumption
PAD-4 (stable evaluation). Some design choices can make these assumptions more plausible: short time
periods, institutionally or geographically isolated clinics, restrictions to only health care providers present in
both time periods, and eligibility criteria. The two assumptions needed for model identifiability, Assumption
PAD-5 (stable treatment effect) and Assumption PAD-6 (stable preferences), are often reasonable.
Perhaps, the least appreciated assumption is Assumption PAD-7 (generalizability). The extrapolation
estimate increases the plausibility of this assumption; it is most informative when the estimated fraction of
women who are consistent-receivers (under fixed availability) or consistent-receivers and inconsistent-recei-
vers (under random availability) is large for some medical centers; otherwise there could be considerable
uncertainty in extrapolation. In this regard, a sensitivity analysis is recommended.

Whenever possible, randomized trials instead of observational studies should be used to estimate the
causal effect of treatment on outcome because fewer assumptions are required. However, when randomized
trials cannot be implemented due to ethical considerations or expense, propensity scores informed by
causal graphs and the paired availability design with the extrapolation estimate should be considered along
with a critical appraisal of the plausibility of their assumptions.
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comments.

Appendix A

This Appendix reviews the proof in Rosenbaum and Rubin [3] for an important property of propensity
scores. Recall that the propensity score is s = pr(T = 1 |x). Let E() denote the expected value, so

Eðt jxÞ ¼ 1� prðT ¼ 1 jxÞþ0� prðT ¼ 1 jxÞ¼ s: ½A:0�
Also,

prðT ¼ 1 jsÞ¼ 1� prðT ¼ 1jsÞþ0� prðT ¼ 1 jsÞ¼ EðtjsÞ
¼ EfEðt jxÞ jsg; by amathematical identity;

¼ Efs jsg; from ðA:0Þ;
¼ s ¼ prðT ¼ 1 jxÞ:

½A:1�

Because T is binary, from (A.1),

prðT ¼ t jsÞ¼prðT ¼ t jxÞ: ½A:2�
In addition,

prðX ¼ x; T ¼ t jsÞ
¼prðT ¼ t jx; sÞprðX ¼ x jsÞ; byamathematical identity;

¼prðT ¼ t jxÞprðX ¼ x jsÞ; because x includes s;
¼ prðT ¼ t jsÞprðX ¼ x jsÞ; from ðA:2Þ:

½A:3�
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Dividing both sides of (A.3) by pr(T = t |s) gives pr(X = x | t, s) = pr(X = x |s), which is the key property from
Equation (8).

Appendix B

This Appendix proves the fundamental results concerning independence and dependence of variables directly

connected to non-colliders and colliders.

B.1 Conditioning on non-collider X where A ← Z ← B

Let pr(A = a|x) = f(a|x), pr(X = x|b) = g(x|b), pr(B = b) = h(b). Therefore pr(A = a,x = x, B = b) = f(a|x) g(x|b)
h(b). Variables A and B are unconditionally dependent namely,

pr A ¼ a;B ¼ bð Þ � pr A ¼ að Þ pr B ¼ bð Þ; because
pr A ¼ a;B ¼ bð Þ �x f ajxð Þ g xjbð Þ h bð Þ;
pr A ¼ að Þ ¼ �x f ajxð Þ�bg xjbð Þ h bð Þ;
pr B ¼ bð Þ ¼ �x g xjbð Þ h pð Þ:

½B:1�

Also variables A and B are independent conditional on x, namely pr(A = a, B = b|x) = pr(A = a x) pr(B = b|x),
because

pr A ¼ a;B ¼ bjxð Þ ¼ f ajxð Þ g xjbð Þ h bð Þ= �a�b f ajxð Þ g xjbð Þ h bð Þf g
¼ f ajxð Þ g xjbð Þ= �a f ajxð Þ�b g xjbð Þf g;
pr A ¼ ajxð Þ ¼ �b f ajxð Þ g xjbð Þ h bð Þ= �a�b fðajxÞ xjbð Þ h bð Þf g
¼ f ajxð Þ=�a f ajxð Þ;
pr B ¼ bjxð Þ ¼ �a f ajxð Þ g xjbð Þ hðbÞ= �a�b f ajxð Þ g xjbð Þ h bð Þf g
¼ g xjbð Þ=�b g xjbð Þ:

½B:2�

B.2 Conditioning on non-collider X where A → Z → B

Let pr(A = a) = f(a), pr(X = x|a) = g(x|a), and pr(B = b|x) = h(b|x), so pr(A = a,x = x, B = b) = f(a) g(x|a) h(b|x).
Variables A and B are unconditionally dependent namely,

pr A ¼ a;B ¼ bð Þ�pr A ¼ að Þ pr B ¼ bð Þ because
pr A ¼ a;B ¼ bð Þ ¼ �x f að Þ g xjað Þ h bjxð Þ;
pr A ¼ að Þ ¼ f að Þ;
pr B ¼ bð Þ ¼ �x�b f að Þ g xjað Þ h bjxð Þ:

½B:3�

Also variables A and B are independent conditional on x, namely, pr(A = a, B = b | x) = pr(A = a| x)
pr(B = b|x), because

pr A ¼ a;B ¼ bjxð Þ ¼ f að Þ g xjað Þ h bjxð Þ= �a�b f að Þ g xjað Þ h bjxð Þf g;
pr A ¼ ajxð Þ ¼ �b f að Þ g xjað Þ h bjxð Þ= �a�b f að Þ g xjað Þ h bjxð Þf g
¼ f að Þ g a; xð Þ ¼ �a f að Þ g a; xð Þf g;
pr B ¼ bjxð Þ ¼ �a f að Þ g xjað Þ h bjxð Þ= �a�b f að Þ g xjað Þ h bjxð Þf g
¼ h bjxð Þ=�a h bjxð Þ:

½B:4�
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B.3 Conditioning on non-collider X where A ← X→ B

Let pr(A|X) = f(a|x), pr(X = x) = g(x), and pr(B = b|x) = h(b|x), so pr(A = a, X = x, B = b) = f(a|x) g(x) h(b|x).
Variables A and B are unconditionally dependent, namely,

pr A ¼ a;B ¼ bð Þ � pr A ¼ að Þ pr B ¼ bð Þbecause
pr A ¼ a;B ¼ bð Þ ¼ �x f ajxð Þ g xð Þ h bjxð Þ;
pr A ¼ að Þ ¼ �x f ajxð Þ g xð Þ h bjxð Þ;
pr B ¼ bð Þ ¼ �x f ajxð Þ g xð Þ h bjxð Þ:

½B:5�

Also variables A and B are independent conditional on x, namely

pr A ¼ a;B ¼ bjxð Þ ¼ pr A ¼ ajxð Þ pr B ¼ bjxð Þ; because
pr A ¼ a;B ¼ bjxð Þ ¼ f ajxð Þ g xð Þ h bjxð Þ= �a�c f ajxð Þ g xð Þ h bjxð Þf g
¼ f a=xð Þ h bjxð Þ= �a f ajxð Þ�b h bjxð Þf g;
pr A ¼ ajxð Þ ¼ �b f a; xð Þ g xð Þ h bjxð Þ= �a �b f ajxð Þ g xð Þ h bjxð Þf g
¼ f ajxð Þ=�a f ajxð Þ;
pr B ¼ bjxð Þ ¼ �a f f ajxð Þ g xð Þ h bjxð Þ= �a�b f ajxð Þ g xð Þ h bjxð Þf g
¼ h bjxð Þ=�b h bjxð Þ:

½B:6�

B.4 Conditioning on collider X where A → Z ← B

Let pr(X = x| a, b) = f(x|a,b), pr(A = a) = g(a), and pr(B = b) = h(b), so pr(A = a, X= x, B = b) = f(x|a,b) g(a)
h(b). Variables A and B are unconditionally in dependent, namely,

pr A ¼ a;B ¼ bð Þ ¼ pr A ¼ að Þ pr B ¼ bð Þbecause
pr A ¼ a;B ¼ bð Þ ¼ �x f xja; bð Þ g að Þ h bð Þ ¼ g að Þ h bð Þ:
pr A ¼ að Þ ¼ g að Þ;
pr B ¼ bð Þ ¼ h bð Þ:

½B:7�

Also variables A and B are dependent conditional on x, namely

pr A ¼ a;B ¼ bjxð Þ � pr A ¼ ajxð Þ pr B ¼ bjxð Þ; because
pr A ¼ a;B ¼ bjxð Þ ¼ f xja; bð Þ g að Þ h bð Þ= �a�b f xja; bð Þ g að Þ h bð Þf g;
pr A ¼ ajxð Þ ¼ �b f xja; bð Þ g að Þ h bð Þ= �a�b f xja; bð Þ g að Þ h bð Þf g;
pr B ¼ bjxð Þ ¼ �a f xja; bð Þ g að Þ h bð Þ= �a�b f xja; bð Þ g að Þ h bð Þf g:

½B:8�

Appendix C

This Appendix describes estimation of effect of epidural analgesia on the probability of C/S using data
from propensity score quantiles in Nguyen et al. [33] which was separately provided for nulliparous women
(w = 0) and multiparous women (w = 1). Let p(t, q, w) denote an estimate of pr(Y = 1|t,s*, w) where s* is the
estimated propensity score s* in the qth quintile of the estimated propensity scores. Let m denote the
fraction of women who are multiparous. Then the propensity score subclassification estimate of causal
effect for women of mixed parity is

DCAUSALðPSÞ ¼ f�5
q¼1 pð1; q; 0Þ=5 � �5

q¼1 pð0; q; 0Þ=5g ð1 �mÞ
þ f�5

q¼1 pð1; q; 1Þ=5 � �5
q¼1 pð0 q; 1Þ=5gm:
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